
A Missing Details453

A.1 Motivations for working with model latent space454

In Section 3, we introduced the confusion density matrix that allows us to categorize suspicious455

examples at testing time. Crucially, this density matrix relies on kernel density estimations in the456

latent space H associated to the model f through Assumption 1. Why are we performing a kernel457

density estimation in latent space rather than in input space X ? The answer is fairly straightforward:458

we want our density estimation to be coupled to the model and its predictions.459

Let us now make this point more rigorous. Consider two input examples x1, x2 2 X . The model460

assigns a representations g(x1), g(x2) 2 H and class probabilities f(x1), f(x2) 2 Y . If we define461

our kernel  in latent space H, this often means1 that [g(x1), g(x2)] grows as kg(x1)� g(x2)kH462

decreases. Hence, examples that are assigned a similar latent representation by the model f are463

related by the kernel. Since our whole discussion revolves around model predictions, we would464

like to guarantee that two examples related by the kernel are given similar predictions by the model465

f . In this way, we would be able to interpret a large kernel density [g(x1), g(x2)] as a hint that466

the predictions f(x1) and f(x2) are similar. We will now show that, under Assumption 1, such a467

guarantee exists. Similar to [36], we start by noting that468

k(l � g)(x1)� (l � g)(x2)kRC = kl [g(x1)� g(x2)]kRC

 klkop kg(x1)� g(x2)kH ,

where k·kRC is a norm on RC and klkop is the operator norm of the linear map l. In order to extend469

this inequality to black-box predictions, we note that the normalizing map in Assumption 1 is often470

a Lipschitz function with Lipschitz constant � 2 R. For instance, a Softmax function with inverse471

temperature constant ��1 is �-Lipschitz [37]. We use this fact to extend our inequality to predicted472

class probabilities:473

kf(x1)� f(x2)kY = k(' � l � g)(x1)� (' � l � g)(x2)kY
 � k(l � g)(x1)� (l � g)(x2)kRC

 � klkop kg(x1)� g(x2)kH .

This crucial inequality guarantees that examples x1, x2 2 X that are given a similar latent representa-474

tion g(x1) ⇡ g(x2) will also be given a similar prediction f(x1) ⇡ f(x2). In short: two examples475

that are related according to a kernel density defined in the model latent space H are guaranteed to476

have similar predictions. This is the motivation we wanted to support the definition of the kernel  in477

latent space.478

An interesting question remains: is it possible to have similar guarantees if we define the kernel in479

input space? When we deal with deep models, the existence of adversarial examples indicates the480

opposite [38]. Indeed, if x2 is an adversarial example with respect to x1, we have x1 ⇡ x2 (and hence481

kx1 � x2kX small) with two predictions f(x1) and f(x2) that are significantly different. Therefore,482

defining the kernel  in input space might result in relating examples that are given a significantly483

different prediction by the model. For this reason, we believe that the latent space is more appropriate484

in our setting.485

A.2 Details: Flagging IDM and Bnd Examples with Thresholds486

In order to understand uncertainty, it will be clearer to map those scores into binary classes with
thresholds. In our experiments, we use empirical quantiles as thresholds. e.g., to label an example as
IDM, we specify an empirical quantile number q, and calculate the corresponding threshold based on
the order statistics of IDM Scores for test examples: S(1)

IDM
, ..., S(|Dtest|)

IDM
, where S(n)

IDM
denotes the

n-th smallest IDM score out of |Dtest| testing-time examples. Then, the threshold given quantile
number q is

⌧IDM(q) ⌘ S(b|Dtest|·qc)

IDM
.

1This is the case for all the kernels that rely on a distance (e.g. the Radial Basis Function Kernel, the Matern
kernel or even Polynomial kernels [32]).

13

Similarly, we can define quantile-based threshold in flagging Bnd examples based on the order
statistics of Bnd Scores for test examples, such that for given quantile q,

⌧Bnd(q) ⌘ S(b|Dtest|·qc)

Bnd
.

Practically, a natural choice of q is to use the validation accuracy: when there are 1 � q examples487

misclassified in the validation set, we also expect the testing-time in distribution examples with the488

highest 1� q to be marked as Bnd or IDM examples.489

B Improving Predicting Performance of Uncertain Examples490

Knowing the category that a suspicious example belongs to, can we improve its prediction? For ease491

of exposition, we focus on improving predictions for SB&I.492

Let p (x | SB&I) be the latent density be defined as in Definition 1. We can improve the prediction493

performance of the model on SB&I examples by focusing on the part of examples in the training494

set that are closely related to those suspicious examples. We propose to refine the training dataset495

Dtrain by only keeping the examples that resembles the latent representations for the specific type of496

test-time suspicious examples, and train another model on this subset of the training data:497

D̃train ⌘ {x 2 Dtrain|p (x | SB&I) � ⌧test}, (6)
where ⌧test is a threshold that can be adjusted to keep a prespecified proportion q of the related498

training data. Subsequently, new prediction model fB&I is trained on D̃train.499

Orthogonal to ensemble methods that require multiple models trained independently, and improve500

overall prediction accuracy by bagging or boosting, our method is targeted at improving the model’s501

performance on a specified subclass of test examples by finding the most relevant training examples.502

Our method is therefore more transparent and can be used in parallel with ensemble methods if503

needed.504

Threshold ⌧test(q) For every training example x 2 Dtrain, we have the latent density p(x|DB&I)
over the B&I class of the test set. With their order statistics p(1)(x|DB&I), ..., p(|Dtrain|)

(x|DB&I).
Given quantile number q, our empirical quantile based threshold ⌧test is chosen as

⌧test(q) ⌘ p(bq·|Dtrain|c)
(x|DB&I).

During the inverse training time, we train our model to predict those B&I class of test examples only505

with the training data with higher density than ⌧test(q). We experiment with different choices of q in506

the experiment (Figure 6 in Sec. 4.4).507

C Additional Experiments508

C.1 Categorization of Uncertainty under Different Thresholds509

In the main text, we provide results with ⌧Bnd = ⌧IDM = 0.8, which approximates the accuracy on510

validation set—as a natural choice. In this section, we vary these thresholds and show in Figure 7511

that changing those thresholds does not significantly alter the conclusions drawn above.512

Figure 8 looks more closely into the top 25% uncertain examples for each method, and the accuracy513

on each of the uncertainty classes. As expected, the accuracy of the B&I examples is always lower514

than that of the trusted class, meaning that those examples are most challenging for the classifier.515

And the accuracy of flagged classes are always lower than the other class, verifying the proposed516

categorization of different classes.517

C.2 Inverse Direction: More Results518

In the main text, we show the results on improving prediction performance on the B&I class with519

training example filtering (On the Covtype, Digits dataset). More results on other classes of examples520

are provided in this section.521

We experiment on three UCI datasets: Covtype, Digits, and Spam. And experiment with three522

classes we defined in this work:523

14

(a) ⌧BD(0.5), ⌧IDM(0.5)

(b) ⌧BD(0.6), ⌧IDM(0.6)

(c) ⌧BD(0.7), ⌧IDM(0.7)

(d) ⌧BD(0.8), ⌧IDM(0.8)

(e) ⌧BD(0.9), ⌧IDM(0.9)

Figure 7: Experiments on different choices of thresholds.

1. B&I class (Figure 9). As we have discussed in our main text, the prediction accuracy on the524

B&I class are always the lowest among all classes. By training with filtered examples in525

Dtrain rather than the entire training set, the B&I class of examples can be classified with a526

remarkably improved accuracy.527

2. Bnd class (Figure 10). This class of examples are located at boundaries in the latent space528

of validation set, but not necessarily have been misclassified. Therefore, their performance529

baseline (training with the entire Dtrain) is relatively high. The improvement is clear but not530

as much as on the other two classes.531

3. IDM class (Figure 11). For this class of examples, similar mistakes have been make in532

the validation set, yet those examples are not necessarily located in the boundaries—the533

misclassification may be caused by ambiguity in decision boundary, imperfectness of either534

the model or the dataset. The primal prediction accuracy on this class of examples is lower535

than the Bnd class but higher than the B&I class, training with filtered Dtrain also clearly536

improve the performance on this class of examples.537

15

(a) BNNs (b) MCD (c) DE

Figure 8: The top 25% uncertain examples identified by different methods. Legend of each figure provide the
accuracy and proportion of each class. As the classifier can not make correct predictions on the OOD examples,
it’s always better for uncertainty estimators to flag more OOD examples.

Table 4: DAUC is not the only choice in identifying OOD examples. On the Dirty-MNIST dataset, DAUC,
Outlier-AE and the IForest can identify most outliers in the test dataset. (Given threshold = 1.0 for those two
benchmark methods).

Method Precision Recall F1-Score

DAUC 1.0000± 0.0000 1.0000± 0.0000 1.0000± 0.0000
Outlier-AE 1.0000± 0.0000 1.0000± 0.0000 1.0000± 0.0000
IForest [40] 0.9998± 0.0004 1.0000± 0.0000 0.9999± 0.0002

C.3 Alternative Approach in Flagging OOD538

As we have mentioned in the main text, although DAUC has a unified framework in understanding539

all three types of uncertainty the uncertain caused by OOD examples can also be identified by540

off-the-shelf algorithms. We compare DAUC to two existing outlier detection methods in Table 4,541

where all methods achieve good performance on the Dirty-MNIST dataset. Our implementation is542

based on Alibi Detect [39].543

(a) Covtype (b) Digits (c) Spam

Figure 9: Experiments on the B&I class (reported in the main text).

C.4 Experiments on Dirty-CIFAR-10544

Dataset Discription In this experiment, we introduce a revised version of the CIFAR-10 dataset545

to test DAUC’s scalability. Similar to the Dirty-MNIST datset [34], we use linear combinations of546

the latent representation to construct the “boundary” class. In the original CIFAR-10 Dataset, each547

of the 10 classes of objects has 6000 training examples. We split the training set into training set548

(40%), validation set (40%) and test set (20%). To verify the performance of DAUC in detecting549

OOD examples, we randomly remove one of those 10 classes (denoted with class-i) during training550

and manually concatenate OOD examples with the test dataset, with label i. In our experiment, we551

16

(a) Covtype (b) Digits (c) Spam

Figure 10: Experiments on the Bnd class.

(a) Covtype (b) Digits (c) Spam

Figure 11: Experiments on the IDM class.

use 1000 MNIST digits as the OOD examples, with zero-padding to make those digits share the same552

input shape as the CIFAR-10 images. Combining those boundary examples, OOD examples and the553

vanilla CIFAR-10 examples, we get a new benchmark, dubbed as Dirty-CIFAR-10, for quantitative554

evaluation of DAUC.555

Quantify the performance of DAUC on Dirty-CIFAR-10 Quantitatively, we evaluate the per-556

formance of DAUC in categorizing all three classes of uncertain examples. Results of averaged557

performance and standard deviations based on 8 repeated runs are provided in Table 5.

Table 5: Quantitative results on the Dirty-CIFAR-10 dataset. DAUC scales well and is able to categorize all
three classes of uncertain examples.

Category Precision Recall F1-Score

OOD 0.986± 0.003 0.959± 0.052 0.972± 0.027
Bnd 0.813± 0.002 0.975± 0.000 0.887± 0.001
IDM 0.688± 0.041 0.724± 0.017 0.705± 0.027

558

Categorize Uncertain Predictions on Dirty-CIFAR-10 Similar to Sec. 4.3 and Figure 5, we can559

categorize uncertain examples flagged by BNNs, MCD and DE using DAUC—see Figure 12. We find560

that in the experiment with CIFAR-10, DE tends to discover more OOD examples as top uncertain561

examples. Differently, although BNNs flags less OOD examples as top-uncertain, it continuously562

discover those OOD examples and is able to find most of them for the top 50% uncertainty. On the563

contrary, MCD performs the worst among all three methods, similar to the result drawn from the564

DMNIST experiment. On the other hand, while BNN is good at identifying OOD examples, it flags565

less uncertain examples in the Bnd and IDM classes. DE is the most apt at flagging both Bnd and566

IDM examples, and categorizes far less examples into the Other class. These observations are well567

aligned with the experiment results we had with DMNIST in Sec. 4.3, showing the scalability of568

DAUC to large-scale image dataset.569

17

Figure 12: Experiments on the CIFAR-10 dataset. Results of applying DAUC in categorizing different uncertainty
estimation methods. First row: comparisons on the numbers in different classes of examples. Second row:
comparisons on the proportion of different classes of flagged examples to the total number of identified uncertain
examples. Different methods tend to identify different certain type of uncertain examples.

D Implementation Details570

D.1 Code571

Our code is anonymously available at https://anonymous.4open.science/r/DAUC-B234/.572

D.2 Hyperparameters573

D.2.1 Bandwidth574

In our experiments, we use (z-score) normalized latent representations and bandwidth 1.0. In575

the inverse direction, as the sample sizes are much smaller, a bandwidth of 0.01 is used as the576

recommended setting. There is a vast body of research on selecting a good bandwidth for Kernel577

Density Estimation models [41–43] and using these to adjust DAUC’s bandwidth to a more informed578

choice may further improve performance.579

D.3 Inverse Direction: Quantile Threshold q580

As depicted in Appendix A.2, a natural choice of q is to use the validation accuracy. We use this581

heuristic approach in our experiments for the inverse direction.582

D.4 Model Structure583

In our experiments, we implement MCD and DE with 3-layer-CNNs with ReLU activation. Our584

experiments on BNNs are based on the IBM UQ360 software [44]. More details of the convolutional585

network structure are provided in Table 6.586

Table 6: Network Structure

Layer Unit Activation Pooling

Conv 1 (1, 32, 3, 1, 1) ReLU() MaxPool2d(2)
Conv 2 (32, 64, 3, 1, 1) ReLU() MaxPool2d(2)
Conv 3 (64, 64, 3, 1, 1) ReLU() MaxPool2d(2)

FC (64⇥ 3⇥ 3, 40) ReLU() -
Out (40, NClass) SoftMax() -

D.5 Implementation of Kernel Density Estimation and Repeat Runs587

Our implementation of KDE models are based on the sklearn’s KDE package [45]. Gaussian kernels588

are used as default settings. In all experiments, we run with 10 random seeds and report the averaged589

18

https://anonymous.4open.science/r/DAUC-B234/

results. In our experiments, we find using different kernels in density estimation provides highly590

correlated scores. We calculate the Spearman’s ⇢ correlation between scores DAUC gets over 5591

runs with Gaussian, Tophat, Exponential kernels under the same bandwidth. Changing the kernel592

brings highly correlated scores (all above 0.86) for DAUC and, hence, has minor impact on DAUC’s593

performance. We preferred KDE since the latent representation is relatively low-dimensional. We594

found that a low-dim latent space (e.g., 10) works well for all experiments (including CIFAR-100).595

D.6 Hardware596

All results reported in our paper are conducted with a machine with 8 Tesla K80 GPUs and 32597

Intel(R) E5-2640 CPUs. The computational cost is mainly in density estimation, and for low-dim598

representation space, such an estimation can be efficient: running time for DAUC on the Dirty-MNIST599

dataset with KDE is approximately 2 hours.600

Assumptions and Limitations601

In this work, we introduced the confusion density matrix that allows us to categorize suspicious602

examples at testing time. Crucially, this density matrix relies on kernel density estimations in the603

latent space H associated to the model f through Assumption 1. We note this assumption generally604

holds for most modern uncertainty estimation methods.605

While the core contribution of this work is to introduce the concept of confusion density matrix606

for uncertainty categorization, the density estimators leveraged in the latent space can be further607

improved. We leave this to the future work.608

Broader Impact609

While previous works on uncertainty quantification (UQ) focused on the discovery of uncertain610

examples, in this work, we propose a practical framework for categorizing uncertain examples that611

are flagged by UQ methods. We demonstrated that such a categorization can be used for UQ method612

selection — different UQ methods are good at figuring out different uncertainty sources. Moreover,613

we show that for the inverse direction, uncertainty categorization can improve model performance.614

With our proposed framework, many real-world application scenarios can be potentially benefited.615

e.g., in Healthcare, a patient marked as uncertain that categorized as OOD — preferably identified by616

Deep Ensemble, as we have shown — should be treated carefully when applying regular medical617

experience; and an uncertain case marked as IDM — preferably identified by MCD — can be618

carefully compared with previous failure cases for a tailored and individualized medication.619

19

	Introduction
	Related Work
	Categorizing Model Uncertainty via Latent Density
	Preliminaries
	Flagging OOD Examples
	Flagging IDM and Boundary Examples
	Bnd examples
	IDM examples

	Experiments
	Visualizing DAUC with Two-Smiles
	Experiment Settings
	Results

	Verifying DAUC with Dirty-MNIST:
	Experiment Settings
	Results

	Benchmark Model Uncertainty Categorization
	Improving Uncertain Predictions

	Conclusion
	Missing Details
	Motivations for working with model latent space
	Details: Flagging IDM and Bnd Examples with Thresholds

	Improving Predicting Performance of Uncertain Examples
	Additional Experiments
	Categorization of Uncertainty under Different Thresholds
	Inverse Direction: More Results
	Alternative Approach in Flagging OOD
	Experiments on Dirty-CIFAR-10

	Implementation Details
	Code
	Hyperparameters
	Bandwidth

	Inverse Direction: Quantile Threshold q
	Model Structure
	Implementation of Kernel Density Estimation and Repeat Runs
	Hardware

