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Abstract

Web automation holds the potential to revolutionize how users interact with the digital
world, offering unparalleled assistance and simplifying tasks via sophisticated computational
methods. Central to this evolution is the web element nomination task, which entails
identifying unique elements on webpages. Unfortunately, the development of algorithmic
designs for web automation is hampered by the scarcity of comprehensive and realistic
datasets that reflect the complexity faced by real-world applications on the Web. To address
this, we introduce the Klarna Product Page Dataset, a comprehensive and diverse collection of
webpages that surpasses existing datasets in richness and variety. The dataset features 51,701
manually labeled product pages from 8,175 e-commerce websites across eight geographic
regions, accompanied by a dataset of rendered page screenshots. To initiate research on the
Klarna Product Page Dataset, we empirically benchmark a range of Graph Neural Networks
(GNNs) on the web element nomination task. We make three important contributions. First,
we found that a simple Convolutional GNN (GCN) outperforms complex state-of-the-art
nomination methods, and further enhance its performance using a Reversible GNN (RevGNN)
architecture. Second, we introduce a training refinement procedure that involves identifying
a small number of relevant elements from each page using the aforementioned GNN. These
elements are then passed to a Large Language Model for the final nomination. This procedure
significantly improves the nomination accuracy by 10.9 percentage points on our challenging
dataset, without any need for fine-tuning. Finally, in response to another prevalent challenge
in this field – the abundance of training methodologies suitable for element nomination –
we introduce the Challenge Nomination Training Procedure, a training method that further
boosts nomination accuracy.

1 Introduction

In the rapidly advancing field of web automation (Yao et al., 2022; Lin et al., 2020; Wang et al., 2022; Deng
et al., 2023), an overarching goal is to provide users with seamless assistance when completing mundane
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tasks online. By harnessing the full potential of web automation, users will no longer be forced to manually
navigate through tedious workflows. Instead, intrusive pop-ups will be preemptively closed, and forms will be
automatically completed, regardless of the specific website being accessed. Automation features like these
could significantly enhance the user experience in, for example, super-apps equipped with integrated browsers
that require advanced automation capabilities. Apart from saving users’ time and attention, web automation
paves the way for creating personal online assistants. These assistants could, for example, allow a user to
purchase a specific pair of shoes at the best possible price with just a simple instruction.

One factor driving the recent heightened interest in web automation is the rise of Large Language Models
(LLMs). The impressive performance demonstrated by LLMs, combined with the fact that models such as
GPT-4 (OpenAI et al., 2023) have been trained on HTML data, has catalyzed a surge in research focused
on using LLMs as, for instance, foundation models for navigation on webpage datasets (Furuta et al., 2023;
Zhao et al., 2023; Deng et al., 2023; Zheng et al., 2024; Wang et al., 2023; Kim et al., 2023; Zheng et al.,
2023; Gur et al., 2023).

Beyond navigation capabilities, many web automation features also require the ability to precisely locate
information on a page. For instance, when purchasing the aforementioned shoes for a user, it is necessary to
extract and compare prices from product detail pages across a large number of vendors. Additionally, as
Deng et al. (2023) highlight, automation capabilities could be integrated as plugins for models like ChatGPT,
enabling on the fly retrieval of information from HTML websites based on user inputs, instead of relying
on predefined APIs for each web service. Clearly, many web automation features require a combination of
navigation and information retrieval capabilities. However, as far as we are aware, few, if any, studies or
datasets comprehensively address both aspects.

The scarcity of publicly accessible, large-scale, and realistic webpage datasets is a significant barrier to
progress in this field. Previous research has been limited to simplified, simulated webpages (Gur et al.,
2023; Yao et al., 2023; Shi et al., 2017a), or confined to pages from a narrow selection of websites (Hao,
2011; Yao et al., 2023). Such datasets fail to reflect the complexities faced by real applications on the Web,
which consists of tens of millions of websites, each with thousands of elements and layout patterns that vary
significantly across different sites. This shortage may stem from the fact that collecting and annotating a
comprehensive web page dataset is a costly and time-consuming undertaking, requiring skills more commonly
found among web developers than machine learning researchers.

As a significant contribution to the community, we introduce the Klarna Product Page Dataset1. Figure 10
presents screenshots of four rendered pages from our dataset. The Klarna Product Page Dataset is designed
to emulate a scenario encountered by, for instance, an autonomous shopping assistant. This assistant is
tasked with navigating through product pages across a multitude of different websites to extract product
information. The goal could be to identify a specific item requested by a user at a given price point, then
add this item to the cart and proceed to the checkout page. However, note that in the empirical evaluation
carried out in this work, we solely focus on identifying the elements individually.

Furthermore, the Klarna Product Page Dataset dataset comprises over 50, 000 real e-commerce pages from
8, 175 websites, with five manually labeled action and information elements per page (See Figure 2). To the
best of our knowledge, this positions our dataset as the largest available labeled webpage dataset in terms of
the number of websites. Additionally, while the majority of public datasets primarily consist of English pages,
a unique advantage of Klarna Product Page Dataset is its inclusion of pages from eight distinct geographic
markets. This inclusion enables the capability to assess generalizability across multiple languages (See Table
1). Finally, recent studies have also leveraged webpage screenshots to explore computer vision research for
the web (Zheng et al., 2024; Kumar et al., 2022). To support future similar efforts, we have developed a
complementary dataset that includes screenshots of the rendered pages from our dataset.

As a starting point for research on the Klarna Product Page Dataset, we benchmark the performance of various
neural networks on Web element nomination, which is a fundamental concept for automating tasks on the
web. We define Web element nomination as the process of identifying a unique element from a specific class
on a webpage. One of the challenges that makes this task particularly demanding is that among potentially

1Available at github.com/klarna/product-page-dataset under the CC BY-NC-SA license.
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Figure 1: Four pages from the Finnish, Dutch and US markets in our dataset.

thousands of nodes on a page, only one element belongs to each class. For this purpose, we train several
neural networks on the Document Object Model (DOM) tree representations of webpages, using three popular
families of graph neural networks (GNNs): recurrent GNNs (Tree Long Short-Term Memory networks),
convolutional GNNs (GCNs), and attention-based GNNs. Our aim is to compare their performance in web
element nomination and identify the most promising GNN family for future research on the Klarna Product
Page Dataset. We also compare their performance against state-of-the-art (SOTA) methods FreeDOM (Lin
et al., 2020) and DOM-Q-NET (Jia et al., 2019), both of which are fairly intricate algorithms. FreeDOM,
for instance, requires a two-stage training process, and both algorithms utilize information from the entire
DOM tree to represent a single element. We discovered that a surprisingly simple GCN, which solely uses
information from local neighbourhoods around each node in the DOM tree, outperforms these SOTA methods.
We further enhance the GCN by incorporating it into a Reversible GNN (RevGNN) architecture (Li et al.,
2021). RevGNN improves both memory and parameter efficiency through reversible connections, group
convolutions, and weight tying, enabling us to scale up to 20 layers and further boost the final nomination
accuracy. These finding highlights the potential of employing GCNs as building blocks in more advanced web
element nomination architectures in future research.

We subsequently investigate three methodologies aimed at further enhancing the web element nomination
performance. Firstly, we explore whether the text present on the page is informative for nominating web
elements. Specifically, we use a pre-trained language model to create embeddings of the text on the page,
which we then add to the set of features. Our findings indicate that models incorporating text in general
achieve higher average accuracy. Surprisingly, for certain tasks, the included text proves to be non-informative
and, in fact, reduces performance. Secondly, applying LLMs to the entire HTML of realistic pages is unfeasible,
partly due to limited context windows but mainly due to the high costs associated with processing a large
number of tokens. To address this, we explore an approach where we significantly enhance the performance of
the highest-performing GNN model with a post-training refinement step where an LLM is applied to a small
subset of the highest ranked elements of each page. Finally, we address the absence of a standardized training
methodology for element nomination2. To this end, we propose and evaluate a novel training approach that
considerably improves nomination accuracy.

To summarize, our aim is to lower the entry barriers in this exciting field through the following contributions:

1. We introduce the Klarna Product Page Dataset3, which consists of 51, 701 manually labeled product
pages from 8, 175 e-commerce websites. The dataset is suitable for tasks such as element nomination,

2For comparison, see vertex nomination, as in Fishkind et al. (2015); Coppersmith (2014) This field typically involves very
small numbers of graphs (in this context, webpages), rendering these methods unsuitable here.

3Available at https://github.com/klarna/product-page-dataset under the CC BY-NC-SA license.
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and evaluation or fine-tuning of LLMs. We have also created a complementary dataset with the
corresponding screenshots of the webpages for future CV applications.

2. We adapt and apply six algorithms from three of the most popular families of GNNs to a web
element nomination task, namely recurrent GNNs (Tree Long Short-Term Memory networks),
convolutional GNNs (GCNs) and attention based GNNs. We also investigate the performance of
SOTA baselines for element nomination. In particular, we identify that GCN-Mean, a simple 2-layer
GCN, outperforms the second-best model by an impressive margin of 9.2 percentage points measured
in average nomination accuracy. We then enhance the scalability of this algorithm by employing
RevGNN, which uses the GCN as a base model.

3. We explore a post-training nomination refinement step using an LLM. Specifically, we use a trained
RevGNN algorithm to filter out all elements except the top ten for each class on every webpage in the
test set. We then use GPT-4 to perform the final nomination based on the local HTML content of
these filtered elements. Our results show that this refinement step substantially enhances nomination
accuracy across all explored tasks, resulting in an average increase of 10.9 percentage points.

4. In element nomination, one would commonly train a model to classify elements and then evaluate
the model based on its nomination performance. We refer to this approach as the Basic Nomination
Training Procedure. To steer the classification objective towards the nomination objective, we
introduce the novel Challenge Nomination Training Procedure (CNTP). Our results demonstrate
that CNTP substantially improves nomination accuracy by approximately 5 percentage points for
our best model.

5. We assess the impact that the text on the pages has on nomination accuracy by utilizing a language
model to embed the text and integrate it as a feature. Our findings demonstrate that this considerably
improves performance in specific nomination tasks, such as when identifying the Buy Button.

2 The Klarna Product Page Dataset

We collected the Klarna Product Page Dataset dataset over several months between 2018 and 2019. The
dataset comprises 51, 701 product pages from 8, 175 distinct e-commerce merchants. It is conveniently divided
into 80% training and 20% test sets, which ensures that pages from the same website do not appear in both
the training and test sets. Table 1 presents an overview of the dataset statistics. Each page in our dataset is
saved as an MHTML file, which includes all images and assets required to render the page. Furthermore,
every page in the dataset has 5 labeled elements: 2 corresponding to action elements (buy button and cart
button) and 3 to information elements (product price, product name, and product image). These labels have
been manually annotated by human analysts. In our experiments, we also consider a 6th, more abstract label:
the subject node, defined as the lowest common ancestor of all other labels. An example page screenshot

Table 1: An overview of the Klarna Product Page Dataset.

market language # sites # pages median # nodes

DE German 2, 941 16, 765 1, 391
US English 1, 794 11, 003 1, 394
GB English 1, 360 11, 144 1, 291
FI Finnish 1, 125 5, 623 779
AT German 899 1, 316 1, 499
SE Swedish 619 4, 866 1, 450
NO Norwegian 180 852 1, 477
NL Dutch 130 132 1, 628

Total 8, 175 51, 701 1, 308
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Figure 3: Difference between nomination and classification: A DOM-tree representation of a webpage
is depicted to the left. During the classification process, the GNN embedder takes a node and its context, here
being its directly neighboring nodes, as input. The output from the embedder is then fed into a classification
layer that produces classification scores. In element nomination, the model is applied to every node in the
tree. For each label type, the resulting classification scores are ranked across all nodes, and the node receiving
the highest rank is nominated for that specific label type. For example, here we see how the node receiving
the highest ranking for the Cart Button label is nominated as the Cart Button element of the page.

from our dataset with marked labels is shown in Figure 2. Additionally, for convenience, we have created a
complementary dataset of page screenshots, suitable for computer vision research.

3 Element nomination

Figure 2: A sample webpage in
our dataset with 748 nodes. The
labeled elements are surrounded
by red boxes. (1) is the buy but-
ton, (2) is the cart button, (3) is
the image, (4) is the price and
(5) is the product name.

Precisely identifying the correct element before executing any action in
web automation is vital. In automation features, element nomination
plays a crucial role as it solves the common subtask of identifying a single
element on a webpage for a specific action. Since we often have only one
opportunity to perform a task, incorrect actions, such as clicking the wrong
button or filling in the wrong form, can degrade the user experience.

Unfortunately, there is no established training objective specifically for web
element nomination (For further details on the complexities of formulating
an objective for element nomination, see Appendix A.6) instead, the
common practice is to train a model to classify elements and then assess
its nomination performance. The distinction between classification and
nomination is illustrated in Figure 3. During training, a GNN embeds
a small subset of nodes from each page, and these embeddings are then
passed to a classifier. After training, the model’s performance is assessed
based on its ability to nominate elements. In nomination, the task is to
identify a specific element from a given class on each page. For instance,
the cart button is nominated by applying the trained model to every node
on the page to obtain classification scores. These scores are then ranked,
and the node with the highest cart score is nominated as the cart element.
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To excel at the cart button nomination task, the classifier must consequently assign the highest cart score to
the true cart element relative to all other elements on the page.

Element nomination is particularly challenging on realistic pages. A perfect classifier, which always assigns
the correct class to every element, would also always nominate the correct element on every page. Hence,
the classification objective serves as a proxy for training on the nomination task. However, the pages in our
dataset consist of thousands of elements, and among these, there is a single labeled element for each class. For
instance, a classifier with 99% accuracy would be expected to incorrectly classify 10 elements as ’add-to-cart’
buttons on a page with 1, 000 elements, even though only one true ’add-to-cart’ button exists. Consequently, in
Section 6.5, we propose an effective, novel training method that improves the element nomination performance
by steering the classification training objective closer towards the nomination objective.

4 Related work

In the literature, there is an unfortunate scarcity of datasets suitable for web element nomination. In this
section, we walk through and compare existing datasets to the Klarna Product Page Dataset.

The minimalistic World-of-bits environment (Shi et al., 2017b), known as Mini-WoB, is useful for task-solving
on the Web. However, the pages in Mini-WoB are simple compared to sites found on the Internet. A
page in Mini-WoB might, for instance, consist of just a single form and a submit button. In contrast, the
Klarna Product Page Dataset comprises manually annotated clones of real webpages, with the median page
featuring 1, 308 elements and thousands of lines of code. The recently proposed WebShop (Yao et al., 2022) is
another simulated interactive environment where agents can learn to navigate an e-commerce store and make
purchases based on text instructions. WebShop includes 1.18 million products and 12, 087 text instructions.
While it effectively emulates an e-commerce store, its primary limitation is that it comprises pages from a
single website.

There are datasets related to ours that are useful for web content extraction, perhaps the most well-known
being the SWDE dataset (Hao et al., 2011). This dataset comprises 124, 291 real webpages, each with 3 − 5
labeled attributes, from 80 different websites across 8 verticals, such as online bookstores and camera retailers.
Previous studies on SWDE (Lin et al., 2020; Zhou et al., 2021) have observed that test accuracy improves
with the number of sites included in the training set for each vertical. However, the SWDE dataset is limited
by having only 10 sites per vertical, thereby capping the potential gains. In comparison, our dataset consists
of 8, 175 diverse e-commerce websites, and thus provides a much more comprehensive representation of a
vertical. Furthermore, Klarna Product Page Dataset encompasses labels that present a wider range of learning
challenges. Whereas the SWDE dataset solely contains labeled leaf nodes, which are often identifiable based
on local information, our dataset includes labels where local information alone is insufficient for accurate
identification. Elements like the price and name, for instance, are primarily defined by local information,
making their identification similar to standard web data extraction tasks. Conversely, correctly identifying
the buy button often requires both local and contextual information. Lastly, the subject node has no meaning
on its own and can only be represented based on its context. Lastly, unlike the SWDE dataset, which contains
only English pages, our dataset includes pages with text written in multiple languages.

A recent large-scale webpage dataset that signifies a substantial advancement over previous works is Mind2Web
(Deng et al., 2023). Mind2Web encompasses 137 websites across 31 diverse domains, such as Music, Airlines,
Housing, and Social Media. Consequently, it offers a valuable opportunity to assess generalizability across
various tasks and domains. Our dataset complements Mind2Web in this aspect, as Klarna Product Page
Dataset enables the assessment of generalizability for the same task across a large number of websites.

Overall, we firmly believe that the diverse range of webpage structures and labels in our dataset marks a
significant advancement over current SOTA datasets for web element nomination. However, we wish to
emphasize that having access to a variety of datasets, each with different challenges and contexts, is invaluable.
Such diversity is crucial for advancing toward truly autonomous and generalizable web agents.
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5 Embedders for DOM Elements

We now describe the GNN embedders that we train together with a classification layer (see Fig 3) on our
dataset. The embedders represent three GNN families, specifically recurrent, convolutional and attention-based
networks. We now detail and then evaluate these embedders in the simulation section.

GCN-Mean. we first consider a multi-layer GCN model inspired by GraphSage (Hamilton et al., 2017) and
PinSage (Ying et al., 2018). Each convolutional layer ℓ, computes the representation of the current node, v,
as z(ℓ)

v based on the local encoding and an average encoding h(ℓ) of its immediate neigborhood N (v). The
representation is obtained according to the following:

h(ℓ)
v = AVG

(
{ReLU(Vlz(ℓ−1)

u + bl), u ∈ N (v)}
)

,

k(ℓ)
v = ReLU

(
Wl · CONCAT(z(ℓ−1)

v , h(ℓ)
v ) + wℓ

)
,

z(ℓ)
v = k(ℓ)

v /
∥∥k(ℓ)

v

∥∥
2 ,

(1)

where Vl, Wl, bl and wl are trainable weight matrices for convolution layer ℓ and z(0)
i = x(0)

i for all i. We
use the same dimension for the encodings h(ℓ)

v and k(ℓ)
v . Encoding size, representation size, and total number

of layers are tunable hyperparameters. By stacking K convolution layers, information can be propagated
from K-hop neighborhoods.

TransformerEncoder. This model consists of a single-layer multi-headed attention encoder stack (Vaswani
et al., 2017) fed with a sequence consisting of the features xv of the local node, v, stacked with the features
xu of its neighbors u ∈ N (v). The embedding zv of node v is then extracted as the first element (here, at
index 0) of the sequence Hv computed by the transformer encoder stack:

Hv = TransformerEncoder
(
STACK

(
xv, {xu, u ∈ N (v)}

))
, zv = Hv[0].

In our implementation, the number of heads in the encoder and the embedding size are tunable hyperparame-
ters.

We excluded positional encodings from this model, as they negatively impacted the transformer’s performance.
We explored several types of positional encodings, initially formulating them by traversing the DOM tree
using both depth-first and breadth-first search orders. Additionally, we attempted, albeit unsuccessfully,
to train a general, powerful, and scalable graph transformer (GraphGPS) (Rampášek et al., 2023) using
Laplacian eigenvector positional encodings.

The ineffectiveness of positional encodings in element nomination might be due to the considerable variation in
DOM tree structures across different websites. In our dataset, the number of nodes varies from a few hundred
to approximately 20,000. However, a more consistent representation of page structure could be explored in
future work by considering the positions of node elements in their corresponding rendered screenshots. For
example, a screenshot of a page on an iPhone X device will have a consistent width across websites, and the
position of elements in the screenshot tends to remain stable (e.g., the "go to cart" button is typically located
in the upper right corner). This stability would make the position in the screenshot a more consistent and
meaningful positional representation compared to the position in the DOM tree.

Tree-LSTMs. We consider four tree-based LSTMs. They all revolve around a standard LSTM cell (Hochreiter
& Schmidhuber, 1997) and are characterized by how the input sequence is constructed from the DOM tree.

In the top-down model (LSTM-TD), the embedding zD
v of node v is the last element of the LSTM encoding

of the path from the root to node v: each unit receives hidden and cell states from its parent, according to

hD
v , cD

v = LSTM(xv, hD
Parent(v), cD

Parent(v)), zD
v = hD

v .

where LSTM(x, h, c) denotes a standard LSTM cell with input x, hidden state h and cell state c. Cell and
hidden states were initialized as zero for the root node.
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In the bottom-up model (LSTM-BU), we consider the child-sum tree-LSTM algorithm (Tai et al., 2015).
Here, the sequence is defined recursively from the leaves to each node v. At each node, the hidden state is
the sum of the hidden states of the children, and the cell state is computed based on the cell states of the
children, with one forget gate per child state.

hU
v , cU

v = ChildSumLSTM
(
xv, {hU

u , u ∈ C(u)} ,
{

cU
u , u ∈ C(u)

})
, zU

v = hU
v .

To account for more context when computing the element embeddings, we combined the bottom-up and
top-down approaches into a bidirectional model (LSTM-Bi) where the embeddings are the concatenation of
the two previous models’ embeddings, zB

v = CONCAT(zD
v , zU

v ). In this case, the weights in the top-down
and the bottom-up components are trained simultaneously.

Finally, we considered a global bidirectional model (LSTM-BiE) that computes node representations based
on the whole DOM-tree (Cook, 2019). This method has three steps. First, a bottom-up representation zU

v is
calculated for each node v. Second, this representation is then used as the input to a top-Down architecture
that gives a representation zE

v for each node v:

hE
v , cE

v = LSTM(zU
v , hE

Parent(v), cE
Parent(v)), zE

v = hE
v .

Third, the two representations are concatenated into a final representation for the node zBiE
v =

CONCAT(zE
v , zU

v ). Also, in this case, the weights in both components are trained simultaneously.

GCN-GRU. This model is inspired by the local embedding module in the DOM-Q-Net algorithm (Jia
et al., 2019). Here, the encoding of node v is computed by feeding a Gated Recurrent Unit (GRU) with the
local features of the node and an average encoding of the neighborhood of the node; then, the embedding is
computed with a transformation of the local encoding hv and the input features:

hv = GRU
(
xv, AVG

(
{Vxu + b, u ∈ N (u)}

))
,

zv = W · CONCAT(xv, hv) + w,

where V, b, W, and w, are trained together with the parameters of the GRU.

FreeDOM. We adapt the FreeDOM architecture (Lin et al., 2020). This is a two-stage method where a
neural network first computes node representations based on local and contextual information (using both
text and HTML), and then uses representation distances and semantic relatedness between node pairs in
the second stage. In the original implementation, (Lin et al., 2020) perform a filtering step where templates
common to multiple pages are identified and used to reduce the number of nodes that the model considers.
On our dataset, this is not possible since the pages generally do not come from the same set of websites. That
being said, FreeDOM may be at a disadvantage compared to the other models because it does not perfectly
suit our application or dataset. However, the authors set out to learn site-invariant feature representations
and found that FreeDOM could generalize well to unseen websites.

6 Element Nomination Evaluation

As a starting point for research on the Klarna Product Page Dataset, we now compare various GNNs on
the nomination task. To that effect, we first describe the common experimental setup in Section 6.1 and
then present the results of this empirical evaluation in the following sections. These results first include the
nomination accuracies from the Basic Training Procedure in Section 6.2. Next, we use the best-performing
model from the initial evaluation to filter out most elements from the webpages and further refine our
nomination results by applying GPT-4 to the HTML content of the filtered elements in Section 6.3. In Section
6.4, we conduct a sensitivity analysis on the best-performing GNN to investigate whether it suffers from
over-smoothing and over-squashing. Lastly, we demonstrate that the CNTP training scheme significantly
boosts nomination performance in Section 6.5.

6.1 Experimental Setup

Training Procedures. During training, the models learn to classify elements using the DOM tree represen-
tation of a page. More specifically, a GNN embedder takes a node with some neighborhood as input, and
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Table 2: The nomination accuracy of each model on each label without (left) and with text (right) added to
the element features.

buy btn cart btn main img name price subj avg
Model w/o w/ w/o w/ w/o w/ w/o w/ w/o w/ w/o w/ w/o w/
LSTM-Bi* .72 - .57 - .47 - .69 - .48 - .66 - .60 -
LSTM-BiE* .73 - .60 - .50 - .72 - .55 - .70 - .63 -
GCN-GRU .77(.01) .83(.003) .57(.005) .62(.003) .41(.006) .38(.004) .69(.001) .79(.003) .50(.02) .60(.003) .45(.003) .53(.003) .56 .63
FreeDOM** - .29(.09) - .056(.04) - .043(.02) - .57(.07) - .23(.03) - .35(.02) - .26
FreeDOM-ext** - .84(.01) - .59(.007) - .31(.01) - .84(.01) - .72(.02) - .46(.02) - .63
LSTM-TD .71(.02) .85(.04) .50(.02) .51(.02) .42(.02) .46(.02) .70(.01) .76(.00) .52(.004) .58(.03) .59(.02) .34(.01) .57 .58
LSTM-BU .73(.06) .89(.03) .57(.03) .65(.02) .45(.03) .44(.02) .69(.02) .74(.01) .46(.06) .53(.02) .66(.02) .56(.02) .59 .64
TE .69(.02) .81(.01) .43(.03) .46(.04) .25(.06) .34(.02) .73(.03) .79(.01) .60(.03) .62(.09) .55(.03) .62(.09) .54 .61
FCN .79(.01) .86(.01) .53(.004) .62(.009) .32(.03) .27(.003) .70(.01) .85(.01) .58(.09) .61(.01) .43(.04) .39(.01) .56 .60
GCN-Mean .78(.04) .91(.004) .62(.005) .67(.03) .61(.02) .48(.01) .78(.004) .81(.002) .66(.02) .66(.004) .84(.01) .86(.002) .71 .73
REVGNN - 20 layer .81 - .65 - .62 - .79 - .66 - .89 - .74 -

its output is then classified by a single-layer fully connected neural network (see Fig 3 and Section 3). The
classification gives rise to a cross-entropy training objective that is minimized using Adam. Furthermore, due
to the large class imbalance between the six labeled nodes and the potentially thousands of unlabeled nodes
on a page, we cannot train on all nodes of a page. In the Basic Nomination Training Procedure, presented in
Section 6.2, every model instead classifies five labeled and ten randomly sampled unlabeled DOM elements
from each page. In the Challenge Nomination Training Procedure, presented in Section 6.5, we conduct an
additional experiment where we train on labeled nodes and unlabeled negative examples that the models
confidently misclassified. Information regarding hyper-parameters can be found in Section A.1.

Embedders. We use embedders from three important GNN families, specifically recurrent, convolutional,
and attention-based networks. Specifically, we consider LSTM-based embedders (LSTM-TD, LSTM-BU,
LSTM-Bi, LSTM-BiE), the mean-pooled GCN model (GCN-Mean), the GRU-based GCN inspired by DOM-
Q-Net (GCN-GRU), a 20 layer and 2 group RevGNN and the transformer-encoder (TE).4 We also include
a 20-layer, 2-group RevGNN model, which uses the GCN-Mean model as its base GNN. For comparison,
we also present the results of the SOTA FreeDOM architecture, which we train on two different sets of
features. First, we use the original features defined in (Lin et al., 2020), and then we specify an extended
version (FreeDOM-ext) which, in addition, uses the style features employed by our other models (see the next
paragraph). We also implement a 2-layer Fully Connected Network (FCN) that only looks at the features of a
local node without considering any neighbors, thus acting as a context-oblivious baseline. After training, we
evaluate how accurately the GNNs can nominate the six labels described in Section 2.

Features. For each node’s local features, we define a set of style features which consists of the bounding
box of the elements as rendered on the page, font weight, font size, number of images contained within the
subtree, visibility, and HTML tag. For the FreeDOM-specific, pre-trained, NLP features described in (Lin
et al., 2020), we use the Spacy5(Honnibal et al., 2020) library. To also gauge the impact of textual features
on the other models, we perform an experiment where we create an additional feature by embedding the text
of a web element using the Universal Sentence Encoder6 (Cer et al., 2018). FreeDOM’s implementation stays
the same in this experiment as it already uses text.

6.2 Basic Training Procedure

Setup. In this comparison we trained the models on a subset of the Klarna Product Page Dataset containing
10, 000 pages from English markets. We did not train the models on the entire dataset because the LSTM
models are very computationally expensive. It also offers a more level playing field for the SOTA FreeDOM
architecture, since it relies on page text and was originally applied to English websites.

4We would also like to address the absence of the very popular Graph Attention Network (GAT) from our evaluation. Despite
investing significant effort in training various versions of GAT on our dataset, its performance was consistently inferior to the
other models we assessed. Consequently, we decided to exclude GAT from our evaluation.

5v2.3.5 en_core_web_sm https://spacy.io/models/en (MIT License)
6Version 4, https://tfhub.dev/google/universal-sentence-encoder/4 (Apache-2.0 License)
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Evaluation. The trained models are evaluated based on their nomination performance. As described in
Section 3, with the exception of FreeDOM, we compute the nomination metric by classifying all nodes on
every webpage in the test set. These scores are used to rank the nodes for each of the classes: price, name,
image, buy button, cart button, and subject node. The node with the highest score for each class is nominated
for that class. A nomination is considered correct if the nominated element is the single element with the
ground truth label. For FreeDOM, we followed the protocol described in (Lin et al., 2020). The evaluation is
performed on 6, 706 test pages from merchants not present in the training set.

6.2.1 Results

Nomination Accuracy. Table 2 contains the nomination results. Note that here precision and recall both
equal accuracy as the methods make exactly one prediction on each page, and there is one correct element per
class. From the results with only style features (no text features), we first notice that GCN-Mean achieves the
highest average accuracy by a wide margin (6.8 p.p.). Despite its relative simplicity, GCN-Mean consistently
scores among the best for all tasks explored here. Since GCN-Mean uses k-hop neighborhoods (see Section
5), this suggests that a large proportion of the context relevant for element nomination is concentrated in
an element’s vicinity. The RevGNN algorithm successfully builds upon the GCN-Mean algorithm, leading
to further improvements in the final nomination accuracy. Among the runner-ups, LSTM-BiE stands out,
as it shows similar performance to FreeDOM-ext (using text), while GCN-GRU, LSTM-TD, LSTM-Bi and
LSTM-BU all show similar average performance. It is worth noting that FreeDOM requires two separate
training stages and that the LSTMs require substantially more compute than GCN-Mean, GCN-GRU and
FreeDOM.

Classification Accuracy. The classification accuracy of the models considered here are presented in Section
A.5. Despite all models achieving very high and similar classification scores, their nomination performance
differs substantially. This illustrates the discrepancy between the classification training objective and the
nomination evaluation task. We address this discrepancy using CNTP, which we present further below.

The Impact of Contextual Information on Nomination. We found that more context helps performance
on certain tasks. As an indicator of the importance of context, we consider the performance of the FCN.
Specifically, since the FCN only looks at a local node’s features without including information from neighbors,
the gap between the best model and the FCN gives us a lower bound on the gain we can achieve by including
contextual information. With this contextual importance indicator, it is possible to identify tasks where
contextual information is more important. For example, the subject node on its own does not contain much
information but is instead defined by its relationship to other nodes in the tree; therefore, we need to
look at its context to identify it. For other tasks, context is less important. For example, the buy button
seemingly contains sufficient information to be correctly identified based on its local features. Finally, another
interesting observation related to context is that LSTM-BiE outperforms LSTM-Bi on all tasks, indicating
that processing all context from the page improves accuracy.

The Impact of Text on Nomination. When we add text features, GCN-Mean still has the highest
average accuracy, this time by an even wider margin. Though LSTM-BiE was not trained with text due to
computational constraints, its performance remains competitive with all other algorithms except GCN-Mean
when trained on solely style features. This further solidifies our intuition that straightforward graphical
algorithms such as GCN-Mean and LSTM-BiE should be explored further as building blocks in web element
nomination algorithms. Furthermore, one important benefit of LSTM-BiE and GCN-Mean over FreeDOM,
SimpDOM, and WebFormer is that they remain competitive without text features. This allows us to deploy
a single model that can be used across webpages, regardless of the language used on the page.

Another important finding is that algorithms that try to exploit text perform worse when this information
is irrelevant to the task. We can observe this degradation when GCN-Mean, GCN-GRU, and even FCN
attempt to use text to nominate the image node. LSTM-TD performance drops when text is added to its
feature set since it looks at the text in nodes above the subject node. The subject nodes are usually close
to the root of the DOM tree; hence, it is unlikely that nodes in the considered sequence even contain text.
This variety in performance suggests that we need varying degrees of contextual information to nominate
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different label types. This also suggests that the Klarna Product Page Dataset presents a comprehensive set
of challenges that not all algorithms can easily overcome.

6.3 Post Training LLM Refinement
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Figure 4: Substantially Enhanced Nomination
Accuracy by Combining RevGNN with GPT-
4: The performance of the RevGNN algorithm alone
versus its performance when combined with a GPT-4-
based refinement step. In the enhanced scenario, the
RevGNN algorithm initially filters the dataset to retain
only the top 10 elements with the highest classification
scores on each page. Subsequently, GPT-4 undertakes
the final nomination step, based on the local HTML
content of these selected elements. This refinement
step significantly boosts nomination accuracy across all
tasks, resulting in an average increase of 10.9 percentage
points.

Setup. The refinement step was initiated by filtering
out all non-informative elements from the test set
using the trained 20-layer RevGNN algorithm from
Section 6.2. This filtering was performed by rank-
ing the elements by their classification scores and
retaining the ten highest-ranked elements. The raw
HTML of these elements, combined with their bound-
ing boxes, was then used to formulate a query where
the task was to select the single labeled element from
the set of elements. We then presented this query
to GPT-4, which performed the final nomination by
providing an answer to the query. This experiment
was constrained to 500 randomly sampled English
pages from the test set.

Results. From the results shown in Figure 4, it is
evident that the LLM refinement step substantially
enhances the final nominations, despite relying solely
on local element content. It significantly boosts the
nomination performance across all tasks, resulting
in an average nomination accuracy increase of 10.9
percentage points. The improvement is particularly
noticeable for the product image element, indicating
that the raw HTML contains substantial information
for this specific task. However, there is still room for
improvement, which could potentially be achieved
by incorporating screenshots of the rendered pages.

6.4 Sensitivity Analysis

Simple message-passing GNNs may suffer from over-smoothing and over-squashing, where information flow
between distant nodes becomes distorted (Topping et al., 2021). This distortion can negatively impact
the model’s performance in tasks that rely on long-range interactions, such as element nomination, where
critical information may be located far from the root in large trees. To assess whether the GCN-Mean
algorithm is prone to these issues, we conducted a sensitivity analysis on a subset of 8,000 pages, gradually
increasing the number of layers, as shown in Table 3. The results indicate that while the GCN’s performance
initially improves with more layers, it begins to degrade after adding a third layer, suggesting the presence of
over-smoothing and over-squashing effects.

One potential approach to mitigating these effects is graph rewiring, where the DOM-tree is modified to
enhance information flow. A particularly promising method that could be explored in future work is Expander
Graph Propagation (Deac et al., 2022), which augments the DOM-tree with expander graphs. These graphs,
despite their sparsity, ensure efficient message passing throughout the entire structure, enabling information
to propagate quickly and effectively. This approach could be well-suited for managing the complexities of
large DOM-trees, where critical information may be dispersed across the tree.

6.5 Challenge Nomination Training Procedure - Bridging the classification and nomination objectives

We put forth CNTP, a novel two-stage training approach which is similar to the method in Ben-Baruch et al.
(2022) and inspired by Positive-Unlabelled Learning (see Bekker & Davis (2020) for a survey). In CNTP, we
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No. Layers 1 2 3 4
Avg Nomination Accuracy 0.649 0.679 0.666 0.631

Table 3: Sensitivity analysis results from varying the number of layers in the GCN-Mean Algorithm.

train on the classification objective, which means that we only need to train on a small subset of elements
from each page in the training set. We then periodically rank the elements on the page based on their
classification scores and add the confusing elements to the training set. We define a confusing element as an
unlabeled element that inaccurately receives a very high score for a particular label. This procedure increases
the likelihood that the true labeled elements appear at the top of the ranking during the nomination phase.

Notation. The parameters of CNTP are: M , the number of unlabeled elements to be randomly included in
the training set from each page; T , the number of training epochs; and K, the number of additional hard
elements identified by the model in the nomination task after T epochs.

CNTP. The pseudo-code for the training data augmentation step is presented in Algorithm 1. A description
of the procedure goes as follows: At the start of every epoch, we begin with an empty training set of elements
Strain = ∅. For each webpage P ≜ (V, E), where V is the set of elements in the training set P , we uniformly
sample a set SP = {vi ∈ Vunlabelled : i = 1, . . . , M} of M unlabeled elements. We add SP to the classifier’s
training set, along with all L labeled elements: Strain =

⋃
P ∈P(SP ∪ Vlabelled). We then train the model for

one epoch. At epoch T , we evaluate the model on the nomination task across the entire set P and initialize
the sets of hard training examples, HP = ∅ for all P ∈ P. Then, for all P ∈ P, we add the top K unlabeled
elements in the proposed ranking for each of the L labels to HP . It is sufficient to perform this step once.
For all future epochs, these elements are always considered additional training examples in the classification
task: Strain =

⋃
P ∈P(HP ∪ SP ∪ Vlabelled). Thus, we train on M + L × K unlabeled elements and all the

labeled ones. Note that, as opposed to Ben-Baruch et al. (2022), we attach the negative label to these nodes.

CNTP offers two main benefits: 1) it uses only a small fraction of the total elements in the training set, and
2) it bridges the gap between the nomination and classification tasks. The first benefit allows us to avoid the
impractical computational cost of training to rank all elements, focusing only on the top candidates instead
of those confidently identified as uninteresting. The second benefit is achieved by training on more confusing
unlabeled elements—those likely to appear high in the nomination ranking. This approach aids the model in
distinguishing between the ground truth elements and the uninteresting elements that receive high scores.

6.5.1 Results

Here we use the entire dataset with pages from all markets, with M = 20, K = 5, T = 50, and L = 6.
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Figure 5: Effect on average validation error from performing the augmentation step at different times,
consistently, and not at all for FCN (left) and GCN-Mean (right).

12



Published in Transactions on Machine Learning Research (11/2024)

0.2 0.4 0.6 0.8 1
·106

0

0.2

0.4

0.6

# of batches

Av
g.

C
on

fid
en

ce
G

ap

0.2 0.4 0.6 0.8 1
·106

0

0.2

0.4

0.6

# of batches
add-to-cart go-to-cart mainpicture

name price subject-node

Figure 6: Effect on the average confidence gap from using hard examples for GCN-Mean. The left plot shows
the average confidence gaps during training without augmentation. On the right, we show the corresponding
confidence gaps when the hard examples are added to the training set.

Effects on Nomination Accuracy. Figure 5 highlights the effect of the timing of the hard example
augmentation step on the average nomination accuracy on the validation set while training the FCN and
GCN-Mean. We observe that the timing of the augmentation makes little difference on the final nomination
accuracy. This suggests that there are a few consistently confusing elements that can be relatively easily
identified using models trained on randomly selected unlabeled elements as negatives. Once these elements
are in the training set, the models’ nomination performance improves significantly. Indeed, both FCN and
GCN-Mean achieve lower errors after the augmentation, by about 2 and 5 percentage points, respectively,
with GCN-Mean reaching beyond 80

Effects on the Quality of Rankings. We evaluate whether CNTP brings us closer to training directly on
the nomination objective. As a proxy fort his, we measure the confidence gap: the difference between the
confidence assigned to the labeled element and the highest confidence assigned to any unlabeled element on
the same page. We assume that the larger this difference is, the better the resulting ranking will be. Since
either unlabeled elements become less likely to be mistaken for the true element (when the true element is
ranked first) or the difference by which an unlabeled element wins in the ranking (when the true element is
not ranked first) is lower, and hence the ground-truth labeled element appears higher in the ranking.

In Figure 6, we ask the models to perform the nomination task on the entire training set every 50 epochs and
measure the average confidence gap per class. From the basic classification objective, we observe that the
confidence gap increases on average, yet this behaviour is far from monotonic. In contrast, when we add hard
examples during training, the rankings that the nomination objective is based on gets steadily better when we
add hard examples during training according to our metric. This performance more closely resembles what
we would expect when optimizing directly for the nomination objective. In this experiment, augmentation is
performed every 50 epochs, though the same behavior is observed when this step is performed only once.

7 Limitations

One shortcoming of the Klarna Product Page Dataset is that far from all elements have a ground truth
label; we only have one label per class per page, which makes our results slightly pessimistic. In reality, a
click event on several elements within the buy button (e.g., the button itself and the node containing the
button text) could generate the same result. Thus, there are several acceptable nominations in practice.
The single label per element type issue reduces the number of positive training examples in the training set
and increases the difficulty of the nomination task. While this results in a lower overall accuracy than what
would be achieved in practice, it should not affect the comparison between methods. Furthermore, perfectly
annotating all nodes of each element in a dataset of this size is very challenging and would require substantial
web development knowledge. One approach to reduce the stringency of the evaluation would be to check the
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content of nominated elements. However, this is not appropriate for action elements and requires resilient
content extraction heuristics for all considered classes.

8 Conclusion

We introduce Klarna Product Page Dataset, a large-scale realistic dataset containing 51, 701 product pages
from 8, 175 merchants across 8 markets, with labels that present varied challenges. To initiate research on our
dataset, we explored the potential of GNNs for nominating webpage elements and how these methods could
be combined with LLMs. Our experiments demonstrate the untapped potential of GNNs for web element
nomination and illustrate how to effectively combine GNNs with LLMs for this purpose.
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A Appendix

A.1 Hyper-Parameters

We ensured that all hyper-parameters were optimized for this setting. For FreeDOM, we used the hyper-
parameters provided by the original paper since our setting is very similar. For the TreeLSTM-based
algorithms, we used the results of the hyper-parameter tuning in Cook (2019). We then performed hyper-
parameter tuning for GCN-Mean, GCN-GRU, FCN and the TransformerEncoder. We tuned our method and
these other particular algorithms since we have adapted and applied them to a substantially different setting
than what they were designed for. In the tuning procedure, we performed a grid-search over the values in
hyperparameter_grids folder7 using the Ray Tune (Liaw et al., 2018) library.

A.2 Bridging Classification and Nomination

Algorithm 1 details the procedure we follow for augmenting the sample of web elements used in training on
the classification objective for it to better resemble optimisation on the nomination task. In Figure 7, we can
see the evolution of the average confidence assigned to the true labelled elements (continuous lines) versus
the average maximal confidence assigned to any unlabelled element (dashed lines). We can clearly notice the
distance between these quantities increasing dramatically after the augmentation step at epoch 50 and also,
them continuing to diverge as training continues.

Algorithm 1 Hard-Example Augmentation
1: Inputs: M, K, ϵ, P (the page dataset)
2: HP := ∅, ∀P ∈ P
3: nn_model := model_init()
4: for epoch = 1, 2, . . . do
5: Strain := ∅
6: for each webpage P ∈ P do
7: P ≜ (V, E), V ≜ Vlabelled ∪ Vunlabelled

8: SP := UniformRand(Vunlabelled, nsamples = M)
9: if epoch = K then

10: for l := 1, . . . , L do
11: preds = {nn_model(v)[l], ∀elements v ∈ V })
12: HP := HP ∪ rank(preds)[: K]
13: end for
14: end if
15: Strain := Strain ∪ SP ∪ Vlabelled ∪ HP

16: end for
17: Train nn_model for 1 epoch on dataset Strain.
18: end for

A.3 Nomination Accuracy Results

In Figure 8 we present a graphical representation of the nomination accuracy results in Table 2. In this
representation, in order to better visualise the impact of text features, the performance of an algorithm when
using text features and not, are overlaid: full bars represents performance without text features and overlaid
on top, in hashed/transparent bars is the performance when using text.

A.4 Accuracy over Amount of Training Data

In this experiment, we aim to check how the nomination accuracy of the proposed methods increases as
they are allowed to train on more data. Our goal is to verify whether any of the algorithms show signs

7The code, along with all the hyperparameters, is available at https://github.com/Anonymised/product-page-dataset.
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Figure 7: Average confidence assigned by GCN-mean to the true elements are displayed in solid lines, (with
suffixes "-TRUE") and the average maximum of the confidence scores of all unlabelled elements on a page are
in dashed lines ("-FAUX").
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Figure 8: Nomination accuracy with (overlaid dashed bars) and without (solid bars) text included in the
local element features.

of performing substantially better as the training set grows. If this were the case, it would suggest the
further experiments should be run using a larger training set. We therefore trained the models on 5 subsets
from the Klarna Product Page Dataset increasing in size by powers of 2, from 128 to 2048 DOM trees and
an additional 6-th dataset containing the 10, 000 webpages in the previous experiment. Each model was
trained with fixed hyperparameters, all models use internal representations of size 150, for 50 epochs on every
dataset, on only the local style features. The average predictive performance over the 6 labels of each model
over the 6 datasets of increasing sizes is displayed in Figure 9. Here, again we see that, among the best
performing algorithms, GCN-Mean also exhibits the largest accuracy gain from adding more data. This
raises our confidence that convolutional neural networks are worth considering in more detail for web element
nomination tasks.
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Figure 9: The nomination accuracy (averaged over classes, measured on the validation set) of each algorithm,
when trained on the same training sets of increasing size.

A.5 Classification Performance

We also provide additional precision and recall metrics corresponding to the performance of the trained
models evaluated in Table 2. Table 4 details the classification performance of the models without text features.
When using text features, the results are very similar hence we do not present them here to save space. These
metrics show that all models achieve high classification performance, pointing towards them being sufficiently
trained on this objective.

A.6 Formulating an Element Nomination Objective

In this section, we discuss the complexity of formulating an objective for element nomination. At first glance,
it might appear feasible to design an architecture where the final layer outputs one value per node and class,
applying a softmax function across all nodes for each class, and then directly learns to nominate elements
using a cross-entropy loss. However, in the following sections, we will outline several challenges and limitations
associated with this approach.

To understand why this is not straightforward, assume that we have L class labels and that we for now
disregard the unlabeled class. Thus, if we have N nodes on a page, we could use L one-hot vectors of length
N to encode which nodes belong to each class on a page.

Table 4: Final classification accuracy of trained models (Precision/Recall, trained without text features)

buy button cart button product image name price subject node avg.

LSTM-Bi .91/.95 .92/.95 .89/.94 .93/.89 .85/.90 .96/.91 .95/.95
LSTM-BiE .97/.92 .95/.89 .92/.85 .92/.91 .90/.86 .96/.96 .95/.95
GCN-GRU .95/.92 .93/.86 .90/.88 .90/.90 .89/.85 .95/.93 .94/.94
FreeDOM .80/.93 .45/.88 .50/.43 .91/.88 .86/.88 .96/.33 .84/.82

FreeDOM-ext .95/.95 .92/.88 .89/.90 .97/.95 .96/.94 .92/.91 .95/.95
FCN .96/.91 .94/.81 .91/.80 .89/.91 .83/.88 .93/.94 .93/.93

LSTM-TD .94/.93 .93/.86 .90/.83 .92/.91 .90/.85 .94/.90 .94/.94
TE .91/.94 .90/.94 .88/.91 .92/.90 .84/.93 .95/.91 .95/.95

GCN-Mean .97/.90 .96/.80 .94/.85 .93/.92 .93/.84 .97/.91 .94/.94
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Imagine that we map the hidden representations of the N nodes on the page into an N × L matrix using a
function fθ(·) and subsequently apply softmax along the nodes for all L classes. Then we could formulate a
cross-entropy loss function as:

L∑
l=1

N∑
n=1

p(xn,l) log q(xn,l). (2)

After incorporating the one-hot encoded labels, this double sum just becomes a sum over L terms, one for
each class.

The reason why this objective does not work is that it does not instruct fθ(·) how to properly handle unlabeled
nodes. When fθ(·) maps a labeled node into the L class probabilities, it simply assigns a high amount of
mass to the l-th correct class. However, for an unlabeled node, it should not learn to assign any mass to any
of the L classes, yet because it is a mapping to these L classes it is forced to distribute its mass among these
classes somehow.

A natural suggestion for handling this issue is to incorporate the unlabeled class such that fθ(·) maps the
node embeddings into an N × (L + 1) matrix. Now it remains to decide how to represent which nodes belong
to which class. For the labeled nodes, we keep the L one-hot vectors of length N to encode which nodes
belong to each class. However, it is now unclear how to encode the unlabeled nodes. One approach could be
to use a vector of N − L ones and L zeros, where N − L corresponds to the number of unlabeled nodes on
the page.

The issue with this approach is related to class imbalance. After incorporating the labels into the equation
above, we now have L + (N − 1) terms, where L terms incentivize the model to identify the L labeled nodes
correctly, while (N − L) terms (where N can be up to 20, 000) incentivize the model to learn to recognize
unlabeled nodes correctly. With this very large imbalance, the model might as well predict that everything is
unlabeled.

One suggestion to mitigate the class imbalance could be to uniformly weight the terms in the loss which
correspond to the unlabeled nodes uniformly, resulting in the following cross-entropy formulation:

L∑
l=1

N∑
n=1

p(xn,l) log q(xn,l) + 1
(N − L)

N∑
n=1

p(xn,(L+1)) log q(xn,(L+1)). (3)

The issue with this approach is that the model is now less incentivized to correctly identify every single
unlabeled node. The implication is that when it encounters difficult negative examples, it is less punished for
incorrectly assigning more mass to one of the L labeled classes instead of the unlabeled class. Not learning to
handle hard negative examples can significantly degrade the final nomination performance, as it just takes a
single confusing element to ruin the nomination.

A.7 Model Failures

To gain some intuition about the limitations of our models, we include visualizations of instances where the
20-layer RevGNN algorithm fails, as shown in Figure 10.

A.8 Klarna Product Page Dataset - Additional Statistics

The histograms in Figure 11 show an overview of the complexity that is expected from the pages in our
dataset and aim to complement Table 1. The top two plots, displaying the distribution of the size of trees in
both heights and the total number of nodes, give a feel for the length of sequences on which the TreeLSTM
methods operate and the effect of the number convolutional layers and sizes of the filters. The number of
images gauge the amount of noise to be expected when dealing with page screenshots.
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Figure 10: Three page screenshots where the model’s nominations are inaccurate, with incorrectly identified
elements outlined by bounding boxes. In the screenshot on the far left, the model is tasked with identifying
the "Buy" button but mistakenly highlights an element located below the product image and price in the
center. While the "Buy" button can sometimes be found in this area, it is not accurate in this instance. In
the middle image, the model incorrectly identifies a search button in the upper right corner as the "Go to
Cart" button, which, although commonly located in this area, is not correct in this context. In the final
screenshot on the right, the model inaccurately identifies a div element placed over the product image as the
product image itself. These examples illustrate a limitation of relying solely on the DOM tree, as developer
design choices are not always consistent or tidy.
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Figure 11: The histogram in the top left corner depicts the number of nodes per tree. To its right, the tree
heights are displayed. A tree’s height is the maximum possible path length from the root of the tree. In the
bottom left corner, we give the number of leaf nodes per webpage, and to its right, we display the number of
images (png, jpg, gif) per webpage.
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