
A Definitions from Linear Analysis

We denote column vectors and matrices with small and capital bold letters, respectively, e.g. α =
[α1, α2, . . . , αd]

> ∈ Rd and A ∈ Rd1×d2 . The singular values of a rectangular matrix A ∈ Rn×d
are non-negative and are denoted smax(A) = s1(A) ≥ . . . ≥ sn∧d(A) = smin(A). The rank
of A is r = max{k | sk(A) > 0}. The eigenvalues of a Positive Semi-Definite (PSD) matrix
M ∈ Rd×d are non-negative and are denoted λmax(M) = λ1(M) ≥ . . . ≥ λd(M) = λmin(M),
while λ+min(M) denotes the smallest positive (non-zero) eigenvalue.

When M ∈ Rd×d is positive definite, we define ‖x‖M for x ∈ Rd by ‖x‖M =
√
x>Mx . It is

easy to check that ‖ · ‖M is indeed a norm on Rd, hence it induces a metric over Rd, with the distance
between x and y given by ‖x− y‖M =

√
(x− y)>M(x− y). IfM is only semi-definite, these

definitions would give a semi-norm and semi-metric. Note that ‖x‖M = ‖M1/2x‖ whereM1/2 is
the matrix square root ofM . If we setM = I , the identity matrix, then the norm ‖ · ‖M reduces to
the standard Euclidean norm: ‖x‖ =

√
x>x.

Combining the Cauchy-Schwarz inequality and the definition of operator norm ‖M‖ = smax(M),
which implies ‖Mx‖ ≤ ‖M‖‖x‖, we get the inequality ‖x‖2M ≤ ‖x‖2‖M‖.

B Regression Model

Consider a linear regression model

Y =X>w? + ε ,

where w? ∈ Rd is fixed and unknown, the random input X ∈ Rd is distributed according to
some unknown distribution PX supported on a unit ball, and noise is given by a random variable ε
independent fromX , such that E[ε] = 0 and E[ε2] = σ2. After observing an i.i.d. training sample
S = ((Xi, Yi))

n
i=1, we run GD on the empirical squared loss:

L̂S(w) =
1

2n

n∑
i=1

(w>Xi − Yi)2 .

The sample covariance matrix is Σ̂ = (X1X
>
1 + · · ·+XnX

>
n )/n, and its population counterpart

is the covariance matrix Σ = E[XX>]. Let Σ̂ = USV > be the SVD of Σ̂ with orthogonal
matricesU = [u1, . . . ,ud] and V = [v1, . . . ,vd], and scaling matrix S = diag(s1(Σ̂), . . . , sd(Σ̂))

of singular values arranged in decreasing order: s1(Σ̂) ≥ s2(Σ̂) ≥ · · · ≥ sd(Σ̂) ≥ 0. Note
that si(Σ̂) = λi(Σ̂) =: λ̂i since Σ̂ is positive semi-definite. The matrix Σ̂ might be degenerate
(λ̂d = 0), and the non-degenerate part is given by U r := [u1, . . . ,ur], V r := [v1, . . . ,vr] and

Sr := diag(λ̂1, . . . , λ̂r), where r = rank(Σ̂). We denote M̂ = U rU
>
r , and note that M̂

2
= M̂ .

For the minimal positive (non-zero) eigenvalue we use the shorthand λ̂+min = λ+min(Σ̂) = λr(Σ̂).

C Proof of Theorem 2 (Excess Risk of GD)

In this section we consider the standard GD algorithm, that is AS(w0) = wT , which is obtained
recursively by applying the update rule wt+1 = wt − α∇L̂S(wt) with some step size α > 0 and
initialization w0 ∈ Rd. The rule is iterated for t = 0, . . . , T − 1.

Recall that the excess risk of AS(w0) is defined as

ET = L(AS(w0))− L(w?) .

Next we give upper bounds on the excess risk of GD output.
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Theorem 2 (restated). Assume that α ≤ 1/λ̂1. For any w0 ∈ Rd and x > 0, with probability at
least 1− e−x over inputs we have

Eε[ET ] ≤ λ̂21(1− αλ̂+min)
2T ‖w? −w0‖2 +

4σ2

n

(
λ̂1

λ̂+min

)2

+
12√
n

(√
ln d+

√
x
)(
‖w0‖2 + 2‖w?‖2 + σ2

r∑
i=1

λ̂−1i

)
.

The proof of Theorem 2 is based on a the following decomposition, and remaining subsections will
be dedicated to bounding the constituent terms.

Proposition 1 (restated). For any w0 ∈ Rd,

ET ≤ ‖AS(w0)−AS(w?)‖2
Σ̂︸ ︷︷ ︸

(1)

+ ‖AS(w?)−w?‖2
Σ̂︸ ︷︷ ︸

(2)

+ ‖Σ− Σ̂‖2
(
‖AS(w0)‖2 + ‖w?‖2

)︸ ︷︷ ︸
(3)

.

Proof. Observe that for the square loss we have

L(AS(w0))− L(w?) =
1

2
‖AS(w0)−w?‖2Σ

=
1

2
‖AS(w0)−w?‖2

Σ̂
+

1

2
‖AS(w0)−w?‖2

Σ−Σ̂

=
1

2
‖AS(w0)−w?‖2

Σ̂︸ ︷︷ ︸
(a)

+
1

2
‖AS(w0)−w?‖2

Σ−Σ̂︸ ︷︷ ︸
(b)

.

Note that bounding term (a) reduces to

‖AS(w0)−w?‖2
M̂
≤ 2‖AS(w0)−AS(w?)‖2

Σ̂
+ 2‖AS(w?)−w?‖2

Σ̂
.

On the other we handle term (b) by Cauchy-Schwarz and triangle inequalities:

‖AS(w0)−w?‖2
Σ−Σ̂ ≤ 2‖Σ− Σ̂‖

(
‖AS(w0)‖2 + ‖w?‖2

)
.

Here, the first term (1), vanishes as long as the algorithm-mapAS is contractive on the aforementioned
subspace, which we show in Appendix C.1 thanks to the closed-form expression of GD iterates.

Term (2) captures algorithm’s sensitivity to the label noise: How far would GD go when initialized
at the minimum of the risk? Indeed it is easy to see that when there is no label noise, term (2) is
zero (one can demonstrate it by the descent lemma). In the presence of noise, matters are more
complicated, and we employ more or less standard technique where we recursively track the distance
between GD iterates and “virtual” iterates, which are obtained as if we could remove the noise. This
results in a bound 4(σ2/n)(λ̂+min)

−2, which is shown in Appendix C.3.

Finally, term (3) is essentially a concentration of the sample covariance matrix and ensuring that
the norm of the solution remains well-behaved, see Appendix C.2. The concentration of the sample
covariance matrix is due to the matrix Chernoff inequality [Tropp, 2012]. We control the norm of
the solution by relating it to the Moore-Penrose pseudoinverse solution which can be written in a
closed-form. This makes it easy to see that when the label noise is absent, the norm depends only on
w? and w0. On the other hand, when the noise is present things will depend on behaviour of λ̂+min as
discussed in Section 3.2.

C.1 Contractivity of GD (Term (1))

Contractivity of GD comes from the following straightforward proposition.
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Proposition 2. For a T -step gradient descent map AS : Rd → Rd with step size α > 0 applied to
the least squares, and for all w0 ∈ Rd, we have a.s. that

AS(w0) = (I − αΣ̂)Tw0 + α

T−1∑
t=0

(I − αΣ̂)t

(
1

n

n∑
i=1

XiYi

)
.

Proof. Abbreviate C = (X1Y1 + · · ·+XnYn)/n. Since∇L̂S(w) = Σ̂w −C, observe that

wt = wt−1 − α(Σ̂wt−1 −C) = (I − αΣ̂)wt−1 + αC .

A simple recursive argument reveals that for every w0 ∈ Rd

AS(w0) = wT = (I − αΣ̂)wT−1 + αC

= (I − αΣ̂)2wT−2 + α(I − αΣ̂)C + αC

= (I − αΣ̂)3wT−3 + α(I − αΣ̂)2C + α(I − αΣ̂)C + αC

· · ·

= (I − αΣ̂)Tw0 + α

T−1∑
t=0

(I − αΣ̂)tC .

Proposition 2 implies the following simple fact.

Corollary 1 (Contractivity of GD). The T -step gradient descent map AS : Rd → Rd with step size
α > 0 applied to the least squares problem satisfies, for all w0,u0 ∈ Rd,

‖AS(w0)−AS(u0)‖Σ̂ ≤ λ̂1(1− αλ̂
+
min)

T ‖w0 − u0‖ .

Proof. Clearly ‖AS(w0)−AS(u0)‖Σ̂ ≤ λ̂1‖AS(w0)−AS(u0)‖UrU>r
. By Proposition 2 for any

w0,u0 ∈ Rd:

‖AS(w0)−AS(u0)‖UrU>r
= ‖(I − αΣ̂)T (w0 − u0)‖UrU>r

= ‖U>r (I − αΣ̂)T (w0 − u0)‖
≤ ‖U>r (I − αΣ̂)T ‖‖(w0 − u0)‖ .

Now,

U>r (I − αΣ̂)T = U>r U(I − αS)TV > = Ir×d(I − αS)TV > = (Ir×d − αSr×d)TV >

where subscript r× n stands for clipping the matrix to r rows and d columns. The above implies that
the operator norm of U>r (I − αΣ̂)T satisfies ‖U>r (I − αΣ̂)T ‖2 ≤ (1− αλ+min(Σ̂))T .

C.2 Concentration of Spectrum (Term (3))

Our next goal is to understand the behaviour of

‖Σ− Σ̂‖2
(
‖AS(w0)‖2 + ‖w?‖2

)
. (2)

A high-probability concentration of a covariance matrix is readily given by the matrix Chernoff
inequality:

Theorem 3 (Tropp [2012]). Suppose that inputs have a bounded spectral norm which is at most BX .
Then,

P
(
‖Σ̂−Σ‖2 ≥

6BX√
n

(√
ln d+

√
x
))
≤ e−x .
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Next we need to control ‖AS(w0)‖2. This will be done by using a closed-form of the GD iterate at
step T given by Proposition 2:

‖AS(w0)‖2 ≤ 2 ‖(I − αΣ̂)Tw0‖22︸ ︷︷ ︸
(a)

+2

∥∥∥∥∥α
T−1∑
t=0

(I − αΣ̂)t︸ ︷︷ ︸
(b)

(
1

n

n∑
i=1

XiYi

)∥∥∥∥∥
2

2

where Cauchy-Schwarz inequality gives (a) ≤ ‖w0‖2, while (b) converges to the Moore-Penrose
pseudoinverse of Σ̂ as T →∞ as long as α ≤ 1/λ̂1 [Ben-Israel and Charnes, 1963]. Hence, we will
need to quantify its squared `2 norm:
Proposition 3. Suppose that given some w? ∈ Rd, D> = [xi, . . . ,xn] ∈ Rd×n, and ε ∈ Rn, we
have y = Dw? + ε. Then, the Moore-Penrose pseudoinverse solution wpinv = (D>D)†D>y
satisfies

‖wpinv‖2 = ‖w?‖2 + 2ε>(D>D)†w? + ‖ε‖2(DD>)−1 .

Proof. Observe that

‖wpinv‖2 = y>D(D>D)†2D>y

= (Dw? + ε)>D(D>D)†2D>(Dw? + ε)

= ‖w?‖2 + 2ε>(D>D)†2D>Dw? + ε>D(D>D)†2D>ε

= ‖w?‖2 + 2ε>(D>D)†w? + ε>(DD>)−1ε .

Putting things together we have that w.p. at least 1− e−x over (X1, . . . ,Xn),

Eq. (2) ≤ 12√
n

(√
ln d+

√
x
)(
‖w0‖2 + 2‖w?‖2 + 2

n
ε>Σ̂

†
w? + ‖ε‖2(DD>)−1

)
.

Moreover, note that taking expectation over label noise gives

Eε[Eq. (2)] ≤ 12√
n

(√
ln d+

√
x
)(
‖w0‖2 + 2‖w?‖2 + σ2

r∑
i=1

λ̂−1i

)
.

C.3 Bounding term (2)

The goal of this section is to bound
‖AS(w?)−w?‖2

Σ̂
,

which captures how sensitive the algorithm is to the noise when initialize at the optimum. When there
is no label noise, the standard descent lemma (not shown here) readily gives that the term vanishes.

Lemma 2 (Descent Lemma). Assuming that α ≤ 1/λ̂1,
T−1∑
t=0

‖∇L̂S(wt)‖2 ≤
2

α

(
L̂S(w0)− L̂S(AS(w0))

)
.

In particular, if w?
t are the iterates of GD when starting from w? (so that w0 = w?), then

‖AS(w?)−w?‖2M =

∥∥∥∥∥α
T−1∑
t=0

∇L̂S(w?
t )

∥∥∥∥∥
2

M

≤ α2T

T−1∑
t=0

‖∇L̂S(w?
t )‖2M

≤ α2 2T

α

(
L̂S(w

?)− L̂S(w?
T )
)

≤ 2αTL̂S(w
?) = 0 .
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Here we consider the case with i.i.d. label noise (ε1, . . . , εn) and therefore show a more general
handling of the term. Recall that E[εi] = 0 and E[ε2i ] = σ2 for i ∈ [n]. Throughout this section
abbreviate E[· |X1, . . . ,Xn] = Eε[·].

Lemma 3. Let M̂ be defined as in Section 3.1. For any T > 0, GD achieves

Eε

[
‖w? −AS(w?)‖2

Σ̂

]
≤ 4σ2

n

(
λ̂1

λ̂+min

)2

.

Proof. We begin by noting that the integral form of Taylor theorem gives us that for any w? ∈
argminw∈Rd L̂(w) and any w ∈ Rd,

L̂(w)− L̂(w?) =
1

2
(w −w?)>

(∫ 1

0

∇2L̂(τw + (1− τ)w?) dτ

)
(w −w?)

≥ 1

2
· λ̂+min(w −w

?)>M̂(w −w?) .

Thus, taking w = AS(w?), we have

Eε

[
‖w? −AS(w?)‖2

M̂

]
≤ 1

λ̂+min

(
Eε L̂(w

?)− Eε

[
L̂(AS(w?))

])
=

1

λ̂+min

(
σ2 − Eε

[
L̂(AS(w?))

])
.

Now, let’s focus on the loss term on the r.h.s.:

Eε

[
L̂S(w

?
T )
]
=

1

n

n∑
i=1

Eε

[(
(w?

T −w?
0)
>
Xi − εi

)2]

= σ2 − 2

n

n∑
i=1

Eε

[
εi (w

?
T −w?

0)
>
Xi

]
+ Eε

[
(w?

T −w?
0)
>

Σ̂ (w?
T −w?

0)
]

≥ σ2 − 2

n

n∑
i=1

Eε

[
εi (w

?
T −w?

0)
>
Xi

]
= σ2 − 2

n

n∑
i=1

Eε

[
εiw

?
T
>Xi

]
where the last term is small when label noise is not too correlated with the output w?

T . Hence to
control the term, we need to measure the effect of the noise on GD. To do so we will introduce an
additional iterates (w̃t)t constructed by running GD on labels without noise, that is

w̃?
t+1 = w̃?

t − α∇L̃S(w̃?
t ) where L̃(w) =

1

2n

n∑
i=1

(
w>Xi −w?>Xi

)2
.

The plan is then to bound the deviation ‖w?
T − w̃

?
T ‖M̂ which we will do recursively. We proceed:

2

n

n∑
i=1

Eε

[
εiw

?
T
>Xi

]
=

2

n

n∑
i=1

Eε

[
εi(w

?
T − w̃?

T )
>Xi

]
(Note that Eε[w̃

?
T |Xi] = 0)

=
2

n

n∑
i=1

Eε

[
εi(w

?
T − w̃?

T )
>M̂Xi

]
(Since M̂Xi =Xi)

≤ 2

n
Eε

[∥∥∥∥∥
n∑
i=1

εiXi

∥∥∥∥∥∥∥∥M̂(w?
T − w̃?

T )
∥∥∥] (Cauchy-Schwarz)
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Now we will handle
∥∥∥M̂(w?

T − w̃
?
T )
∥∥∥ = ‖w?

T − w̃
?
T ‖M̂ by following a recursive argument. First,

observe that for any t = 0, 1, 2, . . .

∇L̂(w̃?
t ) = Σ̂w̃?

t −
1

n

n∑
i=1

XiX
>
i w

?
0 = Σ̂(w̃?

t −w?
0) ,

and at the same time

∇L̂(w?
t ) = Σ̂w?

t −
1

n

n∑
i=1

XiX
>
i w

?
0 −

1

n

n∑
i=1

Xiεi = Σ̂(w?
t −w?

0)−
1

n

n∑
i=1

Xiεi .

Thus,

‖w?
t+1 − w̃?

t+1‖M̂ =
∥∥∥w?

t − w̃?
t − α

(
∇L̂(w?

t )−∇L̂(w̃?
t )
)∥∥∥

M̂
(3)

=

∥∥∥∥∥w?
t − w̃?

t − αΣ̂(w?
t − w̃?

t )−
α

n

n∑
i=1

Xiεi

∥∥∥∥∥
M̂

=
∥∥∥(I − αΣ̂)(w?

t − w̃?
t )
∥∥∥
M̂

+
α

n

∥∥∥∥∥
n∑
i=1

Xiεi

∥∥∥∥∥
M̂

(a)

≤ ‖I − αΣ̂‖
M̂
‖w?

t − w̃?
t ‖M̂ +

α

n

∥∥∥∥∥
n∑
i=1

Xiεi

∥∥∥∥∥
M̂

≤ (1− αλ̂+min)‖w
?
t − w̃?

t ‖M̂ +
α

n

∥∥∥∥∥
n∑
i=1

Xiεi

∥∥∥∥∥
M̂

. (4)

where in the step (a) we note that M̂(I − αΣ̂)(w?
t − w̃?

t ) = M̂(I − αΣ̂)M̂(w?
t − w̃?

t ) (since

M̂
2
= M̂ and Σ̂M̂ = Σ̂).

Now we use the fact that an elementary recursive relation xt+1 ≤ atxt + bt with x0 = 0 unwinds to
xT ≤

∑T
t=1 bt

∏T
k=t+1 ak, which gives

‖w?
T − w̃?

T ‖M̂ ≤
α

n

∥∥∥∥∥
n∑
i=1

Xiεi

∥∥∥∥∥
M̂

T∑
t=1

(1− αλ̂+min)
T−t

≤ α

n

∥∥∥∥∥
n∑
i=1

Xiεi

∥∥∥∥∥
M̂

1− (1− αλ̂+min)
T

αλ̂+min

.

Thus,

2

n

n∑
i=1

Eε

[
εi (w

?
T −w?

0)
>
Xi

]
≤ 2

n
· 1
n
Eε

∥∥∥∥∥
n∑
i=1

Xiεi

∥∥∥∥∥
2

1

λ̂+min


≤ 2σ2

n
· 1

λ̂+min

where we used a basic fact that

Eε

∥∥∥∥∥
n∑
i=1

Xiεi

∥∥∥∥∥
2
∣∣∣∣∣∣X1, . . . ,Xn

 = σ2
n∑
i=1

‖Xi‖2 ≤ σ2n .

Putting all together completes the proof.

D Concentration of the Smallest Non-zero Eigenvalue: Proof

Here we show a non-asymptotic concentration of the smallest positive eigenvalue as stated in
Section 3.3.
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Lemma 1 (restated). LetD> = [X1, . . . ,Xn] ∈ Rd×n be a matrix with i.i.d. columns, such that
maxi ‖Xi‖ψ2 ≤ K, and let Σ̂ = D>D/n, and Σ = E[X1X

>
1 ]. Then, for every x ≥ 0, with

probability at least 1− 2e−x, we have

λ+min(Σ̂) ≥ λ+min(Σ)

(
1−K2

(
c

√
d

n
+

√
x

n

))2

+

for n ≥ d ,

and furthermore, assuming that ‖Xi‖Σ† =
√
d a.s. for all i ∈ [n], we have

λ+min(Σ̂) ≥ λ+min(Σ)

(√
d

n
−K2

(
c+ 6

√
x

n

))2

+

for n < d ,

where we have an absolute constant c = 23.5
√
ln(9).

Lemma 1 proven shortly, is based upon the the next theorem gives us a non-asymptotic version of
Bai-Yin law [Bai and Yin, 1993] for rectangular matrices whose rows are sub-Gaussian isotropic
random vectors.

Theorem 4 ([Vershynin, 2012, Theorem 5.39]). LetA ∈ Rn×d whose rows (A>)i are independent
sub-Gaussian isotropic random vectors in Rd, such that K = maxi∈[n] ‖(A>)i‖ψ2

. Then for every
x ≥ 0, with probability at least 1− 2e−x one has
√
n− 23.5K2(

√
ln(9)d+

√
x) ≤ smin(A) ≤ smax(A) ≤

√
n+ 23.5K2

(√
ln(9)d+

√
x
)
.

Theorem 5 ([Vershynin, 2012, Theorem 5.58]). LetA ∈ Rd×n whose columnsAi are independent
sub-Gaussian isotropic random vectors in Rd with ‖Ai‖ =

√
d a.s., such thatK = maxi∈[n] ‖Ai‖ψ2 .

Then for every x ≥ 0, with probability at least 1− 2e−x one has
√
d− 23.5K2(

√
ln(9)n+ 6

√
x) ≤ smin(A) ≤ smax(A) ≤

√
d+ 23.5K2(

√
ln(9)n+ 6

√
x)

Above two theorems lead to the following non-asymptotic version of a Bai-Yin law.

Proof of Lemma 1. The proof considers two cases: 1) when number of observations exceeds the
dimension, which is handled by the concentration of a minimal non-zero eigenvalue of a covariance
matrix; 2) when dimension exceeds number of observations, which is handled by concentration of
the Gram matrix.

Case n ≥ d. We will apply Theorem 4 withA = (Σ†
1
2D>)> =DΣ†

1
2 whose rows are indepen-

dent and isotropic, and in addition by Cauchy-Schwarz inequality:

‖Σ†
1
2 ‖smin(D) ≥ smin (A) ≥

√
n− 23.5K2(

√
ln(9)d+

√
x)

with probability at least 1− e−x for x > 0. Observing that ‖Σ†
1
2 ‖ = s+min(Σ)−1/2, this implies that

smin(D) ≥
√
s+min(Σ)

(√
n− 23.5K2

(√
ln(9) d+

√
x
))

,

while dividing through by
√
n, taking the non-negative part of the r.h.s. and squaring gives us

λmin(Σ̂) ≥ λ+min(Σ)

(
1− 23.5K2

(√
ln(9)

d

n
+

√
x

n

))2

+

.

Case n < d. In this case we essentially study concentration of a smallest singular value of a Gram
matrix Ĝ = 1

dDD
>. For the case n < d, Theorem 4 would give us a vacuous estimate, and therefore

we rely on Theorem 5 which requires additional assumption that columns ofD> lie on a (elliptic)
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sphere of radius
√
d. In particular, similarly as before, applying Theorem 5 to the matrix Σ†

1
2D>

with isotropic columns Σ†
1
2Xi satisfying ‖Σ†

1
2Xi‖ =

√
d a.s. for all i ∈ [n], we get

‖Σ†
1
2 ‖smin(D

>) ≥ smin

(
Σ†

1
2D>

)
≥
√
d− 23.5K2(

√
ln(9)n+ 6

√
x)

with probability at least 1− e−x for x > 0. Again, this gives us

smin (D) ≥
√
s+min(Σ)

(√
d− 23.5K2

(√
ln(9)n+ 6

√
x
))

,

while dividing through by
√
d, taking the non-negative part of the r.h.s. and squaring gives us

λmin(Ĝ) ≥ λ+min(Σ)

(
1− 23.5K2

(√
ln(9)

n

d
+ 6

√
x

d

))2

+

.

Now we relate λmin(Ĝ) to the smallest non-zero eigenvalue of Σ̂ (see also [Bai and Yin, 1993,
Remark 1]). The smallest eigenvalue of dĜ corresponds to d− n+ 1-th smallest eigenvalue of nΣ̂,
that is dλmin(Ĝ) = nλ+min(Σ̂). That said, multiplying the previous inequality through by d/n and
rearranging, we get

λ+min(Σ̂) ≥ λ+min(Σ)

(√
d

n
− 23.5K2

(√
ln(9) + 6

√
x

n

))2

+

The proof is now complete.

E Minimum eigenvalue and condition number

Previous works considered the link between the condition number of the features and the DD
behavior [Rangamani et al., 2020]. In this work, the analysis focuses more particularly on the
minimum eigenvalue. In the following small experiments, we empirically show that in the experiments
shown in the main paper, the condition number is driven by the minimum eigenvalue, and that the
maximum eigenvalue stays close to a constant order when we increase the size of the features.
In Figure 4, we use the same setting as in the MNIST experiment in Figure 2 is the main paper.
We obseve that the behavior of the condition number follows the minimum eigenvalue, while the
maximum eigenvalue stays between 10 and 100 as we increase the width of the networks.
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Figure 4: Maximum and minimum eigenvalues and condition numbers of the features of one hidden
layer networks of variable width: MNIST - 1000 samples for training, networks trained with gradient
descent and different step sizes.
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F More on the effect of depth

In section 6, we suggested that the ill-conditioning of the intermediary features of a neural network is
not only due to the size of the network, but also to the weights distribution across the layers. More
particularly, we suggest here that the optimization difficulty we observe for deep neural networks is
linked among other factors to the minimum eigenvalue of the activations of the penultimate layer.
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Figure 5: Mean test error and minimum eigenvalue for networks of fixed width = 500 and varying
depth: MNIST - 1000 samples for training, 10000 samples for test, networks trained with gradient
descent and step size 0.01.

To support our hypothesis, we run an experiment where we train networks of a fixed width (equal
to 500) and depth varying from 2 to 10. We track the test error at various stages of training and the
minimum eigenvalue of the features of the last layer. In Figure 5, we can observe that as expected, the
deeper the network, the harder it is to train them. This is reflected in the increasing test error. For the
deepest network, simple gradient descent fails to obtain a reasonable performance even after 10000
iterations. Moreover, we observe that the deeper the network, the smaller is the minimum eigenvalue,
and the most ill-conditioned settings get even worse with training.

To further this analysis, we also compare networks with 3 hidden layers where we increase the
width in all the layers and in the penultimate layer only, creating bottleneck in the earlier layers.
This experiment complements Figure 3. In Figure 6, we observe that the bottleneck results in a
more important drop in the eigenvalue around the width 1000 (width of the last layer in this case).
Moreover, the minimum eigenvalue stays smaller than the other considered architectures when we
increase the depth. This is reflected in a higher test error, confirming once more the effect of the
conditioning of the last layer features on the final performance of the network when trained with
gradient descent.
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Figure 6: Training networks of increasing width with 1 and 3 hidden layers on MNIST - For the
version with bottleneck, only the size of the last hidden layer is increased, while the other layers
are composed of 10 neurons: (a) Minimum positive eigenvalue of the intermediary features at
initialization - (b) Test error and corresponding minimum eigenvalue of the intermediary features at
different iterations

G Additional Empirical Evaluation

G.1 Experimental settings - More details

In our experiments, we considered two datasets: MNIST and FashionMNIST. Both datasets have an
input dimension of 784 and a training set of 6.104 samples. As our theory predicts that the drop in
the minimum eigenvalue and the performance of the models happens when the feature size reaches
the size of the training set, and in order to keep our model tractable, we use subsets of size 1000 of
the training sets. These subsets are randomly chosen and kept the same when the size of the model
increases. All the models are trained with plain gradient descent, with a fixed step size. We use a step
size of 0.01 unless stated otherwise. All the weights of the networks are initialized from a truncated
normal distribution with a scaled variance. Finally, for the MNIST experiment in Figure 2, the mean
and standard errors are estimated from runs with different seeds. For the other experiments, the mean
and standard errors of the test error are estimated by splitting the test set into 10 subsets.

G.2 More on the effect of architectural choices

In section 6, we suggested that for neural networks the quantity of interest might also be λ̂+min for
intermediary features, which is affected by size of the model but also by the distribution of the
weights and architectural choices. Section F shows some experiments that validate this hypothesis.
To further our analysis, we question here the impact of skip connections on the eigenvalue of features
at initialization. The difficulty that depth cause for the optimization of neural networks led to our
reliance on skip connections among other tricks [De and Smith, 2020]. Here, we hypothesize that
skip connections make the optimization of deep networks easier thanks to a better conditioning of the
feature, through a less severe drop in the minimum eigenvalue around the interpolation threshold.
Figure 7 shows that for a deep network with skip connection, the minimum eigenvalue of the
penultimate layer activations behaves like this of a shallow neural network.
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Figure 7: Mean minimum eigenvalue at initialization for networks of depths 1 and 3 and varying
width. For the network of depth 3, we show two variants: with and without skip connection. The skip
connection makes the deep network eigenvalue behave like the shallow network’s.

G.3 On the position of the peak

The jump of the test error predicted by our theory and observed in our experiments appears when the
width of the penultimate layer of the network reaches the size of the training set. The jump of the
test loss observed in Belkin et al. [2019] appears when the size of the model reaches the size of the
training set multiplied by the number of classes. It is then a natural question to ask whether these two
positions coincide. Let us consider a network with a single hidden layer for simplicity. For an input
of dimension d, a hidden layer of width h and a problem with k classes, the size of such a network
is (d+ 1)h+ (h+ 1)k. For a training set of size n, Belkin et al. [2019] observes a peak in the test
loss when (d+ 1)h+ (h+ 1)k = nk, which corresponds to a model with a hidden layer of width
h = nk−k

d+k+1 . When training with 1000 samples from MNIST (as in our experiments), this width is
then h ≈ 12. Recall that the peak highlighted here appears at h = 1000, which is a much bigger
model. This observation reinforces the observation that neural networks show not only a double but a
triple [d’Ascoli et al., 2020] (or a multiple?) descent behavior. A thorough verification is however
beyond the scope of this work, and is left to future research.
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