
Train Test # Classes
CIFAR10 50,000 10,000 10
CIFAR100 50,000 10,000 100
SVHN 73,257 26,032 10

Table 3: CIFAR10, CIFAR100 and SVHN dataset statistics.

Figure 4: Accuracy of BADGE on CIFAR10 and SVHN when using one and ten partitions. The
mean and standard error as computed across ten trials is shown.

A Extended Experiments

In this section, we expand on Section 3 by providing additional details and experimental results on
the scalability of baseline methods and Cluster-Margin. Table 3 contains relevant statistics about the
CIFAR10, CIFAR100 and SVHN datasets which have been omitted from the main body of the paper.

A.1 Baseline Scalability

As discussed in Section 3, we improve BADGE’s scalability on certain datasets by partitioning the
unlabeled pool into subsets, and running BADGE independently on each subset. Specifically, if the
size of the unlabeled pool is n, and k is the batch size, we partition the pool uniformly at random
into m sets, and run BADGE independently with a target batch size of k/m in each partition. The
samples across all partitions are then combined. In order to measure the effect of partitioning, we
run BADGE with both one partition and ten partitions on CIFAR10 and SVHN datasets. As can be
seen in Figure 4, BADGE achieves comparable accuracy on both datasets. We do not include a plot
for CIFAR100 because BADGE with one partition was not able to scale to this dataset. The same
partitioning scheme was applied to CoreSet on only the Open Images dataset with 1M batch sizes.
The Margin and Random baselines easily scale to all datasets and hence, the partitioning scheme was
not used.

A.2 Cluster-Margin Scalability

As described in Algorithm 2, while Cluster-Margin is more efficient than BADGE and CoreSet in each
labeling iteration, it requires running HAC (Algorithm 1) on the entire pool, X , as a preprocessing
step. Below, we discuss two independent techniques that can be used to speed up this preprocessing
step.

Multi-round HAC. In order to avoid loading a complete graph into memory when running HAC,
which can be infeasible for large datasets such as Open Images, we run a multi-round HAC approach
in all of the experiments presented in Section 3. This approach involves clustering a set of clusters
over multiple rounds, where in each round, HAC is run on the centroids of the clusters from the prior
round. In each round, a (k, τ)-nearest neighbor graph is built on the centroids of the clusters from the
prior round, where an edge (d1, d2) is created between two datapoints d1 and d2, if one datapoint is a
k-nearest neighbor of the other, and the distance between d1 and d2 is at most τ .
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Figure 5: Pooled average precision of Cluster-Margin, as in Algorithm 2, compared to Cluster-Margin
with the cluster assignment scalability improvement, using active learning batch sizes of 100K (left
figure) and 1M (right figure). The green curves are identical to the ones in Figure 2. The mean and
the (barely visible) standard error as computed across three trials is shown.

Cluster assignment. Another way to speed up Cluster-Margin is to run HAC on a smaller subset
of the data during its pre-processing step. Thus, we execute another set of experiments where HAC
is run only on the seed set image embeddings, P , which contains roughly 275K images (and 300K
image-class pairs) and comprises only 3.1% of the entire set of images. We denote these clusters as
CP . We then take the remaining 96.9% of image embeddings, and assign them to their nearest cluster
centroid in CP , as long as the distance between the image and nearest centroid is at most εc. We
denote the final clusters as C′P . As was done in Section 3.2, we set km = 10kt for all experiments,
and select threshold εc such that the average cluster size of C′P is at least 10, allowing us to exhaust
all clusters in the round-robin sampling. Figure 5 shows that on both batch sizes of 100K and 1M, the
cluster assignment approach performs at least as well as the approach of running HAC on the entire
set X , while reducing the clustering run-time fromO(|X|2 log |X|) to O(|P |2 log |P |+ |CP ||X \P |)
where |CP | ≤ |P |.

A.3 Comparisons to Additional Baselines

We use this appendix to record additional evaluations conducted after the initial submission of this
article.

In Figure 6 we consider the same setting as detailed in Section 3.3, but have additionally included
the FASS algorithm of Wei et al. [2015]. This algorithm trades off uncertainty and diversity by
first filtering away examples that the model is certain on (keeping βk examples) and then greedily
maximizing a submodular objective that encourages diversity. We run FASS with the ffac (facility
location) objective and use β = 1.25, which we found to be a reasonable setting given the relative
batch and pool sizes. In fact, using a much larger value of β would imply that there is not much
filtering done by the uncertainty sampling step. This choice also matches the factor used in Cluster-
Margin. We find that the Cluster-Margin approach tends to outperform FASS on the CIFAR10
benchmark, while FASS performs comparably to Cluster-Margin on CIFAR100 and comparable to
Cluster-Margin and simple Margin sampling in the SVHN benchmark.

From these additional experiments, we do not find that the overall conclusions we can draw out of
this paper with respect to Cluster-Margin to have changed significantly.
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Figure 6: Accuracy of various active learning method as a function of the number of labeled examples,
using active learning batch sizes of 5K. The mean and standard error as computed across 10 trials is
shown.

B Extended Theoretical Motivation

Algorithm 3 contains a detailed pseudocode of the Cluster-MarginV algorithm referred to in the main
body of the paper.

Algorithm 3 Cluster-MarginV Algorithm
Require: (Unlabeled) distribution D, ε, δ, volume-based sampler V . Fix γ > 1.

1: Set c, C1, C2, n from Theorem B.1.
2: T ← ∅, the set of labeled examples so far.
3: for i = 1, 2, . . . , n do
4: Set bi, ki+1 from Theorem B.1.
5: Find hypothesis ŵi (||ŵi||2 = 1) consistent with T .
6: Xi = ∅
7: while |Xi| < γki+1 do
8: Sample x ∈ D and add to Xi if |ŵi · x| < bi.
9: end while

10: Use V to select Sbi+1 ⊂ Xi of size ki+1.
11: Query the labels of points in Sbi+1.
12: T ← T ∪ Sbi+1, update the set of labeled examples.
13: end for

The theorem that follows presents the generalization guarantee for the Cluster-MarginV Algorithm,
as well as its label complexity guarantee. For simplicity, this result applies to a stylized scenario
where labeled data is consistent with a given linear separator (the so-called realizable setting) and the
data distribution in the embedding space is isotropic log concave.4 Recall that a distribution over Rd

4This result can be extended to a more general set of structured distributions by relying on the very recent
results in Zhang and Li [2021], whose algorithm is a variant of the original Margin Algorithm that still samples
uniformly from the low margin region, as Cluster-MarginV does.

15



is log-concave if log f(·) is concave, where f is its associated density function. The distribution is
isotropic if its mean is the origin and its covariance matrix is the identity. Log-concave distributions
are a broad family of distributions. For instance, the Gaussian, Logistic, and uniform distribution
over any convex set are log-concave.

Theorem B.1. Let the data be drawn uniformly from an isotropic log concave distribution D in
Rd where d ≥ 4 and V be a β-efficient volume-based sampler. Consider a class of homogeneous
linear separators w in the realizable setting and let c be any constant such that for any two unit
vectors w,w′ ∈ Rd, cθ(w,w′) ≤ d(w,w′), where θ(w,w′) is the angle between vectors w and
w′. Then, for any ε, δ > 0, ε < 1/4, there exist constants C1, C2 such that the Cluster-MarginV
Algorithm run with bi = C1

2i and ki+1 = 2βC2(d + log 1+n−i
δ ) after n = dlog2( 1

cε )e iterations
returns with probability 1 − δ a linear separator of error at most ε. The label complexity is thus
O(β(d+ log(1/δ) + log log(1/ε)) log(1/ε)).

Proof. The constant c in the bound always exists by known properties of isotropic log concave
distributions – see Lemma 3 in Balcan and Long [2013]. Define Ri(S) = maxw∈Vi(S) Pr[sign(w ·
x) 6= sign(w∗ · x)]. Since w∗ ∈ Vi(Sbi ), it holds that Ri(Sbi ) ≤ Di(S

b
i ). Then by Definition 4.1 and

the triangle inequality, it holds that

Ri(S
b
i ) ≤ Di(S

b
i ) ≤ βDi(S

u
i ) ≤ 2βRi(S

u
i ) . (1)

We can analyze Ri(Sui ) by following a similar reasoning as in Theorem 5 of Balcan and Long [2013],
except that we have to carefully deal with the 2β factor above in order to improve the overall bound.
Concretely, let P1 = {x ∈ X : |wi−1 · x| ≤ bi−1} and P2 be its complement. We split Ri(Sui ) into
two components as follows

Ri(S
u
i ) = Pr[sign(w · x) 6= sign(w∗ · x), x ∈ P1] + Pr[sign(w · x) 6= sign(w∗ · x), x ∈ P2] ,

and analyze each component separately.

For the P2 component, Theorem 4 in Balcan and Long [2013] ensures that there exists a constant C1

(which defines bi) such that Pr[sign(w · x) 6= sign(w∗ · x), x ∈ P2] ≤ c2−i

4β .

For the P1 component, since Sui is a uniform sample from region P1, with ki+1 = 2βC2(d +
log 1+n−i

δ ), classic Vapnik-Chervonenkis bounds imply that Pr[sign(w · x) 6= sign(w∗ · x)|x ∈
P1] ≤ c2−i

8βbi
. By Lemma 2 in Balcan and Long [2013], it holds that Pr[x ∈ P1] ≤ 2bi. Thus,

Pr[sign(w · x) 6= sign(w∗ · x), x ∈ P1] ≤ c2−i

4β .

Putting the two components together, the right-hand-side of Equation 1 is c2−i, which concludes the
proof.

Recall that under the same assumptions of the above theorem, the label complexity of the original
Margin Algorithm is O((d + log(1/δ) + log log(1/ε)) log(1/ε)), as shown in Balcan and Long
[2013]. Thus, the improvement of Cluster-MarginV over the Margin Algorithm is exactly by a β
factor in the label complexity.

B.1 Proof of Theorem 4.2

We first establish a lemma that analyzes a one-dimension distribution setting.

Lemma B.2. Let X = {xi}ni=1 ⊂ [0, 1], xi i.i.d. with cumulative distribution function F , and
H = {1x≥v(x) | v ∈ [0, 1]} be the class of threshold-functions on [0, 1]. Assume that k = o(

√
n).

Let sampler V choose k points Sb = {si}ki=1 such that si is the closest point in X to the ith k-
quantile of F : si = arg minx∈X |x− F−1(i/k)|. Then V is a β-efficient volume-based sampler for
β = O(1/ log k).

Proof. Let 1u ∈ H denote the threshold function with threshold u ∈ [0, 1], and note that d(1u,1v) =
Pr[x : 1u(x) 6= 1v(x)] = |F (v)− F (u)|. Set s0 = 0 and sk+1 = 1. Suppose the true hypothesis is
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1v . Let i be such that si ≤ v < si+1. We have

D(Sb) = max
i
|F (si+1)− F (si)|

= max
i

((i+ 1)/k − i/k +O(1/
√
n))

=
1

k
(1 + o(1)) .

On the other hand, suppose the si’s are chosen i.i.d. from X . Then D(Su) = E[maxi(yi+1 − yi)],
where yi = F (xi). Now, the yi’s are i.i.d. on Unif([0, 1]) and it is known (Holst [1980]) that
E[maxi(yi+1 − yi)] = Θ(log k/k). Thus D(Su) = Θ(log k/k) and we have β = O(1/ log k).

Now, we proceed to the proof of the theorem.

Proof. Knowing the labels of S constrains the version space V to be of the form V = {1xi≤vi |v ∈∏d
i=1[ai, bi]}. Furthermore, for each axis i, the interval [ai, bi] is of the form [F−1i (j/k), F−1i ((j +

d)/k)] for some j ∈ {0, 1, . . . , k − 1}. We claim that the diameter D(Sb) of the hypothesis set V
given labels Si is bounded above by D(Sb) ≤ d2

k . To see this, first note that the pair of most distant
hypotheses of V are 1a := 1xi≤ai and 1b := 1xi≤bi . Thus,

D(Sb) = Px∈D[1a 6= 1b]

=
∏
i

Fi(bi)−
∏
i

Fi(ai)

=
∏
i

Fi(bi)−
∏
i

(Fi(bi)− d/k)

≤ (d/k)
∑
i

Fi(bi)

≤ d2/k.

Now suppose the k points T are chosen uniformly from D. Fix an axis i, and project the sampled
points onto this axis. Fix ε > 0 and consider the εk points (in expectation) that lie in the interval
[F−1i (1− ε), 1]. By the application of Holst [1980] in Lemma B.2 we can find an interval [ai, bi] ⊂
[F−1i (1 − ε), 1] with Fi(bi) − Fi(ai) ≥ ε(log(εk)/(εk) = log(εk)/k and such that none of the
sampled points have ith coordinate falling in this interval. This means that the labels of T are unable
to distinguish between 1a and 1b. The diameter D(Su) of the hypothesis set given labels of T can
thus be lower bounded by

D(Su) ≥ Px∈D[1a 6= 1b]

=
∏
i

Fi(bi)−
∏
i

Fi(ai)

=
∏
i

(Fi(ai) + log(εk)/k)−
∏
i

Fi(ai)

≥ (log(εk/k)
∑
i

Fi(ai)

≥ d log(εk)/((1− ε)k).

Taking ε = o(1), we have β ≤ D(Sb)/D(Su) ≤ (d/ log k)(1 + o(1)).

B.2 Proof of Theorem 4.3

Proof. In the 1-dimensional setting, choosing the k percentile points is optimal. This is because for
any choice of k points, Di(S

b
i ) is determined by the maximal gap between successive points. Thus,

the factor of β = O(1/ log k) is sharp. Since we can embed the 1-dimensional setting in higher
dimensions (by choosing a distribution that is supported on a 1-dimensional interval), we obtain a
lower bound of β = Ω(1/ log k) in all dimensions.
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