Patient ADE Risk Prediction through Hierarchical Time-Aware Neural Network Using Claim CodesDownload PDFOpen Website

Published: 01 Jan 2020, Last Modified: 09 Jul 2023IEEE BigData 2020Readers: Everyone
Abstract: Adverse drug events (ADEs) are a serious health problem that can be life-threatening. While a lot of work on detecting correlation between a drug and an ADE, limited studies have been conducted on personalized ADE risk prediction. Avoiding the drugs with high likelihood of causing severe ADEs helps physicians to provide safer treatments to patients. The goal of this study is to assess personalized ADE risks that a target drug may induce on a target patient, based on patient medical history recorded in claim codes, which provide information about diagnosis, drugs taken, related medical supplies besides billing information. We developed a HTNNR model (Hierarchical Time-aware Neural Network for ADE Risk) that captures characteristics of claim codes and their relationship. Eempirical evaluation shows that the proposed HTNNR model substantially outperforms the comparison methods.
0 Replies

Loading