Keywords: deep reinforcement learning, structured exploration
Abstract: We propose Structured Exploration with Achievements (SEA), a multi-stage reinforcement learning algorithm designed for achievement-based environments, a particular type of environment with an internal achievement set. SEA first uses offline data to learn a representation of the known achievements with a determinant loss function, then recovers the dependency graph of the learned achievements with a heuristic algorithm, and finally interacts with the environment online to learn policies that master known achievements and explore new ones with a controller built with the recovered dependency graph. We empirically demonstrate that SEA can recover the achievement structure accurately and improve exploration in hard domains such as Crafter that are procedurally generated with high-dimensional observations like images.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Reinforcement Learning (eg, decision and control, planning, hierarchical RL, robotics)
Supplementary Material: zip
Community Implementations: [![CatalyzeX](/images/catalyzex_icon.svg) 2 code implementations](https://www.catalyzex.com/paper/learning-achievement-structure-for-structured/code)
18 Replies
Loading