Exploring the Over-smoothing Problem of Graph Neural Networks for Graph Classification: An Entropy-based Viewpoint
Abstract: The over-smoothing has emerged as a major challenge in the development of Graph Neural Networks (GNNs). While existing state-of-the-art methods effectively mitigate the diminishing distance between nodes and improve the performance of node classification, they tend to be elusive for graph-level tasks. This paper introduces a novel entropy-based perspective to explore the over-smoothing problem, simultaneously enhancing the distinguishability of non-isomorphic graphs. We provide a theoretical analysis of the relationship between the smoothness and the entropy for graphs, highlighting how the over-smoothing in high-entropic regions negatively impact the graph classification performance. To tackle this issue, we propose a simple yet effective method to Sample and Discretize node features in high-Entropic regions (SDE), aiming to preserve the critical and complicated structural information. Moreover, we introduce a new evaluation metric to assess the over-smoothing for graph-level tasks, focusing on node distributions. Experimental results demonstrate that the proposed SDE method significantly outperforms existing state-of-the-art methods, establishing a new benchmark in the field of GNNs.
External IDs:dblp:conf/ijcai/Qian0CLD0H25
Loading