On the Performance of a Canonical Labeling for Matching Correlated Erdős-Rényi GraphsDownload PDFOpen Website

2018 (modified: 10 Feb 2024)CoRR 2018Readers: Everyone
Abstract: Graph alignment in two correlated random graphs refers to the task of identifying the correspondence between vertex sets of the graphs. Recent results have characterized the exact information-theoretic threshold for graph alignment in correlated Erd\H{o}s-R\'enyi graphs. However, very little is known about the existence of efficient algorithms to achieve graph alignment without seeds. In this work we identify a region in which a straightforward $O(n^{11/5} \log n )$-time canonical labeling algorithm, initially introduced in the context of graph isomorphism, succeeds in aligning correlated Erd\H{o}s-R\'enyi graphs. The algorithm has two steps. In the first step, all vertices are labeled by their degrees and a trivial minimum distance alignment (i.e., sorting vertices according to their degrees) matches a fixed number of highest degree vertices in the two graphs. Having identified this subset of vertices, the remaining vertices are matched using a alignment algorithm for bipartite graphs.
0 Replies

Loading