Classifier-Free Diffusion GuidanceDownload PDF

Published: 08 Dec 2021, Last Modified: 05 May 2023DGMs and Applications @ NeurIPS 2021 PosterReaders: Everyone
Keywords: diffusion, score
TL;DR: Classifier guidance without a classifier
Abstract: Classifier guidance is a recently introduced method to trade off mode coverage and sample fidelity in conditional diffusion models post training, in the same spirit as low temperature sampling or truncation in other types of generative models. This method combines the score estimate of a diffusion model with the gradient of an image classifier and thereby requires training an image classifier separate from the diffusion model. We show that guidance can be performed by a pure generative model without such a classifier: we jointly train a conditional and an unconditional diffusion model, and find that it is possible to combine the resulting conditional and unconditional scores to attain a trade-off between sample quality and diversity similar to that obtained using classifier guidance.
1 Reply