Flexible Neural Image Compression via Code EditingDownload PDF

Published: 31 Oct 2022, Last Modified: 12 Jan 2023NeurIPS 2022 AcceptReaders: Everyone
Abstract: Neural image compression (NIC) has outperformed traditional image codecs in rate-distortion (R-D) performance. However, it usually requires a dedicated encoder-decoder pair for each point on R-D curve, which greatly hinders its practical deployment. While some recent works have enabled bitrate control via conditional coding, they impose strong prior during training and provide limited flexibility. In this paper we propose Code Editing, a highly flexible coding method for NIC based on semi-amortized inference and adaptive quantization. Our work is a new paradigm for variable bitrate NIC, and experimental results show that our method surpasses existing variable-rate methods. Furthermore, our approach is so flexible that it can also achieves ROI coding and multi-distortion trade-off with a single decoder. Our approach is compatible to all NIC methods with differentiable decoder NIC, and it can be even directly adopted on existing pre-trained models.
TL;DR: Semi-amortized inference achieves variable bitrate model and perception-distortion trade-off in neural image compression.
Supplementary Material: pdf
13 Replies