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ABSTRACT

We propose (S)peculative (C)ontrastive MCTS∗: a novel Monte Carlo Tree Search
(MCTS) reasoning algorithm for Large Language Models (LLMs) which signifi-
cantly improves both reasoning accuracy and speed. Our motivation comes from:
1. Previous MCTS LLM reasoning works often overlooked its biggest draw-
back—slower speed compared to CoT; 2. Previous research mainly used MCTS
as a tool for LLM reasoning on various tasks with limited quantitative analysis or
ablation studies of its components from reasoning interpretability perspective. 3.
The reward model is the most crucial component in MCTS, however previous work
has rarely conducted in-depth study or improvement of MCTS’s reward models.
Thus, we conducted extensive ablation studies and quantitative analysis on compo-
nents of MCTS, revealing the impact of each component on the MCTS reasoning
performance of LLMs. Building on this, (i) we designed a highly interpretable
reward model based on the principle of contrastive decoding and (ii) achieved
an average speed improvement of 51.9% per node using speculative decoding.
Additionally, (iii) we improved UCT node selection strategy and backpropagation
used in previous works, resulting in significant performance improvement. We
outperformed o1-mini by an average of 17.4% on the Blocksworld multi-step
reasoning dataset using Llama-3.1-70B with SC-MCTS∗.

1 INTRODUCTION

With the remarkable development of Large Language Models (LLMs), models such as o1 (OpenAI,
2024a) have now gained a strong ability for multi-step reasoning across complex tasks and can solve
problems that are more difficult than previous scientific, code, and mathematical problems. The
reasoning task has long been considered challenging for LLMs. These tasks require converting a
problem into a series of reasoning steps and then executing those steps to arrive at the correct answer.
Recently, LLMs have shown great potential in addressing such problems. A key approach is using
Chain of Thought (CoT) (Wei et al., 2024), where LLMs break down the solution into a series of
reasoning steps before arriving at the final answer. Despite the impressive capabilities of CoT-based
LLMs, they still face challenges when solving problems with an increasing number of reasoning
steps due to the curse of autoregressive decoding (Sprague et al., 2024). Previous work has explored
reasoning through the use of heuristic reasoning algorithms. For example, Yao et al. (2024) applied
heuristic-based search, such as Depth-First Search (DFS) to derive better reasoning paths. Similarly,
Hao et al. (2023) employed MCTS to iteratively enhance reasoning step by step toward the goal.

The tremendous success of AlphaGo (Silver et al., 2016) has demonstrated the effectiveness of the
heuristic MCTS algorithm, showcasing its exceptional performance across various domains (Jumper
et al., 2021; Silver et al., 2017). Building on this, MCTS has also made notable progress in the field of
LLMs through multi-step heuristic reasoning. Previous work has highlighted the potential of heuristic
MCTS to significantly enhance LLM reasoning capabilities. Despite these advancements, substantial
challenges remain in fully realizing the benefits of heuristic MCTS in LLM reasoning.
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Figure 1: An overview of SC-MCTS∗. We employ a novel reward model based on the principle of
contrastive decoding to guide MCTS Reasoning on Blocksworld multi-step reasoning dataset.

The first key challenge is that MCTS’s general reasoning ability is almost entirely dependent on the
reward model’s performance (as demonstrated by our ablation experiments in Section 5.5), making it
highly challenging to design dense, general yet efficient rewards to guide MCTS reasoning. Previous
works either require two or more LLMs (Tian et al., 2024) or training epochs (Zhang et al., 2024a),
escalating the VRAM and computational demand, or they rely on domain-specific tools (Xin et al.,
2024a;b) or datasets (Qi et al., 2024), making it difficult to generalize to other tasks or datasets.

The second key challenge is that MCTS is significantly slower than Chain of Thoughts (CoT). CoT
only requires designing a prompt of multi-turn chats (Wei et al., 2024). In contrast, MCTS builds a
reasoning tree with 2–10 layers depending on the difficulty of the task, where each node in the tree
represents a chat round with LLM which may need to be visited one or multiple times. Moreover, to
obtain better performance, we typically perform 2–10 MCTS iterations, which greatly increases the
number of nodes, leading to much higher computational costs and slower reasoning speed.

To address the these challenges, we went beyond prior works that treated MCTS as a tool and
focused on analyzing and improving its components especially reward model. Using contrastive
decoding, we redesigned reward model by integrating interpretable reward signals, clustering their
prior distributions, and normalizing the rewards using our proposed prior statistical method. To
prevent distribution shift, we also incorporated an online incremental update algorithm. We found
that the commonly used Upper Confidence Bound on Trees (UCT) strategy often underperformed
due to sensitivity to the exploration constant, so we refined it and improved backpropagation to favor
steadily improving paths. To address speed issues, we integrated speculative decoding as a "free
lunch." All experiments were conducted using the Blocksworld dataset detailed in Section 5.1.

Our goal is to: (i) design novel and high-performance reward models and maximize the performance of
reward model combinations, (ii) analyze and optimize the performance of various MCTS components,
(iii) enhance the interpretability of MCTS reasoning, (iv) and accelerate MCTS reasoning. Our
contributions are summarized as follows:

1. We went beyond previous works who primarily treated MCTS as an tool rather than analyzing and
improving its components. Specifically, we found the UCT strategy in most previous works may
failed to function from our experiment. We also refined the backpropagation of MCTS to prefer
more steadily improving paths, boosting performance.

2. To fully study the interpretability of MCTS multi-step reasoning, we conducted extensive quanti-
tative analysis and ablation studies on every component. We carried out numerous experiments
from both the numerical and distributional perspectives of the reward models, as well as its own
interpretability, providing better interpretability for MCTS multi-step reasoning.

3. We designed a novel, general action-level reward model based on the principle of contrastive
decoding, which requires no external tools, training, or datasets. Additionally, we found that
previous works often failed to effectively harness multiple reward models, thus we proposed a
statistical linear combination method. At the same time, we introduced speculative decoding to
speed up MCTS reasoning by an average of 52% as a "free lunch."

We demonstrated the effectiveness of our approach by outperforming OpenAI’s flagship o1-mini
model by an average of 17.4% using Llama-3.1-70B on the Blocksworld multi-step reasoning dataset.
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2 RELATED WORK

Large Language Models Multi-Step Reasoning One of the key focus areas for LLMs is un-
derstanding and enhancing their reasoning capabilities. Recent advancements in this area focused
on developing methods that improve LLMs’ ability to handle complex tasks in domains like code
generation and mathematical problem-solving. Chain-of-Thought (CoT) (Wei et al., 2024) reasoning
has been instrumental in helping LLMs break down intricate problems into a sequence of manageable
steps, making them more adept at handling tasks that require logical reasoning. Building upon this,
Tree-of-Thought (ToT) (Yao et al., 2024) reasoning extends CoT by allowing models to explore
multiple reasoning paths concurrently, thereby enhancing their ability to evaluate different solutions
simultaneously. Complementing these approaches, Monte Carlo Tree Search (MCTS) has emerged
as a powerful reasoning method for decision-making in LLMs. Originally successful in AlphaGo’s
victory (Silver et al., 2016), MCTS has been adapted to guide model-based planning by balancing ex-
ploration and exploitation through tree-based search and random sampling, and later to large language
model reasoning (Hao et al., 2023), showing great results. This adaptation has proven particularly
effective in areas requiring strategic planning. Notable implementations like ReST-MCTS∗ (Zhang
et al., 2024a), rStar (Qi et al., 2024), MCTSr (Zhang et al., 2024b) and Xie et al. (2024) have shown
that integrating MCTS with reinforced self-training, self-play mutual reasoning or Direct Prefer-
ence Optimization (Rafailov et al., 2023) can significantly improve reasoning capabilities in LLMs.
Furthermore, recent advancements such as Deepseek Prover (Xin et al., 2024a;b) demonstrates the
potential of these models to understand complex instructions such as formal mathematical proof.

Decoding Strategies Contrastive decoding and speculative decoding both require Smaller Language
Models (SLMs), yet few have realized that these two clever decoding methods can be seamlessly
combined without any additional cost. The only work that noticed this was Yuan et al. (2024a), but
their proposed speculative contrastive decoding focused on token-level decoding. In contrast, we
designed a new action-level contrastive decoding to guide MCTS reasoning, the distinction will be
discussed further in Section 4.1. For more detailed related work please refer to Appendix B.

3 PRELIMINARIES

3.1 MULTI-STEP REASONING

A multi-step reasoning problem can be modeled as a Markov Decision Process (Bellman, 1957)
M = (S,A, P, r, γ). S is the state space containing all possible states, A the action space, P (s′|s, a)
the state transition function, r(s, a) the reward function, and γ the discount factor. The goal is to
learn and to use a policy π to maximize the discounted cumulative reward Eτ∼π

[∑T
t=0 γ

trt

]
. For

reasoning with LLMs, we are more focused on using an existing LLM to achieve the best reasoning.

3.2 MONTE CARLO TREE SEARCH

Monte Carlo Tree Search (MCTS) is a decision-making algorithm involving a search tree to simulate
and evaluate actions. The algorithm operates in the following four phases:

Node Selection: The selection process begins at the root, selecting nodes hierarchically using
strategies like UCT as the criterion to favor a child node based on its quality and novelty.

Expansion: New child nodes are added to the selected leaf node by sampling d possible actions,
predicting the next state. If the leaf node is fully explored or terminal, expansion is skipped.

Simulation: During simulation or “rollout”, the algorithm plays out the “game” randomly from that
node to a terminal state using a default policy.

Backpropagation: Once a terminal state is reached, the reward is propagated up the tree, and each
node visited during the selection phase updates its value based on the simulation result.

Through iterative application of its four phases, MCTS efficiently improves reasoning through trials
and heuristics, converging on the optimal solution.
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3.3 CONTRASTIVE DECODING

We discuss vanilla Contrastive Decoding (CD) from Li et al. (2023), which improves text generation
in LLMs by reducing errors like repetition and self-contradiction. CD uses the differences between an
expert model and an amateur model, enhancing the expert’s strengths and suppressing the amateur’s
weaknesses. Consider a prompt of length n, the CD objective is defined as:

LCD(xcont, xpre) = log pEXP(xcont|xpre)− log pAMA(xcont|xpre)

where xpre is the sequence of tokens x1, . . . , xn, the model generates continuations of length m, xcont
is the sequence of tokens xn+1, . . . , xn+m, and pEXP and pAMA are the expert and amateur probability
distributions. To avoid penalizing correct behavior of the amateur or promoting implausible tokens,
CD applies an adaptive plausibility constraint using an α-mask, which filters tokens by their logits
against a threshold, the filtered vocabulary Vvalid is defined as:

Vvalid = {i | s(i)EXP ≥ logα+max
k

s
(k)
EXP}

where s
(i)
EXP and s

(i)
AMA are unnormalized logits assigned to token i by the expert and amateur models.

Final logits are adjusted with a coefficient (1 + β), modifying the contrastive effect on output
scores (Liu et al., 2021):

s
(i)
CD = (1 + β)s

(i)
EXP − s

(i)
AMA

However, our proposed CD is at action level, averaging over the whole action, instead of token
level in vanilla CD. Our novel action-level CD reward more robustly captures the differences in
confidence between the expert and amateur models in the generated answers compared to vanilla CD.
The distinction will be illustrated in Section 4.1 and explained further in Appendix A.

3.4 SPECULATIVE DECODING AS "FREE LUNCH"

Based on Speculative Decoding (Leviathan et al., 2023), the process can be summarized as follows:
Let Mp be the target model with the conditional distribution p(xt|x<t), and Mq be a smaller
approximation model with q(xt|x<t). The key idea is to generate γ tokens using Mq and filter them
against Mp’s distribution, accepting tokens consistent with Mp. Speculative decoding samples γ
tokens autoregressively from Mq, keeping those where q(x) ≤ p(x). If q(x) > p(x), the sample is
rejected with probability 1− p(x)

q(x) , and a new sample is drawn from the adjusted distribution:

p′(x) = norm(max(0, p(x)− q(x))).

Since both contrastive and speculative decoding rely on the same smaller models, we can achieve the
acceleration effect of speculative decoding as a "free lunch" (Yuan et al., 2024a).

4 METHOD

4.1 MULTI-REWARD DESIGN

Our primary goal is to design novel and and high-performance reward models for MCTS reasoning
and to maximize the performance of reward model combinations, as our ablation experiments in
Section 5.5 demonstrate that MCTS performance is almost entirely determined by the reward model.

SC-MCTS∗ is guided by three highly interpretable reward models: contrastive JS divergence, log-
likelihood and self evaluation. Previous work such as (Hao et al., 2023) often directly adds reward
functions with mismatched numerical magnitudes without any prior statistical analysis or linear
combination. As a result, their combined reward models may fail to demonstrate full performance.
Moreover, combining multiple rewards online presents numerous challenges such as distributional
shifts in the values. Thus, we propose a statistically-informed reward combination method: Multi-
RM method. Each reward model is normalized contextually by the fine-grained prior statistics of
its empirical distribution. The pseudocode for reward model construction is shown in Algorithm 1.
Please refer to Appendix D for a complete version of SC-MCTS∗ that includes other improvements
such as dealing with distribution shift when combining reward functions online.

4
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Algorithm 1 SC-MCTS∗, reward model construction
Input: Expert LLM πe, Amateur SLM πa, Problem set D; M selected problems for prior statistics,

N pre-generated solutions per problem, K clusters
1: Ã← Sample-solutions(πe, D,M,N) ▷ Pre-generate M ×N solutions
2: pe, pa ← Evaluate(πe, πa, Ã) ▷ Get policy distributions
3: for r ∈ {JSD,LL,SE} do
4: µr,σr, br ← Cluster-stats(r(Ã),K) ▷ Prior statistics (Equation 1)
5: Rr ← x 7→ (r(x)− µk∗

r )/σk∗

r ▷ Reward normalization (Equation 2)
6: end for
7: R←

∑
r∈{JSD,LL,SE} wrRr ▷ Composite reward

8: AD ← MCTS-Reasoning(πe, R,D, πa) ▷ Search solutions guided by R
Output: AD

Jensen-Shannon Divergence The Jensen-Shannon divergence (JSD) is a symmetric and bounded
measure of similarity between two probability distributions P and Q. It is defined as:

JSD(P ∥Q) =
1

2
KL(P ∥M) +

1

2
KL(Q ∥M), M =

1

2
(P +Q),

where KL(P ∥Q) is the Kullback-Leibler Divergence (KLD), and M represents the midpoint distri-
bution. The JSD is bounded between 0 and 1 for discrete distributions, making it better than KLD for
online normalization of reward modeling.

Inspired by contrastive decoding, we propose our novel reward model: JSD between the expert
model’s logits and the amateur model’s logits. Unlike vanilla token-level contrastive decoding (Li
et al., 2023), our reward is computed at action-level, treating a sequence of action tokens as a whole:

RJSD =
1

n

n∑
i=Tprefix+1

[JSD(pe(xi|x<i) ∥ pa(xi|x<i)]

where n is the length of tokens, Tprefix is the index of the last prefix token, pe and pa represent the
softmax probabilities of the expert and amateur models, respectively. This approach ensures that
the reward captures model behavior at the action level as the entire sequence of tokens is taken into
account at once. This contrasts with vanilla token-level methods where each token is treated serially.

Loglikelihood Inspired by Hao et al. (2023), we use a loglikelihood reward model to evaluate the
quality of generated answers based on a given question prefix. The model computes logits for the full
sequence (prefix + answer) and accumulates the log-probabilities over the answer part tokens.

Let the full sequence x = (x1, x2, . . . , xTtotal) consist of a prefix and a generated answer. The
loglikelihood reward RLL is calculated over the answer portion:

RLL =

Ttotal∑
i=Tprefix+1

log

(
exp(zθ(xi))∑

x′∈V exp(zθ(x′))

)
where zθ(xi) represents the unnormalized logit for token xi. After calculating logits for the entire
sequence, we discard the prefix and focus on the answer tokens to form the loglikelihood reward.

Self Evaluation Large language models’ token-level self evaluation can effectively quantify the
model’s uncertainty, thereby improving the quality of selective generation (Ren et al., 2023). We
instruct the LLM to perform self evaluation on its answers, using a action level evaluation method,
including a self evaluation prompt to explicitly indicate the model’s uncertainty.

After generating the answer, we prompt the model to self-evaluate its response by asking "Is this
answer correct/good?" This serves to capture the model’s confidence in its own output leading to
more informed decision-making. The self evaluation prompt’s logits are then used to calculate a
reward function. Similar to the loglikelihood reward model, we calculate the self evaluation reward
RSE by summing the log-probabilities over the self-evaluation tokens.

5
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Harnessing Multiple Reward Models We collected prior distributions for the reward models and
found some of them span multiple regions. Therefore, we compute the fine-grained prior statistics as
mean and standard deviation of modes of the prior distributionR ∈ {RJSD,RLL,RSE}:

µ(k) =
1

ck

∑
Ri∈[b1,bk+1)

Ri and σ(k) =

√√√√ 1

ck

∑
Ri∈[b1,bk+1)

(Ri − µ(k))2 (1)

where b1 < b2 < · · · < bK+1 are the region boundaries inR, Ri ∈ R, and ck is the number of Ri in
[b1, bk+1). The region boundaries were defined during the prior statistical data collection phase 1.

After we computed the fine-grained prior statistics, the reward factors are normalized separately for
each region (which degenerates to standard normalization if only a single region is found):

Rnorm(x) = (R(x)− µ(k∗))/σ(k∗), where k∗ = argmax{k : bk ≤ R(x)} (2)

This reward design, which we call Multi-RM method, has some caveats: first, to prevent distribution
shift during reasoning, we update the mean and standard deviation of the reward functions online for
each mode (see Appendix D for pseudocode); second, we focus only on cases with clearly distinct
reward modes, leaving general cases for future work. For the correlation heatmap, see Appendix C.

4.2 NODE SELECTION STRATEGY

Upper Confidence Bound applied on Trees Algorithm (UCT) (Coquelin & Munos, 2007) is crucial
for the selection phase, balancing exploration and exploitation by choosing actions that maximize:

UCTj = X̄j + C

√
lnN

Nj

where X̄j is the average reward of taking action j, N is the number of times the parent has been
visited, and Nj is the number of times node j has been visited for simulation, C is a constant to
balance exploitation and exploration.

However, C is a crucial part of UCT. Previous work (Hao et al., 2023; Zhang et al., 2024b) had
limited thoroughly investigating its components, leading to potential failures of the UCT strategy.
This is because they often used the default value of 1 from the original proposed UCT (Coquelin &
Munos, 2007) without conducting sufficient quantitative experiments to find the optimal C. This will
be discussed in detail in Section 5.4.

4.3 BACKPROPAGATION

After each MCTS iteration, multiple paths from the root to terminal nodes are generated. By
backpropagating along these paths, we update the value of each state-action pair. Previous MCTS
approaches often use simple averaging during backpropagation, but this can overlook paths where the
goal achieved metric G(p) progresses smoothly (e.g., G(p1) = 0 → 0.25 → 0.5 → 0.75). These
paths just few step away from the final goal G(p) = 1, are often more valuable than less stable ones.

To improve value propagation, we propose an algorithm that better captures value progression along
a path. Given a path P = {p1, p2, . . . , pn} with n nodes, where each pi represents the value at node
i, the total value is calculated by summing the increments between consecutive nodes with a length
penalty. The increment between nodes pi and pi−1 is ∆i = pi − pi−1. Negative increments are
clipped at −0.1 and downweighted by 0.5. The final path value Vfinal is:

Vfinal =

n∑
i=2

{
∆i, if ∆i ≥ 0
0.5×max(∆i,−0.1), if ∆i < 0

}
− λ× n (3)

where n is the number of nodes in the path and λ = 0.1 is the penalty factor to discourage long paths.

6
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5 EXPERIMENTS

5.1 DATASET

Blocksworld (Valmeekam et al., 2024; 2023) is a classic domain in AI research for reasoning and
planning, where the goal is to rearrange blocks into a specified configuration using actions like
’pick-up,’ ’put-down,’ ’stack,’ and ’unstack. Blocks can be moved only if no block on top, and only
one block at a time. The reasoning process in Blocksworld is a MDP. At time step t, the LLM
agent selects an action at ∼ p(a | st, c), where st is the current block configuration, c is the prompt
template. The state transition st+1 = P (st, at) is deterministic and is computed by rules. This forms
a trajectory of interleaved states and actions (s0, a0, s1, a1, . . . , sT ) towards the goal state.

One key feature of Blocksworld is its built-in verifier, which tracks progress toward the goal at each
step. This makes Blocksworld ideal for studying heuristic LLM multi-step reasoning. However, we
deliberately avoid using the verifier as part of the reward model as it is task-specific. More details of
Blocksworld can be found in Appendix F.

5.2 MAIN RESULTS

To evaluate the SC-MCTS∗ algorithm in LLM multi-step reasoning, we implemented CoT, RAP-
MCTS, and SC-MCTS∗ using Llama-3-70B and Llama-3.1-70B. For comparison, we used Llama-
3.1-405B and GPT-4o for CoT, and applied 0 and 4 shot single turn for o1-mini, as OpenAI (2024b)
suggests avoiding CoT prompting. The experiment was conducted on Blocksworld dataset across all
steps and difficulties. For LLM settings, GPU and OpenAI API usage data, see Appendix E and H.

Mode Models Method
Steps

Step 2 Step 4 Step 6 Step 8 Step 10 Step 12 Avg.

Easy

Llama-3-70B
~Llama-3.2-1B

4-shot CoT 0.2973 0.4405 0.3882 0.2517 0.1696 0.1087 0.2929
RAP-MCTS 0.9459 0.9474 0.8138 0.4196 0.2136 0.1389 0.5778
SC-MCTS* (Ours) 0.9730 0.9737 0.8224 0.4336 0.2136 0.2222 0.5949

Llama-3.1-70B
~Llama-3.2-1B

4-shot CoT 0.5405 0.4868 0.4069 0.2238 0.2913 0.2174 0.3441
RAP-MCTS 1.0000 0.9605 0.8000 0.4336 0.2039 0.1111 0.5796
SC-MCTS* (Ours) 1.0000 0.9737 0.7724 0.4503 0.3010 0.1944 0.6026

Llama-3.1-405B 0-shot CoT 0.8108 0.6579 0.5931 0.5105 0.4272 0.3611 0.5482
4-shot CoT 0.7838 0.8553 0.6483 0.4266 0.5049 0.4167 0.5852

o1-mini 0-shot 0.9730 0.7368 0.5103 0.3846 0.3883 0.1944 0.4463
4-shot 0.9459 0.8026 0.6276 0.3497 0.3301 0.2222 0.5167

GPT-4o 0-shot CoT 0.5405 0.4868 0.3241 0.1818 0.1165 0.0556 0.2666
4-shot CoT 0.5135 0.6579 0.6000 0.2797 0.3010 0.3611 0.4444

Hard

Llama-3-70B
~Llama-3.2-1B

4-shot CoT 0.5556 0.4405 0.3882 0.2517 0.1696 0.1087 0.3102
RAP-MCTS 1.0000 0.8929 0.7368 0.4503 0.1696 0.1087 0.5491
SC-MCTS* (Ours) 0.9778 0.8929 0.7566 0.5298 0.2232 0.1304 0.5848

Llama-3.1-70B
~Llama-3.2-1B

4-shot CoT 0.6222 0.2857 0.3421 0.1722 0.1875 0.2174 0.2729
RAP-MCTS 0.9778 0.9048 0.7829 0.4702 0.1875 0.1087 0.5695
SC-MCTS* (Ours) 0.9778 0.9405 0.8092 0.4702 0.1696 0.2174 0.5864

Llama-3.1-405B 0-shot CoT 0.7838 0.6667 0.6053 0.3684 0.2679 0.2609 0.4761
4-shot CoT 0.8889 0.6667 0.6579 0.4238 0.5804 0.5217 0.5915

o1-mini 0-shot 0.6889 0.4286 0.1776 0.0993 0.0982 0.0000 0.2034
4-shot 0.9556 0.8452 0.5263 0.3907 0.2857 0.1739 0.4966

GPT-4o 0-shot CoT 0.6222 0.3929 0.3026 0.1523 0.0714 0.0000 0.2339
4-shot CoT 0.6222 0.4167 0.5197 0.3642 0.3304 0.1739 0.4102

Table 1: Accuracy of various reasoning methods and models across steps and difficulty modes on the
Blocksworld multi-step reasoning dataset.

From Table 1, it can be observed that SC-MCTS∗ significantly outperforms RAP-MCTS and 4-shot
CoT across both easy and hard modes, and in easy mode, Llama-3.1-70B model using SC-MCTS∗

outperforms the 4-shot CoT Llama-3.1-405B model.
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Figure 2: Accuracy comparison of various models and reasoning methods on the Blocksworld
multi-step reasoning dataset across increasing reasoning steps.

From Figure 2, we observe that as the reasoning path lengthens, the performance advantage of two
MCTS reasoning algorithms over themselves, GPT-4o, and Llama-3.1-405B’s CoT explicit multi-
turn chats and o1-mini implicit multi-turn chats (OpenAI, 2024b) in terms of accuracy diminishes,
becoming particularly evident after Step 6. The accuracy decline for CoT is more gradual as the
reasoning path extends, whereas models employing MCTS reasoning exhibits a steeper decline. This
trend could be due to the fixed iteration limit of 10 across different reasoning path lengths, which
might be unfair to longer paths. Future work could explore dynamically adjusting the iteration limit
based on reasoning path length. It may also be attributed to our use of a custom EOS token to ensure
output format stability in the MCTS reasoning process, which operates in completion mode. As the
number of steps and prompt prefix lengths increases, the limitations of completion mode may become
more pronounced compared to the chat mode used in multi-turn chats. Additionally, we observe that
Llama-3.1-405B benefits significantly from its huge parameter size, although underperforming at
fewer steps, experiences the slowest accuracy decline as the reasoning path grows longer.

5.3 REASONING SPEED

Figure 3: Speedup comparison of different model combinations. For speculative decoding, we use
Llama-3.2-1B and Llama-3.1.8B as amateur models with Llama-3.1-70B and Llama-3.1-405B as
expert models, based on average node-level reasoning speed in MCTS for Blocksworld multi-step
reasoning dataset.

As shown in Figure 3, we can observe that the combination of Llama-3.1-405B with Llama-3.1-
8B achieves the highest speedup, improving inference speed by approximately 100% compared to
vanilla decoding. Similarly, pairing Llama-3.1-70B with Llama-3.2-1B results in a 51.9% increase
in reasoning speed. These two combinations provide the most significant gains, demonstrating that
speculative decoding with SLMs can substantially enhance node level reasoning speed. However, we
can also observe from the combination of Llama-3.1-405B with Llama-3.2-1B that the parameters
of SLMs in speculative decoding should not be too small, since the threshold for accepting draft
tokens during the decoding process remains fixed to prevent speculative decoding from affecting
performance (Leviathan et al., 2023), as overly small parameters may have a negative impact on
decoding speed, which is consistent with the findings in Zhao et al. (2024); Chen et al. (2023).
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5.4 PARAMETERS

Figure 4: Accuracy comparison of differ-
ent constant C of UCT on Blocksworld
multi-step reasoning dataset.

Figure 5: Accuracy comparison of different
numbers of iteration on Blocksworld multi-
step reasoning dataset.

As discussed in Section 4.2, the constant C is a crucial part of UCT strategy, which completely
determines whether the exploration term takes effect. Therefore, we conducted quantitative exper-
iments on the constant C, to eliminate interference from other factors, we only use MCTS base
with the common reward model RLL for both RAP-MCTS and SC-MCTS∗. From Figure 4 we can
observe that the constant C of RAP-MCTS is too small to function effectively, while the constant
C of SC-MCTS∗ is the value most suited to the values of reward model derived from extensive
experimental data. After introducing new datasets, this hyperparameter may need to be re-tuned.

From Figure 5, it can be observed that the accuracy of SC-MCTS∗ on multi-step reasoning increases
steadily with the number of iterations. During the first 1-7 iterations, the accuracy rises consistently.
After the 7th iteration, the improvement in accuracy becomes relatively smaller, indicating that under
the experimental setting with depth limitations, the exponentially growing exploration nodes in later
iterations bring diminishing returns in accuracy.

5.5 ABLATION STUDY

Parts of SC-MCTS∗ Accuracy (%) Improvement (%)

MCTS base 55.92 —

+ RJSD 62.50 +6.58
+ RLL 67.76 +5.26
+ RSE 70.39 +2.63

+ Multi-RM Method 73.68 +3.29

+ Improved C of UCT 78.95 +5.27

+ BP Refinement 80.92 +1.97

SC-MCTS∗ 80.92 Overall +25.00

Table 2: Ablation Study on the Blocksworld dataset at Step 6 under difficult mode. For a more
thorough ablation study, the reward model for the MCTS base was set to pseudo-random numbers.

As shown in Table 2, the results of the ablation study demonstrate that each component of SC-MCTS∗

contributes significantly to performance improvements. Starting from a base MCTS accuracy of
55.92%, adding RJSD, RLL, and RSE yields a combined improvement of 14.47%. Multi-RM method
further boosts performance by 3.29%, while optimizing the C parameter in UCT adds 5.27%, and the
backpropagation refinement increases accuracy by 1.97%. Overall, SC-MCTS∗ achieves an accuracy
of 80.92%, a 25% improvement over the base, demonstrating the effectiveness of these enhancements
for complex reasoning tasks.
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5.6 INTERPRETABILITY STUDY

In the Blocksworld multi-step reasoning dataset, we can use the built-in ground truth verifier to
calculate the percentage of progress made toward completing the goal at the current step, denoted as
P . The value of P lies within the range [0, 1], where:

P (Ni) = Verifier(Ni).

For example, in a 10-step Blocksworld reasoning task, for the initial node A, P (A) = 0. After
performing one correct action and transitioning to the next node B, P (B) = 0.1.

Let Ni be an arbitrary non-root node, which transitions to its parent node Parent(Ni) by performing
a certain action a. To measure the contribution of action a toward the final goal state, we define:

∆a = P (Parent(Ni))− P (Ni).

Next, by analyzing the relationship between ∆a and the reward value Ra assigned by the reward
model for action a, we aim to reveal how our designed reward model provides highly interpretable
reward signals for the selection of each node in MCTS. We also compare the performance of our
reward model against a baseline reward model. Specifically, the alignment between ∆a and Ra

demonstrates the interpretability of the reward model in guiding the reasoning process toward the
goal state. Since Section 5.5 has already demonstrated that the reasoning performance of MCTS
reasoning is almost entirely determined by the reward model, using interpretable reward models
greatly enhances the interpretability of our algorithm SC-MCTS∗.

Figure 6: Reward distribution and interpretability analysis. The left histogram shows the baseline
reward model (RAP-MCTS), while the right represents SC-MCTS∗. Bin colors indicate the proportion
of positive ∆a (lighter colors means higher proportions). Spearman and Pearson correlations along
with p-values are shown in the top right of each histogram.

From Figure 6, shows that SC-MCTS* reward values correlate significantly with ∆a, as indicated by
the high Spearman and Pearson coefficients. Additionally, the mapping between the reward value
bins and the proportion of positive ∆a (indicated by the color gradient from light to dark) is highly
consistent and intuitive. This strong alignment suggests that our reward model effectively captures the
progress toward the goal state, providing interpretable signals for action selection during reasoning.

These results highlight the exceptional interpretability of our designed reward model, which ensures
that SC-MCTS* not only achieves superior reasoning performance but is also highly interpretable.
This interpretability is crucial for understanding and improving the decision-making process in
multi-step reasoning tasks, further validating transparency of our proposed algorithm.

6 CONCLUSION

In this paper, we present SC-MCTS∗, a novel and effective algorithm to enhancing the reasoning
capabilities of LLMs. With extensive improvements in reward modeling, node selection strategy
and backpropagation, SC-MCTS∗ boosts both accuracy and speed, outperforming OpenAI’s o1-mini
model by 17.4% on average using Llama-3.1-70B on the Blocksworld dataset. Experiments demon-
strate its strong performance, making it a promising approach for multi-step reasoning tasks. For
future work please refer to Appendix J. The synthesis of interpretability, efficiency and generalizability
positions SC-MCTS∗ as a valuable contribution to advancing LLMs multi-step reasoning.
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A ACTION-LEVEL CONTRASTIVE REWARD

We made the distinction between action-level variables and token-level variables: action-level (or
step-level) variables are those that aggregate over all tokens in a reasoning step, and is typically
utilized by the reasoning algorithm directly; token-level variables, by contrast, operates in a more
microscopic and low-level environment, such as speculative decoding.

We found that the traditional contrastive decoding using the difference in logits, when aggregated
over the sequence gives a unstable reward signal compared to JS divergence. We suspected this is
due to the unbounded nature of logit difference, and the potential failure modes associated with it
that needs extra care and more hyperparameter tuning.
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B MORE RELATED WORK

Large Language Models Multi-Step Reasoning Deepseek Prover (Xin et al., 2024a;b) relied
on Lean4 as an external verification tool to provide dense reward signals in the RL stage. ReST-
MCTS∗ (Zhang et al., 2024a) employed self-training to collect high-quality reasoning trajectories for
iteratively improving the value model. AlphaLLM (Tian et al., 2024) used critic models initialized
from the policy model as the MCTS reward model. rStar (Qi et al., 2024) utilized mutual consistency
of SLMs and an additional math-specific action space. Xu (2023) proposed reconstructing fine-tuned
LLMs into residual-based energy models to guide MCTS.

Speculative Decoding Speculative decoding was first introduced in Leviathan et al. (2023), as a
method to accelerate sampling from large autoregressive models by computing multiple tokens in
parallel without retraining or changing the model structure. It enhances computational efficiency,
especially in large-scale generation tasks, by recognizing that hard language-modeling tasks often
include easier subtasks that can be approximated well by more efficient models. Similarly, DeepMind
introduced speculative sampling (Chen et al., 2023), which expands on this idea by generating a short
draft sequence using a faster draft model and then scoring this draft with a larger target model.

Contrastive Decoding Contrastive decoding, as proposed by Li et al. (2023), is a simple, computa-
tionally light, and training-free method for text generation that can enhancethe quality and quantity
by identifying strings that highlight potential differences between strong models and weak models.
In this context, the weak models typically employ conventional greedy decoding techniques such as
basic sampling methods, while the strong models are often well-trained large language models. This
approach has demonstrated notable performance improvements in various inference tasks, including
arithmetic reasoning and multiple-choice ranking tasks, thereby increasing the accuracy of language
models. According to experiments conducted by O’Brien & Lewis (2023), applying contrastive
decoding across various tasks has proven effective in enhancing the reasoning capabilities of LLMs.

C REWARD FUNCTIONS CORRELATION

Figure 7: Reward Functions Correlation Heatmap.

It can be seen from Figure 7 that the correlations between the three reward functions are relatively
low, absolute values all below 0.15. These low correlations of reward functions make them ideal for
Multi-RM method.

D ALGORITHM DETAILS OF SC-MCTS∗

The pseudocode inside MCTS reasoning of SC-MCTS∗ is shown in Algorithm 2, based on Zhang
et al. (2024a). The complete version of SC-MCTS∗ is: first sample a subset of problems to obtain the
prior data for reward values (Algorithm 1), then use it and two SLMs, one for providing contrastive
reward signals, another for speculative decoding speedup, to perform MCTS reasoning. The changes
of SC-MCTS∗ compared to previous works are highlighted in teal.
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Algorithm 2 SC-MCTS∗, reasoning
Input: expert LLM πe, amatuer SLM πa, speculative SLM πs, problem q, reward model R, reward

factor statistics S , max iterations T , threshold l, branch b, rollout steps m, roll branch d, weight
parameter α, exploration constant C

1: Tq ← Initialize-tree(q)
2: for i = 1 . . . T do
3: n← Root(Tq)
4: while n is not leaf node do ▷ Node selection
5: n← argmaxn′∈children(n)(vn′ + C

√
lnNn

Nn′
) ▷ Select child node based on UCT

6: end while
7: if vn ≥ l then break ▷ Output solution
8: end if
9: if n is not End of Inference then

10: for j = 1 . . . b do ▷ Thought expansion
11: nj ← Get-new-child(An, q, πe) ▷ Expand based on previous steps
12: vnj ,S ← R(Anj , q, πe, πa,S) ▷ Evaluate contrastive reward and update reward

factor statistics
13: end for
14: n′ ← argmaxn′∈children(n)(vn′)
15: vmax ← 0
16: for k = 1 . . .m do ▷ Greedy MC rollout
17: A, vmax ← Get-next-step-with-best-value(A, q, πe, πs, d) ▷ Sample new children

using speculative decoding and record the best observed value
18: end for
19: vn′ ← αvn′ + (1− α)vmax

20: Nn′ ← Nn′ + 1 ▷ Update value and visit count of the rollout node
21: end if
22: Back-propagate(n) ▷ Update value of parent nodes (Equation 3)
23: end for
24: n← Get-best-node(Tq) ▷ Fetch the node with the highest value in the search tree
Output: An

Although we sampled a small portion of the dataset as prior data for reward values, distribution shift
may still occur when normalizing reward values during reasoning. Therefore, we use the following
algorithm to incrementally update the mean and standard deviation of the online reward distribution:

Algorithm 3 Online incremental update of reward factor statistics

Input: reward factorsR(= {JSD,LL,SE}), statistics {µ(k)
r , σ

(k)
r , n

(k)
r }r∈R,k∈{1,...,K}, cluster as-

signment function f
1: for r ∈ R do
2: k∗ ← f(x) ▷ Assign sample to cluster
3: vr ← r(x) ▷ Compute reward factor value
4: n

(k∗)
r ← n

(k∗)
r + 1 ▷ Update sample count

5: δ ← vr − µ
(k∗)
r ▷ Compute difference from mean

6: µ
(k∗)
r ← µ

(k∗)
r + δ/n

(k∗)
r ▷ Update mean

7: M2 ← (n
(k∗)
r − 1)(σ

(k∗)
r )2 + δ(vr − µ

(k∗)
r )

8: σ
(k∗)
r ←

√
M2/n

(k∗)
r ▷ Update standard deviation

9: end for
Output: updated statistics {µ(k)

r , σ
(k)
r , n

(k)
r }r∈R,k∈{1,...,K}
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E EXPERIMENTAL SETTINGS

For reproducibility, you can download the checkpoints from the Huggingface repository below and
use the hyperparameters below. We utilized 4-bit quantized checkpoints in all experiments, as they
only result in around 2% performance loss while providing several-fold reductions in memory usage
and significantly improving inference speed (Frantar et al., 2022). For better output formatting to
capture a single step and convert it into an MCTS node, we used the LLM’s completion mode so we
set LLM to greedy sampling, and we don’t have to set an additional system prompt, simply apply
prompts in Appendix F. Our experiments were all conducted on exllamav2 inference framework.

E.1 CHECKPOINTS

Usage Models Links

Expert

Llama-3.1-405B https://huggingface.co/hugging-quants/Meta-Llama-3.
1-405B-Instruct-GPTQ-INT4

Llama-3.1-70B https://huggingface.co/hugging-quants/Meta-Llama-3.
1-70B-Instruct-GPTQ-INT4

Llama-3-70B https://huggingface.co/TechxGenus/
Meta-Llama-3-70B-Instruct-GPTQ

Amateur

Llama-3.1-8B https://huggingface.co/hugging-quants/Meta-Llama-3.
1-8B-Instruct-GPTQ-INT4

Llama-3-8B https://huggingface.co/astronomer/
Llama-3-8B-Instruct-GPTQ-4-Bit

Llama-3.2-1B https://huggingface.co/meta-llama/Llama-3.2-1B

OpenAI GPT-4o https://platform.openai.com/docs/models/gpt-4o

o1-mini https://platform.openai.com/docs/models/o1

Table 3: Checkpoints used in experiments and their links.

E.2 HYPERPARAMETERS

Hyperparameter Value
temperature 1.0
top-k 1.0
top-p 1.0
repetition_penalty 1.0
max_new_tokens 200
max_seq_len 32768
MCTS EOS: Llama-3 family "\n["
CoT EOS: Llama-3 family "\n", "<|eot_id|>"

Table 4: LLM Hyperparameters and EOS tokens used in experiments.
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F BLOCKSWORLD DATASET

The Blocksworld dataset comprises 600 instances with varying block numbers and plan lengths.
Simpler instances have 3-5 blocks, while more complex cases involve up to 25 blocks, introducing
additional goals and obstacles. This setup covers a range of problem difficulties for evaluating
planning algorithms.

F.1 DIFFICULTY SETTINGS

According to settings of LLM Reasoners (Hao et al., 2024), we divide the original 600 instances of
Blocksworld (Valmeekam et al., 2024) into two parts, Easy and Hard settings.

In the Easy Blocksworld setting, we use more friendly demonstration cases. If a problem requires a
specific minimum number of steps to solve, we select other problems that require the same number
of steps as demonstration cases in the context. For example, if a problem requires at least 4 steps to
solve, we use other 4-step problems as demonstration examples. For each group of problems, we
randomly select 10 cases to create a pool of demonstration cases, while the remaining cases form
the test set (a total of 540 cases). During inference, we randomly sample 4-shot demonstration cases
from this pool to construct the prompts.

In the Hard Blocksworld setting, we randomly select 10 cases from the entire dataset to create the
demonstration pool. These selected cases are then excluded from the test set, leaving a total of 590
cases for testing. During inference, we randomly sample 4-shot demonstration cases from this global
pool, without considering the minimum number of actions required for the test case. For example,
if a problem requires at least 4 steps to solve, we may still use demonstration cases that require a
different number of steps, such as 2 or 12, as there is no restriction based on the number of actions.

domain_intro:
I am playing with a set of objects. Here are the actions I can do:
pick up a block
unstack a block from on top of another block
put down a block
stack a block on top of another block

I have the following restrictions on my actions:
To perform the Pick Up action, the block must be clear, on the table, and my hand
must be empty. Once the Pick Up action is performed, I am holding the block, and
my hand is no longer empty.

To perform the Unstack action, the block must be clear, on top of another block,
and my hand must be empty. Once the Unstack action is performed, I am holding
the block, and my hand is no longer empty.

To perform the Put Down action, I must be holding a block. Once the Put Down
action is performed, the block is on the table, my hand is empty, and the block
becomes clear.

To perform the Stack action, I must be holding a block, and the block I want to
stack it on must be clear. Once the Stack action is performed, the block is on top of
another block, my hand is empty, and the block on top is no longer clear.

Table 5: Normal Blocksworld Task Setting
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F.2 PROMPTS SETTINGS OF EASY BLOCKSWORLD

Input Instructions:
I am playing with a set of blocks where I need to arrange the blocks into stacks. Here are the
actions I can do:

1. Pick up a block

2. Unstack a block from on top of another block

3. Put down a block

4. Stack a block on top of another block

I have the following restrictions on my actions:

1. I can only pick up or unstack one block at a time.

2. I can only pick up or unstack a block if my hand is empty.

3. I can only pick up a block if the block is on the table and the block is clear. A block
is clear if the block has no other blocks on top of it and if the block is not picked
up.

4. I can only unstack a block from on top of another block if the block I am unstacking
was really on top of the other block.

5. I can only unstack a block from on top of another block if the block I am unstacking
is clear.

Once I pick up or unstack a block, I am holding the block.

1. I can only put down a block that I am holding.

2. I can only stack a block on top of another block if I am holding the block being
stacked.

3. I can only stack a block on top of another block if the block onto which I am
stacking the block is clear.

Once I put down or stack a block, my hand becomes empty.

[STATEMENT]
As initial conditions I have that, the red block is clear, the hand is empty, the blue block is on
top of the orange block, the red block is on the table, the orange block is on the table and the
yellow block is on the table.
My goal is to have that the orange block is on top of the blue block. My plan is as follows:
[End Of STATEMENT]

[PLAN]
unstack the blue block from on top of the orange block
put down the blue block
pick up the orange block
stack the orange block on top of the blue block
[PLAN END]

[STATEMENT]
As initial conditions I have that, the red block is clear, the yellow block is clear, the hand
is empty, the red block is on top of the blue block, the yellow block is on top of the orange
block, the blue block is on the table and the orange block is on the table.
My goal is to have that the orange block is on top of the red block. My plan is as follows:
[End Of STATEMENT]

Output format:
[PLAN]
[LLM Completion]
[PLAN_END]

Table 6: The Prompt Settings for Easy Blocksworld

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

F.3 PROMPTS SETTINGS OF HARD BLOCKSWORLD

Input Instructions:
I am playing with a set of blocks where I need to arrange the blocks into stacks. Here are the
actions I can do:

1. Pick up a block

2. Unstack a block from on top of another block

3. Put down a block

4. Stack a block on top of another block

I have the following restrictions on my actions:

1. I can only pick up or unstack one block at a time.

2. I can only pick up or unstack a block if my hand is empty.

3. I can only pick up a block if the block is on the table and the block is clear. A block
is clear if the block has no other blocks on top of it and if the block is not picked
up.

4. I can only unstack a block from on top of another block if the block I am unstacking
was really on top of the other block.

5. I can only unstack a block from on top of another block if the block I am unstacking
is clear.

Once I pick up or unstack a block, I am holding the block.

1. I can only put down a block that I am holding.

2. I can only stack a block on top of another block if I am holding the block being
stacked.

3. I can only stack a block on top of another block if the block onto which I am
stacking the block is clear.

Once I put down or stack a block, my hand becomes empty.

[STATEMENT]
As initial conditions I have that, the blue block is clear, the hand is empty, the blue block is
on top of the red block, the red block is on the table, the orange block is on the table and the
yellow block is on the table.
My goal is to have that the blue block is on top of the orange block. My plan is as follows:
[End Of STATEMENT]

[PLAN]
unstack the blue block from on top of the red block
stack the blue block on top of the orange block
[PLAN END]

[STATEMENT]
As initial conditions I have that, the red block is clear, the yellow block is clear, the hand
is empty, the red block is on top of the blue block, the yellow block is on top of the orange
block, the blue block is on the table and the orange block is on the table.
My goal is to have that the orange block is on top of the red block. My plan is as follows:
[End Of STATEMENT]

Output format:
[PLAN]
[LLM Completion]
[PLAN_END]

Table 7: The Prompt Settings for Hard Blocksworld
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G EXAMPLE TREES OF DIFFERENT c OF UCT

Figure 8: Monte Carlo Tree with origin parameter c of UCT

Figure 9: Monte Carlo Tree with our optimized parameter c of UCT

From Figure 8 and 9 we can observed that with our optimized parameter c of UCT, MCTS algorithm
in node selection decisions tends to prioritize exploring new nodes rather than repeatedly following
old paths, which may often lead to dead ends.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

H OPENAI API DATA

Difficulty Model USD per instance Total Experiment Cost (USD)

Easy (0-shot) GPT-4o $0.0032 $1.73
o1-mini $0.0136 $7.34

Easy (4-shot) GPT-4o $0.0062 $3.35
o1-mini $0.0171 $9.23

Hard (0-shot) GPT-4o $0.0032 $1.89
o1-mini $0.0177 $10.44

Hard (4-shot) GPT-4o $0.0063 $3.70
o1-mini $0.0172 $10.15

Table 8: OpenAI API cost of experiments on the Blocksworld dataset.

Figure 10: o1-mini Step Length vs Reasoning Tokens for Zero Shot in Easy Blocksworld

Figure 11: o1-mini Step Length vs Reasoning Tokens for Four Shot in Easy Blocksworld

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Figure 12: o1-mini Step Length vs Reasoning Tokens for Zero Shot in Hard Blocksworld

Figure 13: o1-mini Step Length vs Reasoning Tokens for Four Shot in Hard Blocksworld
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I GPU USAGE

In the main experiments, the total GPU usage (measured in GPU hours) for different models on
NVIDIA H800 SXM5 80GB GPUs shows a clear progression with model size. For RAP-MCTS,
Llama-3 70B requires approximately 420 GPU hours across all steps and difficulty modes, Llama-
3.1 70B model requires approximately 450 GPU hours. For SC-MCTS∗, Llama-3 70B requires
approximately 280 GPU hours across all steps and difficulty modes and difficulty modes, Llama-3.1
70B model requires approximately 300 GPU hours. For CoT, Llama-3-70B and Llama-3.1-70B
both takes approximately 7 GPU hours across all steps and difficulty modes, while Llama-3.1 405B
model exhibits significantly higher GPU usage, amounting to approximately 75 GPU hours. In the
parameter research and algorithm development phase before main experiments, we consumed a total
of around 800 GPU hours on NVIDIA A100 SXM4 80GB GPUs.

J FUTURE WORK

In future work, we can explore utilizing more metrics-based reward models (such as the three reward
models discussed in this paper) with LM-based reward models (such as Critic LLM (McAleese et al.,
2024) and Eurus (Yuan et al., 2024b)). Additionally, there is potential to design more general methods
for splitting steps in other tasks and datasets. Since step-splitting is the most challenging part of
MCTS multi-step reasoning generalization, although we conducted extensive experiments on the
Blocksworld multi-step reasoning dataset, which is the most suitable dataset for studying MCTS
multi-step reasoning as far as we know. Some previous works have attempted to use datasets like
GSM8K and MATH through extensive adaptation efforts on the datasets themselves, however, we aim
to design a more general method from the perspective of step-splitting. We hope that MCTS multi-
step reasoning will achieve the same level of generalization as CoT, which remains a fundamental
area for future research. Future work can also attempt to combine this approach with the fine-grained
compositional reasoning framework (Chen et al., 2024) to further explore the boundaries of MCTS
multi-step reasoning capabilities.

23


	Introduction
	Related Work
	Preliminaries
	Multi-Step Reasoning
	Monte Carlo Tree Search
	Contrastive Decoding
	Speculative Decoding as "free lunch"

	Method
	Multi-Reward Design
	Node Selection Strategy
	Backpropagation

	Experiments
	Dataset
	Main Results
	Reasoning Speed
	Parameters
	Ablation Study
	Interpretability Study

	Conclusion
	Action-Level Contrastive Reward
	More Related Work
	Reward Functions Correlation
	Algorithm Details of SC-MCTS*
	Experimental Settings
	Checkpoints
	Hyperparameters

	Blocksworld Dataset
	Difficulty Settings
	Prompts Settings of Easy Blocksworld
	Prompts Settings of Hard Blocksworld

	Example Trees of Different c of UCT
	OpenAI API Data
	GPU Usage
	Future Work

