
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

INTERPRETABLE CONTRASTIVE MONTE CARLO TREE
SEARCH REASONING

Anonymous authors
Paper under double-blind review

ABSTRACT

We propose (S)peculative (C)ontrastive MCTS∗: a novel Monte Carlo Tree Search
(MCTS) reasoning algorithm for Large Language Models (LLMs) which signifi-
cantly improves both reasoning accuracy and speed. Our motivation comes from:
1. Previous MCTS LLM reasoning works often overlooked its biggest draw-
back—slower speed compared to CoT; 2. Previous research mainly used MCTS
as a tool for LLM reasoning on various tasks with limited quantitative analysis or
ablation studies of its components from reasoning interpretability perspective. 3.
The reward model is the most crucial component in MCTS, however previous work
has rarely conducted in-depth study or improvement of MCTS’s reward models.
Thus, we conducted extensive ablation studies and quantitative analysis on compo-
nents of MCTS, revealing the impact of each component on the MCTS reasoning
performance of LLMs. Building on this, (i) we designed a highly interpretable
reward model based on the principle of contrastive decoding and (ii) achieved
an average speed improvement of 51.9% per node using speculative decoding.
Additionally, (iii) we improved UCT node selection strategy and backpropagation
used in previous works, resulting in significant performance improvement. We
outperformed o1-mini by an average of 17.4% on the Blocksworld multi-step
reasoning dataset using Llama-3.1-70B with SC-MCTS∗.

1 INTRODUCTION

With the remarkable development of Large Language Models (LLMs), models such as o1 (OpenAI,
2024a) have now gained a strong ability for multi-step reasoning across complex tasks and can solve
problems that are more difficult than previous scientific, code, and mathematical problems. The
reasoning task has long been considered challenging for LLMs. These tasks require converting a
problem into a series of reasoning steps and then executing those steps to arrive at the correct answer.
Recently, LLMs have shown great potential in addressing such problems. A key approach is using
Chain of Thought (CoT) (Wei et al., 2024), where LLMs break down the solution into a series of
reasoning steps before arriving at the final answer. Despite the impressive capabilities of CoT-based
LLMs, they still face challenges when solving problems with an increasing number of reasoning
steps due to the curse of autoregressive decoding (Sprague et al., 2024). Previous work has explored
reasoning through the use of heuristic reasoning algorithms. For example, Yao et al. (2024) applied
heuristic-based search, such as Depth-First Search (DFS) to derive better reasoning paths. Similarly,
Hao et al. (2023) employed MCTS to iteratively enhance reasoning step by step toward the goal.

The tremendous success of AlphaGo (Silver et al., 2016) has demonstrated the effectiveness of the
heuristic MCTS algorithm, showcasing its exceptional performance across various domains (Jumper
et al., 2021; Silver et al., 2017). Building on this, MCTS has also made notable progress in the field of
LLMs through multi-step heuristic reasoning. Previous work has highlighted the potential of heuristic
MCTS to significantly enhance LLM reasoning capabilities. Despite these advancements, substantial
challenges remain in fully realizing the benefits of heuristic MCTS in LLM reasoning.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 1: An overview of SC-MCTS∗. We employ a novel reward model based on the principle of
contrastive decoding to guide MCTS Reasoning on Blocksworld multi-step reasoning dataset.

The first key challenge is that MCTS’s general reasoning ability is almost entirely dependent on the
reward model’s performance (as demonstrated by our ablation experiments in Section 5.5), making it
highly challenging to design dense, general yet efficient rewards to guide MCTS reasoning. Previous
works either require two or more LLMs (Tian et al., 2024) or training epochs (Zhang et al., 2024a),
escalating the VRAM and computational demand, or they rely on domain-specific tools (Xin et al.,
2024a;b) or datasets (Qi et al., 2024), making it difficult to generalize to other tasks or datasets.

The second key challenge is that MCTS is significantly slower than Chain of Thoughts (CoT). CoT
only requires designing a prompt of multi-turn chats (Wei et al., 2024). In contrast, MCTS builds a
reasoning tree with 2–10 layers depending on the difficulty of the task, where each node in the tree
represents a chat round with LLM which may need to be visited one or multiple times. Moreover, to
obtain better performance, we typically perform 2–10 MCTS iterations, which greatly increases the
number of nodes, leading to much higher computational costs and slower reasoning speed.

To address the these challenges, we went beyond prior works that treated MCTS as a tool and
focused on analyzing and improving its components especially reward model. Using contrastive
decoding, we redesigned reward model by integrating interpretable reward signals, clustering their
prior distributions, and normalizing the rewards using our proposed prior statistical method. To
prevent distribution shift, we also incorporated an online incremental update algorithm. We found
that the commonly used Upper Confidence Bound on Trees (UCT) strategy often underperformed
due to sensitivity to the exploration constant, so we refined it and improved backpropagation to favor
steadily improving paths. To address speed issues, we integrated speculative decoding as a "free
lunch." All experiments were conducted using the Blocksworld dataset detailed in Section 5.1.

Our goal is to: (i) design novel and high-performance reward models and maximize the performance of
reward model combinations, (ii) analyze and optimize the performance of various MCTS components,
(iii) enhance the interpretability of MCTS reasoning, (iv) and accelerate MCTS reasoning. Our
contributions are summarized as follows:

1. We went beyond previous works who primarily treated MCTS as an tool rather than analyzing and
improving its components. Specifically, we found the UCT strategy in most previous works may
failed to function from our experiment. We also refined the backpropagation of MCTS to prefer
more steadily improving paths, boosting performance.

2. To fully study the interpretability of MCTS multi-step reasoning, we conducted extensive quanti-
tative analysis and ablation studies on every component. We carried out numerous experiments
from both the numerical and distributional perspectives of the reward models, as well as its own
interpretability, providing better interpretability for MCTS multi-step reasoning.

3. We designed a novel, general action-level reward model based on the principle of contrastive
decoding, which requires no external tools, training, or datasets. Additionally, we found that
previous works often failed to effectively harness multiple reward models, thus we proposed a
statistical linear combination method. At the same time, we introduced speculative decoding to
speed up MCTS reasoning by an average of 52% as a "free lunch."

We demonstrated the effectiveness of our approach by outperforming OpenAI’s flagship o1-mini
model by an average of 17.4% using Llama-3.1-70B on the Blocksworld multi-step reasoning dataset.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2 RELATED WORK

Large Language Models Multi-Step Reasoning One of the key focus areas for LLMs is un-
derstanding and enhancing their reasoning capabilities. Recent advancements in this area focused
on developing methods that improve LLMs’ ability to handle complex tasks in domains like code
generation and mathematical problem-solving. Chain-of-Thought (CoT) (Wei et al., 2024) reasoning
has been instrumental in helping LLMs break down intricate problems into a sequence of manageable
steps, making them more adept at handling tasks that require logical reasoning. Building upon this,
Tree-of-Thought (ToT) (Yao et al., 2024) reasoning extends CoT by allowing models to explore
multiple reasoning paths concurrently, thereby enhancing their ability to evaluate different solutions
simultaneously. Complementing these approaches, Monte Carlo Tree Search (MCTS) has emerged
as a powerful reasoning method for decision-making in LLMs. Originally successful in AlphaGo’s
victory (Silver et al., 2016), MCTS has been adapted to guide model-based planning by balancing ex-
ploration and exploitation through tree-based search and random sampling, and later to large language
model reasoning (Hao et al., 2023), showing great results. This adaptation has proven particularly
effective in areas requiring strategic planning. Notable implementations like ReST-MCTS∗ (Zhang
et al., 2024a), rStar (Qi et al., 2024), MCTSr (Zhang et al., 2024b) and Xie et al. (2024) have shown
that integrating MCTS with reinforced self-training, self-play mutual reasoning or Direct Prefer-
ence Optimization (Rafailov et al., 2023) can significantly improve reasoning capabilities in LLMs.
Furthermore, recent advancements such as Deepseek Prover (Xin et al., 2024a;b) demonstrates the
potential of these models to understand complex instructions such as formal mathematical proof.

Decoding Strategies Contrastive decoding and speculative decoding both require Smaller Language
Models (SLMs), yet few have realized that these two clever decoding methods can be seamlessly
combined without any additional cost. The only work that noticed this was Yuan et al. (2024a), but
their proposed speculative contrastive decoding focused on token-level decoding. In contrast, we
designed a new action-level contrastive decoding to guide MCTS reasoning, the distinction will be
discussed further in Section 4.1. For more detailed related work please refer to Appendix B.

3 PRELIMINARIES

3.1 MULTI-STEP REASONING

A multi-step reasoning problem can be modeled as a Markov Decision Process (Bellman, 1957)
M = (S,A, P, r, γ). S is the state space containing all possible states, A the action space, P (s′|s, a)
the state transition function, r(s, a) the reward function, and γ the discount factor. The goal is to
learn and to use a policy π to maximize the discounted cumulative reward Eτ∼π

[∑T
t=0 γ

trt

]
. For

reasoning with LLMs, we are more focused on using an existing LLM to achieve the best reasoning.

3.2 MONTE CARLO TREE SEARCH

Monte Carlo Tree Search (MCTS) is a decision-making algorithm involving a search tree to simulate
and evaluate actions. The algorithm operates in the following four phases:

Node Selection: The selection process begins at the root, selecting nodes hierarchically using
strategies like UCT as the criterion to favor a child node based on its quality and novelty.

Expansion: New child nodes are added to the selected leaf node by sampling d possible actions,
predicting the next state. If the leaf node is fully explored or terminal, expansion is skipped.

Simulation: During simulation or “rollout”, the algorithm plays out the “game” randomly from that
node to a terminal state using a default policy.

Backpropagation: Once a terminal state is reached, the reward is propagated up the tree, and each
node visited during the selection phase updates its value based on the simulation result.

Through iterative application of its four phases, MCTS efficiently improves reasoning through trials
and heuristics, converging on the optimal solution.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3.3 CONTRASTIVE DECODING

We discuss vanilla Contrastive Decoding (CD) from Li et al. (2023), which improves text generation
in LLMs by reducing errors like repetition and self-contradiction. CD uses the differences between an
expert model and an amateur model, enhancing the expert’s strengths and suppressing the amateur’s
weaknesses. Consider a prompt of length n, the CD objective is defined as:

LCD(xcont, xpre) = log pEXP(xcont|xpre)− log pAMA(xcont|xpre)

where xpre is the sequence of tokens x1, . . . , xn, the model generates continuations of length m, xcont
is the sequence of tokens xn+1, . . . , xn+m, and pEXP and pAMA are the expert and amateur probability
distributions. To avoid penalizing correct behavior of the amateur or promoting implausible tokens,
CD applies an adaptive plausibility constraint using an α-mask, which filters tokens by their logits
against a threshold, the filtered vocabulary Vvalid is defined as:

Vvalid = {i | s(i)EXP ≥ logα+max
k

s
(k)
EXP}

where s
(i)
EXP and s

(i)
AMA are unnormalized logits assigned to token i by the expert and amateur models.

Final logits are adjusted with a coefficient (1 + β), modifying the contrastive effect on output
scores (Liu et al., 2021):

s
(i)
CD = (1 + β)s

(i)
EXP − s

(i)
AMA

However, our proposed CD is at action level, averaging over the whole action, instead of token
level in vanilla CD. Our novel action-level CD reward more robustly captures the differences in
confidence between the expert and amateur models in the generated answers compared to vanilla CD.
The distinction will be illustrated in Section 4.1 and explained further in Appendix A.

3.4 SPECULATIVE DECODING AS "FREE LUNCH"

Based on Speculative Decoding (Leviathan et al., 2023), the process can be summarized as follows:
Let Mp be the target model with the conditional distribution p(xt|x<t), and Mq be a smaller
approximation model with q(xt|x<t). The key idea is to generate γ tokens using Mq and filter them
against Mp’s distribution, accepting tokens consistent with Mp. Speculative decoding samples γ
tokens autoregressively from Mq, keeping those where q(x) ≤ p(x). If q(x) > p(x), the sample is
rejected with probability 1− p(x)

q(x) , and a new sample is drawn from the adjusted distribution:

p′(x) = norm(max(0, p(x)− q(x))).

Since both contrastive and speculative decoding rely on the same smaller models, we can achieve the
acceleration effect of speculative decoding as a "free lunch" (Yuan et al., 2024a).

4 METHOD

4.1 MULTI-REWARD DESIGN

Our primary goal is to design novel and and high-performance reward models for MCTS reasoning
and to maximize the performance of reward model combinations, as our ablation experiments in
Section 5.5 demonstrate that MCTS performance is almost entirely determined by the reward model.

SC-MCTS∗ is guided by three highly interpretable reward models: contrastive JS divergence, log-
likelihood and self evaluation. Previous work such as (Hao et al., 2023) often directly adds reward
functions with mismatched numerical magnitudes without any prior statistical analysis or linear
combination. As a result, their combined reward models may fail to demonstrate full performance.
Moreover, combining multiple rewards online presents numerous challenges such as distributional
shifts in the values. Thus, we propose a statistically-informed reward combination method: Multi-
RM method. Each reward model is normalized contextually by the fine-grained prior statistics of
its empirical distribution. The pseudocode for reward model construction is shown in Algorithm 1.
Please refer to Appendix D for a complete version of SC-MCTS∗ that includes other improvements
such as dealing with distribution shift when combining reward functions online.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Algorithm 1 SC-MCTS∗, reward model construction
Input: Expert LLM πe, Amateur SLM πa, Problem set D; M selected problems for prior statistics,

N pre-generated solutions per problem, K clusters
1: Ã← Sample-solutions(πe, D,M,N) ▷ Pre-generate M ×N solutions
2: pe, pa ← Evaluate(πe, πa, Ã) ▷ Get policy distributions
3: for r ∈ {JSD,LL,SE} do
4: µr,σr, br ← Cluster-stats(r(Ã),K) ▷ Prior statistics (Equation 1)
5: Rr ← x 7→ (r(x)− µk∗

r)/σk∗

r ▷ Reward normalization (Equation 2)
6: end for
7: R←

∑
r∈{JSD,LL,SE} wrRr ▷ Composite reward

8: AD ← MCTS-Reasoning(πe, R,D, πa) ▷ Search solutions guided by R
Output: AD

Jensen-Shannon Divergence The Jensen-Shannon divergence (JSD) is a symmetric and bounded
measure of similarity between two probability distributions P and Q. It is defined as:

JSD(P ∥Q) =
1

2
KL(P ∥M) +

1

2
KL(Q ∥M), M =

1

2
(P +Q),

where KL(P ∥Q) is the Kullback-Leibler Divergence (KLD), and M represents the midpoint distri-
bution. The JSD is bounded between 0 and 1 for discrete distributions, making it better than KLD for
online normalization of reward modeling.

Inspired by contrastive decoding, we propose our novel reward model: JSD between the expert
model’s logits and the amateur model’s logits. Unlike vanilla token-level contrastive decoding (Li
et al., 2023), our reward is computed at action-level, treating a sequence of action tokens as a whole:

RJSD =
1

n

n∑
i=Tprefix+1

[JSD(pe(xi|x<i) ∥ pa(xi|x<i)]

where n is the length of tokens, Tprefix is the index of the last prefix token, pe and pa represent the
softmax probabilities of the expert and amateur models, respectively. This approach ensures that
the reward captures model behavior at the action level as the entire sequence of tokens is taken into
account at once. This contrasts with vanilla token-level methods where each token is treated serially.

Loglikelihood Inspired by Hao et al. (2023), we use a loglikelihood reward model to evaluate the
quality of generated answers based on a given question prefix. The model computes logits for the full
sequence (prefix + answer) and accumulates the log-probabilities over the answer part tokens.

Let the full sequence x = (x1, x2, . . . , xTtotal) consist of a prefix and a generated answer. The
loglikelihood reward RLL is calculated over the answer portion:

RLL =

Ttotal∑
i=Tprefix+1

log

(
exp(zθ(xi))∑

x′∈V exp(zθ(x′))

)
where zθ(xi) represents the unnormalized logit for token xi. After calculating logits for the entire
sequence, we discard the prefix and focus on the answer tokens to form the loglikelihood reward.

Self Evaluation Large language models’ token-level self evaluation can effectively quantify the
model’s uncertainty, thereby improving the quality of selective generation (Ren et al., 2023). We
instruct the LLM to perform self evaluation on its answers, using a action level evaluation method,
including a self evaluation prompt to explicitly indicate the model’s uncertainty.

After generating the answer, we prompt the model to self-evaluate its response by asking "Is this
answer correct/good?" This serves to capture the model’s confidence in its own output leading to
more informed decision-making. The self evaluation prompt’s logits are then used to calculate a
reward function. Similar to the loglikelihood reward model, we calculate the self evaluation reward
RSE by summing the log-probabilities over the self-evaluation tokens.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Harnessing Multiple Reward Models We collected prior distributions for the reward models and
found some of them span multiple regions. Therefore, we compute the fine-grained prior statistics as
mean and standard deviation of modes of the prior distributionR ∈ {RJSD,RLL,RSE}:

µ(k) =
1

ck

∑
Ri∈[b1,bk+1)

Ri and σ(k) =

√√√√ 1

ck

∑
Ri∈[b1,bk+1)

(Ri − µ(k))2 (1)

where b1 < b2 < · · · < bK+1 are the region boundaries inR, Ri ∈ R, and ck is the number of Ri in
[b1, bk+1). The region boundaries were defined during the prior statistical data collection phase 1.

After we computed the fine-grained prior statistics, the reward factors are normalized separately for
each region (which degenerates to standard normalization if only a single region is found):

Rnorm(x) = (R(x)− µ(k∗))/σ(k∗), where k∗ = argmax{k : bk ≤ R(x)} (2)

This reward design, which we call Multi-RM method, has some caveats: first, to prevent distribution
shift during reasoning, we update the mean and standard deviation of the reward functions online for
each mode (see Appendix D for pseudocode); second, we focus only on cases with clearly distinct
reward modes, leaving general cases for future work. For the correlation heatmap, see Appendix C.

4.2 NODE SELECTION STRATEGY

Upper Confidence Bound applied on Trees Algorithm (UCT) (Coquelin & Munos, 2007) is crucial
for the selection phase, balancing exploration and exploitation by choosing actions that maximize:

UCTj = X̄j + C

√
lnN

Nj

where X̄j is the average reward of taking action j, N is the number of times the parent has been
visited, and Nj is the number of times node j has been visited for simulation, C is a constant to
balance exploitation and exploration.

However, C is a crucial part of UCT. Previous work (Hao et al., 2023; Zhang et al., 2024b) had
limited thoroughly investigating its components, leading to potential failures of the UCT strategy.
This is because they often used the default value of 1 from the original proposed UCT (Coquelin &
Munos, 2007) without conducting sufficient quantitative experiments to find the optimal C. This will
be discussed in detail in Section 5.4.

4.3 BACKPROPAGATION

After each MCTS iteration, multiple paths from the root to terminal nodes are generated. By
backpropagating along these paths, we update the value of each state-action pair. Previous MCTS
approaches often use simple averaging during backpropagation, but this can overlook paths where the
goal achieved metric G(p) progresses smoothly (e.g., G(p1) = 0 → 0.25 → 0.5 → 0.75). These
paths just few step away from the final goal G(p) = 1, are often more valuable than less stable ones.

To improve value propagation, we propose an algorithm that better captures value progression along
a path. Given a path P = {p1, p2, . . . , pn} with n nodes, where each pi represents the value at node
i, the total value is calculated by summing the increments between consecutive nodes with a length
penalty. The increment between nodes pi and pi−1 is ∆i = pi − pi−1. Negative increments are
clipped at −0.1 and downweighted by 0.5. The final path value Vfinal is:

Vfinal =

n∑
i=2

{
∆i, if ∆i ≥ 0
0.5×max(∆i,−0.1), if ∆i < 0

}
− λ× n (3)

where n is the number of nodes in the path and λ = 0.1 is the penalty factor to discourage long paths.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

5 EXPERIMENTS

5.1 DATASET

Blocksworld (Valmeekam et al., 2024; 2023) is a classic domain in AI research for reasoning and
planning, where the goal is to rearrange blocks into a specified configuration using actions like
’pick-up,’ ’put-down,’ ’stack,’ and ’unstack. Blocks can be moved only if no block on top, and only
one block at a time. The reasoning process in Blocksworld is a MDP. At time step t, the LLM
agent selects an action at ∼ p(a | st, c), where st is the current block configuration, c is the prompt
template. The state transition st+1 = P (st, at) is deterministic and is computed by rules. This forms
a trajectory of interleaved states and actions (s0, a0, s1, a1, . . . , sT) towards the goal state.

One key feature of Blocksworld is its built-in verifier, which tracks progress toward the goal at each
step. This makes Blocksworld ideal for studying heuristic LLM multi-step reasoning. However, we
deliberately avoid using the verifier as part of the reward model as it is task-specific. More details of
Blocksworld can be found in Appendix F.

5.2 MAIN RESULTS

To evaluate the SC-MCTS∗ algorithm in LLM multi-step reasoning, we implemented CoT, RAP-
MCTS, and SC-MCTS∗ using Llama-3-70B and Llama-3.1-70B. For comparison, we used Llama-
3.1-405B and GPT-4o for CoT, and applied 0 and 4 shot single turn for o1-mini, as OpenAI (2024b)
suggests avoiding CoT prompting. The experiment was conducted on Blocksworld dataset across all
steps and difficulties. For LLM settings, GPU and OpenAI API usage data, see Appendix E and H.

Mode Models Method
Steps

Step 2 Step 4 Step 6 Step 8 Step 10 Step 12 Avg.

Easy

Llama-3-70B
~Llama-3.2-1B

4-shot CoT 0.2973 0.4405 0.3882 0.2517 0.1696 0.1087 0.2929
RAP-MCTS 0.9459 0.9474 0.8138 0.4196 0.2136 0.1389 0.5778
SC-MCTS* (Ours) 0.9730 0.9737 0.8224 0.4336 0.2136 0.2222 0.5949

Llama-3.1-70B
~Llama-3.2-1B

4-shot CoT 0.5405 0.4868 0.4069 0.2238 0.2913 0.2174 0.3441
RAP-MCTS 1.0000 0.9605 0.8000 0.4336 0.2039 0.1111 0.5796
SC-MCTS* (Ours) 1.0000 0.9737 0.7724 0.4503 0.3010 0.1944 0.6026

Llama-3.1-405B 0-shot CoT 0.8108 0.6579 0.5931 0.5105 0.4272 0.3611 0.5482
4-shot CoT 0.7838 0.8553 0.6483 0.4266 0.5049 0.4167 0.5852

o1-mini 0-shot 0.9730 0.7368 0.5103 0.3846 0.3883 0.1944 0.4463
4-shot 0.9459 0.8026 0.6276 0.3497 0.3301 0.2222 0.5167

GPT-4o 0-shot CoT 0.5405 0.4868 0.3241 0.1818 0.1165 0.0556 0.2666
4-shot CoT 0.5135 0.6579 0.6000 0.2797 0.3010 0.3611 0.4444

Hard

Llama-3-70B
~Llama-3.2-1B

4-shot CoT 0.5556 0.4405 0.3882 0.2517 0.1696 0.1087 0.3102
RAP-MCTS 1.0000 0.8929 0.7368 0.4503 0.1696 0.1087 0.5491
SC-MCTS* (Ours) 0.9778 0.8929 0.7566 0.5298 0.2232 0.1304 0.5848

Llama-3.1-70B
~Llama-3.2-1B

4-shot CoT 0.6222 0.2857 0.3421 0.1722 0.1875 0.2174 0.2729
RAP-MCTS 0.9778 0.9048 0.7829 0.4702 0.1875 0.1087 0.5695
SC-MCTS* (Ours) 0.9778 0.9405 0.8092 0.4702 0.1696 0.2174 0.5864

Llama-3.1-405B 0-shot CoT 0.7838 0.6667 0.6053 0.3684 0.2679 0.2609 0.4761
4-shot CoT 0.8889 0.6667 0.6579 0.4238 0.5804 0.5217 0.5915

o1-mini 0-shot 0.6889 0.4286 0.1776 0.0993 0.0982 0.0000 0.2034
4-shot 0.9556 0.8452 0.5263 0.3907 0.2857 0.1739 0.4966

GPT-4o 0-shot CoT 0.6222 0.3929 0.3026 0.1523 0.0714 0.0000 0.2339
4-shot CoT 0.6222 0.4167 0.5197 0.3642 0.3304 0.1739 0.4102

Table 1: Accuracy of various reasoning methods and models across steps and difficulty modes on the
Blocksworld multi-step reasoning dataset.

From Table 1, it can be observed that SC-MCTS∗ significantly outperforms RAP-MCTS and 4-shot
CoT across both easy and hard modes, and in easy mode, Llama-3.1-70B model using SC-MCTS∗

outperforms the 4-shot CoT Llama-3.1-405B model.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Figure 2: Accuracy comparison of various models and reasoning methods on the Blocksworld
multi-step reasoning dataset across increasing reasoning steps.

From Figure 2, we observe that as the reasoning path lengthens, the performance advantage of two
MCTS reasoning algorithms over themselves, GPT-4o, and Llama-3.1-405B’s CoT explicit multi-
turn chats and o1-mini implicit multi-turn chats (OpenAI, 2024b) in terms of accuracy diminishes,
becoming particularly evident after Step 6. The accuracy decline for CoT is more gradual as the
reasoning path extends, whereas models employing MCTS reasoning exhibits a steeper decline. This
trend could be due to the fixed iteration limit of 10 across different reasoning path lengths, which
might be unfair to longer paths. Future work could explore dynamically adjusting the iteration limit
based on reasoning path length. It may also be attributed to our use of a custom EOS token to ensure
output format stability in the MCTS reasoning process, which operates in completion mode. As the
number of steps and prompt prefix lengths increases, the limitations of completion mode may become
more pronounced compared to the chat mode used in multi-turn chats. Additionally, we observe that
Llama-3.1-405B benefits significantly from its huge parameter size, although underperforming at
fewer steps, experiences the slowest accuracy decline as the reasoning path grows longer.

5.3 REASONING SPEED

Figure 3: Speedup comparison of different model combinations. For speculative decoding, we use
Llama-3.2-1B and Llama-3.1.8B as amateur models with Llama-3.1-70B and Llama-3.1-405B as
expert models, based on average node-level reasoning speed in MCTS for Blocksworld multi-step
reasoning dataset.

As shown in Figure 3, we can observe that the combination of Llama-3.1-405B with Llama-3.1-
8B achieves the highest speedup, improving inference speed by approximately 100% compared to
vanilla decoding. Similarly, pairing Llama-3.1-70B with Llama-3.2-1B results in a 51.9% increase
in reasoning speed. These two combinations provide the most significant gains, demonstrating that
speculative decoding with SLMs can substantially enhance node level reasoning speed. However, we
can also observe from the combination of Llama-3.1-405B with Llama-3.2-1B that the parameters
of SLMs in speculative decoding should not be too small, since the threshold for accepting draft
tokens during the decoding process remains fixed to prevent speculative decoding from affecting
performance (Leviathan et al., 2023), as overly small parameters may have a negative impact on
decoding speed, which is consistent with the findings in Zhao et al. (2024); Chen et al. (2023).

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

5.4 PARAMETERS

Figure 4: Accuracy comparison of differ-
ent constant C of UCT on Blocksworld
multi-step reasoning dataset.

Figure 5: Accuracy comparison of different
numbers of iteration on Blocksworld multi-
step reasoning dataset.

As discussed in Section 4.2, the constant C is a crucial part of UCT strategy, which completely
determines whether the exploration term takes effect. Therefore, we conducted quantitative exper-
iments on the constant C, to eliminate interference from other factors, we only use MCTS base
with the common reward model RLL for both RAP-MCTS and SC-MCTS∗. From Figure 4 we can
observe that the constant C of RAP-MCTS is too small to function effectively, while the constant
C of SC-MCTS∗ is the value most suited to the values of reward model derived from extensive
experimental data. After introducing new datasets, this hyperparameter may need to be re-tuned.

From Figure 5, it can be observed that the accuracy of SC-MCTS∗ on multi-step reasoning increases
steadily with the number of iterations. During the first 1-7 iterations, the accuracy rises consistently.
After the 7th iteration, the improvement in accuracy becomes relatively smaller, indicating that under
the experimental setting with depth limitations, the exponentially growing exploration nodes in later
iterations bring diminishing returns in accuracy.

5.5 ABLATION STUDY

Parts of SC-MCTS∗ Accuracy (%) Improvement (%)

MCTS base 55.92 —

+ RJSD 62.50 +6.58
+ RLL 67.76 +5.26
+ RSE 70.39 +2.63

+ Multi-RM Method 73.68 +3.29

+ Improved C of UCT 78.95 +5.27

+ BP Refinement 80.92 +1.97

SC-MCTS∗ 80.92 Overall +25.00

Table 2: Ablation Study on the Blocksworld dataset at Step 6 under difficult mode. For a more
thorough ablation study, the reward model for the MCTS base was set to pseudo-random numbers.

As shown in Table 2, the results of the ablation study demonstrate that each component of SC-MCTS∗

contributes significantly to performance improvements. Starting from a base MCTS accuracy of
55.92%, adding RJSD, RLL, and RSE yields a combined improvement of 14.47%. Multi-RM method
further boosts performance by 3.29%, while optimizing the C parameter in UCT adds 5.27%, and the
backpropagation refinement increases accuracy by 1.97%. Overall, SC-MCTS∗ achieves an accuracy
of 80.92%, a 25% improvement over the base, demonstrating the effectiveness of these enhancements
for complex reasoning tasks.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

5.6 INTERPRETABILITY STUDY

In the Blocksworld multi-step reasoning dataset, we can use the built-in ground truth verifier to
calculate the percentage of progress made toward completing the goal at the current step, denoted as
P . The value of P lies within the range [0, 1], where:

P (Ni) = Verifier(Ni).

For example, in a 10-step Blocksworld reasoning task, for the initial node A, P (A) = 0. After
performing one correct action and transitioning to the next node B, P (B) = 0.1.

Let Ni be an arbitrary non-root node, which transitions to its parent node Parent(Ni) by performing
a certain action a. To measure the contribution of action a toward the final goal state, we define:

∆a = P (Parent(Ni))− P (Ni).

Next, by analyzing the relationship between ∆a and the reward value Ra assigned by the reward
model for action a, we aim to reveal how our designed reward model provides highly interpretable
reward signals for the selection of each node in MCTS. We also compare the performance of our
reward model against a baseline reward model. Specifically, the alignment between ∆a and Ra

demonstrates the interpretability of the reward model in guiding the reasoning process toward the
goal state. Since Section 5.5 has already demonstrated that the reasoning performance of MCTS
reasoning is almost entirely determined by the reward model, using interpretable reward models
greatly enhances the interpretability of our algorithm SC-MCTS∗.

Figure 6: Reward distribution and interpretability analysis. The left histogram shows the baseline
reward model (RAP-MCTS), while the right represents SC-MCTS∗. Bin colors indicate the proportion
of positive ∆a (lighter colors means higher proportions). Spearman and Pearson correlations along
with p-values are shown in the top right of each histogram.

From Figure 6, shows that SC-MCTS* reward values correlate significantly with ∆a, as indicated by
the high Spearman and Pearson coefficients. Additionally, the mapping between the reward value
bins and the proportion of positive ∆a (indicated by the color gradient from light to dark) is highly
consistent and intuitive. This strong alignment suggests that our reward model effectively captures the
progress toward the goal state, providing interpretable signals for action selection during reasoning.

These results highlight the exceptional interpretability of our designed reward model, which ensures
that SC-MCTS* not only achieves superior reasoning performance but is also highly interpretable.
This interpretability is crucial for understanding and improving the decision-making process in
multi-step reasoning tasks, further validating transparency of our proposed algorithm.

6 CONCLUSION

In this paper, we present SC-MCTS∗, a novel and effective algorithm to enhancing the reasoning
capabilities of LLMs. With extensive improvements in reward modeling, node selection strategy
and backpropagation, SC-MCTS∗ boosts both accuracy and speed, outperforming OpenAI’s o1-mini
model by 17.4% on average using Llama-3.1-70B on the Blocksworld dataset. Experiments demon-
strate its strong performance, making it a promising approach for multi-step reasoning tasks. For
future work please refer to Appendix J. The synthesis of interpretability, efficiency and generalizability
positions SC-MCTS∗ as a valuable contribution to advancing LLMs multi-step reasoning.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Richard Bellman. A markovian decision process. Journal of Mathematics and Mechanics, 6(5):
679–684, 1957. ISSN 00959057, 19435274. URL http://www.jstor.org/stable/
24900506.

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving, Jean-Baptiste Lespiau, Laurent Sifre, and John
Jumper. Accelerating large language model decoding with speculative sampling, 2023. URL
https://arxiv.org/abs/2302.01318.

Qiguang Chen, Libo Qin, Jiaqi Wang, Jinxuan Zhou, and Wanxiang Che. Unlocking the boundaries
of thought: A reasoning granularity framework to quantify and optimize chain-of-thought, 2024.
URL https://arxiv.org/abs/2410.05695.

Pierre-Arnaud Coquelin and Rémi Munos. Bandit algorithms for tree search. In Proceedings of the
Twenty-Third Conference on Uncertainty in Artificial Intelligence, UAI’07, pp. 67–74, Arlington,
Virginia, USA, 2007. AUAI Press. ISBN 0974903930.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Accurate post-training
quantization for generative pre-trained transformers, 2022.

Shibo Hao, Yi Gu, Haodi Ma, Joshua Hong, Zhen Wang, Daisy Wang, and Zhiting Hu. Reasoning
with language model is planning with world model. In Houda Bouamor, Juan Pino, and Kalika
Bali (eds.), Proceedings of the 2023 Conference on Empirical Methods in Natural Language
Processing, pp. 8154–8173, Singapore, December 2023. Association for Computational Linguis-
tics. doi: 10.18653/v1/2023.emnlp-main.507. URL https://aclanthology.org/2023.
emnlp-main.507.

Shibo Hao, Yi Gu, Haotian Luo, Tianyang Liu, Xiyan Shao, Xinyuan Wang, Shuhua Xie, Haodi Ma,
Adithya Samavedhi, Qiyue Gao, Zhen Wang, and Zhiting Hu. LLM reasoners: New evaluation,
library, and analysis of step-by-step reasoning with large language models. In ICLR 2024 Workshop
on Large Language Model (LLM) Agents, 2024. URL https://openreview.net/forum?
id=h1mvwbQiXR.

John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger,
Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna Potapenko, Alex Bridgland,
Clemens Meyer, Simon A. A. Kohl, Andrew J. Ballard, Andrew Cowie, Bernardino Romera-
Paredes, Stanislav Nikolov, Rishub Jain, Jonas Adler, and Trevor Back. Highly accurate pro-
tein structure prediction with alphafold. Nature, 596(7873):583–589, Jul 2021. doi: https:
//doi.org/10.1038/s41586-021-03819-2. URL https://www.nature.com/articles/
s41586-021-03819-2.

Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative
decoding. In Proceedings of the 40th International Conference on Machine Learning, ICML’23.
JMLR.org, 2023.

Xiang Lisa Li, Ari Holtzman, Daniel Fried, Percy Liang, Jason Eisner, Tatsunori Hashimoto, Luke
Zettlemoyer, and Mike Lewis. Contrastive decoding: Open-ended text generation as optimization.
In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), Proceedings of the 61st Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 12286–
12312, Toronto, Canada, July 2023. Association for Computational Linguistics. doi: 10.18653/v1/
2023.acl-long.687. URL https://aclanthology.org/2023.acl-long.687.

Alisa Liu, Maarten Sap, Ximing Lu, Swabha Swayamdipta, Chandra Bhagavatula, Noah A. Smith,
and Yejin Choi. DExperts: Decoding-time controlled text generation with experts and anti-experts.
In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and
the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers),
pp. 6691–6706, Online, August 2021. Association for Computational Linguistics. doi: 10.18653/
v1/2021.acl-long.522. URL https://aclanthology.org/2021.acl-long.522.

Nat McAleese, Rai Michael Pokorny, Juan Felipe Ceron Uribe, Evgenia Nitishinskaya, Maja Trebacz,
and Jan Leike. Llm critics help catch llm bugs, 2024.

11

http://www.jstor.org/stable/24900506
http://www.jstor.org/stable/24900506
https://arxiv.org/abs/2302.01318
https://arxiv.org/abs/2410.05695
https://aclanthology.org/2023.emnlp-main.507
https://aclanthology.org/2023.emnlp-main.507
https://openreview.net/forum?id=h1mvwbQiXR
https://openreview.net/forum?id=h1mvwbQiXR
https://www.nature.com/articles/s41586-021-03819-2
https://www.nature.com/articles/s41586-021-03819-2
https://aclanthology.org/2023.acl-long.687
https://aclanthology.org/2021.acl-long.522

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Sean O’Brien and Mike Lewis. Contrastive decoding improves reasoning in large language models,
2023. URL https://arxiv.org/abs/2309.09117.

OpenAI. Introducing openai o1. https://openai.com/o1/, 2024a. Accessed: 2024-10-02.

OpenAI. How reasoning works. https://platform.openai.com/docs/guides/
reasoning/how-reasoning-works, 2024b. Accessed: 2024-10-02.

Zhenting Qi, Mingyuan Ma, Jiahang Xu, Li Lyna Zhang, Fan Yang, and Mao Yang. Mutual reasoning
makes smaller llms stronger problem-solvers, 2024. URL https://arxiv.org/abs/2408.
06195.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and
Chelsea Finn. Direct preference optimization: Your language model is secretly a reward
model. In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.),
Advances in Neural Information Processing Systems, volume 36, pp. 53728–53741. Curran Asso-
ciates, Inc., 2023. URL https://proceedings.neurips.cc/paper_files/paper/
2023/file/a85b405ed65c6477a4fe8302b5e06ce7-Paper-Conference.pdf.

Jie Ren, Yao Zhao, Tu Vu, Peter J. Liu, and Balaji Lakshminarayanan. Self-evaluation improves
selective generation in large language models. In Javier Antorán, Arno Blaas, Kelly Buchanan, Fan
Feng, Vincent Fortuin, Sahra Ghalebikesabi, Andreas Kriegler, Ian Mason, David Rohde, Francisco
J. R. Ruiz, Tobias Uelwer, Yubin Xie, and Rui Yang (eds.), Proceedings on "I Can’t Believe It’s
Not Better: Failure Modes in the Age of Foundation Models" at NeurIPS 2023 Workshops, volume
239 of Proceedings of Machine Learning Research, pp. 49–64. PMLR, 16 Dec 2023. URL
https://proceedings.mlr.press/v239/ren23a.html.

David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George van den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, Sander Dieleman,
Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy Lillicrap, Madeleine
Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering the game of go
with deep neural networks and tree search. Nature, 529(7587):484–489, Jan 2016. doi: https:
//doi.org/10.1038/nature16961.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez,
Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, Timothy Lillicrap, Karen Si-
monyan, and Demis Hassabis. Mastering chess and shogi by self-play with a general reinforcement
learning algorithm, 2017. URL https://arxiv.org/abs/1712.01815.

Zayne Sprague, Fangcong Yin, Juan Diego Rodriguez, Dongwei Jiang, Manya Wadhwa, Prasann
Singhal, Xinyu Zhao, Xi Ye, Kyle Mahowald, and Greg Durrett. To cot or not to cot? chain-of-
thought helps mainly on math and symbolic reasoning, 2024. URL https://arxiv.org/
abs/2409.12183.

Ye Tian, Baolin Peng, Linfeng Song, Lifeng Jin, Dian Yu, Haitao Mi, and Dong Yu. Toward self-
improvement of llms via imagination, searching, and criticizing. ArXiv, abs/2404.12253, 2024.
URL https://api.semanticscholar.org/CorpusID:269214525.

Karthik Valmeekam, Matthew Marquez, Sarath Sreedharan, and Subbarao Kambhampati. On the
planning abilities of large language models - a critical investigation. In Thirty-seventh Confer-
ence on Neural Information Processing Systems, 2023. URL https://openreview.net/
forum?id=X6dEqXIsEW.

Karthik Valmeekam, Matthew Marquez, Alberto Olmo, Sarath Sreedharan, and Subbarao Kamb-
hampati. Planbench: an extensible benchmark for evaluating large language models on planning
and reasoning about change. In Proceedings of the 37th International Conference on Neural
Information Processing Systems, NIPS ’23, Red Hook, NY, USA, 2024. Curran Associates Inc.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H. Chi,
Quoc V. Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language
models. In Proceedings of the 36th International Conference on Neural Information Processing
Systems, NIPS ’22, Red Hook, NY, USA, 2024. Curran Associates Inc. ISBN 9781713871088.

12

https://arxiv.org/abs/2309.09117
https://openai.com/o1/
https://platform.openai.com/docs/guides/reasoning/how-reasoning-works
https://platform.openai.com/docs/guides/reasoning/how-reasoning-works
https://arxiv.org/abs/2408.06195
https://arxiv.org/abs/2408.06195
https://proceedings.neurips.cc/paper_files/paper/2023/file/a85b405ed65c6477a4fe8302b5e06ce7-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/a85b405ed65c6477a4fe8302b5e06ce7-Paper-Conference.pdf
https://proceedings.mlr.press/v239/ren23a.html
https://arxiv.org/abs/1712.01815
https://arxiv.org/abs/2409.12183
https://arxiv.org/abs/2409.12183
https://api.semanticscholar.org/CorpusID:269214525
https://openreview.net/forum?id=X6dEqXIsEW
https://openreview.net/forum?id=X6dEqXIsEW

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Yuxi Xie, Anirudh Goyal, Wenyue Zheng, Min-Yen Kan, Timothy P. Lillicrap, Kenji Kawaguchi, and
Michael Shieh. Monte carlo tree search boosts reasoning via iterative preference learning, 2024.
URL https://arxiv.org/abs/2405.00451.

Huajian Xin, Daya Guo, Zhihong Shao, Zhizhou Ren, Qihao Zhu, Bo Liu (Benjamin Liu),
Chong Ruan, Wenda Li, and Xiaodan Liang. Deepseek-prover: Advancing theorem prov-
ing in llms through large-scale synthetic data. ArXiv, abs/2405.14333, 2024a. URL https:
//api.semanticscholar.org/CorpusID:269983755.

Huajian Xin, Z. Z. Ren, Junxiao Song, Zhihong Shao, Wanjia Zhao, Haocheng Wang, Bo Liu,
Liyue Zhang, Xuan Lu, Qiushi Du, Wenjun Gao, Qihao Zhu, Dejian Yang, Zhibin Gou, Z. F.
Wu, Fuli Luo, and Chong Ruan. Deepseek-prover-v1.5: Harnessing proof assistant feedback for
reinforcement learning and monte-carlo tree search, 2024b. URL https://arxiv.org/abs/
2408.08152.

Haotian Xu. No train still gain. unleash mathematical reasoning of large language models with monte
carlo tree search guided by energy function, 2023. URL https://arxiv.org/abs/2309.
03224.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L. Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: deliberate problem solving with large language models. In
Proceedings of the 37th International Conference on Neural Information Processing Systems,
NIPS ’23, Red Hook, NY, USA, 2024. Curran Associates Inc.

Hongyi Yuan, Keming Lu, Fei Huang, Zheng Yuan, and Chang Zhou. Speculative contrastive
decoding. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd
Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp.
56–64, Bangkok, Thailand, August 2024a. Association for Computational Linguistics. URL
https://aclanthology.org/2024.acl-short.5.

Lifan Yuan, Ganqu Cui, Hanbin Wang, Ning Ding, Xingyao Wang, Jia Deng, Boji Shan, Huimin Chen,
Ruobing Xie, Yankai Lin, Zhenghao Liu, Bowen Zhou, Hao Peng, Zhiyuan Liu, and Maosong Sun.
Advancing llm reasoning generalists with preference trees, 2024b.

Dan Zhang, Sining Zhoubian, Ziniu Hu, Yisong Yue, Yuxiao Dong, and Jie Tang. Rest-mcts*: Llm
self-training via process reward guided tree search, 2024a. URL https://arxiv.org/abs/
2406.03816.

Di Zhang, Xiaoshui Huang, Dongzhan Zhou, Yuqiang Li, and Wanli Ouyang. Accessing gpt-4 level
mathematical olympiad solutions via monte carlo tree self-refine with llama-3 8b, 2024b. URL
https://arxiv.org/abs/2406.07394.

Weilin Zhao, Yuxiang Huang, Xu Han, Wang Xu, Chaojun Xiao, Xinrong Zhang, Yewei Fang, Kaihuo
Zhang, Zhiyuan Liu, and Maosong Sun. Ouroboros: Generating longer drafts phrase by phrase for
faster speculative decoding, 2024. URL https://arxiv.org/abs/2402.13720.

A ACTION-LEVEL CONTRASTIVE REWARD

We made the distinction between action-level variables and token-level variables: action-level (or
step-level) variables are those that aggregate over all tokens in a reasoning step, and is typically
utilized by the reasoning algorithm directly; token-level variables, by contrast, operates in a more
microscopic and low-level environment, such as speculative decoding.

We found that the traditional contrastive decoding using the difference in logits, when aggregated
over the sequence gives a unstable reward signal compared to JS divergence. We suspected this is
due to the unbounded nature of logit difference, and the potential failure modes associated with it
that needs extra care and more hyperparameter tuning.

13

https://arxiv.org/abs/2405.00451
https://api.semanticscholar.org/CorpusID:269983755
https://api.semanticscholar.org/CorpusID:269983755
https://arxiv.org/abs/2408.08152
https://arxiv.org/abs/2408.08152
https://arxiv.org/abs/2309.03224
https://arxiv.org/abs/2309.03224
https://aclanthology.org/2024.acl-short.5
https://arxiv.org/abs/2406.03816
https://arxiv.org/abs/2406.03816
https://arxiv.org/abs/2406.07394
https://arxiv.org/abs/2402.13720

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

B MORE RELATED WORK

Large Language Models Multi-Step Reasoning Deepseek Prover (Xin et al., 2024a;b) relied
on Lean4 as an external verification tool to provide dense reward signals in the RL stage. ReST-
MCTS∗ (Zhang et al., 2024a) employed self-training to collect high-quality reasoning trajectories for
iteratively improving the value model. AlphaLLM (Tian et al., 2024) used critic models initialized
from the policy model as the MCTS reward model. rStar (Qi et al., 2024) utilized mutual consistency
of SLMs and an additional math-specific action space. Xu (2023) proposed reconstructing fine-tuned
LLMs into residual-based energy models to guide MCTS.

Speculative Decoding Speculative decoding was first introduced in Leviathan et al. (2023), as a
method to accelerate sampling from large autoregressive models by computing multiple tokens in
parallel without retraining or changing the model structure. It enhances computational efficiency,
especially in large-scale generation tasks, by recognizing that hard language-modeling tasks often
include easier subtasks that can be approximated well by more efficient models. Similarly, DeepMind
introduced speculative sampling (Chen et al., 2023), which expands on this idea by generating a short
draft sequence using a faster draft model and then scoring this draft with a larger target model.

Contrastive Decoding Contrastive decoding, as proposed by Li et al. (2023), is a simple, computa-
tionally light, and training-free method for text generation that can enhancethe quality and quantity
by identifying strings that highlight potential differences between strong models and weak models.
In this context, the weak models typically employ conventional greedy decoding techniques such as
basic sampling methods, while the strong models are often well-trained large language models. This
approach has demonstrated notable performance improvements in various inference tasks, including
arithmetic reasoning and multiple-choice ranking tasks, thereby increasing the accuracy of language
models. According to experiments conducted by O’Brien & Lewis (2023), applying contrastive
decoding across various tasks has proven effective in enhancing the reasoning capabilities of LLMs.

C REWARD FUNCTIONS CORRELATION

Figure 7: Reward Functions Correlation Heatmap.

It can be seen from Figure 7 that the correlations between the three reward functions are relatively
low, absolute values all below 0.15. These low correlations of reward functions make them ideal for
Multi-RM method.

D ALGORITHM DETAILS OF SC-MCTS∗

The pseudocode inside MCTS reasoning of SC-MCTS∗ is shown in Algorithm 2, based on Zhang
et al. (2024a). The complete version of SC-MCTS∗ is: first sample a subset of problems to obtain the
prior data for reward values (Algorithm 1), then use it and two SLMs, one for providing contrastive
reward signals, another for speculative decoding speedup, to perform MCTS reasoning. The changes
of SC-MCTS∗ compared to previous works are highlighted in teal.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Algorithm 2 SC-MCTS∗, reasoning
Input: expert LLM πe, amatuer SLM πa, speculative SLM πs, problem q, reward model R, reward

factor statistics S , max iterations T , threshold l, branch b, rollout steps m, roll branch d, weight
parameter α, exploration constant C

1: Tq ← Initialize-tree(q)
2: for i = 1 . . . T do
3: n← Root(Tq)
4: while n is not leaf node do ▷ Node selection
5: n← argmaxn′∈children(n)(vn′ + C

√
lnNn

Nn′
) ▷ Select child node based on UCT

6: end while
7: if vn ≥ l then break ▷ Output solution
8: end if
9: if n is not End of Inference then

10: for j = 1 . . . b do ▷ Thought expansion
11: nj ← Get-new-child(An, q, πe) ▷ Expand based on previous steps
12: vnj ,S ← R(Anj , q, πe, πa,S) ▷ Evaluate contrastive reward and update reward

factor statistics
13: end for
14: n′ ← argmaxn′∈children(n)(vn′)
15: vmax ← 0
16: for k = 1 . . .m do ▷ Greedy MC rollout
17: A, vmax ← Get-next-step-with-best-value(A, q, πe, πs, d) ▷ Sample new children

using speculative decoding and record the best observed value
18: end for
19: vn′ ← αvn′ + (1− α)vmax

20: Nn′ ← Nn′ + 1 ▷ Update value and visit count of the rollout node
21: end if
22: Back-propagate(n) ▷ Update value of parent nodes (Equation 3)
23: end for
24: n← Get-best-node(Tq) ▷ Fetch the node with the highest value in the search tree
Output: An

Although we sampled a small portion of the dataset as prior data for reward values, distribution shift
may still occur when normalizing reward values during reasoning. Therefore, we use the following
algorithm to incrementally update the mean and standard deviation of the online reward distribution:

Algorithm 3 Online incremental update of reward factor statistics

Input: reward factorsR(= {JSD,LL,SE}), statistics {µ(k)
r , σ

(k)
r , n

(k)
r }r∈R,k∈{1,...,K}, cluster as-

signment function f
1: for r ∈ R do
2: k∗ ← f(x) ▷ Assign sample to cluster
3: vr ← r(x) ▷ Compute reward factor value
4: n

(k∗)
r ← n

(k∗)
r + 1 ▷ Update sample count

5: δ ← vr − µ
(k∗)
r ▷ Compute difference from mean

6: µ
(k∗)
r ← µ

(k∗)
r + δ/n

(k∗)
r ▷ Update mean

7: M2 ← (n
(k∗)
r − 1)(σ

(k∗)
r)2 + δ(vr − µ

(k∗)
r)

8: σ
(k∗)
r ←

√
M2/n

(k∗)
r ▷ Update standard deviation

9: end for
Output: updated statistics {µ(k)

r , σ
(k)
r , n

(k)
r }r∈R,k∈{1,...,K}

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

E EXPERIMENTAL SETTINGS

For reproducibility, you can download the checkpoints from the Huggingface repository below and
use the hyperparameters below. We utilized 4-bit quantized checkpoints in all experiments, as they
only result in around 2% performance loss while providing several-fold reductions in memory usage
and significantly improving inference speed (Frantar et al., 2022). For better output formatting to
capture a single step and convert it into an MCTS node, we used the LLM’s completion mode so we
set LLM to greedy sampling, and we don’t have to set an additional system prompt, simply apply
prompts in Appendix F. Our experiments were all conducted on exllamav2 inference framework.

E.1 CHECKPOINTS

Usage Models Links

Expert

Llama-3.1-405B https://huggingface.co/hugging-quants/Meta-Llama-3.
1-405B-Instruct-GPTQ-INT4

Llama-3.1-70B https://huggingface.co/hugging-quants/Meta-Llama-3.
1-70B-Instruct-GPTQ-INT4

Llama-3-70B https://huggingface.co/TechxGenus/
Meta-Llama-3-70B-Instruct-GPTQ

Amateur

Llama-3.1-8B https://huggingface.co/hugging-quants/Meta-Llama-3.
1-8B-Instruct-GPTQ-INT4

Llama-3-8B https://huggingface.co/astronomer/
Llama-3-8B-Instruct-GPTQ-4-Bit

Llama-3.2-1B https://huggingface.co/meta-llama/Llama-3.2-1B

OpenAI GPT-4o https://platform.openai.com/docs/models/gpt-4o

o1-mini https://platform.openai.com/docs/models/o1

Table 3: Checkpoints used in experiments and their links.

E.2 HYPERPARAMETERS

Hyperparameter Value
temperature 1.0
top-k 1.0
top-p 1.0
repetition_penalty 1.0
max_new_tokens 200
max_seq_len 32768
MCTS EOS: Llama-3 family "\n["
CoT EOS: Llama-3 family "\n", "<|eot_id|>"

Table 4: LLM Hyperparameters and EOS tokens used in experiments.

16

https://huggingface.co/hugging-quants/Meta-Llama-3.1-405B-Instruct-GPTQ-INT4
https://huggingface.co/hugging-quants/Meta-Llama-3.1-405B-Instruct-GPTQ-INT4
https://huggingface.co/hugging-quants/Meta-Llama-3.1-70B-Instruct-GPTQ-INT4
https://huggingface.co/hugging-quants/Meta-Llama-3.1-70B-Instruct-GPTQ-INT4
https://huggingface.co/TechxGenus/Meta-Llama-3-70B-Instruct-GPTQ
https://huggingface.co/TechxGenus/Meta-Llama-3-70B-Instruct-GPTQ
https://huggingface.co/hugging-quants/Meta-Llama-3.1-8B-Instruct-GPTQ-INT4
https://huggingface.co/hugging-quants/Meta-Llama-3.1-8B-Instruct-GPTQ-INT4
https://huggingface.co/astronomer/Llama-3-8B-Instruct-GPTQ-4-Bit
https://huggingface.co/astronomer/Llama-3-8B-Instruct-GPTQ-4-Bit
https://huggingface.co/meta-llama/Llama-3.2-1B
https://platform.openai.com/docs/models/gpt-4o
https://platform.openai.com/docs/models/o1

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

F BLOCKSWORLD DATASET

The Blocksworld dataset comprises 600 instances with varying block numbers and plan lengths.
Simpler instances have 3-5 blocks, while more complex cases involve up to 25 blocks, introducing
additional goals and obstacles. This setup covers a range of problem difficulties for evaluating
planning algorithms.

F.1 DIFFICULTY SETTINGS

According to settings of LLM Reasoners (Hao et al., 2024), we divide the original 600 instances of
Blocksworld (Valmeekam et al., 2024) into two parts, Easy and Hard settings.

In the Easy Blocksworld setting, we use more friendly demonstration cases. If a problem requires a
specific minimum number of steps to solve, we select other problems that require the same number
of steps as demonstration cases in the context. For example, if a problem requires at least 4 steps to
solve, we use other 4-step problems as demonstration examples. For each group of problems, we
randomly select 10 cases to create a pool of demonstration cases, while the remaining cases form
the test set (a total of 540 cases). During inference, we randomly sample 4-shot demonstration cases
from this pool to construct the prompts.

In the Hard Blocksworld setting, we randomly select 10 cases from the entire dataset to create the
demonstration pool. These selected cases are then excluded from the test set, leaving a total of 590
cases for testing. During inference, we randomly sample 4-shot demonstration cases from this global
pool, without considering the minimum number of actions required for the test case. For example,
if a problem requires at least 4 steps to solve, we may still use demonstration cases that require a
different number of steps, such as 2 or 12, as there is no restriction based on the number of actions.

domain_intro:
I am playing with a set of objects. Here are the actions I can do:
pick up a block
unstack a block from on top of another block
put down a block
stack a block on top of another block

I have the following restrictions on my actions:
To perform the Pick Up action, the block must be clear, on the table, and my hand
must be empty. Once the Pick Up action is performed, I am holding the block, and
my hand is no longer empty.

To perform the Unstack action, the block must be clear, on top of another block,
and my hand must be empty. Once the Unstack action is performed, I am holding
the block, and my hand is no longer empty.

To perform the Put Down action, I must be holding a block. Once the Put Down
action is performed, the block is on the table, my hand is empty, and the block
becomes clear.

To perform the Stack action, I must be holding a block, and the block I want to
stack it on must be clear. Once the Stack action is performed, the block is on top of
another block, my hand is empty, and the block on top is no longer clear.

Table 5: Normal Blocksworld Task Setting

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

F.2 PROMPTS SETTINGS OF EASY BLOCKSWORLD

Input Instructions:
I am playing with a set of blocks where I need to arrange the blocks into stacks. Here are the
actions I can do:

1. Pick up a block

2. Unstack a block from on top of another block

3. Put down a block

4. Stack a block on top of another block

I have the following restrictions on my actions:

1. I can only pick up or unstack one block at a time.

2. I can only pick up or unstack a block if my hand is empty.

3. I can only pick up a block if the block is on the table and the block is clear. A block
is clear if the block has no other blocks on top of it and if the block is not picked
up.

4. I can only unstack a block from on top of another block if the block I am unstacking
was really on top of the other block.

5. I can only unstack a block from on top of another block if the block I am unstacking
is clear.

Once I pick up or unstack a block, I am holding the block.

1. I can only put down a block that I am holding.

2. I can only stack a block on top of another block if I am holding the block being
stacked.

3. I can only stack a block on top of another block if the block onto which I am
stacking the block is clear.

Once I put down or stack a block, my hand becomes empty.

[STATEMENT]
As initial conditions I have that, the red block is clear, the hand is empty, the blue block is on
top of the orange block, the red block is on the table, the orange block is on the table and the
yellow block is on the table.
My goal is to have that the orange block is on top of the blue block. My plan is as follows:
[End Of STATEMENT]

[PLAN]
unstack the blue block from on top of the orange block
put down the blue block
pick up the orange block
stack the orange block on top of the blue block
[PLAN END]

[STATEMENT]
As initial conditions I have that, the red block is clear, the yellow block is clear, the hand
is empty, the red block is on top of the blue block, the yellow block is on top of the orange
block, the blue block is on the table and the orange block is on the table.
My goal is to have that the orange block is on top of the red block. My plan is as follows:
[End Of STATEMENT]

Output format:
[PLAN]
[LLM Completion]
[PLAN_END]

Table 6: The Prompt Settings for Easy Blocksworld

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

F.3 PROMPTS SETTINGS OF HARD BLOCKSWORLD

Input Instructions:
I am playing with a set of blocks where I need to arrange the blocks into stacks. Here are the
actions I can do:

1. Pick up a block

2. Unstack a block from on top of another block

3. Put down a block

4. Stack a block on top of another block

I have the following restrictions on my actions:

1. I can only pick up or unstack one block at a time.

2. I can only pick up or unstack a block if my hand is empty.

3. I can only pick up a block if the block is on the table and the block is clear. A block
is clear if the block has no other blocks on top of it and if the block is not picked
up.

4. I can only unstack a block from on top of another block if the block I am unstacking
was really on top of the other block.

5. I can only unstack a block from on top of another block if the block I am unstacking
is clear.

Once I pick up or unstack a block, I am holding the block.

1. I can only put down a block that I am holding.

2. I can only stack a block on top of another block if I am holding the block being
stacked.

3. I can only stack a block on top of another block if the block onto which I am
stacking the block is clear.

Once I put down or stack a block, my hand becomes empty.

[STATEMENT]
As initial conditions I have that, the blue block is clear, the hand is empty, the blue block is
on top of the red block, the red block is on the table, the orange block is on the table and the
yellow block is on the table.
My goal is to have that the blue block is on top of the orange block. My plan is as follows:
[End Of STATEMENT]

[PLAN]
unstack the blue block from on top of the red block
stack the blue block on top of the orange block
[PLAN END]

[STATEMENT]
As initial conditions I have that, the red block is clear, the yellow block is clear, the hand
is empty, the red block is on top of the blue block, the yellow block is on top of the orange
block, the blue block is on the table and the orange block is on the table.
My goal is to have that the orange block is on top of the red block. My plan is as follows:
[End Of STATEMENT]

Output format:
[PLAN]
[LLM Completion]
[PLAN_END]

Table 7: The Prompt Settings for Hard Blocksworld

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

G EXAMPLE TREES OF DIFFERENT c OF UCT

Figure 8: Monte Carlo Tree with origin parameter c of UCT

Figure 9: Monte Carlo Tree with our optimized parameter c of UCT

From Figure 8 and 9 we can observed that with our optimized parameter c of UCT, MCTS algorithm
in node selection decisions tends to prioritize exploring new nodes rather than repeatedly following
old paths, which may often lead to dead ends.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

H OPENAI API DATA

Difficulty Model USD per instance Total Experiment Cost (USD)

Easy (0-shot) GPT-4o $0.0032 $1.73
o1-mini $0.0136 $7.34

Easy (4-shot) GPT-4o $0.0062 $3.35
o1-mini $0.0171 $9.23

Hard (0-shot) GPT-4o $0.0032 $1.89
o1-mini $0.0177 $10.44

Hard (4-shot) GPT-4o $0.0063 $3.70
o1-mini $0.0172 $10.15

Table 8: OpenAI API cost of experiments on the Blocksworld dataset.

Figure 10: o1-mini Step Length vs Reasoning Tokens for Zero Shot in Easy Blocksworld

Figure 11: o1-mini Step Length vs Reasoning Tokens for Four Shot in Easy Blocksworld

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Figure 12: o1-mini Step Length vs Reasoning Tokens for Zero Shot in Hard Blocksworld

Figure 13: o1-mini Step Length vs Reasoning Tokens for Four Shot in Hard Blocksworld

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

I GPU USAGE

In the main experiments, the total GPU usage (measured in GPU hours) for different models on
NVIDIA H800 SXM5 80GB GPUs shows a clear progression with model size. For RAP-MCTS,
Llama-3 70B requires approximately 420 GPU hours across all steps and difficulty modes, Llama-
3.1 70B model requires approximately 450 GPU hours. For SC-MCTS∗, Llama-3 70B requires
approximately 280 GPU hours across all steps and difficulty modes and difficulty modes, Llama-3.1
70B model requires approximately 300 GPU hours. For CoT, Llama-3-70B and Llama-3.1-70B
both takes approximately 7 GPU hours across all steps and difficulty modes, while Llama-3.1 405B
model exhibits significantly higher GPU usage, amounting to approximately 75 GPU hours. In the
parameter research and algorithm development phase before main experiments, we consumed a total
of around 800 GPU hours on NVIDIA A100 SXM4 80GB GPUs.

J FUTURE WORK

In future work, we can explore utilizing more metrics-based reward models (such as the three reward
models discussed in this paper) with LM-based reward models (such as Critic LLM (McAleese et al.,
2024) and Eurus (Yuan et al., 2024b)). Additionally, there is potential to design more general methods
for splitting steps in other tasks and datasets. Since step-splitting is the most challenging part of
MCTS multi-step reasoning generalization, although we conducted extensive experiments on the
Blocksworld multi-step reasoning dataset, which is the most suitable dataset for studying MCTS
multi-step reasoning as far as we know. Some previous works have attempted to use datasets like
GSM8K and MATH through extensive adaptation efforts on the datasets themselves, however, we aim
to design a more general method from the perspective of step-splitting. We hope that MCTS multi-
step reasoning will achieve the same level of generalization as CoT, which remains a fundamental
area for future research. Future work can also attempt to combine this approach with the fine-grained
compositional reasoning framework (Chen et al., 2024) to further explore the boundaries of MCTS
multi-step reasoning capabilities.

23

	Introduction
	Related Work
	Preliminaries
	Multi-Step Reasoning
	Monte Carlo Tree Search
	Contrastive Decoding
	Speculative Decoding as "free lunch"

	Method
	Multi-Reward Design
	Node Selection Strategy
	Backpropagation

	Experiments
	Dataset
	Main Results
	Reasoning Speed
	Parameters
	Ablation Study
	Interpretability Study

	Conclusion
	Action-Level Contrastive Reward
	More Related Work
	Reward Functions Correlation
	Algorithm Details of SC-MCTS*
	Experimental Settings
	Checkpoints
	Hyperparameters

	Blocksworld Dataset
	Difficulty Settings
	Prompts Settings of Easy Blocksworld
	Prompts Settings of Hard Blocksworld

	Example Trees of Different c of UCT
	OpenAI API Data
	GPU Usage
	Future Work

