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Abstract

The problem of classifying graphs is ubiquitous in machine learning. While it
is standard to apply graph neural networks or graph kernel methods, Gaussian
processes can be employed by transforming spatial features from the graph domain
into spectral features in the Euclidean domain, and using them as the input points
of classical kernels. However, this approach currently only takes into account
features on vertices, whereas some graph datasets also support features on edges.
In this work, we present a Gaussian process-based classification algorithm that can
leverage one or both vertex and edges features. Furthermore, we take advantage of
the Hodge decomposition to better capture the intricate richness of vertex and edge
features, which can be beneficial on diverse tasks.

1 Introduction

Classification is omnipresent in machine learning, yet typically assumes data to be Euclidean.
Extending this task to non-Euclidean domains, such as graphs, presents challenges due to their
irregularity, varying sizes, and multi-site information (e.g. vertices and edges). However, classifying
graphs is of critical importance in scientific and industrial applications, being used for instance, to
predict properties of molecules, or discovering new drugs [1, 2]. Although graph neural networks
[3] are usually the model of choice for such applications, a downside is that they may require large
datasets for effective training. Gaussian processes (GP) [4], on the other hand, prove to be a data-
efficient and interpretable modelling choice. They do not need separate validation datasets to tune
hyperparameters and provide robust uncertainty estimates for predictions. This makes them ideal for
small-data scenarios and high-risk decision-making tasks that require reliable uncertainty estimates.

In a recent work, Opolka et al. [5] introduced a GP-based algorithm capable of classifying graphs.
Their method relies on tools developed from the graph signal processing literature [6], including
the spectral graph Fourier transform [7] and the spectral graph wavelet transform [8]. Specifically,
spectral graph methods use spatial graph features to compute graph spectral coefficients, which may
be leveraged to generate spectral features in the Euclidean domain. Such spectral representations
can be passed as input points to a standard GP [5], subsequently employed for classification via
approximate inference [9]. Closely related are techniques developed in the early graph neural network
literature, for instance, Spectral Networks [10] and ChebNet [11], which lean on the graph Fourier
transform and graph wavelet transform to establish a notion of convolution on graphs. While the
approach proposed in Opolka et al. [5] accommodates features living on vertices, it cannot easily
take into account features on edges. However, edge information can often be as valuable as vertex
information, representing crucial quantities such as flows [12, 13] and chemical bonds [14].

Our paper aims to fill this gap by proposing a novel GP-based classification algorithm that naturally
incorporate features on vertices, edges, and more generally, simplices, building on recent work
defining GPs on simplicial complexes [15] and cellular complexes [16]. Moreover, we utilise the
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celebrated Hodge decomposition on spatial graph features, separating and processing them into
three canonical components, each exhibiting distinct properties. This enables the modelling of these
components separately, using different kernels. This idea have been used successfully in past works
[17–20, 15], providing greater flexibility. We are not aware that these recent techniques have been
applied in the context of graph classification. We demonstrate empirically that these extensions
achieve similar or better performance than the method introduced by Opolka et al. [5]. Although we
focus on graphs, our approach can be extended easily to higher-order networks, such as simplicial
complexes, cellular complexes, and hypergraphs, which can describe polyadic interactions [21–24],
thereby generalising the dyadic interactions found in graphs (see Appendix D). We highlight that our
method can be readily adapted for regression by selecting an appropriate likelihood. Finally, although
our Hodgelet spectral features are employed in the context of Gaussian processes, they can be readily
integrated into other machine learning methods.

2 Gaussian Processes for Graph Classification

We assume a dataset containing M undirected graphs Gp1q, . . . ,GpMq and labels ypiq P Z, for
1 ď i ď M . We assign an orientation to each graph but emphasise that this choice is arbitrary.
Let Vpiq be the vertex set and Epiq be the edge set, both finite. For each graph Gpiq “ pVpiq, Epiqq,
there are N

piq
v vertices, N piq

e edges, and an incidence matrix Bpiq
ve P ZNpiq

v ˆNpiq
e . The latter encodes

the incidence between each vertex and edge, and furthermore defines the graph Laplacian Lpiq
v –

Bpiq
veB

piqJ
ve P ZNpiq

v ˆNpiq
v . By considering 3-cliques, we obtain the edge-to-triangle incidence matrix

B
piq
et P ZNpiq

e ˆN
piq
t , where N

piq
t is the number of triangles in Gpiq. Likewise, we define the graph

Helmholtzian Lpiq
e – BpiqJ

ve Bpiq
ve ` B

piq
et B

piqJ

et P ZNpiq
e ˆNpiq

e , which applies to edges rather than
vertices. We underline that Lpiq

v and Lpiq
e are instances of the discrete Hodge Laplacian (see Appendix

D.2). Let Vpiq Ñ RDv and Epiq Ñ RDe be two functions, for Dv, De P N. By introducing an
ordering on vertices and edges, we represent the preceding functions as matrices RDvˆNpiq

v and
RDeˆNpiq

e , respectively, which are understood as vertex and edge feature matrices, containing Dv

and De channels, respectively. We denote vertex features for channel 1 ď d ď Dv by the column
vector xpiq

vd P RNpiq
v and edge features for channel 1 ď d ď De by the column vector xpiq

ed P RNpiq
e .

We stress that our approach can adapt to graphs that may have vertex features, edge features, or both.

2.1 Wavelet transforms on graphs

The key idea behind our graph classification algorithm is to convert vertex and edge features from the
graph domain into spectral features in the Euclidean domain, enabling standard GP classification.
We first consider the eigendecomposition of the graph Laplacian and graph Helmholtzian

Lpiq
v “ U piq

v ΛpiqJ
v U piqJ

v , Lpiq
e “ U piq

e Λpiq
e U piqJ

e , (1)

and define graph Fourier coefficients as projections of spatial graph features onto the eigenbases,

x̂
piq
vd – U piqJ

v x
piq
vd P RNpiq

v , x̂
piq
ed – U piqJ

e x
piq
ed P RNpiq

e . (2)

We observe that x̂piq
‚d reside in the eigenspace of Lpiq

‚ . Furthermore, they are invariant to vertex and
edge ordering, making them sound choices for constructing spectral features, and they are perfectly
localised in frequency, capturing global properties of the original features. However, it is often
beneficial to also possess spatially localised information, focusing on local properties. A solution is
to compute the more flexible graph wavelet coefficients [8] (see Appendix B) by modulating Fourier
coefficients using a wavelet filter on the eigenvalues Λpiq

v and Λpiq
e , and then perform the inverse

Fourier transform. A wavelet filter is a combination of a scaling function at a single scale and a
wavelet function at multiple scales, offering multi-scale resolution. Wavelet functions, b : R Ñ R
and d : R Ñ R, operate as band-pass filters, and scaling functions, a : R Ñ R and c : R Ñ R, are
low-pass filters. A wavelet filter captures one perspective of a graph, but to obtain a comprehensive
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picture, it is essential to employ multiple wavelet filters. Wavelet filters j are defined by

wvjpλq – apαjλq `

Lv
ÿ

l“1

bpβjlλq, Θvj – tαj , βj1, . . . , βjLv
u, 1 ď j ď Wv, (3)

wejpλq – cpγjλq `

Le
ÿ

l“1

dpδjlλq, Θej – tγj , δj1, . . . , δjLe
u, 1 ď j ď We, (4)

where L‚ is the number of scales, W‚ is the number of wavelet filters, and Θ‚j is a collection of
trainable parameters controlling the scaling. Wavelet coefficients are given by

x̂
piq
vdj – U piq

v wvj

`

Λpiq
v

˘

U piqJ
v x

piq
vd P RNpiq

v , x̂
piq
edj – U piq

e wej

`

Λpiq
e

˘

U piqJ
e x

piq
ed P RNpiq

e . (5)

2.2 Hodge decomposition

The discrete Hodge decomposition [25] (see Appendix D.3) states that spatial graph feature spaces,
i.e. the spaces inhabited by x

piq
vd and x

piq
ed , can each be separated into an orthogonal sum of three

subspaces, exact, co-exact, and harmonic, collectively referred to as the Hodge subspaces. From this,
the eigenbases in (1) can be divided into sub-eigenbases, each spanning a different Hodge subspace,

U piq
v “

“

U piq
vc U

piq
vh

‰

, U piq
e “

“

U piq
ee U piq

ec U
piq
eh

‰

. (6)

We observe that U piq
v has only two components. The co-exact sub-eigenbasis U piq

vc amounts to the
non-zero eigenvectors of Lpiq

v , and the harmonic sub-eigenbasis U piq
vh to the zero ones. The exact and

co-exact sub-eigenbases U piq
ee and U piq

ec are the non-zero eigenvectors of BpiqJ
ve Bpiq

ve and B
piq
et B

piqJ

et ,
respectively. Finally, the harmonic sub-eigenbasis U

piq
eh comprises the zero eigenvectors of Lpiq

e .
For edges, the exact and co-exact components are sometimes termed gradient and curl components,
respectively, reminiscent of vector fields. A gradient part is curl-free, indicating no vortices. A curl
part is divergence-free, meaning no sources or sinks. A harmonic part is curl-free and divergence-free.

2.3 Hodgelet spectral features

We generate graph spectral features from graph wavelet coefficients and then use them in downstream
GP classification tasks (see Appendix A). By combining the wavelet transform (5) and the Hodge
decomposition (6), we compute the wavelet coefficients x̂

piq
vdjc, x̂

piq
vdjh and x̂

piq
edje, x̂

piq
edjc, x̂

piq
edjh (see

Appendix C for more details). We derive our Hodgelet spectral features by concatenating the 2-norm
of the preceding wavelet coefficients across each wavelet filter and channel, resulting in the column
vectors vpiq

c ,v
piq
h P RWvDv and e

piq
e , e

piq
c , e

piq
h P RWeDe . These spectral representations, which are

invariant to graph isomorphism, are then fed to our additive Hodgelet kernel

κ
`

Gpiq,Gpjq
˘

– κvc

`

vpiq
c ,vpjq

c

˘

` κvh

`

v
piq
h ,v

pjq

h

˘

` κee

`

epiq
e , epjq

e

˘

` κec

`

epiq
c , epjq

c

˘

` κeh

`

e
piq
h , e

pjq

h

˘

,
(7)

where κ‚‚ is a standard kernel function, such as the squared exponential kernel function. We note
that parameters Θ‚j are optimised jointly with the kernel hyperparameters and that a separate kernel
for each part of the Hodge decomposition offers greater flexibility. We highlight that our GP-based
classification algorithm supports multi-dimensional spatial graph features and graphs of varying sizes,
in contrast to typical graph kernel-based methods [26]. The GP component scales according to the
number of graphs, while the eigendecompositions are a one-off cost that can be performed in advance.

3 Experiments

The aim of the experiments is two-fold: (1) we validate the added flexibility given by the Hodge
decomposition, and (2) we demonstrate that when edge features are present, it is better to work with
edges directly rather than converting graphs to line-graphs. The latter point has been observed in
previous works [22, 15] and our experiments, across 10 seeds, further validate their conclusions.
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ENZYMES MUTAG IMDB-BINARY IMDB-MULTI ring-vs-clique sbm

WT-GP 65.00 ˘ 4.94 86.73 ˘ 4.18 74.20 ˘ 3.87 48.73 ˘ 2.76 99.5 ˘ 1.5 86.42 ˘ 6.92
WT-GP-Hodge 67.65 ˘ 6.86 88.06 ˘ 7.99 73.40 ˘ 3.04 52.09 ˘ 3.44 100.0 ˘ 0.0 88.02 ˘ 7.35

Table 1: Comparison of classification accuracy on several graph classification benchmark datasets.

Figure 1: Accuracy vs. noise level in the vector
field classification.

N WT-GP-LG WT-GP-Hodge

25 51.0 ˘ 16.4 50.0 ˘ 14.1
50 53.0 ˘ 17.9 73.0 ˘ 12.7
75 56.0 ˘ 14.3 85.0 ˘ 12.8
100 54.0 ˘ 15.0 89.0 ˘ 10.4
150 57.0 ˘ 13.5 92.0 ˘ 7.0
200 54.0 ˘ 12.0 94.0 ˘ 8.0
250 58.0 ˘ 16.6 95.0 ˘ 7.2
300 56.0 ˘ 12.8 93.5 ˘ 7.8
350 53.0 ˘ 13.3 94.8 ˘ 7.4

Table 2: Accuracy of vector field classifi-
cation.

3.1 Graph classification benchmarks

Our first experiment compares the method in Opolka et al. [5], which we refer to the wavelet-transform
GP (WT-GP), which does not use the Hodge decomposition, to our method, WT-GP-Hodge, which
employs the decomposition. In Table 1, we display the results on some standard graph classification
benchmark datasets used in Opolka et al. [5]. We observe that on all but one dataset, WT-GP-Hodge
improves the classification accuracy. This may be surprising as the Hodge decomposition for vertex
features yields only co-exact and harmonic parts, where the harmonic part is constant across the
connected components of the graph. This suggests that we can gain accuracy by separating vertex
features into a constant bias (harmonic part) and fluctuations around it (co-exact part), using different
kernels for each. However, if constant biases do not aid classification (e.g. when classes have vertex
feature of similar magnitudes), then we do not expect WT-GP-Hodge to improve over WT-GP.

3.2 Vector field classification

Our second experiment consider the task of classifying noisy vector fields, i.e. predicting whether
they are predominantly divergence-free or curl-free. We proceed by generating 100 random vector
fields, with half mostly divergence-free (Figure E.1c) and the other half mostly curl-free (Figure E.1d).
The generated vector fields are then projected onto the edges of a randomly generated triangular mesh
on a square domain with N vertices (Figure E.2). Finally, we corrupt the edge features with i.i.d.
Gaussian noise, resulting in a dataset composed of 100 oriented graphs, each containing scalar edge
features corresponding to the net flow of the vector field along the edges. Again, we compare our
method against the vanilla WT-GP classification method. However, since WT-GP does not take edge
features, we first convert graphs to line-graphs before applying it. We refer to it as WT-GP-LG. In
Table 2, we display the results of WT-GP-LG and WT-GP-Hodge for various choices of N . We see
that WT-GP-Hodge is consistently better, with large improvements as mesh resolution is increased.
On the other hand, WT-GP-LG cannot distinguish accurately between divergence-free and curl-free
fields, even as the mesh resolution becomes higher. Likely reasons: (1) the Hodge decomposition in
WT-GP-Hodge helps to discriminate more clearly between divergence-free and curl-free components,
and (2) there are properties that are canonical to edges, such as orientation, which WT-GP-Hodge can
handle naturally, whereas WT-GP-LG cannot. In Figure 1, we plot the classification accuracy with
varying noise level, which shows robustness of WT-GP-Hodge to noise compared to WT-GP-LG.
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4 Conclusion and Future Directions

We have presented a GP-based classification algorithm for classifying graphs according to one or both
vertex and edge features. By applying the graph wavelet transform to spatial graph features, we have
constructed spectral features, providing multi-resolution spectral signatures of the original features,
subsequently utilised as input points to a standard GP. Furthermore, by taking the discrete Hodge
decomposition, we have shown improvements over the method proposed by Opolka et al. [5], even
on graph datasets containing only vertex features, owing to our flexible Hodgelet kernel. Overall, we
have demonstrated that our approach effectively improves graph classification tasks by employing a
spectral perspective to capture both local and global properties of vertex and edge features. In the
future, we intend to explore extensions to higher-order networks, including simplicial complexes,
cellular complexes, and hypergraphs, which we briefly outline in Appendix D.
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A Gaussian Processes

Gaussian processes are stochastic processes that can be considered as Gaussian distributions extended
to infinite dimensions, providing a powerful non-parametric technique for modelling distributions
over functions.

More precisely, a Gaussian process over Rd is a random function f : ΩˆRd Ñ R, characterised by a
mean function µ : Rd Ñ R and a kernel function κ : Rd ˆRd Ñ R, satisfying µpxq – Erfpxqs and
κpx,x1q – Covrfpxq, fpx1qs, respectively, for any x,x1 P Rd. We denote this relation by writing
that f „ GPpµ, κq. For any finite collection of input points x1, . . . ,xM P Rd, the random vector
f “ rfpx1q, . . . , fpxM qsJ „ Npµ,Kq is jointly Gaussian, where µ “ rµpx1q, . . . , µpxM qsJ and
pKqij “ kpxi,xjq.

Gaussian processes are non-parametric in the sense that they define a distribution directly on functions
rather than on parameters of a function. This offers the advantage that a Gaussian process can generate
functions of increasing sophistication as more data are acquired, unconstrained by a predetermined
parametric structure.

For a complete presentation of Gaussian processes, we refer the reader to the book by Rasmussen
and Williams [4].

A.1 Bayesian inference paradigm

Gaussian processes are employed in the Bayesian inference paradigm:

1. A Gaussian process is defined as a prior distribution over an unknown function, capturing
our prior beliefs about the possible shapes and behaviour of this function before observing
any data.

2. A likelihood is a modelling choice representing how the functions from the prior distribution
generate the data. An essential role of the likelihood is to define the assumptions about the
data noise. By observing a dataset, the likelihood assesses the goodness of fit between our
prior beliefs and the actual observed data.

3. By combining the prior distribution and the likelihood using the celebrated Bayes’ theorem,
a posterior distribution is computed to update our beliefs about the unknown function. For
regression, a common assumption is a Gaussian likelihood, leading the posterior distribution
to be a Gaussian process again. However, for classification, the likelihood is non-Gaussian,
often Bernoulli for binary classification or categorical for multi-class classification. This
results in a posterior distribution that is intractable, meaning that it cannot be expressed in a
closed-form. In this case, it is possible to derive an approximate posterior distribution using
techniques such as variational inference.

4. By conditioning on the dataset, the posterior distribution is employed to derive the predictive
posterior distribution for new input points. The mean of this distribution serves as the
predictions, while the variance provides a measure of the uncertainty around them.

A.2 Kernel functions

Gaussian process is uniquely defined by a mean function and kernel function, which has the advantage
of being simple and interpretable. The mean function is often set to zero, i.e. µpxq “ 0, for every
x P Rd, especially after normalising the dataset since it simplifies derivations and proofs. The kernel
function is thus considered the most defining component in describing the behaviour of a Gaussian
process and measures the similarities between pairs of input points. It is important to note that a
kernel function must be a symmetric and positive semi-definite function as it defines the covariance
between two input points. Some popular choices are the square exponential kernel function (also
called radial basis function kernel)

κsepx,x1q – σ2 exp

ˆ

´
}x ´ x1}2

2ℓ2

˙

, ℓ ą 0, (8)

and the Matérn kernel function

κmatpx,x
1q – σ2 2

1´ν

Γpνq

ˆ

?
2ν

}x ´ x1}

ℓ

˙ν

Kν

ˆ

?
2ν

}x ´ x1}

ℓ

˙

, ℓ, ν ą 0, (9)
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where } ¨ } is the 2-norm, Γ the gamma function, and Kν the modified Bessel function of the second
kind. We observe that for ν Ñ 8, the Matérn kernel function converges to the square exponential
kernel function.

The parameters of a kernel function are called hyperparameters and they are typically optimised by
maximum marginal likelihood estimation.

A.3 Computational cost and memory requirements

When the likelihood is Gaussian, a closed form expression of the posterior exists and computing it
requires inverting a N ˆN Gram matrix, where N is the number of training input points. This results
to a cubic computational complexity OpN3q and quadratic memory requirements OpN2q. Fortunately,
sparse Gaussian processes [27] have been devised to alleviate this large computational expense by
constructing a smaller training dataset consisting of M pseudo input points, called inducing points,
where M ! N . This technique leads to a computational complexity OpNM2 ` M3q and memory
requirements OpMNq. The sparse variational Gaussian process in [28] further extends this to
non-Gaussian likelihood settings by means of stochastic variational inference (see also [29] for a
variational approximation without using inducing points). This can be used to compute approximate
posteriors in the setting of classification problems.

B Spectral Analysis

Spectral analysis is a set of tools for analysing and manipulating signals according to their constituent
frequencies. These methods have found numerous applications in disciplines as diverse as telecom-
munications, physics, chemistry, signal processing, quantitative finance and, of course, machine
learning.

Suppose a continuous function f : R Ñ R representing a signal function. This signal function can be
expressed as a superposition of sinusoidal plane waves ei2πξx at different frequencies ξ,

fpxq –

ż 8

´8

f̂pξqei2πξxdξ, (10)

where f̂pξq is the Fourier transform of f ,

f̂pξq –

ż 8

´8

fpxqe´i2πξxdx. (11)

The absolute value |f̂pξq| represents the amplitude of ξ, reflecting the strength in the original signal of
the sinusoidal plane wave associated to ξ. The transformed function f̂ makes it possible to explore the
importance of specific frequencies, revealing insights into patterns, periodicities and trends that may
not be apparent from examining the original signal f . We observe that this integral transform does
not lose information. Indeed, the function f can be recovered from (11) using the inverse Fourier
transform (10). The collection of sinusoidal plane waves tei2πξxuξ are orthonormal and commonly
called the Fourier basis.

Fourier transform and Laplacian. There are important connections between the Fourier transform
and the Laplacian. The Laplacian ∆f is the divergence of the gradient of f ,

∆f – ∇ ¨ ∇f. (12)

It turns out that the Fourier basis function ei2πξx is the generalised eigenfunction of ∆f associated
to the eigenvalue λ “ ´p2πq2|ξ|2. We note that small eigenvalues correspond to small frequencies,
and large eigenvalues to large frequencies. Consequently, the eigenvalues of the Laplacian are good
surrogates for the frequencies.

B.1 Graph wavelet transform

The notion of Fourier transform can be adapted to graphs. Let x P RN be a column vector representing
a discrete signal on the N vertices of a graph. The eigendecomposition of the graph Laplacian is
given by

L “ UΛUJ. (13)

9



Similar to the continuous case, the eigenvector matrix U is referred to as the graph Fourier basis,
and we consider the eigenvalues of L as the graph frequencies.

The graph Fourier transform UT performs a projection of the signal onto the graph Fourier basis,
thus producing a finite number of Fourier coefficients

x̂ – UJx P RN . (14)

We see that the Fourier coefficients belong to the eigenspace of the graph Laplacian. They provide
complete localisation in terms of frequency, meaning that every frequency is represented and its
contribution to the original signal can be identified, the n-th component of x̂ is associated to the n-th
frequency. By contrast, the original signal offers complete resolution in space (or time), making it
possible to determine how the signal varies across the vertices. In other words, the n-th component
of x is associated to the n-th vertex. However, it is often advantageous not to be limited to just one
or the other. The spectral graph wavelet transform offers multi-scale resolution, allowing a more
balanced analysis between the spatial and frequency domains. Instead of sinusoidal plane waves, it
employs the more general notion of wavelets. A wavelet can be scaled and translated, meaning that it
can be tuned to capture localised changes in space. By contrast, a sinusoidal plane wave is uniform
and extend across the entire signal.

The idea behind wavelet transform is to derive the wavelet coefficients from the Fourier coefficients by
applying a wavelet filter w : R Ñ R on the eigenvalues of the graph Laplacian and then performing
the inverse Fourier transform,

x̂ – UwpΛqUJx. (15)

A wavelet filter is a combination of a scaling function a : R Ñ R at the scale α and a wavelet function
b : R Ñ R at L different scales βl,

wpλq – apαλq `

L
ÿ

l“1

bpβlλq, Θ – tα, β1, . . . , βLu. (16)

The wavelet function at each scale represents a scaled and translated variant of a mother wavelet. The
role of the wavelet function is to serve as a band-pass filter, covering medium and high frequencies.
The scaling function is a low-pass filter, capturing low frequencies.

The reader is referred to Hammond et al. [8] for a more detailed description of the graph wavelet
transform.

Mother wavelet. A popular choice of mother wavelets is the Mexican hat wavelet, also called
Ricker wavelet. The Mexican hat wavelet is defined as the negative normalised second derivative of a
Gaussian function,

bpλq –
2

?
3σπ1{4

˜

1 ´

ˆ

λ

σ

˙2
¸

e´ λ2

2σ2 , σ ą 0. (17)

C Hodgelet spectral features

Here, we provide further details about the Hodgelet spectral features introduced in Section 2.3. By
the Hodge decomposition from Section 2.2 (more details in Appendix D.3), the wavelet coefficients
in (5) can be decomposed into exact, co-exact and harmonic terms (note that vertex features have no
exact component),

x̂
piq
vdj “

”

x̂
piq
vdjc , x̂

piq
vdjh

ıJ

, x̂
piq
edj “

”

x̂
piq
edje , x̂

piq
edjc , x̂

piq
edjh

ıJ

, (18)

where e, c, h in the last entry of the subscripts indicate exact, co-exact and harmonic components,
respectively. We also recall that the indices d, j correspond to the channel and filter dimensions,
respectively. Concretely, the components are computed as

x̂
piq
vdj‚

“ U piq
v‚wvj‚

`

Λpiq
v‚

˘

U piqJ
v‚ x

piq
vd , x̂

piq
edj‚

“ U piq
e‚ wej‚

`

Λpiq
e‚

˘

U piqJ
e‚ x

piq
ed , (19)

which follow from the orthogonality of the decomposition.
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Next, we compute the Hodgelet spectral features vpiq
‚ P RDvWv , epiq

‚ P RDeWe , which are defined by
a concatenation of the 2-norms, i.e. }x}22 :“ x2

1 ` . . . ` x2
N ,

`

vpiq
‚

˘

dj
“

›

›x̂
piq
vdj‚

›

›

2
,

`

epiq
‚

˘

dj
“

›

›x̂
piq
edj‚

›

›

2
, (20)

where the column vectors vpiq
‚ , epiq

‚ are indexed by pd, jq P t1, . . . , D‚u ˆ t1, . . . ,W‚u. We note that
the features (20) are invariant under graph isomorphism, due to the following argument.

Permutation invariance. Let us consider the vertex features for a graph Gpiq and consider a
graph isomorphism φ : Vpiq Ñ Vpiq1

, where Gpiq1

“ pVpiq1

, Epiq1

q – Gpiq. In vector representation
(i.e., considering Vpiq – RNpiq

v and Vpiq1

– RNpiq
v by introducing an ordering on the vertices), the

isomorphism is defined via a permutation matrix P piq
P RNpiq

v ˆNpiq
v , which is orthogonal, that is

P piqJP piq
“ I , and therefore norm-preserving. According to this permutation, one can check the

following transformations,

x
piq
vd

φ
ÞÑ P piqx

piq
vd , (21)

U piq
v‚

φ
ÞÑ P piqU piq

v‚P
piqJ, (22)

Λpiq
v‚

φ
ÞÑ P piqΛpiq

v‚P
piqJ. (23)

The last line also implies that wvj‚pΛpiq
v‚ q

φ
ÞÑ P piqwvj‚pΛpiq

v‚ qP piqJ, since wvj‚ is given as a
component-wise function. Then, we get

`

vpiq
‚

˘

dj
“

›

›x̂
piq
vdj‚

›

›

2
“

›

›U piq
v‚wvj‚

`

Λpiq
v‚

˘

U piqJ
v‚ x

piq
vd

›

›

2
(24)

φ
ÞÑ

›

›

`

P piqU piq
v‚P

piqJ
˘`

P piqwvj‚

`

Λpiq
v‚

˘

P piqJ
˘`

P piqU piq
v‚P

piqJ
˘

P piqx
piq
vd

›

›

2
(25)

“
›

›P piqU piq
v‚

`

P piqJP piq
˘

loooooomoooooon

“I

wvj‚

`

Λpiq
v‚

˘ `

P piqJP piq
˘

loooooomoooooon

“I

U piq
v‚

`

P piqJP piq
˘

loooooomoooooon

“I

x
piq
vd

›

›

2
(26)

“
›

›P piqU piq
v‚wvj‚

`

Λpiq
v‚

˘

U piq
v‚x

piq
vd

›

›

2
(27)

“
›

›U piq
v‚wvj‚

`

Λpiq
v‚

˘

U piq
v‚x

piq
vd

›

›

2
(28)

“
`

vpiq
‚

˘

dj
, (29)

where we used that P piq is norm-preserving to go from (27) to (28). Hence, the vertex spectral
features vpiq

‚ are invariant under graph isomorphism and by the same argument, one can show that
the edge spectral features epiq

‚ are also invariant. Altogether, the Hodgelet spectral features (20) are
well-defined features for graph inputs.

D Extension to Higher-Order Networks

Graphs can support signals on their vertices and edges, resulting in a richer structure than tabular data.
Common examples are social networks, electrical grids, citation networks, traffic maps, chemical
reaction networks, collaboration networks, and molecules. However, graphs do have an important
limitation: a graph only permits dyadic interactions between its vertices via its edges. Multiple recent
works have tackle this issue by focusing on more general structures, such as simplicial complexes,
cellular complexes and hypergraphs [30, 22, 18, 19, 16, 15, 24, 23, 31]. For a comparative illustration
between a graph, simplicial complex and a cellular complex, we refer to Figure D.1.

D.1 Simplicial complexes

Simplicial complexes represent a natural extension of graphs, and generalise the notion of vertices
and edges by using simplices or simplex in the singular. In this broader setting, vertices are referred
to as 0-simplices, and edges as 1-simplices. A 2-simplex is a triangle formed by three adjacent
vertices. We observe that this describes a triadic interaction between vertices, in other words, a
relation between three vertices. We can create simplices of arbitrary dimension k ě 0. However,

11



(a) Graph (b) Simplicial complex

(c) Cellular complex

Figure D.1: Graph, simplicial complex, and cellular complex (specifically, a polyhedral complex). A
simplicial complex cannot represent arbitrary polygons like the pentagon in (c).

the first three dimensions are often sufficient. We define a simplicial complex S “ pV, E , T q has
a structure constructed from a vertex set V , an edge set E , and a triangle set T . We say that S is a
simplicial 2-complex or a simplicial complex of dimension 2. Finally, the number of vertices, edges,
and triangles are denoted by Nv, Ne and Nt, respectively.

Orientation. So far, our simplicial complexes are undirected. However, we can give an orientation
to a simplicial complex (see Figure D.2). An oriented simplicial 2-complex has an orientation on its
edges and triangles, requiring an ordering to be imposed on its vertices. For an edge e “ tv1, v2u,
an orientation means assigning a direction, transforming e into either pv1, v2q or pv2, v1q. We notice
that an edge always has exactly two possible orientations. A triangle t “ tv1, v2, v3u similarly also
has two possible orientations, corresponding to the parity of permutations of tv1, v2, v3u. The parity
defines two equivalence classes

rpv1, v2, v3qs “ tpv1, v2, v3q, pv2, v3, v1q, pv3, v1, v2qu, (30)
rpv3, v2, v1qs “ tpv3, v2, v1q, pv2, v1, v3q, pv1, v3, v2qu, (31)

which, at an intuitive level, corresponds to orientations that are either clockwise or anti-clockwise.
We point out that although an orientation is necessary to express concepts such as edge flows, the
choice of orientation is arbitrary. Fixing an orientation is akin to converting an undirected graph into
a directed one, although they are fundamentally different since oriented graphs do not permit two
edges between the same pair of vertices, whereas directed graphs do.

Cellular complexes. A more general structure is that of cellular complexes. The treatment of
cellular complexes is similar to simplicial complexes. For more details, see Alain et al. [16]. We
could also easily handle hypergraphs by using a Laplacian on hypergraphs.

D.2 Hodge Laplacians

If one takes a step back, it becomes apparent that graphs and simplicial complexes have a chain-like
structure: vertices are connected to edges and edges are connected to triangles. More precisely, we
say that vertices have edges as their upper neighbours, edges have vertices as their lower neighbours
and triangles as their upper neighbours, and triangles have edges as their lower neighbours. This leads
us to the definition of two incidence matrices, Bve P ZNvˆNe and Bet P ZNeˆNt , sometimes called
vertex-to-edge and edge-to-triangle incidence matrices, respectively. While Bve is the incidence
matrix between vertices and edges, Bet is the incidence matrix between edges and triangles. In a
more general setting, these matrices are simply called boundary matrices and they are denoted by B1

and B2, respectively, since vertices are 1-simplices and edges are 2-simplices. This results in the
general definition of a boundary matrix Bk P ZNkˆNk`1 , where Nk is the number of k-simplices.
Note that for a simplicial K-complex, B0 “ 0 and Bk`1 “ 0. This simply means that 0-simplices
have no lower neighbours, and k-simplices have no upper neighbours. We can define a more general

12



notion of Laplacian, called the Hodge Laplacian,

Lk :“ BJ
kBk ` Bk`1B

J
k`1 P ZNkˆNk . (32)

The component BJ
kBk is sometimes called the lower Laplacian, and Bk`1B

J
k`1, the upper Lapla-

cian. We observe in particular that the graph Laplacian is nothing other than L0, and the graph
Helmholtzian is L1.

Interested readers are invited to find out more by looking at the concept of chain complex.

Cliques. A k-clique is a subset of k vertices, such that every k distinct vertices in the clique are
adjacent. Intuitively, 2-cliques are like considering triangles. Edges have no upper neighbours in
simplicial 1-complexes, i.e. graphs. Hence, the edge-to-triangle incidence matrix B2 “ 0. In
turn, this implies that the graph Helmholtzian is equal to its lower Laplacian, i.e. L1 “ BJ

1 B1.
Nevertheless, we can consider the triangles of a graph in order to have a non-zero B2 (see Figure
D.2). We can then have a complete graph Helmholtzian, i.e. L1 “ BJ

1 B1 ` B2B
J
2 .

(a) graph (b) augmented graph (c) oriented augmented graph

Figure D.2: A graph is augmented by taking its 2-cliques and then given an orientation.

D.3 Hodge decomposition

The Helmholtz decomposition is often called the fundamental theorem of vector calculus. This
famous theorem states that any 2D vector fields on a Euclidean domain can be expressed as the sum
of two orthogonal components: (1) one that intuitively has no sinks or sources, called divergence-
free or solenoidal, and (2) one that has no vortices, sometimes called curl-free or irrotational.
This decomposition extends to differential forms on manifolds and is referred to as the Hodge
decomposition. For Riemannian manifolds, we can identify differential 1-forms with vector fields
via the musical isomorphism. This implies that Hodge decomposition can be interpreted as a
decomposition of vector fields on Riemannian manifolds. The Hodge decomposition on the k-
simplex feature space RNk (for a single channel) leads to the sum of three orthogonal components:
exact, co-exact, and harmonic,

RNk “ impBk`1q ‘ impBJ
k q ‘ kerpLkq, (33)

where impBk`1q is the exact subspace, impBJ
k q is the co-exact subspace, and kerpLkq is the

harmonic subspace. Interestingly, we note that the dimension of kerpLkq is equal to the k-th Betti
number, which describe the number of k-dimensional holes. The Hodge decomposition implies the
eigendecomposition of the Hodge Laplacian,

Lk “

˜

Uke

Ukc

Ukh

¸ ˜

Λke 0 0
0 Λkc 0
0 0 Λkh

¸ ˜

Uke

Ukc

Ukh

¸J

, (34)

where pΛke,Ukeq are the non-zero eigenvalues and eigenvectors of BJ
kBk, pΛkc,Ukcq are the

non-zero eigenvalues and eigenvectors of Bk`1B
J
k`1, and pΛkh,Ukhq are the zero eigenvalues

and eigenvectors of Lk. We observe that the exact eigenbasis U0e “ 0 as B0 “ 0. Similarly,
co-exact eigenbasis Uk`1e “ 0 since Bk`1 “ 0. We also have that Uke spans impBk`1q, Ukc

spans impBJ
k q, and Ukh spans kerpLkq.
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Hodgelet kernel. In the same spirit as in Section 2.1, we compute the wavelet transform on the
k-simplex features and then obtain the wavelet spectral features. Finally, we present the Hodgelet
kernel on simplicial K-complexes,

κ
`

Spiq,Spjq
˘

–

K
ÿ

k“1

´

κke

`

s
piq
ke , s

pjq

ke

˘

` κkc

`

s
piq
kc , s

pjq

kc

˘

` κkh

`

s
piq
kh, s

pjq

kh

˘

¯

, (35)

where s
piq
k‚

for ‚ P te, c, hu are spectral features corresponding to the k-simplices. This is defined in
an analogous way to the construction detailed in Appendix C.

E Experiment Details

E.1 Graph Classification Benchmarks

We refer to Opolka et al. [5] for details on all the datasets used in this section.

E.2 Vector Field Classification Details

We provide some details about the vector field classification experiment in Section 3. To generate
a random vector field, we first sample a Gaussian process f : Ω ˆ R2 Ñ R2, and then take its
derivatives fx, fy in both spatial components. Noting that a curl-free 2D vector field is always the
gradient of a potential, we can sample an arbitrary curl-free field by taking

Xcurl-free – ∇f “ rfx, fysJ. (36)

Similarly, since a divergence-free 2D vector field is always a Hamiltonian vector field, we can choose

Xdiv-free – ∇Kf “ rfy,´fxsJ, (37)

in order to sample an arbitrary divergence-free field.

For the vector field f , we used samples of the squared-exponential Gaussian process, sampled using
its random feature approximation [32]. We display this in Figure E.1, where we plot the derivatives
fx, fy , and their combinations to yield divergence-free and curl-free fields.

Our data consist of mostly divergence-free and curl-free vector fields, which are generated by
considering the linear combination

X – λXdiv-free ` p1 ´ λqXcurl-free ` Rϵ, (38)

where λ „ Upr0.1, 0.9sq, R ą 0 is the noise level, ϵ „ N p0, 1q, and Xdiv-free,Xcurl-free generated
randomly. If λ ă 0.5, we say that the vector field X is mostly curl-free, and if λ ą 0.5, we say that
it is mostly divergence-free.

Projecting to a simplicial complex. To project a vector field X : R2 Ñ R onto the edges of a
graph, we employ the de Rham map [33], which “discretises” a vector field into edge signals. For a
given oriented edge e “ pv0, v1q P E with endpoint coordinates x0 and x1, we define the projection
Xe of X onto e by the following integral,

Xe –

ż 1

0

X
`

x0 ` tpx1 ´ x0q
˘

¨ t̂dt, (39)

where t̂ :“ x1´x0

}x1´x0}
is the unit tangent vector along the edge. Numerically, this can be computed

efficiently using numerical quadratures, owing to the fact that the integral is only defined over the
interval r0, 1s. Note that this depends on the ordering of the vertices v0 and v1 characterising the
edge – if we flip the order, then the sign of Xe flips. Thus, we require the graph to be oriented in
order for the projections tXeuePE to be well-defined. In Figure E.2, we display an example of such a
projection onto a regular triangular mesh.
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(a) Horizontal gradient fx of a GP sample
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(b) Vertical gradient fy of a GP sample
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(c) Divergence-free field pfy,´fxq

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(d) Curl-free field pfx, fyq

Figure E.1: Illustration of the random vector field data generating process.

(a) Divergence-free vector field (b) Projection onto a triangular mesh

Figure E.2: Projection of a continuous divergence-free field onto a regular triangular mesh.
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