
RefactorBench: Evaluating Stateful Reasoning in
Language Agents Through Code

Dhruv Gautam∗

UC Berkeley
Spandan Garg

Microsoft
Jinu Jang
Microsoft

Neel Sundaresan
Microsoft

Roshanak Zilouchian Moghaddam
Microsoft

Abstract

Recent advances in language model (LM) agents and function calling have enabled
autonomous, feedback-driven systems to solve problems across various digital
domains. To better understand the unique limitations of LM agents, we introduce
RefactorBench, a benchmark consisting of 100 large handcrafted multi-file refactor-
ing tasks in popular open-source repositories. Solving tasks within RefactorBench
requires thorough exploration of dependencies across multiple files and strong
adherence to relevant instructions. Every task is defined by 3 natural language in-
structions of varying specificity and is mutually exclusive, allowing for the chaining
of longer pseudo-tasks on the same repository. Baselines on RefactorBench reveal
that current LM agents struggle with simple compositional tasks, solving only 18%
of tasks with base instructions, in contrast to a human developer with short time
constraints solving 87%. Through trajectory analysis, we identify various unique
failure modes of LM agents, and further explore the failure mode of tracking past
actions. By adapting a baseline agent to condition on representations of state, we
achieve a 40.4% improvement in solving RefactorBench tasks. We further extend
our state-aware approach to encompass entire digital environments and outline
potential directions for future research. RefactorBench aims to support the study
of LM agents by providing a set of real-world, multi-hop tasks within the realm of
code.2

1 Introduction

“Repetition is the root of all software evil” — Martin Fowler

Large language models (LLMs) have been quickly acquiring new capabilities [1], leading towards
adoption of AI-powered systems in various formats and domains. The increasing usage of LLM
powered tools like Github Copilot have greatly improved the capability of developers in software
development tasks [2]. More recently, an emphasis on multi-step execution through LLM feedback
loops has unlocked the ability to solve harder problems within a variety of fields [3–5], including
parts of software engineering.

This new paradigm of solving larger software tasks has led to the construction of a variety of
new automated software engineering (ASE) systems, most being structured as LM agents [6–19].
Evaluations for such systems are currently largely comprised from real world data on Github [20, 21].
While being the strongest open-source signal for software engineering tasks at scale, Github is

∗Work done during internship at Microsoft. Correspondence to dhruvgautam@berkeley.edu
2Code available soon at: https://github.com/microsoft/RefactorBench

OWA Workshop at the 38th Conference on Neural Information Processing Systems (NeurIPS 2024).

Figure 1: RefactorBench task instances are multi-file refactors in one of 9 popular Python repositories.
Patch generations from langauge model agents are verified by custom AST unit testing that check for
the necessary file structures to match the specified refactors.

inherently noisy through its snapshot nature, also requiring strong filtration and validation testing for
reliable evaluations [22, 23]. We find that the filtration causes skewed task styles, creating a necessity
for new data to diversify coding benchmarks.

To address these challenges, we present RefactorBench, a benchmark designed to evaluate the largely
undocumented task of multi-file code refactoring in large codebases. Unlike isolated function-
level edits, multi-file refactoring requires comprehensive reasoning and composition of multiple
smaller changes. Our benchmark, RefactorBench, also allows for controlled analysis into instruction-
following through multiple instruction sets with specified and unspecified objectives. As LLMs have
been extremely proficient in function level editing over model generations [24], we find it important to
evaluate the abilities of general LM agents given that they can reliably perform core subtasks, which
we verify in RefactorBench’s thorough filtering process. With unique abstract syntax tree (AST)
based unit testing, the evaluation suite checks for a comprehensive variety of subtasks necessitated by
the core refactor without dependence on exact line match.

Through evaluations of a baseline agent on RefactorBench, we find overfitting and poor performance,
solving a maximum of 35% of tasks with our easiest instruction set. We also see a variety of unique
failure modes, many centering around LM agents struggling to track and reason about previous
actions. Similarly, extensive work in policy learning has commonly faced issues in long horizon
execution [25–27]. By editing agent interfaces, we explore introducing conditioning over state
updates, a common tactic in neural agent design, to our real world language agents and see 71%
increases in subtask completion rates.

Overall, our contributions in this work are threefold:

1. We introduce RefactorBench, a benchmark of code refactoring tasks that necessitate edits in
multiple files and reasoning based on previous actions taken.

2. We evaluate multiple open-source systems on RefactorBench and analyze three novel failure
modes isolated through differing baseline runs.

3. We construct state-aware interfaces and show improvement in the reasoning capabilities of
a modified baseline agent.

2 Background

2.1 Related work

Benchmarks SWE-bench, a benchmark consisting of GitHub issues, is the community standard for
evaluating open-ended problem-solving in code environments [20]. Our work, comparably, focuses

2

on handcrafted and underrepresented multi-file refactoring tasks, isolating unique language agent
behaviors. Unlike existing function-level code benchmarks [28, 29], which also include refactors, we
concentrate on the challenges posed by multi-file edits. Through a lazy and descriptive instruction set
to accompany base instructions, we also build on previous works that scale evaluations of LLMs’
instruction-following capabilities with lazier instructions [30]. Recent works have also focused on
evaluating repository-level code completion systems [31–33], but our work differs by evaluating larger
actions than exact line match, using generalist evaluations through AST testing. New works have also
started to benchmark LLMs across the life cycles of various engineering tasks [34–37], and recent
LM agent benchmarks have also started to evaluate for planning, reasoning, and decision-making
abilities in multi-turn generation settings [38, 39]. We combine these two threads by evaluating
on engineering tasks that necessitate multi-turn actions. Moreover, newer benchmarks have shown
that emulating differing environments can help identify unique failure modes [40, 41]. Similarly, in
RefactorBench, we find that multi-file dependencies in code provide a strong test bed for previously
unseen failure modes in LM agents.

Compositional Tasks and Memory Some benchmarks have identified modeling long-term de-
pendencies as a difficult task for core LMs [42, 39, 43, 44]. To combat this issue, many works have
targeted changes in model architecture and training [45–48]. Other works have tackled this style
of problem through augmenting LM agents to have external memory in order to learn longer term
skills after large sequences of actions [49–51, 4]. Differing from long term memory in language
agents, we largely focus on enabling concurrent reasoning and state-aware behaviors in language
agents. Comparable to this focus, many works in embodied control and small neural agents have
previously explored training and conditioning over observations about current state in multi-turn
situations [52, 26, 53–56]. We explore extending these concepts to real-world LM agents to improve
their performance.

2.2 Definitions

We generalize varied perspectives in previous literature to construct our definition of a language/LM
agent and related terms: a core LM receives an user instruction u and executes actions an using a set
of tools tm, receiving partial observations ωn. This follows a structure most similar to a partially ob-
servable Markov decision process (POMDP) [57], where the trajectory is τN = (a1, ω1, . . . , aN , ωN).
This largely matches the formalization of LM agents articulated in ToolEmu [40]. We also define
and use the words state or stateful in the context of LM agents as the nature of being dependent
on the accumulation of actions a and observations ω, though not necessarily all generated from the
LM. Importantly, stateful reasoning focuses on making decisions based on the current state, which
is partially observable and can change dynamically. Previous works in building LM agents have
recognized the importance of designing interfaces that allow the core LMs to make better decisions
for a variety of tasks [12, 58, 14, 59, 60]. We reference the design choices behind tm and it’s impact
on ωn, an as interface design.

3 RefactorBench

RefactorBench is benchmark of handcrafted multi-file refactoring tasks. The goal for each task is
to generate a patch that changes the repository to follow the rules of a specified refactor. In this
section, we describe our end-to-end process of constructing the refactoring tasks and highlight some
important features of RefactorBench.

3.1 Task construction

To design a benchmark capturing the common practice of code refactoring, we focus on including a
diversity of styles of tasks, using Fowler et al. [61] as a reference point for different styles of refactors.
As the test beds for all tasks, we first select 9 popular Python repositories that have differing overall
file structures (Table 1). We then run the below four step process on each repository:

Step 1: Localization and Filtering. We leverage LLMs to identify potential refactoring opportunities
in repositories. We iteratively prompt gpt-4o [62] with complete files from a target repository,
along with examples of various refactor types from Fowler et al. [61], requesting line numbers and
suggestions for potential refactors. We then filter through the returned sites manually to verify if

3

corresponding suggestions can be made and if the changes would affect multiple files. This process
yields a list of refactoring suggestions and their corresponding edit locations in each repository.

Step 2: Construction of Reference Solutions. To generate a prospective reference solution for each
refactor, a group of experienced Python programmers handcraft unique, related edits to the refactoring
suggestions generated in the previous step. These edits are made based on the design principle, while
concurrently using gpt-4o to verify that each core refactor is tractable by the language model.
Tractability verification is done through prompting gpt-4o with the file to edit, the design principle,
and a summary of the change needed to be made.

Step 3: Development of Testing Files. Once the tractability of the subtasks are verified, the
developers then create relevant unit tests for each overarching task. At minimum, for every core edit
verified in Step 2, a new unit test is generated that parses through the respective file’s AST and verifies
that changes have the correct broad code structure and syntax necessitated by that subtask, removing
dependence on exact-match testing (Appendix D). This iterative approach creates a breadth of tests
that comprises a necessary minimum for the total refactor. At test time, a LM agent’s generated
solution is applied to the codebase and the associated tests crafted for the task instance are then
executed. A generated patch is considered successful, if all of the relevant unit tests pass.

Step 4: Generation of Relevant Task Instructions. After reference solution and AST test creation,
the developers write a short, but comprehensive task summary to help in the instruction design phase,
what we refer to as the base instruction. In order to evaluate different degrees of instruction following
with specified and unspecified objectives, we generate two other instruction sets: lazy instruction and
descriptive instruction. These instruction sets are generated through a few-shot learning prompt with
the respective base instruction and the related unit tests (Appendix A.1).

The above four step process yielded 100 large overarching multi-file refactoring tasks and correspond-
ing tests in 9 different Python repositories. Throughout this work, we report the success on a run
based on passing all tests for a task. Table 1 and Figure 2 show a breakdown by repository and other
statistics related to the tasks.

Figure 2: Distribution of RefactorBench tasks
across 9 open source Python repositories.

Table 1: Statistics on RefactorBench tasks, repos-
itories, and AST-based unit tests.

Mean Max

Lazy Instruction Length (Words) 16.0 38
Base Instruction Length (Words) 20.6 44
Desc. Instruction Length (Words) 68.8 116

Codebase # Files 2327.6 6815
Lines 304K 1.8M

Reference Solution # Files edited 4.3 31

AST Tests # Length (Functions) 6.5 27
Length (Lines) 131.1 378

3.2 Important features

Multi-File By filtering out single-file refactors as part of our task construction process, all tasks in
RefactorBench involve multi-file edits. Our tasks edit between 2 to 31 files, with 4 files edited in our
reference solutions on average. This feature, by definition, detracts the ability of single-shot LLMs of
solving the tasks, and forces feedback-based editing systems to reason over multiple files.

Varying Instruction Sets RefactorBench offers three sets of instructions with varying degree of
descriptiveness. With multiple instruction sets, we are able to test for a breadth of types of instruction-
following and provide a way to effectively scale the difficulty of RefactorBench. The lazy instructions
match the styles of real users, where objectives are often unspecific. We also include the base
instruction which describes the task completely in a succinct manner. And through the descriptive
instruction, we are able to evaluate on an exhaustive instruction where systems are given insights on
what they will be tested on, a theoretical upper bound on performance.

Subtask AST Testing In RefactorBench, unit tests for each task are designed to cover various
subtasks the LM agent needs to accomplish. During the test construction process, we separate the

4

unit tests to break apart the behavior of subtasks within tasks. This makes understanding the failures
within patches an interpretable and quick process. For instance, one can evaluate which files the
agent makes edits in, giving more comprehensive understanding of the order of tasks and proximity
to a correct solution. RefactorBench’s unit tests comprise of 2 to 27 subtests, with an average of 6.51
tests per task. See Appendix D for an example test file and Appendix E for multiple test outputs seen
through the lens of this subtask testing format on RefactorBench.

Tractability Through verification steps during task construction, we also make sure that all the core
edits are feasible by frontier models at the time of writing. Due to this, our refactors have stronger
signal on evaluating the reasoning behaviors between function calls of LLM feedback loops rather
than the broad open-ended task of generating passing code changes. Similarly, previous work has also
recognized the importance of focusing agent benchmarks to interpretable subtasks [63, 39, 64, 22].
Overall, this tractability requirement allows for a more dedicated focus on evaluating the stateful
reasoning abilities of LM agents.

4 Experiments

In this section, we explain our approaches to evaluate language agents on RefactorBench. All main
studies are done on SWE-agent, which is the highest performing open-source agent framework on
the full SWE-bench split at the time of writing. SWE-agent also structurally follows our earlier
definition of a POMDP-based LM agent [12, 20], while other agents sample from multiple agents
[14], weakening ablation studies. Often, due to costs and rate limits on model endpoints impacting
efficient ablation studies, we opt to use gpt-4 in experiments, but find that our results scale similarly
across models.

4.1 Preliminaries

Current systems have overfit to solving reproducible bugs. As a prior, we observed poor perfor-
mance for some LM agents when running them on simpler tasks in RefactorBench. Upon investigating
internal code of a few open-source LM agents, we find that their internal prompting and in-context
examples steer towards solving Github issues. This task specific prompting causes these language
agents to treat refactoring problems as bug-fixes. For instance, many systems will attempt to create
a bug reproduction script for a simple renaming task. We causate this initial finding as a result of
having a lack of benchmarks: it is hard to robustify LM agent systems without ways to evaluate
on diverse styles of tasks [65, 66]. For the rest of this work, to better understand the frontier of
capabilities within current systems, we alter internal prompts to focus on the task of refactoring. We
therefore consider these baselines as an upper bound on performance, and hope for future systems to
be designed in accordance to and evaluate over diverse styles of problems. We discuss directions for
future systems and generalist performance in Section 7.

4.2 Baselines

Figure 3: Baselines of a prompt adjusted SWE-agent with
gpt-4 and a human developer given IDE access and a
time limit of 5 minutes.

Table 2: Baseline task performance rel-
ative to instruction type. Through the
varied categories, we find that language
agents are sensitive to unspecified ob-
jectives (Lazy) and improve in perfor-
mance greatly when given information
on which files to make edits in (Descrip-
tive).

Instruction Type Resolution Rate

Lazy 12.0%
Base 18.0%
Descriptive 27.0%

5

Using a containerized framework that emulates a user file system with the target repository, we run
a baseline of SWE-agent on all RefactorBench tasks with a per instance cost limit of $10.003. We
report the percentage of completely successful task instances on each run. On the lazy, base, and
descriptive instruction sets, SWE-agent with gpt-4 solves 12%, 18%, and 27% respectively. To verify
generalization across models, we also run the descriptive baseline with claude-3.5-sonnet, which
solves 35% of the test cases completely. To contextualize this performance, we have a proficient
human developer attempt all the tasks within the benchmark, with a limit of 5 minutes per task
using the base instructions, and they solve 87% of the test cases. The average length of a successful
trajectory using gpt-4 is about 45.8 actions and the overall average length is about 58.5 actions.

Additionally, we sample 3 random solved RefactorBench instances in repositories that have 3 or more
solved, and combine their descriptive prompts to run as singular instances. We find that SWE-agent,
although able to solve the singular tasks, is unable to solve any of the longer pseudotasks. We further
discuss related results and tackle long horizon planning in later sections of this work.

5 Analysis

From manual review of trajectories on RefactorBench, we find repeating general behaviors language
agents perform. Many prior works have outlined some strengths and failures of current LM agents in
different scenarios [12, 14, 39]. As such, we focus on three novel failure modes isolated through our
baseline experiments. After large-scale human review of trajectories and developing an understanding
of failures, to confirm their prevalence on a larger scale, we use gpt-4 with reference solution diffs to
analyze unresolved trajectories and the respective test outputs as following one of the failure modes
in this section. Through this, we classify about 58% of failed trajectories are corresponding to one
of these failure modes, and in held out validation, a human reviewer agreed with the classifications
about 74% of the time.

Agents fail to find relevant locations and make applicable changes. Through our task construction,
our descriptive instructions provide information on all files that need to be edited. However, we
still observe through about 44% of the tests checking for some change, agents initialized with the
descriptive instruction did not edit the target files, although being prompted to. These results differ
from previous results that firmly found that most LM agent coding systems create patches at the
correct location, and mainly fail through incorrect implementations [15, 12]. Moreover, none of
the tasks that require changes in more than 6 files are solved in any of our baselines. These results
complement previous work evaluating planning capabilities of LLMs, where increases in constraints
correlate with decreases in performance [39, 67]. We hypothesize that the increase in files serves as a
proxy constraint and LM agents fail in both efficient exploration and composing previous actions.
We formalize the related problems of action tracking and stateful reasoning in-depth and tackle it
through state updates in Section 6.

Agents fail due to interactions that necessitate erroneous intermediate states. Our classifications
also show that 78.4% of trajectories error in a code editing step. Through analyzing these trajectories,
we commonly encounter cases where making a change that temporarily introduces errors is a
necessary step to solve the task. This is often because subsequent modifications, either within the
same file or across multiple files, are concurrently required to resolve these issues. Consequently,
the practice of automatically enforcing strict linting rules and rejecting edits based on errors proves
to be an impractical approach for scaling real world agents, even though most open-source systems
have previously found in-edit linting to significantly boost performance for bug fixing [11, 12, 14].
This identified scenario demonstrates that LM agents often imitate human forms of interaction, and
removing innate capabilities through guardrails can backfire in unintended manners. We further
discuss unobstructed LM agent interaction in Section 7.1.

Agents fail due to context flooding and losing sight of objectives. We find that agents struggle
in decision making after having commands that are rejected due to formatting issues or unexpected
output (Figure 4). In recent work defining in-context reward hacking (ICRH) [68], LLMs, through
feedback loops in small synthetic tasks, have been shown to model proxy objectives when optimizing
over some larger objective. We find, in our real world task of refactoring, that the negative effects from
ICRH are also accentuated by extensive context space being taken up by the handling of constraint
violations, deprioritizing the initial objective in a form of few-shot learning [69]. Specifically, a

3This cost is due to large token counts being necessitated with multi-file reasoning.

6

Figure 4: Visual example of a language agent having a failed function call loop showcasing the
context flooding and deprioritized objective failure mode.

common linting error edit in our tasks shows the model an average of about 1,466 tokens4: comprising
of two blocks of code, error handling prompts, and the flagged errors. We find that this lengthy
repetition for error handling function calling weakens trajectory structure. For instance, in some
trajectories, we see the agent run end after an intensive function level feedback loop is resolved, a
form of prioritizing the new objective. Language models losing sight of initial goals has recently been
tackled within single-shot code generation tasks through attention dilution [70], but we find this new
issue is more prevalent in LM agent trajectories, and is exacerbated through the context-expensive
feedback loops. We further discuss ways to approach robust trajectory reasoning in Section 7.1.

6 Towards state-aware language agents

In our analysis, we found a general issue with LM agents struggling to plan edits in the right locations.
We hypothesize that an innate limitation of the POMDP setup of LM agents is that after sufficiently
many timesteps n, due to partial observability, the LM’s understanding of the current state at such
action an becomes weaker, through divergence from the initial state before a1. In this section, we
first explore this claim through a synthetic setup and then attempt conditioning over state updates to
improve on the failure mode. We later generalize our approach to entire digital environments and
discuss the implications of state-awareness for agent interaction.

Computation of state almost linearly decreases with respect to number of actions taken. Similar
to previous work in testing entity tracking in language models [71], we test the existence of the earlier
divergence hypothesis in a synthetic setup through prompting a LM with 15 categories of preferences,
emulating a web agent. We iteratively give an increasing list of n updates to the preferences (i.e. Dogs
to Dislikes) and prompt the LM to output the updated list of preferences. Based on 125 randomly
initialized runs, we find that failures in cumulative state construction linearly scale with the amount
of actions taken (Figure 5). We show the exact setup for reproducibility in Appendix E.

6.1 State-aware interfaces

In our baseline runs, we find that agent trajectories extend long (60+), necessitating actions across
multiple files. However, real world implementations of LM agents often restrict the amount of
previous information Count(ω) in τN to a controlled number of steps5 to avoid flooding context
windows. Being able to model long term changes with limited context has been a problem space
in neural policy learning [25]. To tackle this, a recent SOTA approach in NetHack, a long horizon
video game requiring continual learning [72], used unix diff on previous observations in order to

4Using the o200k_base tokenizer on task instances within the ansible/ansible repository
5Five step observational window in the case of SWE-agent.

7

Figure 5: GPT-4 Turbo accuracy in end state
construction drops consistently over increased
iterations of actions. Prompts and examples
are available in Appendix E.

Figure 6: Comparison of a prompt adjusted SWE-
agent and a state-aware SWE-agent implementa-
tion, both using gpt-4. Sample implementation
code available in Appendix G.

keep base models on track [54]. Their results confirm the importance of continuous and efficient
modeling of state changes in environments, but also demonstrate that diff history exploits structure
that is present apriori in observations. Other works using LMs to plan for embodied systems have
found computation of state observations alongside baseline observations important for long-horizon
task planning [26]. We combine the idea of efficient modeling of state observations with previous
proven results with feedback-based interface design [12, 60], to motivate our approach: state-aware
interfaces.

Our implementation for a state-aware interface for interacting with code focuses on succinctly
representing the divergence from initialization state, which is represented through previous edit
actions. As such, before every function call, we have a cached and updated section with information
related to all previous edits, prompting the model with an understanding of the accumulation of
its own changes (Appendix G). Formally, we add a recurring externally computed state variable
σ to our POMDP, where σN is the state at timestep N, and our trajectory now follows τN =
(a1, ω1, σ1, . . . , aN , ωN , σN).

Agents with state updates have stronger performance in RefactorBench tasks. We modify
SWE-agent with gpt-4o to track and display representations of state (Appendix G). This change
boosts the agent’s overall performance on RefactorBench: an average of 40.4% increase over the
instruction sets (Figure 6). We also find a strong upwards trend in subtask completion: an average of
71% increase over the instruction sets. As our AST testing isolates unique subtasks in different files
and functions, we find that solving more subtasks is correlated with stronger stateful reasoning, the
intended goal of the state-aware interface.

6.2 State update policies

Having precomputation from the state update allows the LM to ignore computing the reconstruction
subtask when generating the next function call. We extend state-updates to generalize to entire digital
environments, not just an agent, through the construction of a state update policy.

We define our state update policy πstate as a function that manages and provides the cumulative
state information to the agent within an environment. Formally, let σN represent the current state at
timestep N derived from all prior interactions. The state update policy πstate can be expressed as a
conditional function:

πstate : (τN , σN−1, ..., σ0) → σN ,

where τN = (a1, ω1, σ1, . . . , aN−1, ωN−1, σN−1, aN , ωN) is the trajectory up to the generation of
σN , including all actions ai, observations ωi, and prior states σi.

State update policies can lead to deviations from typical sequential agent reasoning. We find
states expressed in natural language to be a natural approach to facilitate concurrent interactions
between language agents in open digital environments. Through our initial implementation of a state
update policy, we are also able to model simple external changes from a concurrent state-aware user
(Figure 7). In a simple example, we concurrently make a change with an external agent to rename a

8

Figure 7: Example flow of a language agent at some timestep N interacting with a state update policy
to generate the natural language state summary appended to the agent trajectory. The new updated
trajectory is passed to the core LM to generate the next function call and execute it.

function that the LM agent has already edited to complete it’s refactoring task. Through the state
update policy, we are able to propagate this edit information and agent is able to decide to later view
the new edit for more context (Appendix H). However, as all the tasks in RefactorBench are mutually
exclusive, we do not further evaluate on modeling conflicting objectives between agents at a larger
scale, but expand on similar directions for future work in Section 7.1.

7 Discussion

We introduce RefactorBench, a benchmark that isolates unique failure modes of LM agents through
code. Through our experiments, we find that most agents struggle at composing simple actions, and a
diverse set of task evaluations is necessary for understanding and designing generalist language agent
systems. We also show improvement on baselines through natural language representations of state
and hope that further studies within stateful reasoning in differing scenarios can aid in the a larger
understanding of the limitations of language agents.

7.1 Future Directions

Although there are many avenues to take for improving LM agents, we generalize our analysis from
our evaluations on RefactorBench tasks into two main categories.

Reasoning Through the synthetic state construction experiment, we formalize that language models
innately lose state understanding with respect to actions taken. As such, alongside our introduction
of state update policies, we hypothesize that constructing smarter ways to generalize context rather
than having the LM condition over the full trajectory is an important direction for tackling this
problem. Various recent works on gist-based memory systems within agents, collaboration through
optimizable graphs, exploration methods, skill learning, and mitigating partial observability seem
promising [73, 52, 74, 51, 75–77], but no works have tackled concrete methods to scale concurrent
state-awareness for simple agent tasks. Many new approaches to improve agent performance have
also been shown to scale up inference compute and score higher on various agent related benchmarks
[19, 65, 78, 79]. As real world refactoring results are not immediately verifiable, we find this style of
repeated sampling to be insufficient without robust critic models. We encourage future works to scale
inference time compute in language agents with open-ended tasks like those in RefactorBench.

Interaction In regards to interaction with the real world, we find that LM agents edit code in
inefficient manners and have low success rates per single edit. Many agents have switched to diff-
based editing [11, 9], which has empirically shown to be a more scalable solution. However, these
systems do not get around the issues that come with temporary error states (Section 5) and format

9

restrictions. The natural approach of full-file edits has its own distinct issues: such as generalizing for
files longer than token limits, inference speed, token cost, and context flooding. Future approaches
could attempt to intertwine full-file rewrites with speculative decoding [80] and custom trajectory
truncation schemes to limit context window flooding. Overall, even outside of code generation, we
predict this interaction problem for language agents to be of importance in varying digital domains,
and we expect interaction to be a large focus in generalist agent interface constructions, especially in
multi-agent scenarios. Our state update policy demonstrates a primitive case of agents being aware of
other actions, and we hope for future works to generalize the environment-specific policy approach
(Figure 7) in a variety of digital tasks.

7.2 Limitations

RefactorBench’s task instances are all in Python, and we hope to expand the benchmark to various
languages that are statically and dynamically typed, allowing for evaluations on more styles of
refactors. We also focus on highly used open-source Python repositories, and language models may
have a better understanding of the repositories due to their prevalence in training data. RefactorBench
also has a limited amount of task instances due to the intensive process to create a singular end-to-
end task and the necessity for quick evaluations (evaluations still takes hours with RefactorBench).
In our evaluations, we also raise the cost limit much past limits in previous works in software
engineering agents, due to the inability for agents to solve multi-file tasks quickly and cheaply. We
also find, similar to previous works, that agent runs are not deterministic and can solve differing
tasks in different runs. RefactorBench is a step forward in evaluating LM agents in robust manners
through complex task construction, but like all benchmarks, is still plagued by the possible issues
of over-fit data distributions (i.e. only refactors) [65]. To prevent this repetitive issue, we do not
release gold reference solutions (only the testing files) and we recommend evaluating software
engineering agents on multiple styles of tasks: function editing tasks, bug fixes in SWE-bench,
refactors in RefactorBench, etc. to truly define robustness in a general coding agent. Creating a
general multi-faceted evaluation suite for language models and agents interacting with code is a
compelling direction for future work.

Acknowledgments and Disclosure of Funding

We thank the entire Data&AI Group at Microsoft for feedback and valuable discussions throughout
the work. Dhruv Gautam thanks Alexander Pan, Michele Tufano, and Joe Guan for many formative
research discussions about language models, reasoning, and code generation and for feedback of an
earlier draft of the paper.

References
[1] Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece

Kamar, Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, Harsha Nori, Hamid Palangi,
Marco Tulio Ribeiro, and Yi Zhang. Sparks of artificial general intelligence: Early experiments
with gpt-4, 2023. URL https://arxiv.org/abs/2303.12712.

[2] Sida Peng, Eirini Kalliamvakou, Peter Cihon, and Mert Demirer. The impact of ai on developer
productivity: Evidence from github copilot, 2023. URL https://arxiv.org/abs/2302.
06590.

[3] Scott Reed, Konrad Zolna, Emilio Parisotto, Sergio Gomez Colmenarejo, Alexander Novikov,
Gabriel Barth-Maron, Mai Gimenez, Yury Sulsky, Jackie Kay, Jost Tobias Springenberg, Tom
Eccles, Jake Bruce, Ali Razavi, Ashley Edwards, Nicolas Heess, Yutian Chen, Raia Hadsell,
Oriol Vinyals, Mahyar Bordbar, and Nando de Freitas. A generalist agent, 2022. URL
https://arxiv.org/abs/2205.06175.

[4] Theodore R. Sumers, Shunyu Yao, Karthik Narasimhan, and Thomas L. Griffiths. Cognitive
architectures for language agents, 2024. URL https://arxiv.org/abs/2309.02427.

[5] Shunyu Yao and Karthik Narasimhan. Language agents in the digital world: Opportunities
and risks. princeton-nlp.github.io, Jul 2023. URL https://princeton-nlp.github.io/
language-agent-impact/.

10

https://arxiv.org/abs/2303.12712
https://arxiv.org/abs/2302.06590
https://arxiv.org/abs/2302.06590
https://arxiv.org/abs/2205.06175
https://arxiv.org/abs/2309.02427
https://princeton-nlp.github.io/language-agent-impact/
https://princeton-nlp.github.io/language-agent-impact/

[6] Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao Yang, Jingsen Zhang, Zhiyuan Chen,
Jiakai Tang, Xu Chen, Yankai Lin, Wayne Xin Zhao, Zhewei Wei, and Jirong Wen. A survey on
large language model based autonomous agents. Frontiers of Computer Science, 18(6), March
2024. ISSN 2095-2236. doi: 10.1007/s11704-024-40231-1. URL http://dx.doi.org/10.
1007/s11704-024-40231-1.

[7] Cognition.ai. Introducing devin, 2024. URL https://www.cognition.ai/blog/
introducing-devin.

[8] AWS Q Developer. Aws developer center, 2024. URL https://aws.amazon.com/q/
developer/.

[9] Paul Gauthier. Aider: Ai-powered coding assistant, 2024. URL https://github.com/
paul-gauthier/aider.

[10] Aide.dev. Sota on swe bench lite, 2024. URL https://aide.dev/blog/
sota-on-swe-bench-lite.

[11] Albert Örwall. Moatless tools. https://github.com/aorwall/moatless-tools, 2024.

[12] John Yang, Carlos E. Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik
Narasimhan, and Ofir Press. Swe-agent: Agent-computer interfaces enable automated software
engineering, 2024.

[13] Michele Tufano, Anisha Agarwal, Jinu Jang, Roshanak Zilouchian Moghaddam, and Neel
Sundaresan. Autodev: Automated ai-driven development, 2024. URL https://arxiv.org/
abs/2403.08299.

[14] Xingyao Wang, Boxuan Li, Yufan Song, Frank F. Xu, Xiangru Tang, Mingchen Zhuge, Jiayi Pan,
Yueqi Song, Bowen Li, Jaskirat Singh, Hoang H. Tran, Fuqiang Li, Ren Ma, Mingzhang Zheng,
Bill Qian, Yanjun Shao, Niklas Muennighoff, Yizhe Zhang, Binyuan Hui, Junyang Lin, Robert
Brennan, Hao Peng, Heng Ji, and Graham Neubig. Opendevin: An open platform for ai software
developers as generalist agents, 2024. URL https://arxiv.org/abs/2407.16741.

[15] Dong Chen, Shaoxin Lin, Muhan Zeng, Daoguang Zan, Jian-Gang Wang, Anton Cheshkov,
Jun Sun, Hao Yu, Guoliang Dong, Artem Aliev, Jie Wang, Xiao Cheng, Guangtai Liang, Yuchi
Ma, Pan Bian, Tao Xie, and Qianxiang Wang. Coder: Issue resolving with multi-agent and task
graphs, 2024. URL https://arxiv.org/abs/2406.01304.

[16] Yuntong Zhang, Haifeng Ruan, Zhiyu Fan, and Abhik Roychoudhury. Autocoderover: Au-
tonomous program improvement, 2024. URL https://arxiv.org/abs/2404.05427.

[17] Daman Arora, Atharv Sonwane, Nalin Wadhwa, Abhav Mehrotra, Saiteja Utpala, Ramakrishna
Bairi, Aditya Kanade, and Nagarajan Natarajan. Masai: Modular architecture for software-
engineering ai agents, 2024. URL https://arxiv.org/abs/2406.11638.

[18] Chunqiu Steven Xia, Yinlin Deng, Soren Dunn, and Lingming Zhang. Agentless: Demystifying
llm-based software engineering agents, 2024. URL https://arxiv.org/abs/2407.01489.

[19] Kexun Zhang, Weiran Yao, Zuxin Liu, Yihao Feng, Zhiwei Liu, Rithesh Murthy, Tian Lan, Lei
Li, Renze Lou, Jiacheng Xu, Bo Pang, Yingbo Zhou, Shelby Heinecke, Silvio Savarese, Huan
Wang, and Caiming Xiong. Diversity empowers intelligence: Integrating expertise of software
engineering agents, 2024. URL https://arxiv.org/abs/2408.07060.

[20] Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and
Karthik R Narasimhan. SWE-bench: Can language models resolve real-world github issues?
In The Twelfth International Conference on Learning Representations, 2024. URL https:
//openreview.net/forum?id=VTF8yNQM66.

[21] Beck LaBash, August Rosedale, Alex Reents, Lucas Negritto, and Colin Wiel. Res-q: Evaluating
code-editing large language model systems at the repository scale, 2024. URL https://arxiv.
org/abs/2406.16801.

11

http://dx.doi.org/10.1007/s11704-024-40231-1
http://dx.doi.org/10.1007/s11704-024-40231-1
https://www.cognition.ai/blog/introducing-devin
https://www.cognition.ai/blog/introducing-devin
https://aws.amazon.com/q/developer/
https://aws.amazon.com/q/developer/
https://github.com/paul-gauthier/aider
https://github.com/paul-gauthier/aider
https://aide.dev/blog/sota-on-swe-bench-lite
https://aide.dev/blog/sota-on-swe-bench-lite
https://github.com/aorwall/moatless-tools
https://arxiv.org/abs/2403.08299
https://arxiv.org/abs/2403.08299
https://arxiv.org/abs/2407.16741
https://arxiv.org/abs/2406.01304
https://arxiv.org/abs/2404.05427
https://arxiv.org/abs/2406.11638
https://arxiv.org/abs/2407.01489
https://arxiv.org/abs/2408.07060
https://openreview.net/forum?id=VTF8yNQM66
https://openreview.net/forum?id=VTF8yNQM66
https://arxiv.org/abs/2406.16801
https://arxiv.org/abs/2406.16801

[22] Neil Chowdhury, James Aung, Chan Jun Shern, Oliver Jaffe, Dane Sherburn, Giulio Starace,
Evan Mays, Rachel Dias, Marwan Aljubeh, Mia Glaese, Carlos E. Jimenez, John Yang, Kevin
Liu, and Aleksander Madry. Introducing swe-bench verified. https://openai.com/blog/
introducing-swe-bench-verified, August 2024.

[23] Samuel R. Bowman and George E. Dahl. What will it take to fix benchmarking in natural
language understanding?, 2021. URL https://arxiv.org/abs/2104.02145.

[24] Juyong Jiang, Fan Wang, Jiasi Shen, Sungju Kim, and Sunghun Kim. A survey on large
language models for code generation, 2024. URL https://arxiv.org/abs/2406.00515.

[25] Ulyana Piterbarg, Lerrel Pinto, and Rob Fergus. Nethack is hard to hack, 2023. URL https:
//arxiv.org/abs/2305.19240.

[26] Siwei Chen, Anxing Xiao, and David Hsu. Llm-state: Open world state representation for
long-horizon task planning with large language model, 2024. URL https://arxiv.org/
abs/2311.17406.

[27] Joey Hejna, Pieter Abbeel, and Lerrel Pinto. Improving long-horizon imitation through instruc-
tion prediction, 2023. URL https://arxiv.org/abs/2306.12554.

[28] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto,
Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul
Puri, Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke
Chan, Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad
Bavarian, Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias
Plappert, Fotios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex
Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant
Misra, Evan Morikawa, Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie
Mayer, Peter Welinder, Bob McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and
Wojciech Zaremba. Evaluating large language models trained on code, 2021. URL https:
//arxiv.org/abs/2107.03374.

[29] Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David
Dohan, Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, and Charles Sutton. Program synthesis
with large language models, 2021. URL https://arxiv.org/abs/2108.07732.

[30] Federico Cassano, Luisa Li, Akul Sethi, Noah Shinn, Abby Brennan-Jones, Anton Lozhkov,
Carolyn Jane Anderson, and Arjun Guha. Can it edit? evaluating the ability of large language
models to follow code editing instructions. In Conference on Language Modeling (COLM),
2024.

[31] Tianyang Liu, Canwen Xu, and Julian McAuley. Repobench: Benchmarking repository-level
code auto-completion systems, 2024. URL https://arxiv.org/abs/2306.03091.

[32] Anisha Agarwal, Aaron Chan, Shubham Chandel, Jinu Jang, Shaun Miller, Roshanak Zilouchian
Moghaddam, Yevhen Mohylevskyy, Neel Sundaresan, and Michele Tufano. Copilot evaluation
harness: Evaluating llm-guided software programming, 2024. URL https://arxiv.org/
abs/2402.14261.

[33] Ramakrishna Bairi, Atharv Sonwane, Aditya Kanade, Vageesh D C, Arun Iyer, Suresh
Parthasarathy, Sriram Rajamani, B. Ashok, and Shashank Shet. Codeplan: Repository-level
coding using llms and planning, 2023. URL https://arxiv.org/abs/2309.12499.

[34] Bowen Li, Wenhan Wu, Ziwei Tang, Lin Shi, John Yang, Jinyang Li, Shunyu Yao, Chen Qian,
Binyuan Hui, Qicheng Zhang, Zhiyin Yu, He Du, Ping Yang, Dahua Lin, Chao Peng, and
Kai Chen. Devbench: A comprehensive benchmark for software development, 2024. URL
https://arxiv.org/abs/2403.08604.

[35] Qian Huang, Jian Vora, Percy Liang, and Jure Leskovec. Mlagentbench: Evaluating language
agents on machine learning experimentation, 2024. URL https://arxiv.org/abs/2310.
03302.

12

https://openai.com/blog/introducing-swe-bench-verified
https://openai.com/blog/introducing-swe-bench-verified
https://arxiv.org/abs/2104.02145
https://arxiv.org/abs/2406.00515
https://arxiv.org/abs/2305.19240
https://arxiv.org/abs/2305.19240
https://arxiv.org/abs/2311.17406
https://arxiv.org/abs/2311.17406
https://arxiv.org/abs/2306.12554
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2306.03091
https://arxiv.org/abs/2402.14261
https://arxiv.org/abs/2402.14261
https://arxiv.org/abs/2309.12499
https://arxiv.org/abs/2403.08604
https://arxiv.org/abs/2310.03302
https://arxiv.org/abs/2310.03302

[36] Tianbao Xie, Danyang Zhang, Jixuan Chen, Xiaochuan Li, Siheng Zhao, Ruisheng Cao,
Toh Jing Hua, Zhoujun Cheng, Dongchan Shin, Fangyu Lei, Yitao Liu, Yiheng Xu, Shuyan
Zhou, Silvio Savarese, Caiming Xiong, Victor Zhong, and Tao Yu. Osworld: Benchmarking
multimodal agents for open-ended tasks in real computer environments, 2024. URL https:
//arxiv.org/abs/2404.07972.

[37] Jun Shern Chan, Neil Chowdhury, Oliver Jaffe, James Aung, Dane Sherburn, Evan Mays, Giulio
Starace, Kevin Liu, Leon Maksin, Tejal Patwardhan, Lilian Weng, and Aleksander Mądry.
Mle-bench: Evaluating machine learning agents on machine learning engineering, 2024. URL
https://arxiv.org/abs/2410.07095.

[38] Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu Lei, Hanyu Lai, Yu Gu, Hangliang Ding,
Kaiwen Men, Kejuan Yang, Shudan Zhang, Xiang Deng, Aohan Zeng, Zhengxiao Du, Chenhui
Zhang, Sheng Shen, Tianjun Zhang, Yu Su, Huan Sun, Minlie Huang, Yuxiao Dong, and Jie Tang.
Agentbench: Evaluating llms as agents, 2023. URL https://arxiv.org/abs/2308.03688.

[39] Jian Xie, Kai Zhang, Jiangjie Chen, Tinghui Zhu, Renze Lou, Yuandong Tian, Yanghua Xiao,
and Yu Su. Travelplanner: A benchmark for real-world planning with language agents, 2024.
URL https://arxiv.org/abs/2402.01622.

[40] Yangjun Ruan, Honghua Dong, Andrew Wang, Silviu Pitis, Yongchao Zhou, Jimmy Ba, Yann
Dubois, Chris J Maddison, and Tatsunori Hashimoto. Identifying the risks of lm agents with an
lm-emulated sandbox. In The Twelfth International Conference on Learning Representations,
2024.

[41] Shunyu Yao, Noah Shinn, Pedram Razavi, and Karthik Narasimhan. τ -bench: A benchmark
for tool-agent-user interaction in real-world domains, 2024. URL https://arxiv.org/abs/
2406.12045.

[42] Yi Tay, Mostafa Dehghani, Samira Abnar, Yikang Shen, Dara Bahri, Philip Pham, Jinfeng
Rao, Liu Yang, Sebastian Ruder, and Donald Metzler. Long range arena : A benchmark for
efficient transformers. In International Conference on Learning Representations, 2021. URL
https://openreview.net/forum?id=qVyeW-grC2k.

[43] Zihao Wang, Shaofei Cai, Anji Liu, Yonggang Jin, Jinbing Hou, Bowei Zhang, Haowei Lin,
Zhaofeng He, Zilong Zheng, Yaodong Yang, Xiaojian Ma, and Yitao Liang. Jarvis-1: Open-
world multi-task agents with memory-augmented multimodal language models, 2023. URL
https://arxiv.org/abs/2311.05997.

[44] Jinhyuk Lee, Anthony Chen, Zhuyun Dai, Dheeru Dua, Devendra Singh Sachan, Michael
Boratko, Yi Luan, Sébastien M. R. Arnold, Vincent Perot, Siddharth Dalmia, Hexiang Hu,
Xudong Lin, Panupong Pasupat, Aida Amini, Jeremy R. Cole, Sebastian Riedel, Iftekhar Naim,
Ming-Wei Chang, and Kelvin Guu. Can long-context language models subsume retrieval, rag,
sql, and more?, 2024. URL https://arxiv.org/abs/2406.13121.

[45] Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured
state spaces, 2022. URL https://arxiv.org/abs/2111.00396.

[46] Hao Liu, Matei Zaharia, and Pieter Abbeel. Ring attention with blockwise transformers for
near-infinite context, 2023. URL https://arxiv.org/abs/2310.01889.

[47] Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces,
2024. URL https://arxiv.org/abs/2312.00752.

[48] Zheyang Xiong, Vasilis Papageorgiou, Kangwook Lee, and Dimitris Papailiopoulos. From
artificial needles to real haystacks: Improving retrieval capabilities in llms by finetuning on
synthetic data, 2024. URL https://arxiv.org/abs/2406.19292.

[49] Gabriel Sarch, Yue Wu, Michael J. Tarr, and Katerina Fragkiadaki. Open-ended instructable
embodied agents with memory-augmented large language models, 2023. URL https://
arxiv.org/abs/2310.15127.

13

https://arxiv.org/abs/2404.07972
https://arxiv.org/abs/2404.07972
https://arxiv.org/abs/2410.07095
https://arxiv.org/abs/2308.03688
https://arxiv.org/abs/2402.01622
https://arxiv.org/abs/2406.12045
https://arxiv.org/abs/2406.12045
https://openreview.net/forum?id=qVyeW-grC2k
https://arxiv.org/abs/2311.05997
https://arxiv.org/abs/2406.13121
https://arxiv.org/abs/2111.00396
https://arxiv.org/abs/2310.01889
https://arxiv.org/abs/2312.00752
https://arxiv.org/abs/2406.19292
https://arxiv.org/abs/2310.15127
https://arxiv.org/abs/2310.15127

[50] Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao.
Reflexion: Language agents with verbal reinforcement learning. Advances in Neural Information
Processing Systems, 36, 2023.

[51] Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan,
and Anima Anandkumar. Voyager: An open-ended embodied agent with large language models,
2023. URL https://arxiv.org/abs/2305.16291.

[52] Siddharth Nayak, Adelmo Morrison Orozco, Marina Ten Have, Vittal Thirumalai, Jackson
Zhang, Darren Chen, Aditya Kapoor, Eric Robinson, Karthik Gopalakrishnan, James Harrison,
Brian Ichter, Anuj Mahajan, and Hamsa Balakrishnan. Long-horizon planning for multi-agent
robots in partially observable environments, 2024. URL https://arxiv.org/abs/2407.
10031.

[53] Boyuan Wang, Yun Qu, Yuhang Jiang, Jianzhun Shao, Chang Liu, Wenming Yang, and Xi-
angyang Ji. Llm-empowered state representation for reinforcement learning, 2024. URL
https://arxiv.org/abs/2407.13237.

[54] Ulyana Piterbarg, Lerrel Pinto, and Rob Fergus. diff history for neural language agents, 2024.
URL https://arxiv.org/abs/2312.07540.

[55] Belinda Z. Li, Maxwell Nye, and Jacob Andreas. Language modeling with latent situations,
2022. URL https://arxiv.org/abs/2212.10012.

[56] Pol Moreno, Edward Hughes, Kevin R. McKee, Bernardo Avila Pires, and Théophane Weber.
Neural recursive belief states in multi-agent reinforcement learning, 2021. URL https://
arxiv.org/abs/2102.02274.

[57] Leslie Pack Kaelbling, Michael L Littman, and Anthony R Cassandra. Planning and acting in
partially observable stochastic domains. Artificial Intelligence, 101(1-2):99–134, 1998.

[58] Xiangyan Liu, Bo Lan, Zhiyuan Hu, Yang Liu, Zhicheng Zhang, Wenmeng Zhou, Fei Wang,
and Michael Shieh. Codexgraph: Bridging large language models and code repositories via
code graph databases, 2024. URL https://arxiv.org/abs/2408.03910.

[59] Yadong Lu, Jianwei Yang, Yelong Shen, and Ahmed Awadallah. Omniparser for pure vision
based gui agent, 2024. URL https://arxiv.org/abs/2408.00203.

[60] Chuyi Shang, Amos You, Sanjay Subramanian, Trevor Darrell, and Roei Herzig. Traveler: A
multi-lmm agent framework for video question-answering, 2024. URL https://arxiv.org/
abs/2404.01476.

[61] Martin Fowler, Kent Beck, John Brant, William Opdyke, and Don Roberts. Refactoring:
Improving the Design of Existing Code. Addison-Wesley Professional, 2nd edition, 2018.

[62] OpenAI. Gpt-4o system card. https://openai.com/index/gpt-4o-system-card/, 2024.

[63] Marc-Alexandre Côté, Ákos Kádár, Xingdi Yuan, Ben Kybartas, Tavian Barnes, Emery Fine,
James Moore, Ruo Yu Tao, Matthew Hausknecht, Layla El Asri, Mahmoud Adada, Wendy Tay,
and Adam Trischler. Textworld: A learning environment for text-based games, 2019. URL
https://arxiv.org/abs/1806.11532.

[64] Mohit Shridhar, Xingdi Yuan, Marc-Alexandre Côté, Yonatan Bisk, Adam Trischler, and
Matthew Hausknecht. ALFWorld: Aligning Text and Embodied Environments for Interactive
Learning. In Proceedings of the International Conference on Learning Representations (ICLR),
2021. URL https://arxiv.org/abs/2010.03768.

[65] Sayash Kapoor, Benedikt Stroebl, Zachary S. Siegel, Nitya Nadgir, and Arvind Narayanan. Ai
agents that matter, 2024. URL https://arxiv.org/abs/2407.01502.

[66] Mostafa Dehghani, Yi Tay, Alexey A. Gritsenko, Zhe Zhao, Neil Houlsby, Fernando Diaz,
Donald Metzler, and Oriol Vinyals. The benchmark lottery, 2021. URL https://arxiv.org/
abs/2107.07002.

14

https://arxiv.org/abs/2305.16291
https://arxiv.org/abs/2407.10031
https://arxiv.org/abs/2407.10031
https://arxiv.org/abs/2407.13237
https://arxiv.org/abs/2312.07540
https://arxiv.org/abs/2212.10012
https://arxiv.org/abs/2102.02274
https://arxiv.org/abs/2102.02274
https://arxiv.org/abs/2408.03910
https://arxiv.org/abs/2408.00203
https://arxiv.org/abs/2404.01476
https://arxiv.org/abs/2404.01476
https://openai.com/index/gpt-4o-system-card/
https://arxiv.org/abs/1806.11532
https://arxiv.org/abs/2010.03768
https://arxiv.org/abs/2407.01502
https://arxiv.org/abs/2107.07002
https://arxiv.org/abs/2107.07002

[67] Wenlong Huang, Pieter Abbeel, Deepak Pathak, and Igor Mordatch. Language models as
zero-shot planners: Extracting actionable knowledge for embodied agents. arXiv preprint
arXiv:2201.07207, 2022.

[68] Alexander Pan, Erik Jones, Meena Jagadeesan, and Jacob Steinhardt. Feedback loops drive
in-context reward hacking in llms. arXiv, 2024.

[69] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz
Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners, 2020.
URL https://arxiv.org/abs/2005.14165.

[70] Yuan Tian and Tianyi Zhang. Selective prompt anchoring for code generation, 2024. URL
https://arxiv.org/abs/2408.09121.

[71] Najoung Kim and Sebastian Schuster. Entity tracking in language models, 2023. URL https:
//arxiv.org/abs/2305.02363.

[72] Eric Hambro, Sharada Mohanty, Dmitrii Babaev, Minwoo Byeon, Dipam Chakraborty, Edward
Grefenstette, Minqi Jiang, Daejin Jo, Anssi Kanervisto, Jongmin Kim, Sungwoong Kim,
Robert Kirk, Vitaly Kurin, Heinrich Küttler, Taehwon Kwon, Donghoon Lee, Vegard Mella,
Nantas Nardelli, Ivan Nazarov, Nikita Ovsov, Jack Parker-Holder, Roberta Raileanu, Karolis
Ramanauskas, Tim Rocktäschel, Danielle Rothermel, Mikayel Samvelyan, Dmitry Sorokin,
Maciej Sypetkowski, and Michał Sypetkowski. Insights from the neurips 2021 nethack challenge,
2022. URL https://arxiv.org/abs/2203.11889.

[73] Mingchen Zhuge, Wenyi Wang, Louis Kirsch, Francesco Faccio, Dmitrii Khizbullin, and Jürgen
Schmidhuber. Language agents as optimizable graphs, 2024. URL https://arxiv.org/
abs/2402.16823.

[74] Kuang-Huei Lee, Xinyun Chen, Hiroki Furuta, John Canny, and Ian Fischer. A human-inspired
reading agent with gist memory of very long contexts, 2024. URL https://arxiv.org/abs/
2402.09727.

[75] Jake Bruce, Ankit Anand, Bogdan Mazoure, and Rob Fergus. Learning about progress from
experts. In The Eleventh International Conference on Learning Representations, 2023. URL
https://openreview.net/forum?id=sKc6fgce1zs.

[76] Annie Xie, Logan Mondal Bhamidipaty, Evan Zheran Liu, Joey Hong, Sergey Levine, and
Chelsea Finn. Learning to explore in POMDPs with informational rewards. In Ruslan Salakhut-
dinov, Zico Kolter, Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, and Felix
Berkenkamp, editors, Proceedings of the 41st International Conference on Machine Learning,
volume 235 of Proceedings of Machine Learning Research, pages 54414–54429. PMLR, 21–27
Jul 2024. URL https://proceedings.mlr.press/v235/xie24a.html.

[77] Cameron Allen, Aaron Kirtland, Ruo Yu Tao, Sam Lobel, Daniel Scott, Nicholas Petrocelli,
Omer Gottesman, Ronald Parr, Michael L. Littman, and George Konidaris. Mitigating partial
observability in sequential decision processes via the lambda discrepancy, 2024. URL https:
//arxiv.org/abs/2407.07333.

[78] Bradley Brown, Jordan Juravsky, Ryan Ehrlich, Ronald Clark, Quoc V. Le, Christopher Ré,
and Azalia Mirhoseini. Large language monkeys: Scaling inference compute with repeated
sampling, 2024. URL https://arxiv.org/abs/2407.21787.

[79] Evan Wang, Federico Cassano, Catherine Wu, Yunfeng Bai, Will Song, Vaskar Nath, Ziwen
Han, Sean Hendryx, Summer Yue, and Hugh Zhang. Planning in natural language improves llm
search for code generation, 2024. URL https://arxiv.org/abs/2409.03733.

[80] Cursor. Editing files at 1000 tokens per second. https://www.cursor.com/blog/
instant-apply, 2024.

15

https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2408.09121
https://arxiv.org/abs/2305.02363
https://arxiv.org/abs/2305.02363
https://arxiv.org/abs/2203.11889
https://arxiv.org/abs/2402.16823
https://arxiv.org/abs/2402.16823
https://arxiv.org/abs/2402.09727
https://arxiv.org/abs/2402.09727
https://openreview.net/forum?id=sKc6fgce1zs
https://proceedings.mlr.press/v235/xie24a.html
https://arxiv.org/abs/2407.07333
https://arxiv.org/abs/2407.07333
https://arxiv.org/abs/2407.21787
https://arxiv.org/abs/2409.03733
https://www.cursor.com/blog/instant-apply
https://www.cursor.com/blog/instant-apply

A Task Construction Prompts

A.1 Prompt for Lazy Instruction

We prompt gpt-4-turbo with the handcrafted base instruction based on all the edits and this prompt
to get our lazy instruction.

Please convert the following instruction to be less specific. Do not change the
behavior of the task, but give a short, less descriptive version of the task in
human-like prose. Your final instruction should be a partial sentence and should not
instruct to run any tests. It should just describe the changes to the repository.

Do not output ANYTHING ELSE BUT THE NEW INSTRUCTION. Here is the original
instruction:

{base_instruction}

Here are examples of lazy instructions:

{few_shot_lazy}

Remember to only output the NEW LAZY INSTRUCTION CORRESPONDING TO THE BASE TASK.

A.2 Prompt for Descriptive Instruction

We prompt gpt-4-turbo with the handcrafted base instruction based on all the edits, the correspond-
ing testing file, and this prompt to get our descriptive instruction.

Please convert the following instruction to be more specific and have specific
filenames for edits (not paths). Do not change the behavior of the task, but give a
longer, more descriptive version of the task in human-like specifications. Reason
over the AST tests provided to give more information on which files could be
relevant, but do not give exact implementation details or anything related to what
generalizations the tests are looking for. Your final instruction should be around
2-3 full sentences and should not say to run any tests or anything like that. It
should just describe the changes to the repository. Do not output ANYTHING ELSE BUT
THE NEW INSTRUCTION. Here is the original instruction and its related test file:

{base_instruction}

Test File Starts Here:

{inst_test_file}

End of Test File.

Here are examples of descriptive instructions:

{few_shot_desc}

Remember to only output the NEW DESCRIPTIVE INSTRUCTION CORRESPONDING TO THE BASE
TASK.

16

B Agent Prompt Changes

B.1 Updated SWE-agent System Prompt

As described in Section 4, we alter the SWE-agent prompt to stop the agent from creating bug
reproduction scripts for refactors and focus on the style of task at hand.

SETTING: You are an autonomous programmer specializing in refactoring, and you're
working directly in the command line with a special interface.
The special interface consists of a file editor that shows you WINDOW lines of a
file at a time.
In addition to typical bash commands, you can also use the following commands to
help you navigate and edit files.

COMMANDS:
command_docs

Please note that THE EDIT COMMAND REQUIRES PROPER INDENTATION.
If you'd like to add the line ' print(x)' you must fully write that out, with all
those spaces before the code! Indentation is important and code that is not

indented correctly will fail and require fixing before it can be run.

RESPONSE FORMAT:
Your shell prompt is formatted as follows:
(Open file: <path>) <cwd>

You need to format your output using two fields: discussion and command.
Your output should always include _one_ discussion and _one_ command field
EXACTLY as in the following example:

DISCUSSION
First I'll start by using ls to see what files are in the current directory. Then
maybe we can look at some relevant files to see what they look like.
\begin{verbatim}
ls -a
\end{verbatim}

You should only include a *SINGLE* command in the command section and then wait for
a response from the shell before continuing with more discussion and commands.
Everything you include in the DISCUSSION section will be saved for future reference.
If you'd like to issue two commands at once, PLEASE DO NOT DO THAT! Please instead
first submit just the first command, and then after receiving a response you'll be
able to issue the second command.
You're free to use any other bash commands you want (e.g. find, grep, cat, ls, cd)
in addition to the special commands listed above.
However, the environment does NOT support interactive session commands (e.g. python,
vim), so please do not invoke them.

instance_template: |-
We're currently solving the following issue within our repository. Here's the issue
text:
ISSUE:

INSTRUCTIONS:
Now, you're going to solve this refactoring issue on your own. Your terminal session
has started and you're in the repository's root directory. You can use any bash

commands or the special interface to help you. Edit all the files you need to and
run any checks or tests that you want.
Remember, YOU CAN ONLY ENTER ONE COMMAND AT A TIME. You should always wait for
feedback after every command.
When you're satisfied with all of the changes you've made, you can submit your
changes to the code base by simply running the submit command.
Note however that you cannot use any interactive session commands (e.g. python, vim)
in this environment, but you can write scripts and run them. E.g. you can write a

python script and then run it with `python <script_name>.py`.

17

NOTE ABOUT THE EDIT COMMAND: Indentation really matters! When editing a file, make
sure to insert appropriate indentation before each line!

IMPORTANT TIPS:
1. Always start by checking your working directory, cd'ing to the task repo, and
then trying to find where to do the refactor using the search tools. Do not go into
other directories like root or sys. Just go to the task repo and make edits in there
.

2. If you run a command and it doesn't work, try running a different command. A
command that did not work once will not work the second time unless you modify it!

3. If you open a file and need to get to an area around a specific line that is not
in the first 100 lines, say line 583, don't just use the scroll_down command
multiple times. Instead, use the goto 583 command. It's much quicker.

4. Always make sure to look at the currently open file and the current working
directory (which appears right after the currently open file). The currently open
file might be in a different directory than the working directory! Note that some
commands, such as 'create', open files, so they might change the current open file.

5. When editing files, it is easy to accidentally specify a wrong line number or to
write code with incorrect indentation. Always check the code after you issue an edit
to make sure that it reflects what you wanted to accomplish. If it didn't, issue

another command to fix it.

6. It may be necessary to install the repository from source before you can run code
. Please think about how to install the environment from the repository directory if
you need to do so.

7. Do not run the repo tests, just focus on comprehensively finishing the multi-file
refactor to the best of your abilities.

8. If you make a change that could have dependencies, always reason and search where
imports need to be updated and update them accordingly.

9. Do not run huge grep commands that could print out and flood the context with too
many items. If not sure, just check how many items the command will run to begin

with.

(Open file: open_file) \\
(Current directory: working_dir) \\

18

C Example Condensed Successful Trajectory

We show a portion of a successful trajectory for the refactoring task: rename-send-from-directory in
the flask repository. Full examples are available in our repository.

Base Instruction: Rename the helper function send_from_directory to send_from_directory_helper
but keep the overall flask usage as send_from_directory.

State-aware SWE-agent Run
{
"action": "ls -F\n",
"observation": "flask_refactor/\nbin@\nboot/\ndev/\netc/\nhome/\nlib@\nmedia/\
nmnt/\nopt/\nproc/\nroot/\nrun/\nsbin@\nsrv/\nsys/\ntmp/\nusr/\nvar/",
"response": "DISCUSSION\nFirst, I'll list the files in the current directory
to get an overview of the project structure. This will help me locate the '
helpers' module and the 'flask' folder where the changes need to be made.\n
```\nls -F\n```",
"state": "{\"working_dir\": \"flask_refactor\", \"open_file\": \"n/a\", \"
recent_edits\": []}",
"thought": "DISCUSSION\nFirst, I'll list the files in the current directory to
get an overview of the project structure. This will help me locate the '

helpers' module and the 'flask' folder where the changes need to be made.\n"
},
...
... (Makes changes in multiple files)
...
{
"role": "assistant",
"content": "DISCUSSION\nWe need to update the import statement for `
send_from_directory` to import `send_from_directory_helper` as `
send_from_directory`. Let's make the necessary edit.\n```\nedit 9:9\nfrom
flask.helpers import send_from_directory_helper as send_from_directory\
nend_of_edit\n```",
"thought": "DISCUSSION\nWe need to update the import statement for `
send_from_directory` to import `send_from_directory_helper` as `
send_from_directory`. Let's make the necessary edit.\n",
"action": "edit 9:9\nfrom flask.helpers import send_from_directory_helper as
send_from_directory\nend_of_edit\n",

},
{
"role": "user",
"content": "[Truncated File Output]
(Current State: ['Edited helpers.py at lines 514:514', 'Edited __init__.py at
lines 24:24', 'Edited app.py at lines 42:42', 'Edited blueprints.py at lines
9:9', 'Edited test_helpers.py at lines 9:9\\n'])
(Open file: /flask_refactor/tests/test_helpers.py)
(Current directory: flask_refactor)
bash-$",

},
{
"role": "assistant",
"content": "DISCUSSION\nThe import statement in `test_helpers.py` has been
updated. We have now made all the necessary changes to the relevant files. Let
's submit the changes to the code base.\n```\nsubmit\n```",
"thought": "DISCUSSION\nThe import statement in `test_helpers.py` has been
updated. We have now made all the necessary changes to the relevant files. Let
's submit the changes to the code base.\n",
"action": "submit\n",

}

19



D Example Test File

Here is the parameterize-gunzip.py test file for the parameterize-gunzip task:

Base instruction: Encapsulate the parameters in gunzip into a new class called GunzipParams
and update all references within the repository to create a GunzipParams object.

import unittest
import os
import ast

class TestScrapyMigration(unittest.TestCase):

def test_gunzipparams_class_exists(self):
# Path to the file where the class should be defined
file_path = '../scrapy/utils/gz.py'

# Check if the file exists
self.assertTrue(os.path.exists(file_path), f"{file_path} does not exist")

# Check if the GunzipParams class is defined in gz.py
with open(file_path, 'r') as file:

tree = ast.parse(file.read())

class_found = False
for node in ast.walk(tree):

if isinstance(node, ast.ClassDef) and node.name == 'GunzipParams':
class_found = True
break

self.assertTrue(class_found, "Class 'GunzipParams' not found in gz.py")

def test_gunzipparams_has_data_and_max_size(self):
# Path to the file where the class should be defined
file_path = '../scrapy/utils/gz.py'

# Check if the file exists
self.assertTrue(os.path.exists(file_path), f"{file_path} does not exist")

# Check if the GunzipParams class has self.data and self.max_size attributes
with open(file_path, 'r') as file:

tree = ast.parse(file.read())

class_node = None
for node in ast.walk(tree):

if isinstance(node, ast.ClassDef) and node.name == 'GunzipParams':
class_node = node
break

self.assertIsNotNone(class_node, "Class 'GunzipParams' not found in gz.py")

data_found = False
max_size_found = False
for node in ast.walk(class_node):

if isinstance(node, ast.Assign):
for target in node.targets:

if isinstance(target, ast.Attribute) and target.attr == 'data':
data_found = True

if isinstance(target, ast.Attribute) and target.attr == 'max_size
':

max_size_found = True

self.assertTrue(data_found, "Attribute 'self.data' not found in GunzipParams
class")

20



self.assertTrue(max_size_found, "Attribute 'self.max_size' not found in
GunzipParams class")

def test_gunzip_function_signature(self):
# Path to the file where the function should be defined
file_path = '../scrapy/utils/gz.py'

# Check if the file exists
self.assertTrue(os.path.exists(file_path), f"{file_path} does not exist")

# Check if the gunzip function has the correct signature
with open(file_path, 'r') as file:

tree = ast.parse(file.read())

function_found = False
for node in ast.walk(tree):

if isinstance(node, ast.FunctionDef) and node.name == 'gunzip':
# Check function parameters
args = node.args
if len(args.args) == 1 and isinstance(args.args[0].annotation, ast.
Name) and args.args[0].annotation.id == 'GunzipParams':

# Check return type
if isinstance(node.returns, ast.Name) and node.returns.id == '
bytes':

function_found = True
break

self.assertTrue(function_found, "Function 'gunzip' with signature 'def
gunzip(params: GunzipParams) -> bytes' not found in gz.py")

def test_gunzip_in_sitemapspider(self):
# Path to the file where SitemapSpider should be defined
file_path = '../scrapy/spiders/sitemap.py'

# Check if the file exists
self.assertTrue(os.path.exists(file_path), f"{file_path} does not exist")

# Check if the SitemapSpider class has a method _get_sitemap_body that uses
gunzip with GunzipParams
with open(file_path, 'r') as file:

tree = ast.parse(file.read())

sitemapspider_class = None
for node in ast.walk(tree):

if isinstance(node, ast.ClassDef) and node.name == 'SitemapSpider':
sitemapspider_class = node
break

self.assertIsNotNone(sitemapspider_class, "Class 'SitemapSpider' not found
in sitemap.py")

method_found = False
gunzip_params_used = False
for node in ast.walk(sitemapspider_class):

if isinstance(node, ast.FunctionDef) and node.name == '_get_sitemap_body
':

method_found = True
for inner_node in ast.walk(node):

if isinstance(inner_node, ast.Call) and isinstance(inner_node.func
, ast.Name) and inner_node.func.id == 'gunzip':

if len(inner_node.args) == 1:
arg = inner_node.args[0]
# Check if the argument passed to gunzip is an instance of
GunzipParams

21



if isinstance(arg, ast.Name) or (isinstance(arg, ast.
Attribute) and arg.attr == 'GunzipParams'):

gunzip_params_used = True
break

self.assertTrue(method_found, "Method '_get_sitemap_body' not found in
SitemapSpider class")
self.assertTrue(gunzip_params_used, "gunzip function inside '
_get_sitemap_body' does not use a 'GunzipParams' object as a parameter")

def test_imports_in_sitemap(self):
# Path to the file where the imports should be defined
file_path = '../scrapy/spiders/sitemap.py'

# Check if the file exists
self.assertTrue(os.path.exists(file_path), f"{file_path} does not exist")

# Check if the correct import statement is present
with open(file_path, 'r') as file:

tree = ast.parse(file.read())

imports_found = {
"GunzipParams": False,
"gunzip": False,
"gzip_magic_number": False

}

for node in ast.walk(tree):
if isinstance(node, ast.ImportFrom) and node.module == 'scrapy.utils.gz':

for alias in node.names:
if alias.name in imports_found:

imports_found[alias.name] = True

for import_name, found in imports_found.items():
self.assertTrue(found, f"Import '{import_name}' not found in sitemap.py")

def test_imports_in_test_utils_gz(self):
# Path to the test file where the imports should be defined
test_file_path = '../tests/test_utils_gz.py'

# Check if the test file exists
self.assertTrue(os.path.exists(test_file_path), f"{test_file_path} does not
exist")

# Check if the correct import statement is present
with open(test_file_path, 'r') as file:

tree = ast.parse(file.read())

imports_found = {
"GunzipParams": False,
"gunzip": False,
"gzip_magic_number": False

}

for node in ast.walk(tree):
if isinstance(node, ast.ImportFrom) and node.module == 'scrapy.utils.gz':

for alias in node.names:
if alias.name in imports_found:

imports_found[alias.name] = True

for import_name, found in imports_found.items():
self.assertTrue(found, f"Import '{import_name}' not found in
test_utils_gz.py")

def test_gunzipparams_used_in_test_utils_gz(self):

22



# Path to the test file where gunzip should be used with GunzipParams
test_file_path = '../tests/test_utils_gz.py'

# Check if the test file exists
self.assertTrue(os.path.exists(test_file_path), f"{test_file_path} does not
exist")

# Check if the gunzip function is used with GunzipParams in the test file
with open(test_file_path, 'r') as file:

tree = ast.parse(file.read())

gunzip_params_used = False
for node in ast.walk(tree):

if isinstance(node, ast.Call) and isinstance(node.func, ast.Name) and
node.func.id == 'gunzip':

if len(node.args) == 1:
arg = node.args[0]
# Check if the argument passed to gunzip is an instance of
GunzipParams
if isinstance(arg, ast.Name) or (isinstance(arg, ast.Attribute)
and arg.attr == 'GunzipParams'):

gunzip_params_used = True
break

self.assertTrue(gunzip_params_used, "gunzip function in 'test_utils_gz.py'
does not use a 'GunzipParams' object as a parameter")

def test_imports_in_test_downloadermiddleware_httpcompression(self):
# Path to the test file where the imports should be defined
test_file_path = '../tests/test_downloadermiddleware_httpcompression.py'

# Check if the test file exists
self.assertTrue(os.path.exists(test_file_path), f"{test_file_path} does not
exist")

# Check if the correct import statement is present
with open(test_file_path, 'r') as file:

tree = ast.parse(file.read())

imports_found = {
"GunzipParams": False,
"gunzip": False

}

for node in ast.walk(tree):
if isinstance(node, ast.ImportFrom) and node.module == 'scrapy.utils.gz':

for alias in node.names:
if alias.name in imports_found:

imports_found[alias.name] = True

for import_name, found in imports_found.items():
self.assertTrue(found, f"Import '{import_name}' not found in
test_downloadermiddleware_httpcompression.py")

def test_gunzipparams_used_in_httpcompression_middleware(self):
# Path to the middleware file where gunzip should be used with GunzipParams
middleware_file_path = '../scrapy/downloadermiddlewares/httpcompression.py'

# Check if the middleware file exists
self.assertTrue(os.path.exists(middleware_file_path), f"{
middleware_file_path} does not exist")

# Check if the gunzip function is used with GunzipParams in the middleware
file
with open(middleware_file_path, 'r') as file:

23



tree = ast.parse(file.read())

gunzip_params_used = False
for node in ast.walk(tree):

if isinstance(node, ast.Call) and isinstance(node.func, ast.Name) and
node.func.id == 'gunzip':

if len(node.args) == 1:
arg = node.args[0]
# Check if the argument passed to gunzip is an instance of
GunzipParams
if isinstance(arg, ast.Name) or (isinstance(arg, ast.Attribute)
and arg.attr == 'GunzipParams'):

gunzip_params_used = True
break

self.assertTrue(gunzip_params_used, "gunzip function in 'httpcompression.py'
does not use a 'GunzipParams' object as a parameter")

if __name__ == '__main__':
unittest.main()

24



E Example Test Outputs

Here are the results of running a subset of the custom AST unit tests. The outputs showcase the
subtask testing formats and the specificity in unit test function names.

Patch Evaluation Results
================================================================================
Test file: tests/django_refactor/adapt_method_mode.py
Test results: Passed
================================================================================
Test file: tests/salt_refactor/cant-create-test.py
Error: test_ex_cantcreat_isnt_used (cant-create-test.TestSaltExitCodes.
test_ex_cantcreat_isnt_used) ... FAIL
test_ex_cantcreate_in_exitcodes (cant-create-test.TestSaltExitCodes.
test_ex_cantcreate_in_exitcodes) ... ok
test_ex_cantcreate_in_ssh_py_shim (cant-create-test.TestSaltExitCodes.
test_ex_cantcreate_in_ssh_py_shim) ... FAIL
test_ex_cantcreate_is_used (cant-create-test.TestSaltExitCodes.
test_ex_cantcreate_is_used) ... FAIL
test_exitcodes_does_not_have_ex_cantcreat (cant-create-test.TestSaltExitCodes.
test_exitcodes_does_not_have_ex_cantcreat) ... ok
test_ssh_py_shim_does_not_have_ex_cantcreat (cant-create-test.TestSaltExitCodes.
test_ssh_py_shim_does_not_have_ex_cantcreat) ... FAIL
test_ssh_py_shim_does_not_import_exitcodes (cant-create-test.TestSaltExitCodes.
test_ssh_py_shim_does_not_import_exitcodes) ... ok
test_ssh_py_shim_uses_local_ex_cantcreate (cant-create-test.TestSaltExitCodes.
test_ssh_py_shim_uses_local_ex_cantcreate) ... FAIL

======================================================================
FAIL: test_ex_cantcreat_isnt_used (cant-create-test.TestSaltExitCodes.
test_ex_cantcreat_isnt_used)
----------------------------------------------------------------------
Traceback (most recent call last):
File "/refactor_repos/salt_refactor/task_test/cant-create-test.py", line 155, in
test_ex_cantcreat_isnt_used
self.assertFalse(ex_cantcreat_found, "salt.defaults.exitcodes.EX_CANTCREAT was
found in salt/client/ssh/__init__.py, but it should not be used.")

AssertionError: True is not false : salt.defaults.exitcodes.EX_CANTCREAT was found
in salt/client/ssh/__init__.py, but it should not be used.
======================================================================
FAIL: test_ex_cantcreate_in_ssh_py_shim (cant-create-test.TestSaltExitCodes.
test_ex_cantcreate_in_ssh_py_shim)
----------------------------------------------------------------------
Traceback (most recent call last):
File "/refactor_repos/salt_refactor/task_test/cant-create-test.py", line 39, in
test_ex_cantcreate_in_ssh_py_shim
self.assertTrue(ex_cantcreate_found, f"'EX_CANTCREATE' not found in {file_path
}")

AssertionError: False is not true : 'EX_CANTCREATE' not found in ../salt/client/ssh/
ssh_py_shim.py
======================================================================
FAIL: test_ex_cantcreate_is_used (cant-create-test.TestSaltExitCodes.
test_ex_cantcreate_is_used)
----------------------------------------------------------------------
Traceback (most recent call last):
File "/refactor_repos/salt_refactor/task_test/cant-create-test.py", line 131, in
test_ex_cantcreate_is_used
self.assertTrue(ex_cantcreate_found, "salt.defaults.exitcodes.EX_CANTCREATE was
not found in salt/client/ssh/__init__.py")

AssertionError: False is not true : salt.defaults.exitcodes.EX_CANTCREATE was not
found in salt/client/ssh/__init__.py
======================================================================
FAIL: test_ssh_py_shim_does_not_have_ex_cantcreat (cant-create-test.
TestSaltExitCodes.test_ssh_py_shim_does_not_have_ex_cantcreat)
----------------------------------------------------------------------

25



Traceback (most recent call last):
File "/refactor_repos/salt_refactor/task_test/cant-create-test.py", line 107, in
test_ssh_py_shim_does_not_have_ex_cantcreat
self.assertFalse(ex_cantcreat_found, f"'EX_CANTCREAT' (misspelled) found in {
file_path}")

AssertionError: True is not false : 'EX_CANTCREAT' (misspelled) found in ../salt/
client/ssh/ssh_py_shim.py
======================================================================
FAIL: test_ssh_py_shim_uses_local_ex_cantcreate (cant-create-test.TestSaltExitCodes.
test_ssh_py_shim_uses_local_ex_cantcreate)
----------------------------------------------------------------------
Traceback (most recent call last):
File "/refactor_repos/salt_refactor/task_test/cant-create-test.py", line 55, in
test_ssh_py_shim_uses_local_ex_cantcreate
self.assertTrue(ex_cantcreate_used, f"'EX_CANTCREATE' not used in {file_path}")

AssertionError: False is not true : 'EX_CANTCREATE' not used in ../salt/client/ssh/
ssh_py_shim.py

----------------------------------------------------------------------
Ran 8 tests in 0.046s
FAILED (failures=5)

================================================================================
Test file: tests/fastapi_refactor/value-is-a-sequence-test.py
Error: test_compat_file_exists (value-is-a-sequence-test.TestFastAPICompatUtils.
test_compat_file_exists) ... ok
test_import_value_is_a_sequence_in_utils (value-is-a-sequence-test.
TestFastAPICompatUtils.test_import_value_is_a_sequence_in_utils) ... FAIL
test_value_is_a_sequence_function_exists (value-is-a-sequence-test.
TestFastAPICompatUtils.test_value_is_a_sequence_function_exists) ... ok
test_value_is_sequence_function_does_not_exist (value-is-a-sequence-test.
TestFastAPICompatUtils.test_value_is_sequence_function_does_not_exist) ... ok
test_value_is_sequence_function_does_not_exist_in_utils (value-is-a-sequence-test.
TestFastAPICompatUtils.test_value_is_sequence_function_does_not_exist_in_utils) ...
ok

======================================================================
FAIL: test_import_value_is_a_sequence_in_utils (value-is-a-sequence-test.
TestFastAPICompatUtils.test_import_value_is_a_sequence_in_utils)
----------------------------------------------------------------------
Traceback (most recent call last):
File "/refactor_repos/fastapi_refactor/task_test/value-is-a-sequence-test.py",
line 75, in test_import_value_is_a_sequence_in_utils
self.assertTrue(import_found, "'value_is_a_sequence' not imported from 'fastapi.
_compat' in dependencies/utils.py")

AssertionError: False is not true : 'value_is_a_sequence' not imported from 'fastapi
._compat' in dependencies/utils.py

----------------------------------------------------------------------
Ran 5 tests in 0.026s
FAILED (failures=1)

================================================================================
Test file: tests/scrapy_refactor/add-log-parameter-xmliter.py
Test results: Passed
================================================================================

26



F State Reconstruction Experiment

We prompt gpt-4-turbo with randomly initialized and randomly changed lists of preferences. We
generate preferences through this script and simply iteratively prompt with subportions of the json.

import json
import random

def generate_random_preferences(categories, products):
return {

category: {
product: random.choice(["Likes", "Dislikes", "NA"]) for product in
products[category]

} for category in categories
}

def generate_trajectory(initial_prefs, num_actions, categories, products):
actions = ["SetPreference"]
trajectories = []
preferences = {cat: dict(initial_prefs[cat]) for cat in initial_prefs} # Deep
copy to prevent mutation

trajectory = {"actions": [], "states": {}}
for i in range(1, num_actions + 1):

category = random.choice(categories)
product = random.choice(products[category])
action_type = random.choice(actions)
old_preference = preferences[category][product] # Track old preference
new_preference = random.choice(["Likes", "Dislikes", "NA"])
while new_preference == old_preference: # Ensure the new preference is
different

new_preference = random.choice(["Likes", "Dislikes", "NA"])

details = {
"action": action_type,
"category": category,
"product": product,
#"old_preference": old_preference,
"new_preference": new_preference

}
preferences[category][product] = new_preference # Update to new preference
trajectory["actions"].append(details)

# Snapshot of system state after each action
trajectory["states"][f"Action{i}"] = {cat: dict(preferences[cat]) for cat in
preferences}

trajectories.append(trajectory)
return trajectories

def main():
categories = ["Electronics", "Books", "Clothing", "Garden", "Games"]
products = {

"Electronics": ["Laptop", "Smartphone", "Headphones"],
"Books": ["Novel", "Biography", "Science Fiction"],
"Clothing": ["Jeans", "T-Shirt", "Jacket"],
"Garden": ["Shovel", "Lawn Mower", "Gloves"],
"Games": ["Board Game", "Video Game", "Puzzle"]

}
num_initial_states = 50
trajectories_per_state = 5
actions_per_trajectory = 50 # Example, number of actions per trajectory

all_data = []

27



for _ in range(num_initial_states):
initial_prefs = generate_random_preferences(categories, products)
trajectories = []
for _ in range(trajectories_per_state):

trajectory = generate_trajectory(initial_prefs, actions_per_trajectory,
categories, products)
trajectories.extend(trajectory) # Add the generated trajectory to the
list

all_data.append({
"initial_preferences": initial_prefs,
"trajectories": trajectories

})

with open('complex_actions_states.json', 'w') as f:
json.dump(all_data, f, indent=4)

if __name__ == "__main__":
main()

Given these randomly generated actions in json, we prompt gpt-4-turbo for 125 random initializa-
tions iteratively over 0-50 actions of the generated actions. Figure 8 shows the prompt and expected
output. We are not strict with format rules, and allow minor mistakes, however, our parser requires
the larger category separations.

Here are your initial preferences on 5 different categories.
Preferences:
{ ’Electronics’: { ’Laptop’: ’Likes’, ’Smartphone’: ’Likes’, ’Headphones’: ’Dislikes’ }, ’Books’: { ’Novel’: ’Dislikes’,
’Biography’: ’NA’, ’Science Fiction’: ’Dislikes’ }, ’Clothing’: { ’Jeans’: ’Likes’, ’T-Shirt’: ’Likes’, ’Jacket’: ’Likes’
}, ’Garden’: { ’Shovel’: ’Likes’, ’Lawn Mower’: ’NA’, ’Gloves’: ’NA’ }, ’Games’: { ’Board Game’: ’Likes’, ’Video Game’:
’Likes’, ’Puzzle’: ’Likes’ } }
Here are the actions in order after that initial state:
Action 1: Electronics - Laptop to ’NA’.
...
Action N: Clothing - T-Shirt to ’NA’.
This is the end of the changes. What is the state of preferences on all categories after the actions? Format your response
EXACTLY how I formatted the input initial preferences state. Preferences:

Desired answer: { ’Electronics’: { ’Laptop’: ’NA’, ’Smartphone’: ’Likes’, ’Headphones’: ’Dislikes’ }, ’Books’: { ’Novel’:

’Dislikes’, ’Biography’: ’NA’, ’Science Fiction’: ’Dislikes’ }, ’Clothing’: { ’Jeans’: ’Likes’, ’T-Shirt’: ’NA’, ’Jacket’:

’Likes’ }, ’Garden’: { ’Shovel’: ’Likes’, ’Lawn Mower’: ’Dislikes’, ’Gloves’: ’NA’ }, ’Games’: { ’Board Game’: ’Likes’,

’Video Game’: ’Dislikes’, ’Puzzle’: ’Likes’ } }

Toy Agent Reconstruction Task

Figure 8: Example of a singular instance of the synthetic state construction task.

28



G Simple Single Agent State-Aware Implementation

As an self-contained example, we have a simple implementation of a state-aware interface contained
within a singular agent instance. This state_command tracks all it’s previous edit commands and
concatenates them in a separate section. In practice, we augment the state cache to relay more
information about related edits by integrating parts of previous observations as well.

state_command:
name: state
code: |
state() {
local working_dir="$PWD"
local open_file_info="${CURRENT_FILE:-n/a}"
local recent_edits_json='[]'

if [ -n "$RECENT_EDITS" ]; then
# Split $RECENT_EDITS into an array of edits
IFS=' | ' read -r -a edits_array <<< "$RECENT_EDITS"
declare -A seen_edits

# Filter out duplicate filename-line_number pairs
filtered_edits=()
for edit in "${edits_array[@]}"; do

filename=$(echo "$edit" | cut -d':' -f1)
line_number=$(echo "$edit" | cut -d':' -f2)

# Check if this filename:line_number pair has been seen before
if [ -z "${seen_edits["$filename:$line_number"]}" ]; then

filtered_edits+=("$edit")
seen_edits["$filename:$line_number"]=1

fi
done

# Convert the filtered edits into a JSON array
recent_edits_json=$(printf '%s\n' "${filtered_edits[@]}" | jq -R -s -c '
split("\n")')

fi

state_json=$(jq -n --arg wd "$working_dir" --arg of "$(realpath "
$open_file_info")" --argjson re "$recent_edits_json" \

'{"working_dir": $wd, "open_file": $of, "recent_edits": $re}')

echo "$state_json"
}

We also, to communicate all the recent edits, append the outputs of this state_command in every step
template through:

next_step_template: |-
{observation}
(Current State: {recent_edits})
(Open file: {open_file})
(Current directory: {working_dir})
bash-$

29



H Example State-Aware Objective Update

In this example excerpt from a trajectory, we are able to see our state-aware agent reason about
an external edit (propogated through the state-aware policy) made to the local repository it was
generating a concurrent patch for.

{
"role": "assistant",

"thought":
"DISCUSSION\nWe have found the `get_encoding_from_headers` function calls at
lines 622 and 623 in the `test_utils.py` file. Let's navigate to line 622 and
update the function calls to pass `log=False`.\n",
"action": "goto 622\n",
"agent": "primary"

},
{
"role": "user",
"content":

"[File Contents Printed, Truncated for Brevity]

(External Edits: [’Since your previous action, another user edited
adapters.py at lines 359:359
n’])

(Your Recent Edits: ['Edited utils.py at lines 542:542', 'Edited adapters.py
at lines 378:378', 'Edited adapters.py at lines 618:618\\n'])

(Open file: /requests_refactor/tests/test_utils.py)

(Current directory: requests_refactor)
bash-$",

"agent": "primary"
},
{
"role": "assistant",
"thought": "DISCUSSION\nLet's edit the function call at line 623 to pass `log=
False`. Then, let’s view the external edit in
adapters.py.",

"action":
"
edit 623:623
assert get_encoding_from_headers(value, log=False) == expected
end_of_edit
",

}

30


	Introduction
	Background
	Related work
	Definitions

	RefactorBench
	Task construction
	Important features

	Experiments
	Preliminaries
	Baselines

	Analysis
	Towards state-aware language agents
	State-aware interfaces
	State update policies

	Discussion
	Future Directions
	Limitations

	Task Construction Prompts
	Prompt for Lazy Instruction
	Prompt for Descriptive Instruction

	Agent Prompt Changes
	Updated SWE-agent System Prompt

	Example Condensed Successful Trajectory
	Example Test File
	Example Test Outputs
	State Reconstruction Experiment
	Simple Single Agent State-Aware Implementation
	Example State-Aware Objective Update

