
Published at ICLR 2025 Workshop (SCOPE)

NEUROMORPHIC PRINCIPLES FOR EFFICIENT LARGE
LANGUAGE MODELS ON INTEL LOIHI 2

Steven Abreu
University of Groningen & Intel Labs
s.abreu@rug.nl

Sumit Bam Shrestha
Intel Labs
sumit.bam.shrestha@intel.com

Rui-Jie Zhu
University of California, Santa Cruz
rzhu48@ucsc.edu

Jason Eshraghian
University of California, Santa Cruz
jsn@ucsc.edu

ABSTRACT

Large language models (LLMs) deliver impressive performance but require large
amounts of energy. In this work, we present a MatMul-free LLM architecture
adapted for Intel’s neuromorphic processor, Loihi 2. Our approach leverages
Loihi 2’s support for low-precision, event-driven computation and stateful pro-
cessing. Our hardware-aware quantized model on GPU demonstrates that a 370M-
parameter MatMul-free model can be quantized with no accuracy loss. Based on
preliminary results, we report up to 3× higher throughput with 2× less energy,
compared to transformer-based LLMs on an edge GPU, with significantly better
scaling. Further hardware optimizations will increase throughput and decrease
energy consumption. These results show the potential of neuromorphic hardware
for efficient inference and pave the way for efficient reasoning models capable of
generating complex, long-form text rapidly and cost-effectively.

1 INTRODUCTION

Large language models (LLMs) have revolutionized machine learning—but their computational and
energy demands are enormous. This challenge motivates the development of efficient and scalable
foundation models that are optimized not only algorithmically but co-designed with novel hardware
architectures. In this paper, we propose a hardware-aware approach that integrates an efficient LLM
architecture with Intel’s neuromorphic processor, Loihi 2 (Davies et al., 2021). Although originally
designed for event-based, sparse computations in spiking neural networks, Loihi 2’s support for low-
precision arithmetic and unstructured weight sparsity makes it an attractive platform for reducing
energy consumption and latency in LLM inference. See Appendix A.1 for more details on Loihi 2.

Although LLMs have been dominated by self-attention (Vaswani et al., 2017) with quadratic run-
time complexity, LLMs based on state space models (SSMs) offer linear scaling with competitive
performance (Gu & Dao, 2023). SSMs rely on element-wise recurrence (Gupta et al., 2022), and use
stateful neurons that align well with compute-near-memory architectures like Loihi 2. Advances in
quantization of LLMs (Dettmers et al., 2022; Frantar et al., 2023; Xiao et al., 2024) have culminated
in extreme quantization at scale with LLMs using binary activations (Zhu et al., 2023) or ternary
weight matrices as seen in BitNet (Ma et al., 2024), piecewise affine transformers (Kosson & Jaggi,
2023), ShiftAddLLM (You et al., 2024), and earlier work on binarized neural networks (Courbariaux
et al., 2016). Building on these ideas, Zhu et al. (2024) introduced the MatMul-free LLM, which
replaces traditional matrix multiplications (MatMuls) with ternary matrices and element-wise op-
erations, while also using a subquadratic SSM layer based on the HGRN model (Qin et al., 2023;
2024).

Loihi 2 is optimized for sequence-based processing, element-wise recurrence, low-precision arith-
metic, and weight sparsity, all of which are features of the MatMul-free model. These benefits
have been demonstrated on signal processing tasks (Orchard et al., 2021b; Shrestha et al., 2024)
with orders of magnitude better latency and efficiency than state-of-the-art solutions. This paper
presents a work-in-progress of adapting and deploying the MatMul-free language model from Zhu

1

Published at ICLR 2025 Workshop (SCOPE)

et al. (2024) to Intel Loihi 2, opening a pathway that bridges neuromorphic computing with state-
of-the-art efficient LLMs. This required a microcode implementation to map the MMF model to
Loihi 2’s architecture, along with a detailed ablation study to evaluate the optimal bit-precision for
all operators in the MMF model. We are able to run the MMF model fully on-chip, using fixed-point
arithmetic to optimize for energy and latency.

2 MODEL ARCHITECTURE

The model architecture is based on the 370M parameter1 MatMul-free language model (Zhu et al.,
2024). It uses a combination of ternary weights and specialized layers to replace all matrix multipli-
cations with additions, bit shifts, and elementwise operators. The overall model architecture follows
the Metaformer (Yu et al., 2022) paradigm, consisting of alternating token mixers and channel mix-
ers. Figure 1 provides a high-level overview of this structure.

+

HGRN block

MLP block HGRN block

RMSNorm + BitLinear Linear

lm_head

…

Block 1

Embedding

Block N

Block

Matrix operation Element-wise operation

RMSNorm

RMSNorm

MLP block

Wg Wu

Wd

Wg Wf Wc

Wo

SiLU

•

σ SiLURMS

•

+ht−1 ht•

SiLU•

Figure 1: Model architecture of the MatMul-free language model from Zhu et al. (2024).

The model introduces two key innovations. The BitLinear Layer combines a ternarized linear
transformation with a preceding RMSNorm operation, to stabilize the activation distribution (Ma
et al., 2024; Zhang et al., 2023; Zhu et al., 2024). Formally, the input vector x ∈ Rd (where d =

1, 024 for the 370M model), W ∈ {−c, 0, c}d×d′
is the ternary weight matrix with a scaling factor

c ∈ R. The RMSNorm (Zhang & Sennrich, 2019) and subsequent BitLinear layer are implemented
as:

RMSNorm(x; g, ϵ) =
x√

ϵ+
∑d

i x
2
i

⊙ g (1)

BitLinear(x;W, g, ϵ) = RMSNorm(x; g, ϵ)⊛W (2)

where ⊙ denotes element-wise multiplication, ϵ = 10−6 is a small constant, g ∈ Rd is a learned
scaling parameter, and ⊛ performs the accumulation of ternary weights and inputs2. The use of
ternary weights naturally leads to synaptic sparsity; the 370M MMF model has 35.4% ± 2.5%
weights of magnitude zero across all ternary weight matrices3.

The MatMul-free language model further uses a BitLinear version of the GLU (Gated Linear Unit
(Dauphin et al., 2017)):

gt = xt ⊛Wg, ut = xt ⊛Wu, pt = τ(gt)⊙ ut, dt = pt ⊛Wd

where gt, ut, pt ∈ Rd are intermediate activations, and τ denotes the SiLU activation function
τ(x) = x⊙ σ(x) where σ(x) = 1/(1 + ex) is the sigmoid function.

The MLGRU (MatMul-free Linear Gated Recurrent Unit) acts as the token mixer, replacing the
computationally expensive self-attention mechanism in traditional transformers. It utilizes a variant

1Available on HuggingFace: huggingface.co/ridger/MMfreeLM-370M.
2As shown by Kosson & Jaggi (2023), this can be done using only additions and negations.
3Note that this synaptic sparsity does not yield memory savings because sparse encoding of a 1024× 1024

ternary matrix takes ≈ 7.5× more memory than dense encoding. However, zero weights do allow for energy
savings by skipping calculations.

2

https://huggingface.co/ridger/MMfreeLM-370M

Published at ICLR 2025 Workshop (SCOPE)

of the GRU (Cho et al., 2014), inspired by the HGRN (Qin et al., 2023; 2024), modified to use only
additions and element-wise products. This is achieved by employing BitLinear layers for all linear
transformations within the MLGRU cell. Formally, we denote ht ∈ Rd as the hidden state at time t
and xt ∈ Rd as the input at time t. The dynamics of the MLGRU layer at time step t are given by:

ft = σ (BitLinear(xt;Wf , gf , ϵ)) ,

ct = τ (BitLinear(xt;Wc, gc, ϵ)) ,

ht = ft ⊙ ht−1 + (1− ft)⊙ ct,

gt = RMSNorm (BitLinear(xt;Wg, gg, ϵ); gg′ , ϵ) ,

o′t = gt ⊙ τ(ht),

ot = BitLinear(o′t;Wo, go, ϵ)

where Wc,Wf ,Wo,Wg ∈ Rd×d are ternary weights, ft, gt, ct, o′t are intermediate activations at
time step t, ht is the hidden state, and ot is the final output at time step t. The initial hidden state
h0 is set to zero. Similarly to the HGRN (Qin et al., 2023), the MLGRU also employs the cummax
operation to bias the forget gate values in deeper layers closer to 1, which we omit for brevity.

3 MODEL ADAPTATION FOR LOIHI 2

Quantization of weights and activations As a first step, we quantize the original half-precision
model from Zhu et al. (2024). Loihi 2 supports 8-bit weights and 24-bit activations. As done by
previous work (Ma et al., 2024; Zhu et al., 2024), we evaluate the zero-shot performance of our
quantized model on a range of language tasks, including ARC (Easy & Challenge) (Clark et al.,
2018), Hellaswag (Zellers et al., 2019), Winogrande (Sakaguchi et al., 2021), PIQA (Bisk et al.,
2020), and OpenbookQA (Mihaylov et al., 2018). We report the baseline models from Zhu et al.
(2024) for the MatMul-free LLM that we adopt, and their transformer baseline. For comparison,
we also report performance of the Qwen-2.5 500M model from Qwen Team (2024). Although the
model has only 35% more parameters than the transformer baseline, it performs significantly better.
We expect that the baselines from Zhu et al. (2024) could reach similar performance with the training
procedure from Qwen Team (2024).

Table 1: Results from quantization of the 370M MatMul-free language model on GPU. Baseline:
optimized models from Zhu et al. (2024) and Qwen Team (2024). PT: PyTorch-only implementa-
tion. Ax / Wx: activations / RMSNorm weights quantized to x-bit integers. ϵrms ↑: setting the value
for ϵrms to 10−3 from previously ϵrms = 10−6. †: difference relative to MatMul-free baseline.

Configuration ARCc ARCe HS OQA PQ WG Avg Diff.†

MatMul-free baseline 22.8 42.1 32.4 28.4 62.6 49.4 39.6 (0.0%)
Transformer baseline 24.0 45.0 34.3 29.2 64.0 49.9 41.1 (3.8%)
Qwen2-500M 31.0 64.6 49.1 35.2 70.3 56.5 51.1 (29.0%)

PT 22.7 42.2 32.5 28.4 62.4 48.5 39.4 -0.4%
PT + W8 23.2 41.8 32.4 28.0 62.4 49.5 39.5 -0.2%
PT + A8 22.7 40.0 31.5 27.6 61.0 50.0 38.8 -2.0%
PT + A16 22.7 42.5 32.5 29.0 63.2 49.9 40.0 0.9%
PT + W8A8 22.3 40.3 31.9 27.2 59.9 49.1 38.5 -2.9%
PT + W8A16 22.7 42.3 32.3 28.0 63.1 49.3 39.6 0.0%
PT + W8A8 + ϵrms ↑ 28.3 26.8 26.1 27.0 52.7 51.5 35.4 -10.7%
PT + W8A16 + ϵrms ↑ 23.0 42.4 32.4 27.8 63.0 50.1 39.8% 0.4%

We re-implemented the model and replace the GPU-optimized Triton kernels with simple PyTorch
operations that are easier to quantize and to verify against our Loihi 2 hardware implementation.
Minor numerical differences add up to a relative performance drop of 0.4%, see Table 1 (MatMul-
free baseline vs. PyTorch). We further quantize weights and activations, to ensure compatibility
with fixed point computation, as required by Loihi 2. Quantization is applied symmetrically per
tensor, with scaling factors restricted to powers of two so that rescaling can be done efficiently using

3

Published at ICLR 2025 Workshop (SCOPE)

bit-shift operations. We use “fake quantization” in PyTorch, in that all operations use floating-point
numbers which are quantized and de-quantized.

Our results in Table 1 show that 8-bit weight quantization leads to only a 0.2% performance decrease
relative to the baseline model. Previous work has demonstrated low quantization errors for state
space models when using W8A16 (8-bit weights, 16-bit activations) with significantly higher drops
for W8A8 (Pierro & Abreu, 2024; Abreu et al., 2024; Chiang et al., 2024). Indeed, quantization to
W8A8 and W8A16 of our model show a relative performance drop of 2.9% and 0.0%, respectively.
We thus use W8A16 for our hardware implementation.

Although the baseline model uses half precision (FP16), the RMSNorm is still computed in full
precision (FP32) for numerical stability. We quantize activations inside the RMSNorm layer to 24-
bit integers with 12 fractional bits. We further increase the ϵ value from 10−6 (which underflows
with 12 fractional bits) to 10−3. The resulting performance of all interventions mentioned thus far is
shown in the last two rows of Table 1. The W8A8 and W8A16 quantization schemes with modified
ϵ show a relative performance change of -10.7% and +0.4%, respectively. We chose the W8A16
quantization scheme as it is fully compatible with Loihi 2. Therefore, our final quantized model on
GPU shows no performance loss compared to the baseline FP16 model.

Fixed-point implementation Two operations used in the MatMul-free LM are not defined on
integers, namely the sigmoid activation function σ and the inverse-square-root in the RMSNorm.
We employ a look-up-table (LUT) for a fixed-point approximation of the logistic sigmoid function,
σ(x) = 1/(1 + e−x). For the inverse-square-root in the RMSNorm layer, we adapted a well-known
“fast inverse square root” algorithm to operate in fixed-point arithmetic. See Appendix A.2 for
details.

Mapping the model to Loihi 2 The Loihi 2 implementation represents the model as a network of
neurons interconnected via synapses. Each neuron is implemented as a simple microcode program
that is executed asynchronously on one of 120 neuro cores on each Loihi 2 chip, after which its
output is transmitted to other neurons through synaptic connections. A global time step is maintained
through barrier synchronization between all neuro cores. Since each neuron only maintains its own
state, aggregate operations–such as computing the sum of squares over an activation vector–must be
realized by dedicated neurons that receive inputs from all neurons within the corresponding layer.
This is the case for the RMSNorm, where the sum of squares over all neurons in a given layer is
calculated, see Equation 2. Figure A.5 (right) illustrates the computational graph that implements
the RMSNorm operation on Loihi 2. Layer and operator fusion are well-established strategies to
minimize redundant computations (Waeijen et al., 2021; Niu et al., 2021), thereby reducing latency
and enhancing energy efficiency. In our implementation, we perform Loihi-specific layer fusion
to consolidate operations into a streamlined computational graph, as depicted in Figure A.5 (left).
We also derive the fusion of two subsequent RMSNorm layers into a single operator for further
acceleration, see Appendix A.3.

4 RESULTS

We implemented a single block of the MatMul-free language model on a single Loihi 2 chip. We
parallelize the workload to all 120 available neuro cores on the chip. Verification of the model on
Loihi 2 indicates close alignment with the quantized PyTorch simulation.

Note: All current comparisons are performed with FP16 baselines on non-Loihi hardware.

We contrast the estimated performance of the 370M MatMul-free model on Loihi 2 against
transformer-based baselines running on an NVIDIA Jetson Orin Nano. We selected the Jetson Orin
Nano (8GB) as our comparison platform because it represents a state-of-the-art edge AI device
with 1024 CUDA cores, 32 Tensor cores, and a maximum power consumption of 15W, making
it a relevant benchmark for energy-efficient AI applications. The Orin Nano is designed specifi-
cally for edge deployment scenarios similar to those targeted by neuromorphic hardware, enabling
a fair comparison between platforms intended for similar operational environments. Efficiency and
throughput metrics for Loihi 2 are estimates based on a preliminary implementation that is not fully
optimized, see Appendix A.4.1 for details. We compare the MatMul-free LLM on Loihi 2 against
two similarly-sized transformer-based LLMs available on HuggingFace. As a Llama series rep-

4

Published at ICLR 2025 Workshop (SCOPE)

resentative model, we use Alireo-400M (Montebovi, 2024), a 400M parameter transformer-based
LLM with 24 layers and a context window of 8,192. It should be noted that the Alireo model was
trained specifically on Italian text, so its performance is not included in Table 1 as it would not be
representative of a competitive general-purpose transformer-based model at this parameter scale. We
further use Qwen2.5-500M (Yang et al., 2024; Qwen Team, 2024), a 500M parameter transformer-
based LLM with 24 layers and a context window of 32,768 whose performance is also included in
Table 1. Both models run in half-precision (FP16). We did not benchmark the MatMul-free LLM
or the Transformer baseline from Zhu et al. (2024) because the Jetson Orin Nano does not support
Triton.

Table 2 shows results for the comparison of the MatMul-free LLM on Loihi 2 and transformer-
based LLMs on the NVIDIA Jetson Orin Nano, also including results for the MatMul-free LLM on
an H100 GPU and the Transformer++ baseline from Zhu et al. (2024) on a single H100 GPU. The
results demonstrate that the MatMul-free LLM on GPU improves in throughput and efficiency with
longer sequence lengths, due to linear scaling of the token mixing and better utilization of the GPU at
higher sequence lengths. In contrast, the transformer++ baseline on GPU increases in throughput for
short sequence lengths due to better utilization of the hardware, and then deteriorates in throughput
and efficiency for even longer sequences because of the quadratic scaling of self-attention.

Table 2: Throughput and energy efficiency for two transformer-based language models running
on the NVIDIA Jetson Orin Nano and H100 compared to our MatMul-free LM running on Intel’s
Loihi 2, across different sequence lengths for prefill and generation. The best-performing sequence
length for each model and metric is underlined. Metrics for Loihi 2 are based on preliminary exper-
iments and subject to further performance optimization, see Appendix A.4.1. Gen: autoregressive
generation, Prefill: prefill mode. ∗ Llama representative model from Montebovi (2024).

Throughput (↑ tokens/sec) Efficiency (↓ mJ/token)
Sequence length 500 1000 4000 8000 16000 500 1000 4000 8000 16000

G
en

er
at

e MMF (370M) Loihi 2† 41.5 41.5 41.5 41.5 41.5 405 405 405 405 405
MMF (370M) H100 13.4 13.3 13.5 13.2 13.5 10.1k 10.1k 10.0k 9.9k 9.8k
TF++ (370M) H100 22.4 22.9 21.7 21.3 20.9 5.5k 5.6k 6.2k 6.8k 8.2k
Llama∗ (400M) Jetson‡ 14.3 14.9 14.7 15.2 12.8 723 719 853 812 1.2k
Qwen2 (500M) Jetson‡ 13.4 14.0 14.1 15.4 12.6 791 785 912 839 1.2k

Pr
efi

ll

MMF (370M) Loihi 2† 6632 6632 6632 6632 6632 3.7 3.7 3.7 3.7 3.7
MMF (370M) H100 11.4k 13.1k 30.6k 51.6k 84.6k 6.1 5.3 2.5 1.4 0.9
TF++ (370M) H100 21.6k 32.7k 44.3k 55.4k 60.5k 11.3 7.3 5.4 4.3 3.8
Llama∗ (400M) Jetson‡ 849 1620 3153 2258 1440 11.7 7.8 6.8 7.6 11.5
Qwen2 (500M) Jetson‡ 627 909 2639 3861 3617 17.9 13.9 6.7 4.4 5.3

† The MatMul-free LM on Loihi 2 was characterized on a 32-chip Alia Point Loihi 2 system (N3C1 silicon) running NxKernel v0.2.0 and NxCore
v2.5.8 (accessible to Intel Neuromorphic Research Community members). Appendix A.4.1 compares results for single-chip and multi-chip scaling.
‡ Transformer LMs were characterized on NVIDIA Jetson Orin Nano 8GB using the MAXN power mode running Jetpack 6.2, TensorRT 10.3.0,
CUDA 12.4. Energy values include CPU GPU CV, SOC, and IO components as reported by jtop 4.3.0.
Performance results are based on testing as of Jan 2025 and may not reflect all publicly available security updates. Results may vary.

In our experiments, we focus on single-batch inference and we further differentiate between two
operational modes. “Prefill” refers to the phase where a long input sequence is ingested, allowing
for parallel processing of multiple tokens, which naturally yields higher throughput and energy
efficiency. In contrast, “autoregressive generation” denotes the sequential production of tokens,
where each token must be generated and received before the next can be processed. Profiling both
modes separately highlights these differences in performance and efficiency. The execution modes
that enable this distinct processing on Loihi 2 are described in Appendix A.1.1.

During prefill, Loihi 2 shows at least 2× higher throughput with approximately 2× less energy
per token. During auto-regressive generation, the advantage of Loihi 2 grows to having almost
3× higher throughput with approximately 2× less energy per token. Due to the MatMul-free
model’s subquadratic architecture, this advantage is expected to grow for longer sequence lengths.
We highlight that power and throughput of the MatMul-free model on Loihi 2 is constant across
sequence length. This is due to the linear scaling of the recurrent token mixer and the fact that Loihi
2 has its parameters and hidden states stored locally inside neuro-cores thus requiring significantly

5

Published at ICLR 2025 Workshop (SCOPE)

less memory movement than GPUs. Further optimizations are underway to increase throughput and
reduce power consumption of the MatMul-free language model on Loihi 2, see Appendix A.4.

Table 2 highlights how transformers on an edge GPU are consistently slower and less efficient during
generation, and scale unfavorably to longer sequence lengths. During prefill, transformers show
low throughput and efficiency for shorter sequences due to under-utilization of the GPU, then reach
optimal performance between 4000-8000 tokens, after which both throughput and efficiency decline.
Table 2 also compares the MatMul-free model on Loihi against the same model running on an H100
GPU. Loihi 2 delivers 3× higher throughput during generation with at least 14× less energy per
token. During prefill, the H100 delivers higher throughput than Loihi 2, but outperforms in energy
efficiency only for large sequence lengths.

Latency characteristics are particularly important for interactive applications at the edge. Our exper-
iments reveal that for batch size 1, which is typical in edge deployment scenarios, the MatMul-free
model on Loihi 2 demonstrates significant latency advantages, with a 6.6× lower time-to-first to-
ken on a 500-token input sequence (99ms for the MatMul-free model on the Loihi 2 vs. 659ms
for the Llama-style model on the Jetson). This advantage increases with sequence length due to
the linear scaling properties of our approach versus the quadratic complexity of transformer models.
For real-time applications like voice assistants or mobile chatbots, this latency reduction directly
translates to more responsive user experiences while maintaining significantly lower energy con-
sumption.

While we benchmarked against the Jetson Orin Nano as a representative edge GPU platform, we
expect our approach to show similar advantages compared to other edge computing solutions.
Platforms such as mobile SoCs, FPGAs, and various edge TPUs all face similar challenges with
transformer-based models: quadratic scaling with sequence length and significant memory move-
ment costs. Since our neuromorphic approach addresses both fundamental limitations through linear
scaling and closer compute-memory integration, we anticipate the relative throughput and energy ef-
ficiency advantages to persist across other edge computing architectures. The benefits would be most
pronounced for resource-constrained IoT or mobile platforms where energy efficiency is paramount,
with potentially more modest gains against specialized NPUs that have already optimized for recur-
rent operations.

5 CONCLUSION

We demonstrated that neuromorphic principles and co-design can be leveraged to build efficient
LLMs. By merging a MatMul-free architecture with Intel’s Loihi 2–leveraging state-based com-
putation, extreme quantization, and operator fusion–we built a strong 370M-parameter model with
significantly improved throughput and energy efficiency. Our experiments reveal that the inherent
parallelism and low-power processing of Loihi 2 translate into substantial gains in throughput and
energy efficiency.

The key innovations of our approach include: (1) the first demonstration of a modern LLM architec-
ture on neuromorphic hardware, establishing a pathway for efficient AI at the edge; (2) a hardware-
aware quantization methodology that maintains model accuracy while enabling fixed-point compu-
tation; (3) a novel microcode implementation of the MatMul-free architecture that exploits Loihi 2’s
asynchronous, event-driven computing paradigm; and (4) custom operator fusion techniques specif-
ically designed for neuromorphic computation, including our double RMSNorm derivation. Unlike
previous approaches that targeted specific neural primitives for neuromorphic systems, our work
shows that complete, competitive language models can be adapted to leverage the unique character-
istics of neuromorphic hardware while maintaining performance.

On the hardware side, our results demonstrate the potential of neuromorphic processors as platforms
for scalable efficient inference, suggesting that future architectures can be co-designed with model
innovations to further push performance limits. Our approach offers a promising pathway to enable
adaptive language processing without the prohibitive energy costs associated with traditional LLMs.
Given the rising importance of reasoning models that require extended chain-of-thought rollouts
(DeepSeek-AI et al., 2025), efficient and high-throughput autoregressive generation is more critical
than ever. Our design excels especially in this mode, paving the way for scalable foundation models
capable of reasoning faster and more efficiently.

6

Published at ICLR 2025 Workshop (SCOPE)

REFERENCES

Steven Abreu, Jens E. Pedersen, Kade M. Heckel, and Alessandro Pierro. Q-S5: Towards
Quantized State Space Models, June 2024. URL http://arxiv.org/abs/2406.09477.
arXiv:2406.09477 [cs].

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. PIQA: Reason-
ing about Physical Commonsense in Natural Language. Proceedings of the AAAI Confer-
ence on Artificial Intelligence, 34(05):7432–7439, April 2020. ISSN 2374-3468. doi: 10.
1609/aaai.v34i05.6239. URL https://ojs.aaai.org/index.php/AAAI/article/
view/6239. Number: 05.

Hung-Yueh Chiang, Chi-Chih Chang, Natalia Frumkin, Kai-Chiang Wu, and Diana Marculescu.
Quamba: A Post-Training Quantization Recipe for Selective State Space Models, October 2024.
URL http://arxiv.org/abs/2410.13229. arXiv:2410.13229.

Kyunghyun Cho, Bart van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares,
Holger Schwenk, and Yoshua Bengio. Learning Phrase Representations using RNN En-
coder–Decoder for Statistical Machine Translation. In Alessandro Moschitti, Bo Pang, and Walter
Daelemans (eds.), Proceedings of the 2014 Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pp. 1724–1734, Doha, Qatar, October 2014. Association for Com-
putational Linguistics. doi: 10.3115/v1/D14-1179. URL https://aclanthology.org/
D14-1179.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have Solved Question Answering? Try ARC, the AI2 Reasoning
Challenge, March 2018. URL http://arxiv.org/abs/1803.05457. arXiv:1803.05457.

Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Binarized
Neural Networks: Training Deep Neural Networks with Weights and Activations Constrained to
+1 or -1, March 2016. URL http://arxiv.org/abs/1602.02830. arXiv:1602.02830
[cs].

Yann N. Dauphin, Angela Fan, Michael Auli, and David Grangier. Language modeling with gated
convolutional networks. In Proceedings of the 34th International Conference on Machine Learn-
ing - Volume 70, ICML’17, pp. 933–941, Sydney, NSW, Australia, August 2017. JMLR.org.

Mike Davies, Andreas Wild, Garrick Orchard, Yulia Sandamirskaya, Gabriel A. Fonseca Guerra,
Prasad Joshi, Philipp Plank, and Sumedh R. Risbud. Advancing Neuromorphic Computing With
Loihi: A Survey of Results and Outlook. Proceedings of the IEEE, 109(5):911–934, May 2021.
doi: 10.1109/jproc.2021.3067593. Publisher: Institute of Electrical and Electronics Engineers
(IEEE).

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai
Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang,
Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang,
Minghui Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang,
Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang,
R. J. Chen, R. L. Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng
Ye, Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing
Wu, Shengfeng Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen
Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong
Liu, Xiaohan Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu,
Xinyu Yang, Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xi-
aosha Chen, Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia

7

http://arxiv.org/abs/2406.09477
https://ojs.aaai.org/index.php/AAAI/article/view/6239
https://ojs.aaai.org/index.php/AAAI/article/view/6239
http://arxiv.org/abs/2410.13229
https://aclanthology.org/D14-1179
https://aclanthology.org/D14-1179
http://arxiv.org/abs/1803.05457
http://arxiv.org/abs/1602.02830

Published at ICLR 2025 Workshop (SCOPE)

Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng
Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong
Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong,
Yuheng Zou, Yujia He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou,
Y. X. Zhu, Yanhong Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying
Tang, Yukun Zha, Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda
Xie, Zhengyan Zhang, Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia
Zhu, Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu,
Zhongyu Zhang, and Zhen Zhang. DeepSeek-R1: Incentivizing Reasoning Capability in LLMs
via Reinforcement Learning, January 2025. URL http://arxiv.org/abs/2501.12948.
arXiv:2501.12948 [cs].

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. LLM.int8(): 8-bit Matrix
Multiplication for Transformers at Scale, November 2022. URL http://arxiv.org/abs/
2208.07339. arXiv:2208.07339 [cs].

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. GPTQ: Accurate Post-Training
Quantization for Generative Pre-trained Transformers, March 2023. URL http://arxiv.
org/abs/2210.17323. arXiv:2210.17323 [cs].

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752, 2023.

Ankit Gupta, Albert Gu, and Jonathan Berant. Diagonal state spaces are as effective as structured
state spaces. Advances in Neural Information Processing Systems, 35:22982–22994, 2022.

Atli Kosson and Martin Jaggi. Multiplication-Free Transformer Training via Piecewise Affine Op-
erations, October 2023. URL http://arxiv.org/abs/2305.17190. arXiv:2305.17190
[cs].

Shuming Ma, Hongyu Wang, Lingxiao Ma, Lei Wang, Wenhui Wang, Shaohan Huang, Li Dong,
Ruiping Wang, Jilong Xue, and Furu Wei. The Era of 1-bit LLMs: All Large Language
Models are in 1.58 Bits, February 2024. URL http://arxiv.org/abs/2402.17764.
arXiv:2402.17764 [cs].

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a Suit of Armor Conduct
Electricity? A New Dataset for Open Book Question Answering. In EMNLP, 2018.

Michele Montebovi. Alireo-400m: A lightweight italian language model, 2024. URL https:
//huggingface.co/DeepMount00/Alireo-400m-instruct-v0.1.

Wei Niu, Jiexiong Guan, Yanzhi Wang, Gagan Agrawal, and Bin Ren. Dnnfusion: acceler-
ating deep neural networks execution with advanced operator fusion. In Proceedings of the
42nd ACM SIGPLAN International Conference on Programming Language Design and Im-
plementation, PLDI 2021, pp. 883–898, New York, NY, USA, 2021. Association for Com-
puting Machinery. ISBN 9781450383912. doi: 10.1145/3453483.3454083. URL https:
//doi.org/10.1145/3453483.3454083.

Garrick Orchard, E Paxon Frady, Daniel Ben Dayan Rubin, Sophia Sanborn, Sumit Bam Shrestha,
Friedrich T Sommer, and Mike Davies. Efficient neuromorphic signal processing with loihi 2. In
2021 IEEE Workshop on Signal Processing Systems (SiPS), pp. 254–259. IEEE, 2021a.

Garrick Orchard, E. Paxon Frady, Daniel Ben Dayan Rubin, Sophia Sanborn, Sumit Bam Shrestha,
Friedrich T. Sommer, and Mike Davies. Efficient Neuromorphic Signal Processing with Loihi
2. In 2021 IEEE Workshop on Signal Processing Systems (SiPS). IEEE, October 2021b. doi:
10.1109/sips52927.2021.00053.

Alessandro Pierro and Steven Abreu. Mamba-PTQ: Outlier Channels in Recurrent Large Language
Models, July 2024. URL http://arxiv.org/abs/2407.12397. arXiv:2407.12397 [cs].

Zhen Qin, Songlin Yang, and Yiran Zhong. Hierarchically Gated Recurrent Neural Network for
Sequence Modeling. Advances in Neural Information Processing Systems, 36:33202–33221, De-
cember 2023.

8

http://arxiv.org/abs/2501.12948
http://arxiv.org/abs/2208.07339
http://arxiv.org/abs/2208.07339
http://arxiv.org/abs/2210.17323
http://arxiv.org/abs/2210.17323
http://arxiv.org/abs/2305.17190
http://arxiv.org/abs/2402.17764
https://huggingface.co/DeepMount00/Alireo-400m-instruct-v0.1
https://huggingface.co/DeepMount00/Alireo-400m-instruct-v0.1
https://doi.org/10.1145/3453483.3454083
https://doi.org/10.1145/3453483.3454083
http://arxiv.org/abs/2407.12397

Published at ICLR 2025 Workshop (SCOPE)

Zhen Qin, Songlin Yang, Weixuan Sun, Xuyang Shen, Dong Li, Weigao Sun, and Yiran Zhong.
HGRN2: Gated Linear RNNs with State Expansion, April 2024. URL http://arxiv.org/
abs/2404.07904. arXiv:2404.07904 [cs].

Qwen Team. Qwen2.5: A party of foundation models, September 2024. URL https://qwenlm.
github.io/blog/qwen2.5/.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. WinoGrande: an ad-
versarial winograd schema challenge at scale. Commun. ACM, 64(9):99–106, August 2021.
ISSN 0001-0782. doi: 10.1145/3474381. URL https://dl.acm.org/doi/10.1145/
3474381.

Sumit Bam Shrestha, Jonathan Timcheck, Paxon Frady, Leobardo Campos-Macias, and Mike
Davies. Efficient Video and Audio Processing with Loihi 2. In ICASSP 2024 - 2024 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 13481–13485, April
2024. doi: 10.1109/ICASSP48485.2024.10448003. URL https://ieeexplore.ieee.
org/abstract/document/10448003. ISSN: 2379-190X.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention Is All You Need. June 2017. URL https:
//nlp.seas.harvard.edu/2018/04/03/attention.html. eprint: 1706.03762.

Luc Waeijen, Savvas Sioutas, Maurice Peemen, Menno Lindwer, and Henk Corporaal. Convfusion:
A model for layer fusion in convolutional neural networks. IEEE Access, 9:168245–168267,
2021. doi: 10.1109/ACCESS.2021.3134930.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. SmoothQuant:
Accurate and Efficient Post-Training Quantization for Large Language Models, March 2024.
URL http://arxiv.org/abs/2211.10438. arXiv:2211.10438 [cs].

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
Chengyuan Li, Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan Lin, Jialong Tang,
Jialin Wang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jin Xu, Jingren Zhou, Jinze Bai,
Jinzheng He, Junyang Lin, Kai Dang, Keming Lu, Keqin Chen, Kexin Yang, Mei Li, Mingfeng
Xue, Na Ni, Pei Zhang, Peng Wang, Ru Peng, Rui Men, Ruize Gao, Runji Lin, Shijie Wang, Shuai
Bai, Sinan Tan, Tianhang Zhu, Tianhao Li, Tianyu Liu, Wenbin Ge, Xiaodong Deng, Xiaohuan
Zhou, Xingzhang Ren, Xinyu Zhang, Xipin Wei, Xuancheng Ren, Yang Fan, Yang Yao, Yichang
Zhang, Yu Wan, Yunfei Chu, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zhihao Fan. Qwen2
technical report. arXiv preprint arXiv:2407.10671, 2024.

Haoran You, Yipin Guo, Yichao Fu, Wei Zhou, Huihong Shi, Xiaofan Zhang, Souvik Kundu,
Amir Yazdanbakhsh, and Yingyan Celine Lin. ShiftAddLLM: Accelerating Pretrained LLMs
via Post-Training Multiplication-Less Reparameterization, July 2024. URL http://arxiv.
org/abs/2406.05981. arXiv:2406.05981 [cs] version: 3.

Weihao Yu, Mi Luo, Pan Zhou, Chenyang Si, Yichen Zhou, Xinchao Wang, Jiashi Feng, and
Shuicheng Yan. Metaformer is actually what you need for vision. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 10819–10829, June 2022.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. HellaSwag: Can a
Machine Really Finish Your Sentence? In Anna Korhonen, David Traum, and Lluı́s Màrquez
(eds.), Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics,
pp. 4791–4800, Florence, Italy, July 2019. Association for Computational Linguistics. doi: 10.
18653/v1/P19-1472. URL https://aclanthology.org/P19-1472.

Biao Zhang and Rico Sennrich. Root Mean Square Layer Normalization. In Advances in Neural
Information Processing Systems, volume 32. Curran Associates, Inc., 2019.

Yichi Zhang, Ankush Garg, Yuan Cao, Lukasz Lew, Behrooz Ghorbani, Zhiru Zhang, and Orhan
Firat. Binarized Neural Machine Translation, February 2023. URL http://arxiv.org/
abs/2302.04907. arXiv:2302.04907 [cs].

9

http://arxiv.org/abs/2404.07904
http://arxiv.org/abs/2404.07904
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://dl.acm.org/doi/10.1145/3474381
https://dl.acm.org/doi/10.1145/3474381
https://ieeexplore.ieee.org/abstract/document/10448003
https://ieeexplore.ieee.org/abstract/document/10448003
https://nlp.seas.harvard.edu/2018/04/03/attention.html
https://nlp.seas.harvard.edu/2018/04/03/attention.html
http://arxiv.org/abs/2211.10438
http://arxiv.org/abs/2406.05981
http://arxiv.org/abs/2406.05981
https://aclanthology.org/P19-1472
http://arxiv.org/abs/2302.04907
http://arxiv.org/abs/2302.04907

Published at ICLR 2025 Workshop (SCOPE)

Rui-Jie Zhu, Qihang Zhao, Guoqi Li, and Jason K Eshraghian. Spikegpt: Generative pre-trained
language model with spiking neural networks. arXiv preprint arXiv:2302.13939, 2023.

Rui-Jie Zhu, Yu Zhang, Ethan Sifferman, Tyler Sheaves, Yiqiao Wang, Dustin Richmond, Peng
Zhou, and Jason K. Eshraghian. Scalable MatMul-free Language Modeling, 2024. URL http:
//arxiv.org/abs/2406.02528. arXiv:2406.02528 [cs].

10

http://arxiv.org/abs/2406.02528
http://arxiv.org/abs/2406.02528

Published at ICLR 2025 Workshop (SCOPE)

A APPENDIX

A.1 LOIHI 2 HARDWARE ARCHITECTURE

Loihi 2 is the second-generation of Intel’s neuromorphic research processor that was designed for
sparse, event-based neural networks (Orchard et al., 2021a). On the Loihi 2 chip, a neural network
is processed by massively parallel compute units called neuro-cores, with 120 such neuro-cores
per chip. Multiple Loihi 2 chips can be stacked together into various larger systems with up to
1,152 chips, see Figure 2. The neuro-cores compute and communicate asynchronously, but a global
algorithmic time step is maintained through barrier synchronization. The neuro-cores are co-located
with memory and can thus efficiently update local states, simulating up to 8192 stateful neurons per
core. Each neuron can be programmed by the user to realize a variety of temporal dynamics through
assembly code, and can use a variable amount of memory–each neuro-core has a fixed amount of
memory but one can implement neurons with more memory by trading off the number of neurons
that each core implements. Input from and output to external hosts and sensors is provided with
up to 160 million 32-bit integer messages per second (Shrestha et al., 2024). Loihi 2 can scale to
real-world workloads of various sizes with up to 1 billion neurons and 128 billion synapses, using
fully-digital stacked systems (Hala Point, Figure 2).

Kapoho Point

Edge

8 chips

VPX

Edge/aerospace

16 chips

Alia Point

Datacenter

128 chips

Hala Point

HPC

1152 chips

Figure 2: Different Loihi 2 systems are available to cover a wide range of applications from the edge
to HPC with up to 1 billion neurons.

The architectural features of Loihi 2 offer unique opportunities to compress and optimize deep learn-
ing models. Neural networks running on Loihi must be quantized to low-precision using fixed-point
arithmetic–8 bits for synaptic weights4 and up to 32 bits for messages5. Unlike GPUs, Loihi 2 is op-
timized for computations local within neurons, a common focus of neuromorphic processors. First,
it allows fast and efficient updates of neuronal states with recurrent dynamics with minimal data
movement, due to the local memory of each neuro-core. Second, the asynchronous event-driven ar-
chitecture of Loihi 2 allows it to efficiently process unstructured sparse weight matrices. Third, the
neuro cores can leverage sparsified activation between neurons, as the asynchronous communication
transfers only non-zero messages.

A.1.1 EXECUTION MODES ON LOIHI 2

Loihi 2’s asynchronous architecture enables a trade off between throughput and latency, as illustrated
in Figure 3. For optimal throughput, new input is provided every time step and forwarded through
the neuronal layers in a pipelined mode. For optimal latency we use fall-through mode, where new
input is injected only once the previous input has been processed by, or fallen through, the network
as fast as possible. Naturally, when processing a long sequence of prefill text in an LLM, we use
pipeline mode for optimal throughput. When generating new text in auto-regressive generation of
an LLM, we have to wait for the token at time t to be output before we can begin processing the next
token at time t+ 1, thus making this a natural fit for Loihi 2’s fall-through mode.

4This is not a hard limit, as one can implement an 8n-bit synapse through n separate 8-bit synapses that are
added together with different fixed-point exponents.

5Local states are not restricted in precision, and one may also transmit messages with more than 32 bits in
an analogous way to what is described above for synaptic weights.

11

Published at ICLR 2025 Workshop (SCOPE)

𝑡0 𝑡1Input

Layer 0

Layer 2

Layer n

… …

Fall-through mode

𝑡0 𝑡1Input

Layer 0

Layer 2

Layer n

… …

Pipelined mode

𝑡2 𝑡3 𝑡4

Latency

Throughput−1

Latency

Throughput−1

Figure 3: Different execution modes on Loihi 2 that either optimize throughput or latency. In the
pipelined mode, a new data point is inserted in each time step, to use all processing cores and
maximize the throughput–at the expense of latency because equal time bins t0 = t1 = . . . are
enforced. In the fall-through mode, a new data points is only provided once the last data point has
been fully processed with minimum latency. Only a single neuronal layer is active at any step as data
travels through the network. The time per step is thus minimized as traffic is reduced and potentially
more complex neuronal layers are not updated.

A.2 FIXED-POINT IMPLEMENTATION DETAILS

A.2.1 FIXED-POINT IMPLEMENTATION OF THE SIGMOID FUNCTION

We employ a look-up-table (LUT) for a fixed-point approximation of the logistic sigmoid function,
σ(x) = 1/(1 + e−x), as discussed in Section 3. Specifically, we scale the floating-point input x by
2xexp where xexp = 6 determines the accepted input precision of the fixed-point sigmoid implemen-
tation. We quantize x2xexp to an integer domain xfxp = ⌊x2xexp⌉, and store precomputed values in a

LUT
(
xlut,i

int 7→ ylut,i
int

)
i∈{0,...Nσ}

, where Nσ = 8 determines the number of LUT entries:

ylut,i
int = ⌊σ

(xlut,i
int

2xexp

)
· 2yexp⌋ (3)

This LUT stores only entries for positive inputs. For negative inputs, we exploit σ(−x) = 1−σ(x),
thus requiring only half-range values. During inference, a piecewise linear interpolation between
adjacent LUT entries refines the output. This design offers efficient computation and controllable
approximation error by tuning xexp and Nσ .

A.2.2 FIXED POINT IMPLEMENTATION OF THE INVERSE SQUARE ROOT

For the inverse-square-root in the RMSNorm layer, we adapted a well-known “fast inverse square
root” algorithm FastInvSqrt to operate entirely in fixed-point arithmetic, as discussed in Section
3. Our method treats the input x̃ as an integer paired with a fixed exponent, and uses a LUT with 24
values to produce an initial guess for

√
x̃. This estimate is then refined using five iterations of the

Newton-Raphson method, all in a fixed-point format.

12

Published at ICLR 2025 Workshop (SCOPE)

A.3 DOUBLE RMSNORM DERIVATION

Let x ∈ Rd and y = RMSNorm(x) and z = RMSNorm(y), in expanded form:

y =
x√

ϵ+
∑d

i x
2
i

⊙ g1 (4)

z =
y√

ϵ+
∑d

i y
2
i

⊙ g2 (5)

We wish to derive an equation for z = DoubleRMSNorm(x) = RMSNorm(RMSNorm(x)).

First, we express µy in terms of µx:

µy =
1

D

D∑
i=1

y2i =
1

D

D∑
i=1

(
xi ·

g1√
µx + ε

)2

(6)

=

(
g21

µx + ε

)
·

(
1

D

D∑
i=1

x2
i

)
=

g21µx

µx + ε
. (7)

We then express z in terms of x by plugging in the equation for y:

z = y · g2√
µy + ε

=

(
x · g1√

µx + ε

)
· g2√

µy + ε
(8)

= x · g1g2√
(µx + ε)(µy + ε)

. (9)

We simplify the denominator:√
(µx + ε)(µy + ε) =

√
(µx + ε) · g21µx

µx + ε
+ ε (10)

=

√
(µx + ε) · µx(g21 + ε) + ε2

µx + ε
(11)

=
√

µx(g21 + ε) + ε2. (12)

We then derive the final expression for z:

z = x · g1g2√
µx(g21 + ε) + ε2

. (13)

This provides the combined RMSNorm operation with different scaling parameters g1 and g2. By
combining two RMSNorm operations with different scaling parameters, we arrive at a single nor-
malization step:

z = x · gcombined√
µx + εcombined

, (14)

where:

gcombined =
g1g2√
g21 + ε

, εcombined =
ε2

g21 + ε
. (15)

Alternatively, since the denominator depends on µx, it may not be possible to express εcombined
independently without further approximations.

A.4 DETAILED HARDWARE RESULTS

A.4.1 DETAILED LOIHI 2 RESULTS

Single chip experiments As described in Section 4, the energy and throughput metrics for Loihi
2 were estimated based on a preliminary implementation. We first implemented a single MatMul-
free LM block on a Oheo Gulch single-chip Loihi 2 system, see Table 3 (1-chip). We measured

13

Published at ICLR 2025 Workshop (SCOPE)

the average time per step (TPS, TTPS), i.e., the time that a single execution time step takes. Given
the number of time steps per block, Nsteps/block, we can compute the total latency of the model, or
the time-to-first-token Tttft, as Tttft = Nblocks × Nsteps/block × TTPS where Nblocks = 24 for the 370M
MatMul-free language model.

In prefill we use pipelined mode where the TPS is constant over time because equal time bins are
enforced (see Appendix A.1.1 for an explanation). We calculate the prefill throughput as fprefill =

T−1
TPS because a new token is processed in the interval TTPS. We also measure the power of the single-

chip system as the sum of a static power and dynamic power component: P 1-chip = P̃ 1-chip + P̄ 1-chip

where P̄ denotes static power and P̃ denotes dynamic power. We estimate the total prefill power as
P̂prefill = 24× P 1-chip. We finally estimate the energy per token as Êprefill = P̂prefill ∗ TTPS. Figure 4
shows the dynamic and static power of the single-chip experiment.

Figure 4: Power of one MatMul-free block on a single-chip Loihi 2 system.

In generation we use fallthrough mode where the TPS varies over time and directly reflects the
latency of the operation that is done at the current time step (see Appendix A.1.1 for an explanation).
We average over all TPS values across at least 1000 time steps to get TTPS. We then calculate the
generation throughput as fgenerate = T−1

ttft . This is typically significantly lower than fprefill. We
measure power in the same way as in prefill mode. However, to estimate the total power for the full
model with all 24 blocks, we use P̂generate = P̃ 1-chip + 24× P̄ 1-chip because at any given time only a
single chip will be processing information and drawing dynamic power–all other chips will be idling
and drawing only static power. We estimate the energy per token as Êgenerate = P̂generate ∗ Tttft.

Table 3: Throughput and energy efficiency estimates for our MatMul-free LM running on Intel’s
Loihi 2, based on a 1-chip implementation and a 24-chip implementation. Each chip implements a
single block of the language model. GEN: autoregressive generation, PF: prefill mode.

Throughput (↑ tokens/sec) Efficiency (↓ mJ/token)

G
E

N Ours (370M) (24-chip) 41.5 405
Ours (370M) (1-chip) 71.3 59

PF

Ours (370M) (24-chip) 6632 3.7
Ours (370M) (1-chip) 13965 2.8

∗ The MatMul-free LM on Loihi 2 was characterized on (1) Oheo Gulch single-chip Loihi 2 system, (2) Alia Point 32-chip Loihi 2 system (both:
N3C1 silicon) running NxKernel v0.2.0 and NxCore v2.5.8 (accessible to Intel Neuromorphic Research Community members). Detailed results for
single-chip and multi-chip scaling are presented in Appendix A.4.1.
‡ Transformer LMs were characterized on NVIDIA Jetson Orin Nano 8GB using the MAXN power mode running Jetpack 6.2, TensorRT 10.3.0,
CUDA 12.4. Energy values include CPU GPU CV, SOC, and IO components as reported by jtop 4.3.0.
Performance results are based on testing as of Jan 2025 and may not reflect all publicly available security updates. Results may vary.

Multi-chip experiments Naturally, our estimates based on single-chip experiments ignore addi-
tional latency and power that comes from inter-chip communication. Therefore, we implement all
24 blocks of the MatMul-free LM on a larger multi-chip system. We use the Alia Point system (see
Figure 2), where we run only 32 of all 128 chips. Each block of the MatMul-free LM is mapped to
exactly one chip, thus we run the entire model on 24 out of the 32 chips on our Alia Point system.
We calculate the throughput as for the single-chip experiments, but power and energy per token are

14

Published at ICLR 2025 Workshop (SCOPE)

now measured directly, rather than being estimates. Table 3 shows the comparison of our single-chip
estimates against the full 24-chip implementation of all MatMul-free blocks on a 32-chip Alia Point
system.

Figure 5: Scaling of time per step (inversely proportional to throughput, see text), power per chip
and energy per token, as more chips are utilized in a 32-chip Alia Point Loihi 2 system. Each block
of the MatMul-free LLM is implemented on a single Loihi 2 chip.

Throughput is reduced by ≈ 2.1× for prefill and by ≈ 1.7× for generation. Part of this slowdown
comes from inter-chip communication. Figure 5 shows how the time per step (TPS) changes as more
blocks are implemented on the multi-chip Loihi 2 system. The slowdown is apparent but flattens out
and becomes constant for ≥ 5 chips. This is expected as only a single activation vector has to be
sent from one chip to the next at every time step (or every Nsteps/block steps in generation mode).

Based on the scaling shown in Figure 5, we expect larger MatMul-free models to scale favorably on
Loihi 2 systems, even as more layers are added.

Embedding and un-embedding layers In our experiments, we have not implemented the embed-
ding and un-embedding layers on the Loihi 2 chip that map between the embedding vector space
R1024 and the token vocabulary of size V = 32, 000. We plan on implementing the embedding
layer as a simple look-up table (LUT). The un-embedding layer is a ternary weight matrix of size
1024 × V is the vocabulary size. In preliminary experiments, we mapped the un-embedding layer
to 7 Loihi 2 chips, thus requiring a total of 31 Loihi 2 chips for the 370M MatMul-free language
model and thus fitting onto a 32-chip system. As both embedding and un-embedding layers are
single layers, they will not add significant latency to our model, thus we expect throughput to stay
as reported in our experiments. The system will draw more power due to the additional layers, but
we expect further performance optimizations to outweigh the power of two extra layers.

Limitations and further optimizations We are further optimizing latency and power of the
MatMul-free LM on Loihi 2 and expect that the energy per token for the 24-chip system can ap-
proach our estimate based on a single-chip system, see Table 3.

A.4.2 DETAILED NVIDIA JETSON RESULTS

We evaluated the inference performance and energy efficiency of several state-of-the-art transformer
language models running on the NVIDIA Jetson Orin Nano 8GB platform. All experiments were
conducted with the MAXN power mode enabled (using Jetpack 6.2, TensorRT 10.3.0, and CUDA
12.4), and power measurements were obtained from integrated profiling tools that capture overall
system consumption—including contributions from the GPU, SOC, and I/O subsystems.

Our evaluation focused on two distinct inference modes. In prefill mode, the model processes the
input prompt in parallel. In generate mode, the model generates text in an autoregressive man-
ner where tokens are produced sequentially. Due to the inherent dependencies between tokens,
processing cannot be parallelized across the sequence length, resulting in lower overall throughput
compared to prefill mode.

15

Published at ICLR 2025 Workshop (SCOPE)

Figure 6: Hardware results for transformer-based LLMs running on the NVIDIA Jetson Orin Nano.
Left: prefill mode where text is ingested by the LLM. Right: generate mode where text is generated
in an auto-regressive loop. Top: throughput in tokens per second. Middle: average power in Watts.
Bottom: energy per token. All results are averaged over time for 30 inference runs. Results for the
MatMul-free LLM running on Loihi 2 are based on estimates, as explained in Appendix A.4.1.

For both modes, we performed a series of inference runs (with each set averaged over 30 iterations)
to ensure stable statistical estimates. The key performance metrics–throughput in tokens per sec-
ond, average power consumption (in Watts), and energy per token (in Joules)–were computed by
combining the timing and power measurements recorded during these runs using the jtop utility.

In prefill mode, our measurements indicate very high throughput, reaching several thousand tokens
per second. This is attributed to the parallel processing of tokens and effective pipelining of oper-
ations. In contrast, generate mode exhibits lower throughput since the sequential nature of token
generation imposes latency limitations.

The dynamic power consumption is measured during active inference, reflecting contributions from
all major system components. While the power draw is higher in prefill mode due to the continuous
high-performance computation, generate mode incurs a more variable power profile as the system
alternates between processing tasks and idling between token outputs.

Combining the timing and power data provides an estimate of the energy consumed per token.
Although prefill mode can achieve high throughput, it also consumes more energy per token. In
generate mode, the increased latency contributes to higher total energy per generated token, despite
lower instantaneous power draw.

Collectively, these results provide a robust baseline for comparison with Loihi 2, our neuromorphic
system. While transformer-based models on the Jetson Orin Nano achieve high throughput in certain
configurations, they incur higher energy costs per token compared to the estimated figures for the
MatMul-free LM implemented on Loihi 2. Figure 6 visually summarizes these metrics, displaying
throughput, average power consumption, and energy per token for both prefill and generate modes.
This assessment highlights the weakness inherent in conventional transformer architectures when
compared with efficient alternatives on suitable hardware.

A.5 MODEL ARCHITECTURE ON LOIHI 2

The architecture of the MatMul-free LLM by Zhu et al. (2024) is shown in Figure 1. As explained in
Section 3, the model was mapped to the Loihi 2 architecture and the resulting computational graph
is shown in Figure 7.

16

Published at ICLR 2025 Workshop (SCOPE)

MLGRU Pre-Norm

MLP Pre-Norm

Output

mlp

MLGRU

Input

Delay Delay

Input

RMSNorm

BitLinear 1024x1024

Sigmoid

BitLinear 1024x1024

SiLU

BitLinear 1024x1024

MLGRU

Token Mixing

RMSNorm

BitLinear 1024x1024

MLP SwiGLU

Channel Mixing

BitLinear 2816x1024 BitLinear 2816x1024

RMSNorm (W_norm fused)

RMSNorm

BitLinear 1024x2816

Residual Addition

RMSNorm

Double RMSNorm

RMSNorm

x_squared

mean squared root mean squared

Input

RMSNorm

Identity / NW_norm

Output InvSqrt

Identity

Figure 7: Left: Computational graph of a single MatMul-free LM layer, simplified from the actual
computational graph that is mapped on the Loihi 2 chip. The RMSNorm is visualized as a single
node. Right: Computational graph of the RMSNorm layer implemented on the Loihi 2 chip. For
explanation, see main text.

17

	Introduction
	Model Architecture
	Model Adaptation for Loihi 2
	Results
	Conclusion
	Appendix
	Loihi 2 Hardware Architecture
	Execution Modes on Loihi 2

	Fixed-Point Implementation Details
	Fixed-Point Implementation of the Sigmoid Function
	Fixed point implementation of the inverse square root

	Double RMSNorm Derivation
	Detailed Hardware Results
	Detailed Loihi 2 Results
	Detailed NVIDIA Jetson Results

	Model architecture on Loihi 2

