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ABSTRACT

Retrieval-Augmented Generation improves various aspects of Large Language
Models (LLMs) generation, but suffers from computational overhead caused by
long contexts as well as the propagation of irrelevant retrieved information into
generated responses. Context pruning deals with both aspects, by removing irrel-
evant parts of retrieved contexts before LLM generation. Existing context pruning
approaches are however limited, and do not provide a universal model that would
be both efficient and robust in a wide range of scenarios, e.g., when contexts con-
tain a variable amount of relevant information or vary in length, or when evaluated
on various domains. In this work, we close this gap and introduce Provence
(for Pruning and Reranking Of retrieVEd relevaNt ContExts), an efficient and ro-
bust context pruner for Question Answering, which dynamically sets the needed
amount of pruning for a given context and can be used out-of-the-box for various
domains. The three key ingredients of Provence are formulating the context
pruning task as sequence labeling, unifying context pruning capabilities with con-
text reranking, and training on diverse data. Our experimental results show that
Provence enables context pruning with negligible to no drop in performance, in
various domains and settings, at almost no cost in a standard RAG pipeline. We
also conduct a deeper analysis alongside various ablations to provide insights into
training context pruners for future work.

1 INTRODUCTION

Retrieval-Augmented Generation (RAG) has become a widely-used paradigm for improving factu-
ality, attribution, and adaptability of Large Language Models (LLMs) (Das et al., 2019; Asai et al.,
2024; Seo et al., 2019; Lewis et al., 2020; Mallen et al., 2023a; Min et al., 2023). Augmenting a
given user’s query with retrieved relevant contexts helps to avoid the generation of untruthful infor-
mation and enables the provision of references used to generate the answer. Furthermore, using a
domain-specific datastore may enable access and reasoning over a previously unknown knowledge –
without fine-tuning the LLM. One additional advantage of the RAG approach is the easy plug-and-
play architecture (LangChain): practitioners may choose components (retrievers, generator LLMs,
context granularity etc.) which best suit their particular cases to maximize the final performance.

At the same time, the use of RAG adds computational overhead due to both retrieval latency and
the increased input length for the LLMs. It may also propagate irrelevant information present in
retrieved contexts into generated responses. These issues can be solved by developing more efficient
and robust LLMs – either by making architectural changes to process long contexts more efficiently
(Nawrot et al., 2024; Dao, 2024; Chevalier et al., 2023) or increasing the diversity of the tuning
data to improve processing of irrelevant contexts (Lin et al., 2024). However, tuning the LLM
can be highly resource-consuming, or even impossible to apply for proprietary (closed) LLMs. An
alternative solution consists in pruning retrieved contexts by removing context parts irrelevant to
the user’s query – which reduces context lengths and therefore speeds up generation. Such context
pruning module can be used in a plug-and-play manner with any generator LLM, featuring both
easy use and better transparency in the RAG pipeline.

Despite initial efforts on developing context pruners for RAG, none of the existing solutions pro-
vide a model ready to be used out-of-the-box in practice. First, many approaches are designed for
a simplified setting, e.g., with the assumption that only one sentence per context is relevant to the
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Figure 1: Illustration of inference (left) and training (right) of Provence.

Table 1: Analysis of existing approaches for context pruning. Violet / Orange highlight practical /
less-practical solutions.

Approach Query-
dep.

Granularity Type Output Base arch. Multi-
domain
testing

Model re-
lease

Selective Context No token-level extr. % of tokens Llama-7B / GPT2 Yes Yes
LLMLingua No token-level extr. % of tokens Alpaca-7B / GPT2 Yes Yes
LongLLMLingua Yes token-level extr. % of tokens Llama-2-7B-chat Yes Yes
LLMLingua2 No token-level extr. % of tokens RoBERTa / mBERT Yes Yes
RECOMP extr. Yes sent.-level extr. 1 sentence BERT No Yes
RECOMP abstr. Yes sent.-level abstr. ⩾ 0 sentences T5-L No Yes
FilCo Yes sent.-level abstr. 1 sentence T5-XL / Llama-2-7B No No
COMPACT Yes sent.-level abstr. ⩾ 0 sentences Mistral-7B No Yes

Provence (ours) Yes sent.-level extr. ⩾ 0 sentences DeBERTa Yes Yes

input query (Wang et al., 2023; Xu et al., 2024), or that the compression ratio is fixed (Jiang et al.,
2023; Pan et al., 2024). However, in practice contexts may contain various portions of relevant in-
formation, from empty to full relevant context, and pruners should detect it in an adaptable fashion.
Second, many works introduce context pruners that are not efficient enough to be used in practice.
This includes using billion-sized LLMs as base models for pruners (Jiang et al., 2024; Pan et al.,
2024; Wang et al., 2023), or designing abstractive context compressors which require sequential
autoregressive generation of the final context (Wang et al., 2023; Xu et al., 2024). We argue that a
more practical and efficient setting consists in fine-tuning a small-size model such as DeBERTa (He
et al., 2021b;a), as an extractive pruner, i.e., with a lightweight prediction head for selecting relevant
context parts. Third, most of the existing works train context pruners for each dataset individually
and do not target nor test pruners robustness to various data domains.

Table 1 summarizes the properties of various existing methods along specified dimensions and shows
that none of them satisfy all listed criteria. The table also includes a dimension of pruning granular-
ity, i.e., token-level vs sentence-level pruning. In this work, we focus on query-dependent sentence-
level pruning, which prunes out semantic units (sentences) that are deemed not relevant to generate
the answer. An alternative approach is token-level pruning which prunes out low-level grammatical
units such as articles or interjections, usually in a query-independent fashion. The two approaches
are orthogonal and could potentially be combined.

To address listed limitations, we introduce Provence (Pruning and Reranking Of retrieVEd rele-
vaNt ContExt), an adaptable, efficient and robust sentence-level context pruner for Question An-
swering, which can be used out-of-the-box across various domains and settings. To achieve this,
we formulate context pruning as binary sequence labeling so that the binary mask predicted by the
pruner determines sentences (from zero to all) which are relevant to the query, and train our pruner
from a lightweight DeBERTa model on diverse data. Furthermore, we notice that context pruning
and reranking (i.e., the second step in effective retrieval pipelines) bear a strong resemblance. We
therefore propose to unify these two models into a single one, completely eliminating the cost of
context pruning in the RAG pipeline.

More specifically, our contributions are as follows:
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• We propose an approach for training an adaptable, robust, and efficient context pruner
for QA – and will release our trained models. Three key ingredients of our approach are
formulating context pruning as sequence labeling, unifying context pruning and reranking
in a single model, and training on diverse data.

• We test Provence on various QA domains and show its out-of-the-box applicability to
prune contexts with negligible to no drop in performance and at almost no cost, substan-
tially outperforming baseline approaches. We also demonstrate Provence capabilities in
detecting the number of relevant sentences at any positions in the context and robustness to
various context lengths.

• We conduct multiple ablations to demonstrate which techniques are essential for training
robust context pruners, to provide insights for future context pruners development.

Definitions. A typical RAG pipeline consists of (0) a user’s question, or query; (1) a datastore,
i.e., a collection of documents (pieces of text) to be retrieved from, (2) an efficient retriever which
enables fast retrieval from a large datastore (typically a dual-encoder model, where queries and
passages are encoded independently), (3) a more expensive cross-encoder reranker which further
reduces and reorders a set of retrieved passages (cross-encoding means encoding a passage together
with a query); and (4) a generator LLM which outputs the final response based on the user’s query
and the relevant passages. Such a pipeline can be represented as retrieve >> rerank >>
generate. Context pruning can be incorporated before generation, i.e., retrieve>> rerank
>> prune >> generate. In our work, we also propose to incorporate context pruning into
reranking, an essential and already present component in RAG (Rau et al., 2024a): retrieve >>
rerank+prune >> generate. This enables context pruning at almost zero cost.

2 RELATED WORK

Context pruning. RECOMP (Xu et al., 2024) focuses on context pruning for RAG and proposes
both extractive and abstractive context pruners. The extractive RECOMP approach independently
encodes sentences in the context and then selects top sentences with embeddings closest to the query
embedding. Such an approach limits context understanding, due to independent processing of both
sentences and queries. The method also requires specifying the amount of sentences to keep as
a hyperparameter – which is usually unknown in practice and should depend on each particular
passage. The abstractive RECOMP summarizes key information from the passage relevant to the
query (including zero relevant information) by training on silver summaries generated by GPT-3.5.
However, it requires inefficient autoregressive generation of the final context, and can eventually
hallucinate facts not present in the input context. FilCo (Wang et al., 2023) similarly proposes to
generate contexts autoregressively but is trained on extractive targets, i.e., one sentence from the
context selected by one of three criteria. The drawbacks are again inefficiency and the simplified
assumption of one relevant sentence per context. A recent approach, COMPACT (Yoon et al., 2024),
also proposes to generate filtered contexts autoregressively – hence inefficiently – and introduces an
iterative approach for gradually updating the relevant context after processing a new portion of
retrieved passages. In contrast to all listed efforts, Provence dynamically detects the amount of
relevant information in the context – from zero to all sentences – in an extractive and efficient way.
Furthermore, we propose a novel approach of integrating context pruning into a reranker.

Concurrently to our work, DSLR (Hwang et al., 2024) performs extractive sentence-level pruning,
by encoding sentences one-by-one, together with the query, using existing rerankers. Similarly to
Provence, DSLR keeps sentences with scores higher than a threshold and preserves the original
order of sentences. However, in contrast to Provence, DSLR is not capable of keeping groups of
semantically connected sentences, due to independent sentence processing.

An orthogonal line of work proposes extractive token-level pruners. LLMLingua (Jiang et al., 2023)
and Selective Context (Li et al., 2023) use LLMs to remove tokens with high generation probabil-
ities, independently of the query. LLMLingua2 (Pan et al., 2024) is a small BERT-based model
finetuned to eliminate redundant tokens, also independently of the query. LongLLMLingua (Jiang
et al., 2024) proposes query-dependent LLM-based token pruning based on contrastive perplexity.
Listed approaches remove tokens in a way that it does not break context understanding for the LLM
– hence they are not capable of removing semantic parts of the context. LLMLingua models also
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have many hyperparameters in the interface which are hard to tune in practice. These approaches
can however also be combined with sentence-level pruning.

Retrieval granularity. Alternatively to context pruning, one can reformulate datastore content into
atomic units, e.g., propositions as in Dense-X retrieval Chen et al. (2024c) or decontextualized sen-
tences (Choi et al., 2021). Such preprocessing is expensive and can lead to some information loss.

Passage filtering. Another related – and orthogonal – line of works focuses on filtering entire pas-
sages if they are deemed irrelevant for a given question; such an approach can be straightforwardly
combined with Provence. A simple method consists in introducing a threshold on the (re)ranking
score. LongLLMLingua reranks passages based on the probability of a question given the passage.
(Yoran et al., 2024) use natural language inference models to filter out passages that do not entail
question-answer pairs, but report that this approach sometimes filters out relevant passages too.

Improving context processing in LLMs. While context pruners aim to remove context parts ir-
relevant to the user’s query, another line of work aims to process contexts more efficiently and
effectively in LLMs. Efficient context processing could be achieved through efficient attention im-
plementations (Dao, 2024; Anagnostidis et al., 2023), KV cache compression (Nawrot et al., 2024),
encoding retrieved passages in parallel (Zhu et al., 2024), or compressing contexts into one or more
context embeddings (Chevalier et al., 2023; Ge et al., 2024; Rau et al., 2024b). Other works aim to
make LLMs more robust, by exposing them to noisy contexts during training or finetuning (Izac-
ard et al., 2022; Lin et al., 2024). All such approaches usually require LLM adaptation which may
complicate application to an arbitrary picked LLM.

3 PROVENCE

The high-level overview of our proposed approach is illustrated in Figure 1. Our first contribution is
to pose the context pruning problem as a sequence labeling task. We fine-tune a DeBERTa model to
encode the query–context pair and output binary masks which are used to filter out irrelevant context
parts. The labels for training are generated by LLama-3-8B-Instruct (AI@Meta, 2024); we call them
silver labels since they are generated automatically. Such an approach solves several limitations of
existing context pruners: (1) by construction, the model is able to deal with varying noise in contexts
and select an appropriate pruning ratio; (2) queries are encoded together with context sentences
(cross-encoding), providing richer representations – compared for instance to extractive RECOMP
which encodes query and context sentences independently; (3) using a lightweight encoder makes
our approach more efficient than LLM-based or abstractive methods.

Our second contribution consists in unifying reranking and context pruning – instead of considering
these steps as distinct in the RAG pipeline. In Provence, reranking and pruning can be done in a
single forward step, thus eliminating the computational overhead due to context pruning – making
Provence almost “free”.

Training data. Our approach requires a set of training questions and a retrieval datastore. Spefi-
cially, we rely on the train set of the MS MARCO document ranking collection which includes 370k
queries (Nguyen et al., 2016). The MS MARCO collection is a domain-diverse datastore of 3.2M
documents crawled from the Web – which is required for the final model’s robustness to various do-
mains – and is often used to train retrievers and rerankers. We also consider the train set of Natural
Questions which contains 87k queries Kwiatkowski et al., 2019).

Data processing. We create a retrieval datastore by splitting MS MARCO documents into passages
consisting of N consecutive sentences – N being a random integer ∈ 1..10. This is to enable the
pruner’s robustness to variable retrieved context lengths. We also prepend page titles to each pas-
sage. For each question, we retrieve top-5 relevant passages using a strong retrieval pipeline (Rau
et al., 2024a) consisting of a SPLADE-v3 retriever (Lassance et al., 2024) and a DeBERTa-v3
reranker (Lassance & Clinchant, 2023). The resulting set of retrieved passages is naturally diverse
w.r.t. relevance or irrelevance to the question, due to imperfections in retrieval.

Silver labels generation. Given a question and a retrieved passage (context), we split the passage
into sentences1 and prompt Llama-3-8B-Instruct to select sentences relevant to the given question.

1using the nltk.sent tokenize function: https://www.nltk.org/api/nltk.tokenize.
sent_tokenize.html
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One approach would be to use a straightforward prompt such as “Output indexes of sentences rel-
evant to the given question”. However, we decided to utilize the strong LLMs’ capabilities of ac-
tually answering questions while citing relevant context sentences. We therefore instruct the LLM
to answer the given question using only information provided in the given context, and output “No
answer” in case no relevant information is provided. We also specify the easy-to-parse citation for-
mat [i] and number sentences with the same marker in the context. Our prompt can be found in
Appendix – Table 6; we use greedy decoding and parse cited sentences using regular expressions.
We also compare different prompting strategies in the ablation study.

We found that Llama-3-8B is well capable of answering only based on a given context in most cases
and of outputting a citation ∼ 90% of the time. We filter out cases when no citations are produced
and ”No answer” is not present in the LLM’s output, as these are the cases when the context actually
contains relevant information but the LLM “forgot” to cite it. The final labels distribution (number
of selected sentences per context, their positions) is shown in Appendix – Figure 5.

Training of Provence. Our context pruner receives as input the concatenation of a question and
a retrieved context, and outputs per-token binary labels denoting whether each token (defined by
the pretrained model’s tokenizer) should be included in the selected context. In Section 4.4 (Ab-
lations), we also consider an approach where a special token is inserted at the beginning of each
sentence, and labels are predicted per-sentence based on the representations of those tokens. We
train Provence as a binary per-token classifier with ground truth labels coming from the silver
data labeling, and the model can be used as a standalone pruner, i.e., retrieve >> rerank >>
Provence (standalone) >> generate.

Unifying compression and reranking. We note that cross-encoder rerankers (Nogueira & Cho,
2020) share both the same architecture and inputs (pairs of question–passages) as Provence. Ad-
ditionally, the task of context pruning (selecting parts of contexts that are useful for generating the
answer to the question) intrinsically bears similarity with re-ranking (estimating the relevance of
a context w.r.t. the question) – and we hypothesize the possibility of knowledge transfer between
these two related tasks. We therefore propose to unify both approaches in a single model, with two
different task heads. More specifically, the reranking head outputs a scalar prediction for the BOS
token while the pruning head outputs per-token predictions for the passage tokens, as illustrated in
Figure 1. To ease training, we propose to further fine-tune a pretrained reranker on our labeling
objective, while adding a ranking “regularizer” to preserve initial reranking capabilities. The regu-
larizer is a Mean Squared Error loss on the reranking scores from the initial reranker. This can be
viewed as a straightforward pointwise score distillation process, where the initial model serves as
the teacher – a method that has demonstrated great effectiveness in Information Retrieval Hofstätter
et al. (2021). The final loss function is as follows:

L =

N∑
n=1

{ Ln∑
k=1

logP (yn,k|zn,k) + λ
(
sn − zn,0

)2}
zn = Provence(xn) (1)

where N is the number of datapoints (query–passage pairs), xn is a sequence of Ln+1 input tokens
(concatenated query, passage and BOS at the 0-th position), zn is a sequence of Ln + 1 predictions
output by the model, yn is a sequence of Ln target binary labels for context pruning, sn is the teacher
score (initial reranker), zn,0 is the ranking score predicted from the BOS representation.

In the case of the unified model, re-ranking and context pruning need a single forward step from
the encoder, i.e., retrieve >> Provence (w/ re-ranking) >> generate – making
context pruning almost free in terms of execution time.

Inference with Provence. At inference, we feed a concatenation of a question and a retrieved pas-
sage through Provence, which outputs probabilities of including each token in the final context,
as well as the passage score in the case of the unified model. We simply use a threshold T to binarize
the token probabilites (keep or not) – which has a direct effect on the compression rate. As shown in
the experiments Section, the choice of a threshold is generally transferable across various datasets,
making the model flexible to be used out-of-the box in various QA applications2.

We note that our model outputs token-level predictions despite the sentence-level labeling task.
We found that probabilities of including tokens into the final context are naturally clustered on

2Note that tuning the threshold per dataset could of course further improve results.
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Figure 2: Main results for various QA domains, comparing Provence and baseline models. Gen-
erator: LLama-2-7B, retriever: SPLADE-v3, reranker: DeBERTa-v3 (or Provence in the unified
setting). Plot titles denote “Dataset name (datastore type)”. x-axis denotes QA performance eval-
uated with LLM-as-a-judge; y-axis denotes the context compression ratio. For both metrics, the
higher the better: the best model would be closest to the top right corner. Numerical scores are
presented in App. Tables 8–9. Main conclusion: Provence consistently lies on the Pareto front.

the sentence level – see example in Appendix Figure 6 – due to the sentence-level targets used in
training. However, in rare cases we could still have partial sentences being selected. To avoid this
phenomenon, we apply a “sentence rounding” procedure: for each sentence, we check the ratio of
kept tokens (predicted label= 1), and select the entire sentence only if it is higher than 0.5.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Provence training details. We train Provence on the data described in Section 3, using Py-
Torch (Paszke et al., 2019) and HuggingFace transformers (Wolf et al., 2020). We use DeBERTa-
v3 (He et al., 2021a) as our pretrained model for training the standalone Provence. For the unified
approach, we start training from an already trained cross-encoder, also based on DeBERTa-v3 (Las-
sance & Clinchant, 2023). Note that in the latter, we initialize the ranking head from its fine-tuned
version, and train the separate pruning head from scratch.

After preliminary experiments, we set the learning rate to 3 × 10−6, the batch size to 48 and train
models for one epoch. For joint training, there is a slight trade-off between pruning and reranking.
We set the reranking regularization coefficient λ to 0.05, chosen as the minimal value that does not
substantially degrade reranking performance on the MS MARCO development set.

Evaluation datasets. We test Provence on a diverse set of QA datasets. First, we consider
commonly used datasets relying on Wikipedia datastore: Natural Questions (Kwiatkowski et al.,
2019), TyDi QA (Clark et al., 2020), PopQA (Mallen et al., 2023b) (all single-hop questions), and
HotpotQA (Yang et al., 2018) (multi-hop questions). Second, we consider datasets with datastores
from various domains: BioASQ (Nentidis et al., 2023) (biomedical questions with Pubmed as a
datastore), SyllabusQA (Fernandez et al., 2024) (questions about educational course logistics, with
courses syllabus as a datastore); and RGB Chen et al. (2024b) (questions about news with Google-
searched news as contexts). Further details can be found in Appendix A.
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Table 2: Time/MFLOPS required for context pruning.
Top-5 retrieved documents, NQ dev set (3k samples).

Pruner Time (s) MFLOPS

LongLLMLingua, rate=0.5 2649 122 ×109

LLMLingua2, rate=0.5 863 8×109

RECOMP extr., top=2 351 1.2×109

RECOMP abstr. 1056 2.2×109

Provence 471 4.8×109

Table 3: Speed up in generation due
to compression (Provence, 49%
compression). Batch sizes 1 or 256.

Generator bs 1 bs 256

LLama-2-7B ×1.2 ×2
LLama-2-13B ×1.4 ×2
SOLAR-10.7B ×1.4 ×1.9

Evaluation settings. We conduct experiments using BERGEN (Rau et al., 2024a), a benchmarking
library for RAG, using the recommended experimental setting. For each query, we retrieve top-
5 relevant passages using a strong and robust retrieval pipeline: SPLADE-v3 >> DeBERTa-v3
reranker (except for RGB, for which Google-searched passages are already provided). We then pass
queries prepended with relevant document (full length or pruned) into LLama-2-7B-chat (Touvron
et al., 2023)3 to generate answers; other RAG settings are further reported in Appendix. Each
evaluation dataset comes with short keyword answers, which we use to evaluate responses using
LLM-based evaluation (LLMeval in Rau et al., 2024a); match-based metrics are also reported in
Appendix. We additionally measure compression as a portion of the context which was pruned out.

We compare Provence to publicly available context pruning models listed in Table 1, except
LLMLingua and Selective Context which were shown to underperform LLMLingua2 (Pan et al.,
2024). For all context pruners (except abstractive RECOMP for which it is not available), we enforce
the selection of the first (title) passage sentence, to avoid ambiguity in understanding the context by
the generator. For extractive RECOMP, we use the model trained on NQ, consider using top-1/2/3
sentences, and prepend the passage title to each sentence. For the LLMLingua family, we vary the
compression rate in {0.25, 0.5, 0.75} and use code provided on the official repository4. We use the
XLM-RoBERTa model for LLMLingua2. For Provence, we use T = 0.1 and T = 0.5. We also
compare our method to DSLR based on the same reranker as ours, i.e, DeBERTa-v3.

4.2 MAIN RESULTS

Context pruners are often only tested on limited domain data, e.g., with Wikipedia datastore, and
an important aspect of our work is evaluating context pruning on a series of QA domains. Figure 2
reports the trade-off between compression (efficiency) and LLM-evaluated performance (quality),
for various QA datasets and context pruning methods. We choose to report a figure per dataset to
better assess the Pareto front of existing solutions, rather than comparing methods with different
compression rates in the same table. Figure 7 in Appendix further reports similar results with match-
based metric, and Appendix Tables 11–13 show examples of context pruning with various methods.

First, we observe that Provence achieves the highest performance across pruning methods, for
similar compression ratios. Second, it is noteworthy that Provence outperforms methods requiring
more computations such as LLMLingua models, showing that efficiency is not traded for effective-
ness. Furthermore, Provence is the only method capable of achieving high compression levels
without (or with negligible) performance drops, on all datasets. Moreover, for some datasets, e.g.,
PopQA, pruning with Provence leads to performance improvements due to noise filtering.

The effect of threshold. An important aspect in the out-of-the-box applicability of context pruners
is how much effort is needed to select the suitable values of hyperparameters. For Provence, it
only consists in setting the pruning threshold T . In Figure 2 (for which T = 0.1 and T = 0.5),
we observe that Provence pruning ratio automatically varies from 50% to 80%, depending on the
dataset, which demonstrates that the same values for T work well for all considered domains – mak-
ing Provence robust to the choice of hyperparameters. If necessary, users can still tune it further
for their datasets and/or needs. We note that some models specify the desired compression ratio
as a hyperparameter, e.g., LLMLingua models or extractive RECOMP (through top-N sentences).

3For main experiments, we chose a “weaker” generator which relies more on contexts, to create a more
challenging setting for context pruners; results with stronger generators are reported in Appendix – Figure 8.

4https://github.com/microsoft/LLMLingua
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ABSTRACT

Abstract will places here

1 INTRODUCTION

Retrieval-augmented generation (RAG) became a widely-used paradigm for improving factuality,
attribution, and domain-adaptiveness of large language models (LLMs) Das et al. (2019); Asai et al.
(2024); Seo et al. (2019); Lewis et al. (2020); Mallen et al. (2023); Min et al. (2023). Augmenting a
given user’s query with a retrieved relevant context helps to avoid the generation of unthruthful
information and enables the provision of references used to generate the answer. Furthermore,
using a domain-specific datastore may enable access to the previously unknown knowledge without
LLM finetuning. One more important advantage of the RAG approach is the easy plug-and-play
architecture such as LangChain: developers may choose components (retrievers, generator LLMs,
context granularity etc.) which best suit their particular cases and achieve high final performance.

At the same time, the use of RAG adds computational overhead due to the increased input length,
and may also propagate irrelevant information present in retrieved contexts into generated responses.
One solution to these issues is developing more efficient and robust LLMs, by making architectural
changes to process long contexts more efficiently Nawrot et al. (2024) and increasing the diversity
of the tuning data to improve processing of irrelevant contexts Lin et al. (2024). However, this
approach requires highly resource-consuming LLM tuning and thus is hard to apply to an arbitrary
picked LLM. An alternative solution consists of pruning retrieved contexts, which removes context
parts irrelevant to the user’s query and hence reduces context lengths and speeds up generation. Such
context pruning module can be used in a plug-and-play manner with any generator LLM, featuring
easy use and also providing better transparency in the RAG pipeline.

Despite initial efforts on developing context pruners for RAG, none of the existing solutions con-
stitute a model ready to be used in the described plug-and-play manner in practice. First, most of
the works train context pruner for each dataset individually and do not target nor test pruners trans-
ferability to other data domains. Second, some approaches are designed for a simplified setting,
with an assumption that only one sentence will be relevant to the input query. However, in practice
contexts may contain various portions of relevant information, from empty to full relevant context,
and pruners should be flexible enough to detect it. Third, many works propose context pruners that
are not efficient enough to be used in practice. This includes using billion-size LLMs as base models
for pruners and designing abstractive pruners which require non-parallelizable autoregressive gen-
eration of the final context. A more practical setting is to tune a small-size model such as BERT into
an extractive pruner, i.e. with a lightweight prediction head for selecting relevant context parts.

Table 1 summarizes properties of various existing methods along specified dimensions. Only one
approach, LLMLingua2, satisfies all listed criteria, however, its goal is to prune out low-level gram-
matical units such as articles or interjections, so it is query-independent and prunes on the token
level by design. A more suitable design for the task is query-dependent sentence-level pruning,
which prunes out semantic units (sentences) that are not relevant to the query. This approach nat-
urally enables higher level of compression, but it also could be combined with token-level pruning
such as LLMLingua2.

In this work, we introduce Provence (PRuning Of retrieVEd relevaNt ContExt), an efficient and
robust sentence-level context pruner for question answering, applicable out-of-the-box in various
scenarios, i.e. for contexts from various domains and with variable amount of information relevant
to the query. Our contributions are as follows:

• We propose an approach for training an efficient and robust context pruner for QA. Our
approach consists of three key ingredients: (a) a strategy for selecting diverse training
data and data augmentation, to enable robustness; (b) an effective way of prompting strong
open-source LLMs for producing a silver labelling of variable portions of relevant contexts;
and (c) a sequence labeling objective for training an efficient, lightweight extractive pruner
on the silver labeled data. [it would be mega cool to say about combination with reranker
here]

• We propose a joint training of a reranker and pruner.
• We conduct multiple ablations to demonstrate which techniques are essential for training

robust context pruners.
• In the extensive experiments with various data domains, question types, and context gran-

ularities, we demonstrate the wide applicability of our model in QA RAG applications.

1

Figure 3: Analyses. (Left) Needle-in-the-haystack test allowing the control of the position of the
ground truth sentence(s) in the context. (Middle) Comparison of the number of selected sentences
by the silver predictor (LLaMA-3-8B-Instruct) and Provence. Heatmaps are normalized by rows:
a cell in position (i, j) indicates which percentage of contexts that were pruned into i sentences by
the silver predictor, were pruned into j sentences by Provence. (Right) Testing Provence in
settings with different context lengths. All experiments are done with unified Provence, T = 0.1.

While it may seem convenient to estimate inference cost, the “optimal” compression ratio (without
losing performance) is specific to each particular question-context pair. Thus, using a threshold as a
hyperparameter is more appropriate for this task. We also experimented with specifying a threshold
in extractive RECOMP (shown on the same plot) and found that it often leads to lower performance
(compared to top-N ). The reason is that different queries have different ranges of similarity scores.

Efficiency. We compare Provence with other pruning methods in terms of efficiency. Table
2 reports compression time and MFLOPS5 required by different pruning methods. As expected,
LongLLMLingua (based on LLama-2-7B-chat) is the slowest context pruner. RECOMP abstr. re-
quires less MFLOPS compared to Provence, but its autoregressive nature makes it slower in prac-
tice6. Note that in the case of the unified model, pruning is almost free – as it’s part of the re-ranking
step. Table 3 reports speed-up gains due to compression with Provence model (∼ 50% compres-
sion rate). All runs were performed on single Tesla V100-SXM2-32GB GPU with vllm Kwon et al.
(2023). With large batch sizes, we systematically observe 2× speed-ups at inference, while smaller
batch sizes lead to lower gains (especially for smaller models). We assume this is mostly due to the
CPU/GPU communication bottleneck, which masks inference gains due to compression.

4.3 ANALYSIS

In this Section, we conduct a more fine-grained evaluation to better understand the properties of
Provence.

Robustness to the position of relevant information in the context. We design a needle-in-the-
haystack experiment which allows us to check the performance of Provence on a simple toy
example and to evaluate its robustness w.r.t. the position of the relevant information in the input
context. We write 5 questions and answers7, and insert answers (“needles”) at random positions
between sentences, in a subset of 100 passages sampled from the Wikipedia datastore. Ideally,
Provence should only select the “needle” sentences and filter out all other sentences in contexts.
We plot the number of selected sentences and percentage of cases when the pruned context contains
the “needle” (Figure 3, (Left)). We consider two settings: with 1- and 2-sentence “needles”. We
observe that Provence correctly selects “needle” sentence(s) in most cases, except at leftmost and

5We use the PyTorch profiler to report FLOPS required by each pruner.
6This highlights the fact that MFLOPS do not always align with real inference time, due to different archi-

tectural choices.
7Example: “Which library was used in the experiments?”, answer: “Experiments were conducted using

the Bergen library”. Example reformulation into a 2-sentence answer: “Experiments were conducted using a
library. Its name is Bergen.”
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Table 4: Effectiveness of reranking top-50 documents retrieved by SPLADE-v3. DeBERTa-v3 is the
“baseline” (initialization point for Provence, which we aim to preserve performance). We report
the R@5 on two RAG datasets (NQ and HotpotQA), MRR@10 on MS MARCO passages (dev set),
nDCG@10 on TREC DL’19 (Craswell et al., 2020), and mean nDCG@10 on the 13 open datasets
from the BEIR benchmark (Thakur et al., 2021) – Table 7 in Appendix reports the full results.

Dataset

Model NQ HotpotQA MS TREC19 BEIR

DeBERTa-v3 83.0 70.4 40.5 77.4 55.4
Provence 84.4 70.5 40.6 77.2 55.9
Provence (NQ) 84.5 70.3 40.2 77.5 55.1

rightmost positions.8 In most cases Provence does not select any irrelevant sentences. The results
are similar for both simpler (1-sentence) and harder (2-sentence) “needles” showing Provence’s
flexibility in detecting the number of relevant sentences, discussed below in more details.

Adaptability to the variable number of relevant sentences. To evaluate the capability of
Provence to dynamically detect the number of relevant sentences in the context, we compare
the number of sentences L selected by Provence and by a silver oracle, for question-context ex-
amples from various datasets. A silver oracle is easy to construct for L = 0, by pairing questions
with randomly sampled contexts. For L ⩾ 1, we use the labeling produced by Llama-3-8B-Instruct.
Figure 3 (Middle) shows that the number of relevant sentences detected by Provence is close to
the silver oracle value in most cases, for all considered datasets. In contrast, extractive RECOMP
would always select a prespecified number of sentences.

Robustness w.r.t. context granularity. Figure 3 (Right) shows Provence performance for two
datasets, with Wikipedia datastores made of contexts of various granularity. Here, each considered
datastore is produced by splitting Wikipedia pages into chunks of N sentences, N ∈ {2, 6, 10}, or
100 words, and prepending the page title to each chunk. Provence shows high performance in all
cases – the performance with pruned contexts being close to the performance obtained using original
contexts. As could be expected, the compression ratio is higher for longer contexts.

Reranking effectiveness. Table 4 compares reranking performance between our reranking baseline
and unified Provence – whose training starts from the former. We can see that our joint training
procedure (on both pruning and ranking tasks) makes it possible to learn a context pruner that pre-
serves initial reranking capabilities. We further include as a comparison point results from a model
trained in similar conditions on NQ. Overall, results are similar – further highlighting the robustness
of Provence w.r.t. training data. We further discuss such aspects in Section 4.4 (Ablations).

Applicability in different settings. Figure 8 (App.) demonstrates the applicability of Provence
in variable retrieval-generator settings – achieving similar results as the ones reported in Figure 2.

4.4 ABLATIONS

In this Section we analyze various design choices made in Provence development, to provide
insights into training context pruners for future works (results shown in Figure 4). All models in this
section are standalone context pruners, trained with the same amount of parameter updates.

Model size. We first observe that DeBERTa-large slighly increases the compression rate – when
comprared to DeBERTa-base. All other ablations are tuned from a DeBERTa-base model, for ef-
ficiency reasons. Note that the final Provence is trained from a DeBERTa-large model (or its
equivalent reranker).

Data mixtures. We compare training on NQ (87k queries), MS MARCO downsampled to the same
size, and full MS MARCO (370k queries). Despite the observation that using the MS MARCO type
of data leads to lower results than NQ – with equal number of queries – we also find that using larger

8The reason for the drops in the left-most and right-most positions is that training data has little examples
of the corresponding types of relevant sentences, see e.g. statistics for the rightmost position in the App. Figure
5, right. We plan to work on further improving processing of these positions in future work.
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Figure 4: Ablation results. All models are single-component modifications of the anchor model,
which is a base-size model, trained on NQ data, with the answer oracle and token-level labeling.
Numeric scores for this figure are duplicated in Appendix Table 10, and results with match-based
metrics are presented in Appendix – Figure 11.

data (i.e., full MS MARCO) improves results. Our final models are trained on the full MS MARCO
– further ablations are conducted on the NQ data, for efficiency reasons.

Labeling strategies. As described in Section 3, we can train the pruner either to perform token-
level labeling (with sentence rounding at inference) or to perform sentence-level labeling. In the
former case sentence representations are richer but the model also needs to learn to output similar
predictions for tokens inside one sentence. In the latter case sentence content must be represented in
a single embedding which may limit representation expressivity. In practice we observe close per-
formance, with the token-level strategy slightly outperforming the sentence-level one some datasets.
In all other experiments we use the token-level strategy.

Oracle prompts. We compare three options for prompting an oracle LLM to generate silver label-
ing: (1) answer oracle: asking to answer the given question from the given context, citing corre-
sponding sentences; (2) relevance oracle: asking to list any relevant information in the context to
the question, citing corresponding sentences; (3) straightforward oracle: asking to output indexes of
sentences which answer the given question. We found that the behavior of the straightforward ora-
cle varies on different prompts, while the use of the answer oracle makes answers more consistent.
The motivation for the relevance oracle is that often contexts contain distantly relevant information
to the query and it could be reasonable to select the corresponding sentences. Comparing the listed
prompts, we observe that the relevance oracle underperforms the answer oracle, and the straight-
forward oracle performs similarly or slightly lower than the answer oracle.

Unification with reranker. In Figure 2 we compare Provence trained as a standalone model and
as a model unified with reranker, and find that both strategies lead to similar results – although the
former relies on two separate inference steps (re-ranking and pruning) in a RAG pipeline.

5 CONCLUSION

In this work, we present Provence, a robust, adaptable, and efficient context pruner for Question
Answering – either unified in a single model with reranking capabilities or available as a lightweight
standalone model. In contrast to previous extractive approaches, Provence dynamically detects
the needed pruning ratio for a given context and can be used out-of-the-box for various QA domains.
In extensive experiments, we demonstrate that Provence prunes contexts with negligible to no
drops in performance and in some cases even brings performance improvement due to removing
context noise. We also show Provence capabilities in correctly detecting the number of relevant
sentences in contexts, located at any position, and with contexts of various lengths. Finally, the
ablation study highlights the importance of using a large training data and the appropriate prompt in
the silver oracle.

Limitations. Despite Provence being ready to use in various settings, demonstrated in the paper,
it is focusing only on QA applications, with a single passage processed at a time, and is trained on
English-only data. Future work could consider extending it to other tasks, multi-passage contexts,
and languages beyond English.
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Carlos Lassance and Stéphane Clinchant. Naver labs europe (splade) @ trec deep learning 2022,
2023. URL https://arxiv.org/abs/2302.12574.
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A DATA

Evaluation datasets. We consider the following datasets:

• Datasets with Wikipedia as a datastore:
– Natural Questions (Kwiatkowski et al., 2019). We use a test set of 2.8k ques-

tions, distributed as a part of the KILT collection (https://huggingface.co/
datasets/facebook/kilt_tasks);

– HotpotQA (Yang et al., 2018). We use a test set of 5.6k questions, distributed as a part
of the KILT collection (https://huggingface.co/datasets/facebook/
kilt_tasks);

– PopQA (Mallen et al., 2023b). We use a test set of 14k questions distributed by the
dataset authors.

• Datasets with individual datastores:
– BioASQ (Nentidis et al., 2023). We use a version of the dataset provided by (Hsia

et al., 2024), with 3.8k queries. We only use queries from categories “yes/no”, “fac-
toid”, and “list”.

– Syllabus QA (Fernandez et al., 2024). We use the test set of 1.1k questions distributed
by the authors;

– RGB (Chen et al., 2024b). We use the test set of 200 questions distributed by the
authors.

All datasets provide short answers (keywords) for each query, which we use to evaluate both match-
based metrics such as Recall and LLM-based metrics Rau et al. (2024a)9.

Datastores. For training Provence, we use the MS MARCO document collection (Craswell
et al., 2021). We split each document into overlapping chunks of N sentences, where N is random
in ∈ 1..10 – with a higher probability for longer contexts – to train Provence on various context
lengths. Each chunk is prepended with a page title. The resulting datastore contains 34M passages.
We also process the Wikipedia datastore in a similar fashion, for ablation experiments. We download
a 2024 Wikipedia dump and process it using scripts provided by Pyserini (Lin et al., 2021)10. We
also prepare versions of this Wikipedia datastore with passages of N sentences with overlaps of N/2
sentences, for testing Provence robustness to various context lengths.

All other evaluations on Wikipedia-based datasets – including main evaluations – are conducted on
the Wikipedia datastore provided at https://huggingface.co/datasets/castorini/
odqa-wiki-corpora. We use a version with passages of 6 sentences with a 3-sentence overlap
– making 9M passages in total.

For Pubmed, we use the version of the dataset provided by (Hsia et al., 2024) at https:
//huggingface.co/datasets/jenhsia/ragged. It consists of 58M passages, extracted
from Pubmed abstracts. Each passage (chunk) is prepended with the page’s title.

For SyllabusQA, we split each syllabus (provided by the authors) into passages of 100 words. For
RGB, context are provided by the authors.

B MODELS

We list in Table 5 all the main models used to conduct experiments for Provence.

9Using SOLAR-10.7B (Kim et al., 2023).
10At https://github.com/castorini/pyserini/blob/master/docs/

experiments-wiki-corpora.md.
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Model Checkpoint

SPLADE-v3 naver/splade-v3
RetroMAE Shitao/RetroMAE MSMARCO distill
DeBERTa-v3 microsoft/deberta-large
DeBERTa-v3 (RR) naver/trecdl22-crossencoder-debertav3
BGE-M3 BAAI/bge-reranker-v2-m3
LLama-2-7B-chat meta-llama/Llama-2-7b-chat-hf
LLaMA-3-8B-Instruct meta-llama/Meta-Llama-3-8B-Instruct
Mistral-7B-instruct mistralai/Mistral-7B-Instruct-v0.2
SOLAR-10.7B-Instruct-v1.0 upstage/SOLAR-10.7B-Instruct-v1.0

Table 5: List of all the models used in the experiments with their corresponding HuggingFace check-
points.

Table 6: Prompt used for generating silver labeling with LLaMA-3-8B-Instruct. The sentence cita-
tions in the response are parsed using regular expression.

Question: {question}
Context: [1] {sentence1} [2] {sentence2} [3] {sentence3} ...
Answer the Question, using ONLY information provided in the Context. If no useful information
is provided, you MUST output ”No answer”. If some parts of the Context are used to answer, you
MUST cite ALL the corresponding sentences. Use the symbols [ ] to indicate when a fact comes
from a sentence in the context, e.g [0] for a fact from sentence 0. You should only answer the given
question and should not provide any additional information.

Table 7: nDCG@10 on the 13 open BEIR datasets.

Corpus DeBERTav3 Provence

TREC-COVID 88.3 88.3
NFCorpus 37.5 37.8
NQ 66.7 66.5
HotpotQA 74.5 74.9
FiQA-2018 47.8 47.6
ArguAna 29.8 33.2
Touché-2020 33.5 33.4
Quora 84.8 85.4
DBPedia 48.9 49.2
SCIDOCS 19.2 19.6
FEVER 86.6 87.9
Climate-FEVER 27.4 28.1
SciFact 75.8 75.3

average 55.4 55.9
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Figure 5: Statistics of the silver contexts labeled by LLaMA-3-8B-Instruct. (Left) the distribution
of the number of sentences in silver contexts. (Right) the distribution of the position of the selected
sentences in contexts.
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Train v0 Last Checkpoint: 20 days ago

File Edit View Run Kernel Settings Help Trusted

# Example usage
words = [t[0].replace('Ġ', "").replace("Ċ", "\n") for t in wp_preds]
values = F.softmax(outputs["logits"], dim=-1)[0, :, 1]

N = 165
display_colored_words(words[1:N], values[1:N])
plt.savefig("colored_example.pdf", bbox_inches="tight")

how many french words are there in the english language Inf luence of French on English . The most notable

influence of French on English has been its extensive contribution to the English lex icon . It has been estimated that

about a third of the words in English are French in origin ; lingu ist Henri ette Walter claims that this total may

be as high as two thirds . L ingu ist Anthony Lac oud re has estimated that over 40 , 000 English words come

directly from French and may be understood without orth ographical change by French speakers . Albert C . B augh

and Thomas Cable note that " although this influx of French words was brought about by the victory of the Conquer

or and by the political and social consequences of that victory , it was neither sudden nor immediately apparent .

Rather it began slowly and continued with varying tempo for a long time . COLORS: 0.99 0.1 0
<Figure size 640x480 with 0 Axes>

[131]: vss = []
intensity2v = {}
for v in values[:N]:
    intensity = int((1 - v) * 155)+100
    vss.append(intensity)
    intensity2v[intensity] = v
[intensity2v[intensity] for intensity in set(vss)]

Code JupyterLab Python 3 (ipykernel)

Figure 6: Example visualization of per-token probabilities of being selected in the final context.

60 70
0

25

50

75

100

co
m

p.
 %

Natural Questions (wiki)

45 50 55
0

25

50

75

100
Hotpot QA (wiki)

50 60 70
0

25

50

75

100
TyDi QA (wiki)

50 60 70
0

25

50

75

100
Pop QA (wiki)

40 45
Recall

0

25

50

75

100

co
m

p.
 %

Syllabus QA (syllabi)

60 70
Recall

0

25

50

75

100
BioASQ (Pubmed)

80 100
Recall

0

25

50

75

100
RGB (news)

Full context
Provence (w/ reranker)
Provence (standalone)
LLMLingua2
LongLLMLingua
RECOMP (ext)
RECOMP (ext+thr)
RECOMP (abs)

Figure 7: Main results for various QA domains, comparing Provence and baseline models, metric:
Recall. Generator: LLama-2-7B, retriever: SPLADE-v3, reranker: DeBERTa-v3 (or Provence
in the unified setting). Plot titles denote “Dataset name (datastore type)”. x-axis denotes QA per-
formance evaluated with Recall; y-axis denotes the context compression ratio. For both metrics, the
higher the better: the best model would be closest to the top right corner.
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Figure 8: Testing Provence in various RAG settings (retrieval, re-ranking, generator).

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

60 70
0

25

50

75

100
co

m
pr

es
sio

n 
ra

te
 %

Natural Questions (wiki)

45 50 55
0

25

50

75

100
Hotpot QA (wiki)

65 70 75
0

25

50

75

100
TyDi QA (wiki)

50 60
0

25

50

75

100
Pop QA (wiki)

Full context
Provence
LLMLingua2
RECOMP (ext)
RECOMP (abs)

35 40 45
LLM-Eval

0

25

50

75

100

co
m

pr
es

sio
n 

ra
te

 %

Syllabus QA (syllabi)

70 75
LLM-Eval

0

25

50

75

100
BioASQ (Pubmed)

80 90
LLM-Eval

0

25

50

75

100
RGB (news)

Figure 9: Comparing Provence to a subset of baselines with retriever: RetroMAE (Shitao et al.,
2022), reranker: BGE-M3 (Chen et al., 2024a), generator:: LLama-2-7B-chat.
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Figure 11: Ablation results with Recall (match-based metric).

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Table 8: Numerical scores corresponding to Figure 2 – NQ, Hotpot QA, Tydi QA, and Pop QA.

NQ HotPot QA Tydi QA PopQA

LLM-
Eval

Comp.
rate %

LLM-
Eval

Comp.
rate %

LLM-
Eval

Comp.
rate %

LLM-
Eval

Comp.
rate %

Full context 71.8 0.0 57.0 0.0 73.9 0.0 57.8 0.0

Provence 72.4 62.2 56.7 66.4 70.5 63.0 59.3 68.6
(w/ reranker) 72.6 76.0 56.0 82.4 73.6 76.2 59.5 75.8

Provence 72.3 64.1 56.6 69.5 70.9 65.8 59.0 69.9
(standalone) 70.6 77.3 54.8 84.1 70.2 78.1 58.8 76.1

LLMLingua2 59.5 74.0 47.1 74.4 57.7 73.9 42.9 75.0
67.5 45.4 52.9 45.8 67.3 45.0 52.5 46.3
70.3 25.0 55.0 24.9 70.0 24.8 55.2 25.1

LongLLMLingua 61.3 69.1 52.6 68.5 56.6 69.5 49.5 65.5
68.5 47.9 55.6 46.5 65.5 47.8 54.5 43.6
71.3 28.7 56.9 26.8 69.1 28.8 57.6 23.9

RECOMP 70.6 43.6 55.5 40.9 68.6 46.4 56.9 41.1
(ext) 68.2 59.8 53.4 57.5 67.0 63.0 55.7 57.4

66.2 77.1 50.1 75.7 64.5 79.7 52.3 74.9

RECOMP 69.0 59.5 50.9 62.9 70.9 52.4 54.8 56.0
(ext+thr) 72.9 11.8 56.4 14.4 72.3 6.9 58.5 12.4

RECOMP (abs) 66.9 94.5 53.1 94.4 66.4 95.2 54.4 92.8

DSLR 71.7 44.9 52.9 75.7 72.7 45.8 58.6 48.1
70.5 54.9 50.7 83.4 69.8 55.6 58.7 58.1
70.4 61.4 49.3 87.0 70.7 62.0 58.8 63.7
67.7 72.0 45.2 91.7 67.5 72.9 58.5 71.9
67.6 77.7 43.2 93.4 67.5 78.1 57.9 76.0

Dense-X re-
trieval

62.7 69.0 49.6 67.7 66.4 71.5 52.0 68.5
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Table 9: Numerical scores corresponding to Figure 2: Syllabus QA, BioASQ, and RGB.

Syllabus QA BioASQ RGB

LLM-
Eval

Comp.
rate %

LLM-
Eval

Comp.
rate %

LLM-
Eval

Comp.
rate %

Full context 52.9 0.0 80.7 0.0 93.5 0.0

Provence 49.8 60.6 80.6 49.0 94.4 60.5
(w/ reranker) 51.0 76.5 80.3 67.4 96.3 69.3

Provence 50.7 64.1 80.6 51.3 95.8 61.6
(standalone) 47.8 76.6 80.1 68.9 96.3 69.4

LLMLingua2 37.4 73.4 72.6 73.6 78.6 74.3
43.4 45.4 77.7 45.2 93.5 46.1
49.8 26.6 78.7 24.8 95.8 26.3

LongLLMLingua 42.3 71.3 72.2 72.9 71.6 73.9
45.1 48.5 77.3 50.4 83.3 51.6
50.9 29.2 78.7 31.3 92.1 32.1

RECOMP 44.6 51.5 78.7 42.2 97.7 42.0
(ext) 42.7 61.4 78.4 54.8 94.9 52.1

39.1 71.1 76.3 69.7 94.4 63.2

RECOMP 45.5 35.7 76.6 51.2 92.1 51.4
(ext+thr) 52.8 7.7 80.2 6.5 97.7 13.4

RECOMP (abs) 38.1 98.9 68.2 96.1 90.7 95.7

DSLR 49.6 33.2 80.1 29.9 97.2 41.6
49.1 46.4 79.6 40.1 97.7 46.9
47.2 55.4 79.2 47.3 96.3 49.7
44.2 70.6 77.6 60.2 97.2 54.1
40.7 78.2 75.4 68.0 95.8 56.9
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Table 10: Numerical scores corresponding to Figure 4.

NQ HotPot QA Syllabus QA

Thresh. LLM-
Eval

Comp.
rate %

LLM-
Eval

Comp.
rate %

LLM-
Eval

Comp.
rate %

Anchor 0.01 72.2 46.9 56.0 46.7 51.1 33.1
0.1 71.6 66.6 55.6 70.8 51.1 65.5
0.5 70.6 79.6 52.9 85.8 44.0 78.7

Deberta-large 0.01 72.5 59.4 56.7 63.7 49.9 50.7
0.1 72.1 69.2 55.9 75.6 49.6 68.3
0.5 70.9 78.0 53.2 84.7 46.1 77.0

MS-Marco 0.01 72.9 27.1 57.2 25.9 52.5 11.6
(downsample) 0.1 72.8 57.5 56.2 61.6 50.5 49.3

0.5 68.7 79.4 52.3 84.5 43.0 78.4

MS-Marco 0.1 72.3 64.1 56.6 69.5 50.7 64.1
(full) 0.5 70.6 77.3 54.8 84.1 47.8 76.6

straight. oracle 0.01 73.1 31.1 56.8 32.8 52.9 25.6
0.1 72.5 51.4 55.9 56.8 51.7 54.7
0.5 72.0 70.2 54.8 76.8 45.5 75.3

relevant oracle 0.01 72.8 16.1 57.4 22.6 49.4 11.1
0.1 72.6 38.8 55.7 55.1 49.6 41.4
0.5 71.3 66.9 51.6 83.9 46.8 73.3

sent-level 0.01 73.0 51.2 56.2 54.5 51.5 47.2
labeling 0.1 71.0 66.4 55.0 72.5 48.3 69.2

0.5 71.2 78.2 53.0 85.3 40.4 78.8

full context 0.01 71.8 0.0 57.0 0.0 52.9 0.0
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Table 11: Example of context pruning with various approaches. Provence selects one sentence
about the Shepard’s pie and removes sentences about other similar dishes, which is RECOMP (ext)
is not capable of by design. RECOMP (abs) correctly generates a summary; LongLLMLingua
removes the part relevant to the Shepard’s pie, and LLMLingua2 uniformly removes no-informative
tokens.

Question what goes on the bottom of shepherd’s pie

Original context Shepherd’s pie. History. In early cookery books, the dish was a means of using
leftover roasted meat of any kind, and the pie dish was lined on the sides and
bottom with mashed potato, as well as having a mashed potato crust on top.
Variations and similar dishes. Other potato-topped pies include: The modern
”Cumberland pie” is a version with either beef or lamb and a layer of bread-
crumbs and cheese on top. In medieval times, and modern-day Cumbria, the
pastry crust had a filling of meat with fruits and spices.. In Quebec, a varia-
tion on the cottage pie is called ”Pâté chinois”. It is made with ground beef
on the bottom layer, canned corn in the middle, and mashed potato on top..
The ”shepherdess pie” is a vegetarian version made without meat, or a vegan
version made without meat and dairy.. In the Netherlands, a very similar dish
called ”philosopher’s stew” () often adds ingredients like beans, apples, prunes,
or apple sauce.. In Brazil, a dish called in refers to the fact that a manioc puree
hides a layer of sun-dried meat.

Provence Shepherd’s pie. In early cookery books, the dish was a means of using leftover
roasted meat of any kind, and the pie dish was lined on the sides and bottom
with mashed potato, as well as having a mashed potato crust on top.

RECOMP (ext,
top-3)

In early cookery books, the dish was a means of using leftover roasted meat
of any kind, and the pie dish was lined on the sides and bottom with mashed
potato, as well as having a mashed potato crust on top. The ”shepherdess pie” is
a vegetarian version made without meat, or a vegan version made without meat
and dairy.. In the Netherlands, a very similar dish called ”philosopher’s stew”
() often adds ingredients like beans, apples, prunes, or apple sauce..

RECOMP (abs) Shepherd’s pie is a dish made with leftover roasted meat and mashed potato on
the bottom, with variations including a version with beef or lamb and a layer
of breadcrumbs and cheese on top. The dish has a history of being used as a
means of using leftover roasted meat and has variations on the toppings.

LLMLingua2
(comp.50%)

Shepherd’s pie History early cookery books dish leftover roasted meat lined
mashed potato mashed potato crust top Variations similar dishes potato-topped
pies include modern ”Cumberland pie” beef or lamb breadcrumbs cheese me-
dieval modern-day Cumbria pastry crust filling meat fruits spices Quebec vari-
ation cottage pie ”Pâté ground beef bottom canned corn middle mashed potato
top ”shepherdess pie” vegetarian without meat vegan version without meat dairy
Netherlands similar dish ”philosopher’s stew” adds ingredients beans apples
prunes apple sauce Brazil dish manioc puree hides sun-dried meat

LongLLMLingua
(comp. 50%).
Processes all pas-
sages together
and dynamically
decides on the
compression ratio
of each passage.

Shepherd’s pie. Other potato-topped pies include: The modern ”Cumberland
pie” is a version with either beef or lamb and a layer of breadcrumbs and cheese
on top. In medieval times, and modern-day Cumbria, the pastry crust had a
filling of meat with fruits and spices.. In Quebec, a variation on the cottage
pie is called ”Pâté chinois”. It is made with ground beef on the bottom layer,
canned corn in the middle, and mashed potato on top.. The ”shepherdess pie” is
a vegetarian version made without meat, or a vegan version made without meat
and dairy.. In the Netherlands, a very similar dish called ”philosopher’s stew”
() often adds ingredients like beans, apples, prunes, or apple sauce.. In Brazil,
a dish called in refers to the fact that a manioc puree hides a layer of sun-dried
meat.
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Table 12: Example of context pruning with various approaches. Provence correctly detects that
the entire passage is relevant to the query, same as LongLLMLingua, while RECOMP (ext) is by
design not capable of making such a decision.

Question where does the sweetness of fruit come from

Original context Sweetness. A number of plant species produce glycosides that are sweet at
concentrations much lower than sugar. The most well-known example is gly-
cyrrhizin, the sweet component of licorice root, which is about 30 times sweeter
than sucrose. Another commercially important example is stevioside, from the
South American shrub ”Stevia rebaudiana”. It is roughly 250 times sweeter
than sucrose. Another class of potent natural sweeteners are the sweet proteins
such as thaumatin, found in the West African katemfe fruit. Hen egg lysozyme,
an antibiotic protein found in chicken eggs, is also sweet.

Provence Sweetness. A number of plant species produce glycosides that are sweet at
concentrations much lower than sugar. The most well-known example is gly-
cyrrhizin, the sweet component of licorice root, which is about 30 times sweeter
than sucrose. Another commercially important example is stevioside, from the
South American shrub ”Stevia rebaudiana”. It is roughly 250 times sweeter
than sucrose. Another class of potent natural sweeteners are the sweet proteins
such as thaumatin, found in the West African katemfe fruit. Hen egg lysozyme,
an antibiotic protein found in chicken eggs, is also sweet.

RECOMP (ext,
top-3)

It is roughly 250 times sweeter than sucrose. Another commercially important
example is stevioside, from the South American shrub ”Stevia rebaudiana”. A
number of plant species produce glycosides that are sweet at concentrations
much lower than sugar.

RECOMP (abs) [empty context]

LLMLingua2
(comp.50%)

Sweetness plant species produce glycosides sweet lower sugar glycyrrhizin
sweet licorice root 30 times sweeter sucrose stevioside South American shrub
”Stevia 250 times sweeter sucrose sweeteners sweet proteins thaumatin West
African katemfe fruit Hen egg lysozyme antibiotic protein chicken eggs sweet

LongLLMLingua
(comp. 50%)

Sweetness. A number of plant species produce glycosides that are sweet at
concentrations much lower than sugar. The most well-known example is gly-
cyrrhizin, the sweet component of licorice root, which is about 30 times sweeter
than sucrose. Another commercially important example is stevioside, from the
South American shrub ”Stevia rebaudiana”. It is roughly 250 times sweeter
than sucrose. Another class of potent natural sweeteners are the sweet proteins
such as thaumatin, found in the West African katemfe fruit. Hen egg lysozyme,
an antibiotic protein found in chicken eggs, is also sweet.
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Table 13: Example of context pruning with various approaches. Provence selects one most relevant
sentence, which is also ranked first by RECOMP (ext). RECOMP (abs) decides that no information
is relevant to the query, while LongLLMLingua on the contrary keeps the entire input, dropping
some punctuation marks. LLMLingua2 removes too many tokens which makes text hardly under-
standable.

Question what was the tower of london originally used for

Original context Tower of London. In the 16th century, the Tower acquired an enduring repu-
tation as a grim, forbidding prison. This had not always been the case. As a
royal castle, it was used by the monarch to imprison people for various reasons,
however these were usually high-status individuals for short periods rather than
common citizenry as there were plenty of prisons elsewhere for such people.
Contrary to the popular image of the Tower, prisoners were able to make their
life easier by purchasing amenities such as better food or tapestries through
the Lieutenant of the Tower. As holding prisoners was originally an inciden-
tal role of the Tower – as would have been the case for any castle – there
was no purpose-built accommodation for prisoners until 1687 when a brick
shed, a ”Prison for Soldiers”, was built to the north-west of the White Tower.
The Tower’s reputation for torture and imprisonment derives largely from 16th-
century religious propagandists and 19th-century romanticists.

Provence Tower of London. As a royal castle, it was used by the monarch to imprison
people for various reasons, however these were usually high-status individuals
for short periods rather than common citizenry as there were plenty of prisons
elsewhere for such people.

RECOMP (ext,
sorted top-3 sents)

As a royal castle, it was used by the monarch to imprison people for various
reasons, however these were usually high-status individuals for short periods
rather than common citizenry as there were plenty of prisons elsewhere for
such people. This had not always been the case. The Tower’s reputation for
torture and imprisonment derives largely from 16th-century religious propagan-
dists and 19th-century romanticists.

RECOMP (abs) [empty context]

LLMLingua2
(comp.25%)

Tower London 16th century grim prison royal castle monarch high-status com-
mon citizenry prisoners amenities food Lieutenant Tower no-built accommoda-
tion until 1687 ”Prison for north-west White Tower reputation torture imprison-
ment 16th-century propagandists 19th-century romanticists

LongLLMLingua
(comp. 25%)

Tower of London In the 6th century, the acquired an enduring reputation as
grim, forbidd prison. This had always been the case As a royal castle, it was
by the to imprison people for various reasons however these were usually high-
status individuals for short rather than common citizenry as there were plenty
of prisons elsewhere for such people. Contrary popular of the Tower, prison-
ers were able to make their life easier purchasing amenities such better food
or tapestries through Lieutenant of the Tower. holding prisoners was originally
incident role of the– would have been the case for any – was purpose- accom-
modation for prisoners until 167 a ”Prison for Sold”, was to thewest of White
Tower. The’s reputation torture imprisonment derives largely from 6th- reli-
gious propagandists and 19th-century romanticists.
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