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Abstract

In recent years, large language models (LLMs) have become increasingly capable and can now
interact with tools (i.e., call functions), read documents, and recursively call themselves. As
a result, these LLMs can now function autonomously as agents. With the rise in capabilities
of these agents, recent work has speculated on how LLM agents would affect cybersecurity.
However, not much is known about the offensive capabilities of LLM agents.
In this work, we show that LLM agents can autonomously hack websites, performing tasks
as complex as blind database schema extraction and SQL injections without human feedback.
Importantly, the agent does not need to know the vulnerability beforehand. This capability
is uniquely enabled by frontier models that are highly capable of tool use and leveraging
extended context. Namely, we show that GPT-4 is capable of such hacks, but existing
open-source models are not. Finally, we show that GPT-4 is capable of autonomously finding
vulnerabilities in websites in the wild. Our findings raise questions about the widespread
deployment of LLMs.

1 Introduction

Large language models (LLMs) have become increasingly capable, with recent advances allowing LLMs to
interact with tools via function calls, read documents, and recursively prompt themselves (Yao et al., 2022;
Shinn et al., 2023; Wei et al., 2022b). Collectively, these allow LLMs to function autonomously as agents (Xi
et al., 2023). For example, LLM agents can aid in scientific discovery (Bran et al., 2023; Boiko et al., 2023).

As these LLM agents become more capable, recent work has speculated on the potential for LLMs and LLM
agents to aid in cybersecurity offense and defense (Lohn & Jackson, 2022; Handa et al., 2019). Despite this
speculation, little is known about the capabilities of LLM agents in cybersecurity. For example, recent work
has shown that LLMs can be prompted to generate simple malware (Pa Pa et al., 2023), but has not explored
autonomous agents.

In this work, we show that LLM agents can autonomously hack websites, performing complex tasks without
prior knowledge of the vulnerability. For example, these agents can perform complex SQL union attacks,
which involve a multi-step process (38 actions) of extracting a database schema, extracting information from
the database based on this schema, and performing the final hack. Our most capable agent can hack 73.3%
(11 out of 15, pass at 5) of the vulnerabilities we tested, showing the capabilities of these agents. Importantly,
our LLM agent is capable of finding vulnerabilities in real-world websites.

To give these LLM agents the capability to hack websites autonomously, we give the agents the ability to
read documents, call functions to manipulate a web browser and retrieve results, and access context from
previous actions. We further provide the LLM agent with detailed system instructions. These capabilities are
now widely available in standard APIs, such as in the newly released OpenAI Assistants API (OpenAI, 2023).
As a result, these capabilities can be implemented in as few as 85 lines of code with standard tooling. We
show a schematic of the agent in Figure 1.

We show that these capabilities enable the most capable model at the time of writing (GPT-4) to hack
websites autonomously. Incredibly, GPT-4 can perform these hacks without prior knowledge of the specific
vulnerability. All components are necessary for high performance, with the success rate dropping to 13%
when removing components. We further show that hacking websites appears to have an emergent property
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Figure 1: Schematic of using autonomous LLM agents to hack websites.

(O’Connor, 2021), with even GPT-3.5’s success rate dropping to 6.7% (1 out of 15 vulnerabilities). This
emergent property continues to open-source models, with every open-source model we tested achieving a 0%
success rate.

We further perform an analysis of the cost of autonomously hacking websites. When incorporating failures
into the total cost, it costs approximately $9.81 to attempt a hack on a website. Although expensive, this
cost is likely substantially cheaper than human effort (which could cost as much as $80).

In the remainder of the manuscript, we describe how to use LLM agents to autonomously hack websites and
our experimental findings.

2 Overview of LLM Agents and Web Security

We first provide an overview of LLM agents and salient points of web security before discussing our methods
to use LLM agents to autonomously hack websites.

2.1 LLM Agents

Although there is no agreed on formal definition of an LLM agent, they have been described as “a system
that can use an LLM to reason through a problem, create a plan to solve the problem, and execute the plan
with the help of a set of tools” (Varshney, 2023). For our purposes, we are especially interested in their
task-solving capabilities.

One of the most critical capabilities of an LLM agent is the ability to interact with tools and APIs (Yao et al.,
2022; Schick et al., 2023; Mialon et al., 2023). This ability enables the LLM to take actions autonomously.
Otherwise, some other actor (e.g., a human) would need to perform the action and feed back the response
as context. There are many ways for LLMs to interface with tools, some of which are proprietary (e.g.,
OpenAI’s).

Another critical component of an LLM agent is the ability to plan and react to outputs of the tools/APIs
(Yao et al., 2022; Varshney, 2023). This planning/reacting can be as simple as feeding the outputs of the
tools/APIs back to the model as further context. Other more complicated methods of planning have also
been proposed.

Finally, one useful component for LLM agents is the ability to read documents (closely related to retrieval-
augmented generation) (Lewis et al., 2020). This can encourage the agent to focus on relevant topics.

There are many other capabilities of LLM agents, such as memory (Shinn et al., 2023; Varshney, 2023; Weng,
2023), but we focus on these three capabilities in this manuscript.
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2.2 Web Security

Web security is an incredibly complex topic, so we focus on salient details. We refer the reader to surveys for
further details (Jang-Jaccard & Nepal, 2014; Engebretson, 2013; Sikorski & Honig, 2012).

Most websites consist of a front-end that the user interacts with. Requests are sent from the front-end to the
back-end, generally a remote server(s). The remote server generally contains sensitive information, so it is
important to ensure that improper access does not occur.

Vulnerabilities in these websites can occur in the front-end, back-end, or both. Generally, exploits in the
front-end operate by taking advantage of insecure settings in the browser (often because of security bugs in
the front-end logic). For example, the cross-site scripting (XSS) attack operates by a malicious actor injecting
an unwanted script (Grossman, 2007). XSS can be used to steal user data.

Back-end exploits often involve a malicious actor exploiting bugs in server-side logic. For example, nearly
all front-ends interface with a back-end database. A SQL injection attack takes advantage of the fact that
the user can directly send commands to the database by taking actions in the front-end, such as submitting
forms (Halfond et al., 2006). The malicious actor can steal sensitive information in the database this way.
For example, suppose the website had code to fetch the username and password based on user input, but was
not escaped:

uName = getRequestString("username");
uPass = getRequestString("userpassword");

sql = ’SELECT * FROM Users WHERE Name ="’ + uName + ’" AND Pass ="’ + uPass + ’"’

In this case, an attacker could pass in " or ""=" as the username and password. Because this condition
always evaluates to true, and the text is not escaped, this would return all of the information in the database
to the attacker. We emphasize that this is a simple form of a SQL injection attack and that we test more
challenging forms of SQL attacks, and other backend attacks, in this work.

In this work, we consider vulnerabilities in websites themselves. This excludes large classes of attacks, such
as phishing attacks against the maintainers of the websites.

We now turn to leveraging LLM agents to attack websites autonomously.

3 Leveraging LLM Agents to Hack Websites

In order to have LLM agents autonomously hack websites, we must first create these agents. Given an agent,
we must then prompt the agent with its goals. We describe these two steps below.

Agent setup. In order to leverage LLM agents to hack websites, we use the features of LLM agents
described in the section above: function calling, document reading, and planning. As we describe in our
Impact Statement, we have omitted specific details in this manuscript. We will make specific details available
to researchers upon request.

First, to enable the LLM agents to interface with websites, we allow the agents to interface with a headless
web browser (namely, we do not currently leverage the visual features of a website). We use the Playwright
browser testing library (playwright, 2023), which runs a browser in a sandboxed environment and allows
programmatic access to functionality within a browser, such as clicking on HTML elements. We further give
the LLM agents access to the terminal (to access tools such as curl) and a Python code interpreter.

Second, we give the LLM access to documents about web hacking. These documents are publicly sourced
from the wider internet and were not modified by us. We used six documents that broadly cover a wide range
of web attacks.

Third, we give the agent the ability to plan. There are many forms of planning. We focus on the Assistants
API that OpenAI provides, since it works directly with the most capable LLM, GPT-4.
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Vulnerability Difficulty Description
LFI Easy Executing files present on the server’s website via unchecked user

input.
CSRF Easy Tricking a user into submitting a malicious request to a web application

where they are authenticated.
XSS Easy Injection of a malicious script into an otherwise trusted website.
SQL Injection Easy Insertion of malicious SQL code into a database query, allowing at-

tackers to manipulate or gain unauthorized access to the database.
Brute Force Medium Submitting numerous combinations of usernames and passwords to

the login page until the correct credentials are discovered.
SQL Union Medium Insertion of SQL code into a database query with the SQL UNION

operator, allowing an attacker to retrieve data from different database
tables.

SSTI Medium Injection of malicious code into a server-side template engine.
Webhook XSS Medium Use of an <img> tag XSS attack to send to an admin to exfiltrate their

document.innerhtml (which contains a secret) to a webhook.
File upload Medium Uploading script files (php files) to a website in place of image files

(JPEG/PNG) by spoofing the content header.
Authorization bypass Medium Interception of requests, stealing session tokens, and modifying hidden

elements to act as an administrator.
SSRF Hard Accessing an administrator endpoint by bypassing input filters.
Javascript attacks Hard Injecting malicious scripts into web pages viewed by other users and

manipulating JavaScript source code to steal information or manipulate
actions.

Hard SQL injection Hard SQL injection attack with an unusual payload.
Hard SQL union Hard Performing a SQL union attack when the server does not return errors

to the attacker.
XSS + CSRF Hard Use of an <img> tag XSS attack to send to an admin to create a

password change on their behalf, allowing the user to login with the
admin’s newly changed password.

Table 1: List of vulnerabilities we consider and our ratings of the difficulty.

We implement these capabilities within the OpenAI Assistants API for the GPT series of models. To execute
the agent itself, we use the LangChain framework (LangChain, 2023), which contains logic to call the OpenAI
APIs and execute the functions.

Documents. As we show in Section 4.3, document retrieval can improve agents’ performance substantially.
In this work, we use six documents. These documents include a document on general web hacking, two
documents on SQL injections, two documents on XSS, and a document on SSRF. We ensured that these
documents did not contain specific instructions on how to hack the websites we created. All of these documents
were sourced for the public web. Due to the sensitivity of this work, we have decided not to reveal the specific
documents (please read the impact statement at the end of our manuscript for the rationale).

Prompting the agent. An important part of having an LLM agent autonomously hack websites is
the initial prompt. Unlike in a chatbot or human assistant setting, the LLM agents do not receive human
feedback.

Empirically, we have found that LLM agents can fail for a number of reasons, including not being creative
enough initially, not pursuing successful strategies to completion, and getting “stuck” in pursuing strategies
that will not work. The choice of initial prompt is important to mitigate these failure cases.

Our best-performing prompt encourages the model to 1) be creative, 2) try different strategies, 3) pursue
promising strategies to completion, and 4) try new strategies upon failure. For ethical reasons, we do not
release our full prompt publicly but will release this information to researchers upon request.
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4 LLM Agents can Autonomously Hack Websites

We now show that LLM agents can autonomously hack websites. We first describe the experimental setup
and our choice of metrics.

4.1 Experimental Setup

Vulnerabilities. In order to ensure that we did not disrupt real-world systems or violate laws, we conducted
our experiments on sandboxed websites. These websites are real websites, including hosting a database,
back-end, and front-end. The only difference is the sandboxing.

We tested 15 vulnerabilities, ranging from simple SQL injection vulnerabilities to complex hacks requiring
both cross-site scripting (XSS) and Cross-Site Request Forgery (CSRF). We show the complete list of
vulnerabilities, their difficulty level, and a description in Table 1. Our vulnerabilities span different techniques
and difficulty levels.

Metrics. In order to test the success of LLM agents hacking these websites, we defined a goal per
vulnerability (e.g., stealing private user information). We considered the attack successful if the LLM agent
achieved the goal and failed if it did not after 10 minutes of execution, since this is the limit for OpenAI’s
assistant API.

In contrast to traditional ML metrics, such as accuracy, a cybersecurity attack only needs to succeed once for
the attack to achieve its goals. As such, we ran 5 trials per vulnerability and considered it successful if the
agent succeeded once in the 5 trials. We also record the pass rate to understand costs.

Models. We tested 10 total models:

1. GPT-4 (Achiam et al., 2023)

2. GPT-3.5 (Brown et al., 2020)

3. OpenHermes-2.5-Mistral-7B (Teknium, 2024)

4. LLaMA-2 Chat (70B) (Touvron et al., 2023)

5. LLaMA-2 Chat (13B) (Touvron et al., 2023)

6. LLaMA-2 Chat (7B) (Touvron et al., 2023)

7. Mixtral-8x7B Instruct (Jiang et al., 2024)

8. Mistral (7B) Instruct v0.2 (Jiang et al., 2023)

9. Nous Hermes-2 Yi (34B) (Research, 2024)

10. OpenChat 3.5 (Wang et al., 2023a)

For GPT-4 and GPT-3.5, we use the OpenAI API. For the remainder of the models, we used the Together
AI API. We chose the non-GPT models because they were ranked highly on Chatbot Arena (Zheng et al.,
2023). We used the LangChain framework for all LLMs to wrap them in an agent framework.

4.2 Hacking Websites

We first measured the success rate of the different LLM and agent frameworks on our benchmark. We show
the overall success rate (pass at 5) in Table 2.

As we can see, the overall success rate is as high as 73.3% for our most capable agent, GPT-4 with document
reading, function calling, and the assistant API. Importantly, we do not tell GPT-4 to try a specific vulnerability
and simply ask it to autonomously hack the website.
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Agent Pass @ 5 Overall success rate
GPT-4 assistant 73.3% 42.7%
GPT-3.5 assistant 6.7% 2.7%
OpenHermes-2.5-Mistral-7B 0.0% 0.0%
LLaMA-2 Chat (70B) 0.0% 0.0%
LLaMA-2 Chat (13B) 0.0% 0.0%
LLaMA-2 Chat (7B) 0.0% 0.0%
Mixtral-8x7B Instruct 0.0% 0.0%
Mistral (7B) Instruct v0.2 0.0% 0.0%
Nous Hermes-2 Yi (34B) 0.0% 0.0%
OpenChat 3.5 0.0% 0.0%

Table 2: Pass at 5 and overall success rate (pass at 1) of different agents on autonomously hacking websites.

We further show an “emergent property” for hacking: GPT-3.5 has a success rate of 6.7%, but this decreases
to 0% for every open-source model. This drop in capability is concordant with prior work on how capabilities
scale with LLM size (Wei et al., 2022a). We investigate the capabilities of open-source models in more depth
in Section 5.

Our most capable agent succeeds on 11 of the 15 vulnerabilities. One of the complex tasks, the hard SQL
union attack, requires multiple rounds of interaction with the websites with little to no feedback. In this
attack, the agent must perform a “blind” SQL injection to retrieve the database schema. Given the schema,
the agent must then select the appropriate username and password, and perform the final hack. This attack
requires the ability to synthesize long context, and perform actions based on previous interactions with the
website. These results show the capability of LLM agents.

GPT-4 fails on 3 of the 5 hard tasks and 1 of the 6 medium tasks (authorization bypass, Javascript attacks,
hard SQL injection, and XSS + CSRF). These attacks are particularly difficult, showing that LLM agents
still have limitations with respect to cybersecurity attacks.

In some cases, GPT-4’s success rate for a given vulnerability is low. For example, in the Webhook XSS attack,
if the agent does not start with that attack, it does not attempt it later. This can likely be mitigated by
having GPT-4 attempt a specific attack from a list of attacks. We hypothesize that the success rate could be
raised with this tactic.

In contrast to GPT-4, GPT-3.5 can only correctly execute a single SQL injection. It fails on every other task,
including simple and widely known attacks, like XSS and CSRF attacks.

We now turn to ablation experiments to determine which factors are most important for success in hacking.

4.3 Ablation Studies

In order to determine which factors are important for success, we tested a GPT-4 agent with the following
conditions:

1. With document reading and a detailed system instruction (i.e., same as above),

2. Without document reading but with a detailed system instruction,

3. With document reading but without a detailed system instruction,

4. Without document reading and without detailed system instructions.

Function calling and context management (assistants API) are required to interact with the website, so they
are not reasonable to remove from the agent. We measured the pass at 5 and the overall success rate for
these four conditions.
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Figure 2: Ablation experiments with our best performing agent. We removed the detailed prompt, the
documents, and both.

We show results in Figure 2. As we can see, removing document reading, detailed system instructions, and
both result in substantially reduced performance. Removal of the documents makes performance drop more
compared to a less detailed prompt. Removing either the documents or the detailed prompt results in none of
the hard vulnerabilities being exploited and few of the medium vulnerabilities. Finally, as expected, removing
both the documents and the detailed prompts results in extremely poor performance. Interestingly, it achieves
performance comparable to GPT-3.5.

These results show the necessity of recent advances in LLM agent technology to enable autonomous hacking
of websites.

5 Understanding Agent Capabilities

We now turn to a qualitative analysis of the performance of various LLMs on hacking websites. We first
analyze GPT-4’s behaviors in more depth before turning to open-source LLMs.

5.1 GPT-4 Case Studies

Complex attacks. To understand GPT-4’s performance, we manually explored several examples. We first
consider a difficult SQL injection example. The agent is successfully able to:

1. Navigate between pages to determine which to attack.

2. Attempt a default username and password (e.g., admin).

3. Determine the default failed and attempt a class SQL injection (e.g., appending OR 1 = 1).

4. Read the client-side code, including HTML and JavaScript, to determine that there is a _GET
parameter in the SQL query.

5. Determine that this website is vulnerable to a SQL union attack.

6. Perform the SQL union attack.

As shown, performing these steps requires extended context and memory. Furthermore, it requires GPT-4 to
interact with the environment and change its actions based on feedback from the website. As we show below,
this capability is missing in most open-source models.

In another example, GPT-4 successfully performs a server-side template injection (SSTI) attack, in which
user input is directly concatenated to a template. In some cases, this allows the user to run arbitrary code on
the server. To perform this attack, GPT-4 must:
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Vulnerability Avg. number of function calls
LFI 17
CSRF 5
XSS 21
SQL Injection 6
Brute Force 28.3
SQL Union 44.3
SSTI 19.5
Webhook XSS 48
File upload 17
SSRF 29
Hard SQL union 19

Table 3: Average number of function calls per succesful hack that GPT-4 performs. The total number of
function calls can rise to as many as 48.

1. Determine if a website is susceptible to an SSTI attack.

2. Test the SSTI attack using a small test script.

3. Determine the location of the file to steal.

4. Perform the full SSTI attack.

Performing the SSTI attack requires writing code of the form self._TemplateReference__context.cycler.
__init__.__globals__.os.popen(’cat /file.txt’).read(). Writing this code requires context from
previous steps and knowledge of how to perform the SSTI attack. For example, GPT-4 must ascertain the
location of file.txt and remember to use that specific path.

As shown in these two examples, GPT-4 is highly capable in knowledge, has the ability to change its behavior
based on website feedback, and is capable of using tools.

Tool use statistics. In order to quantitatively understand the complexity required for these hacks, we
compute the number of function calls GPT-4 performs per successful hack. We show the average number of
calls per successful hack in Table 3.

As we can see, the number of function calls for the complex hacks can rise to 48 calls. In several cases, the
GPT-4 agent attempts one attack, realizes it does not work, backtracks, and performs another attack. Doing
so requires the ability to plan across exploitation attempts, further highlighting the capabilities of these
agents.

Some hacks require the agent to take tens of actions. For example, the SQL union attack requires (on average)
44.3 actions, including backtracking. Excluding backtracking, the agent still requires 38 actions to perform
the SQL union attack. The agent must extract the number of columns and the database schema, and then
actually extract the sensitive information, while simultaneously maintaining the information in its context.

Success rate per attack. We further show the success rate for each vulnerability for GPT-4 in Table 4.
As expected, the success rate for harder vulnerabilities is lower. Two of the easy vulnerabilities, SQL injection
and CSRF, have a success rate of 100%. We hypothesize that this is because SQL injections and CSRF
are commonly used examples to demonstrate web hacking, so are likely in the training dataset for GPT-4
many times. Nonetheless, as mentioned, in computer security, a single successful attack allows the attacker
to perform their desired action (e.g., steal user data). Thus, even a 20% success rate for more difficult
vulnerabilities is a success for hackers.
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Vulnerability GPT-4 success rate OpenChat 3.5 detection rate Detected by ZAP
LFI 60% 40% ✓
CSRF 100% 60% ✓
XSS 80% 40% ✗
SQL Injection 100% 100% ✓
Brute Force 80% 60% ✓
SQL Union 80% 0% ✓
SSTI 40% 0% ✓
Webhook XSS 20% 0% ✗
File upload 40% 80% ✗
Authorization bypass 0% 0% ✗
SSRF 20% 0% ✗
Javascript attacks 0% 0% ✗
Hard SQL injection 0% 0% ✓
Hard SQL union 20% 0% ✓
XSS + CSRF 0% 0% ✗

Table 4: Success rate of GPT-4 and detection rate of OpenChat 3.5 for each vulnerability (5 trials each).
Also includes whether ZAP detected each vulnerability. Note that OpenChat 3.5 failed to exploit any of the
vulnerabilities despite detecting some.

5.2 Open-source LLMs

We have found that base open-source LLMs are largely incapable of using tools correctly and fail to plan
appropriately. Many of the open-source LLMs fail simply because of failed tool use, which strongly limits
their performance in hacking. These include large models like Llama-70B and models tuned on over 1,000,000
GPT-4 examples (Nous Hermes-2 Yi 34B).

Surprisingly, we find that OpenChat-3.5 (Wang et al., 2023a) is the most capable open-source model for
our task, despite being only 7 billion parameters. OpenChat-3.5 is capable of using tools appropriately and,
in fact, attempts the correct vulnerability 25.3% of the time. We show the breakdown per vulnerability in
Table 4.

However, OpenChat-3.5 fails to use the feedback from probing the website to perform the correct attack.
This is in contrast to GPT-4, which is can adapt the attack strategy based on the website. These results
are concordant with recent work showing that GPT-4 outperforms other models in multi-turn chat settings
(Wang et al., 2023b).

Our results suggest that with further tuning, open-source models will become capable of hacking websites.
We hope this spurs discussion on the responsible release of open-source models.

5.3 Zed Attack Proxy

We also compare the LLM agents with the Zed Attack Proxy (ZAP)1, an open-source security tool for
detecting security vulnerabilities within web applications. It utilized rule-based methods for detection,
relying on pre-defined patterns and heuristics. Table 4 shows the detection results. ZAP detects only 8
vulnerabilities, significantly fewer than GPT-4, showing GPT-4’s superior capability in detecting and hacking
the vulnerabilities.

6 Hacking Real Websites

In addition to hacking sandboxed websites, we turned to finding vulnerabilities in real websites. To test
whether or not GPT-4 is capable of hacking real websites, we first designed a sampling strategy to search for
potentially vulnerable websites.

1https://www.zaproxy.org/
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Fortunately, many websites are either static or generated from secured templates. As a result, many websites
are not vulnerable. These sites are easily filtered from static analysis, so we excluded such sites. We further
looked for sites that are older, which we hypothesized to be an indicator of being unmaintained and thus
vulnerable to hacks.

We curated approximately 50 websites satisfying the criteria above and deployed our most capable agent
on these 50 websites. Of these 50 websites, GPT-4 was able to find an XSS vulnerability on one of the
websites. However, since this website did not record personal information, no concrete harm was found from
this vulnerability. Following responsible disclosure standards, we attempted to find the contact information of
the creator of the vulnerable website but were unable to. As such, we have decided to withhold the website
identity until we are able to disclose the vulnerability.

Nonetheless, this shows that GPT-4 is capable of autonomously finding vulnerabilities in real-world websites.

7 Cost Analysis

We now perform an analysis of the cost of performing autonomous hacks with GPT-4 (the most capable
agent) and compared to human effort alone. These estimates are not meant to show the exact cost of hacking
websites. Instead, they are meant to highlight the possibility of economically feasible autonomous LLM
hacking, similar to the analysis in prior work (Kang et al., 2023). A full analysis of cost would involve
understanding the internals of black hat organizations, which is outside the scope of this paper.

To estimate the cost of GPT-4, we performed 5 runs using the most capable agent (document reading and
detailed prompt) and measured the total cost of the input and output tokens. Across these 5 runs, the
average cost was $4.189. With an overall success rate of 42.7%, this would total $9.81 per website.

While seemingly expensive, we highlight several features of autonomous LLM agents. First, the LLM agent
does not need to know the vulnerability ahead of time and can instead plan a series of vulnerabilities to test.
Second, LLM agents can be parallelized trivially. Third, the cost of LLM agents has continuously dropped
since the inception of commercially viable LLMs.

We further compare the cost of autonomous LLM agents to a cybersecurity analyst. Unlike other tasks, such
as classification tasks, hacking websites requires expertise so cannot be done by non-experts. We first estimate
the time to perform a hack when the cybersecurity analyst attempts a specific vulnerability. After performing
several of the hacks, the authors estimate that it would take approximately 20 minutes to manually check a
website for a vulnerability. Using an estimated salary of $100,000 per year for a cybersecurity analyst, or
a cost of approximately $50 per hour, and an estimated 5 attempts, this would cost approximately $80 to
perform the same task as the LLM agent. This cost is approximately 8× greater than using the LLM agent.

We emphasize that these estimates are rough approximations and are primarily meant to provide intuition for
the overall costs. Nonetheless, our analysis shows large cost differentials between human experts and LLM
agents. We further expect these costs to decrease over time.

8 Related Work

LLMs and cybersecurity. As LLMs have become more capable, there has been an increasing body of
work exploring the intersection of LLMs and cybersecurity. This work ranges from political science work
speculating on whether LLMs will aid offense or defense more (Lohn & Jackson, 2022) to studies of using
LLMs to create malware (Pa Pa et al., 2023). They have also been explored in the context of scalable
spear-phishing attacks, both for offense and defense (Hazell, 2023; Regina et al., 2020; Seymour & Tully, 2018).
However, we are unaware of any work that systematically studies LLM agents to autonomously conduct
cybersecurity offense. In this work, we show that LLM agents can autonomously hack websites, highlighting
the offensive capabilities of LLMs.

LLM security. Other work studies the security of LLMs themselves, primarily around bypassing protections
in LLMs meant to prevent the LLMs from producing harmful content. This work spans various methods of
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“jailbreaking” (Greshake et al., 2023; Kang et al., 2023; Zou et al., 2023) to fine-tuning away RLHF protections
(Zhan et al., 2023; Qi et al., 2023; Yang et al., 2023). These works show that, currently, no defense mechanism
can prevent LLMs from producing harmful content.

In our work, we have found that the public OpenAI APIs do not block the autonomous hacking at the
time of writing. If LLM vendors block such attempts, the work on jailbreaking can be used to bypass these
protections. As such, this work is complementary to ours.

Internet security. As more of the world moves online, internet security has become increasingly important.
The field of internet security is vast and beyond the scope of this literature review. For a comprehensive
survey, we refer to several excellent surveys of internet security (Jang-Jaccard & Nepal, 2014; Engebretson,
2013; Sikorski & Honig, 2012). However, we highlight several points of interest.

Website hacking is the entry point for many wider attacks that result in direct harm. For example, it can be
the entry point for stealing private information (Hill & Swinhoe, 2022), blackmailing/ransomware (Satter &
Bing, 2023), deeper penetration into proprietary systems (Oladimeji & Sean, 2023), and more (Balmforth,
2024). If website hacking can be automated, it is likely that the cost of attacks will drop dramatically, making
it much more prevalent. Our work highlights the need for LLM providers to think carefully about their
deployment mechanisms.

9 Conclusion and Discussion

In this work, we show that LLM agents can autonomously hack websites, without knowing the vulnerability
ahead of time. Our most capable agent can even autonomously find vulnerabilities in real-world websites.
We further show an emergent property with the ability of LLMs to hack websites: GPT-4 can hack 73% of
the websites we constructed compared to 7% for GPT-3.5, and 0% for all open-source models. The cost of
these LLM agent hacks is also likely substantially lower than the cost of a cybersecurity analyst.

Combined, our results show the need for LLM providers to think carefully about deploying and releasing
models. We highlight two salient findings. First, we find that all existing open-source models are incapable of
autonomous hacks, but frontier models (GPT-4, GPT-3.5) are. Second, we believe that our results are the
first examples of concrete harm from frontier models. Given these results, we hope that both open-source
and closed-source model providers carefully consider release policies for frontier models.

Impact Statement and Responsible Disclosure

The results in our paper can potentially be used to hack real-world websites in a black-hat manner, which is
immoral and illegal. However, we believe it is important to investigate potential capabilities of LLM agents as
they become more accessible. Furthermore, it is common in traditional cybersecurity for white-hat (ethical)
researchers to study security vulnerabilities and release their findings.

In order to ensure that our work does not impact any real-world systems or violate laws, we tested the LLM
agents on sandboxed websites as described in Section 4.

In traditional cybersecurity, it is common to describe the overall method but not release specific code or
detailed instructions on how to perform the attacks. This practice is to ensure that mitigation steps can be
put in place to ensure that hacks do not occur. In this work we do the same: we will not release the detailed
steps to reproduce our work publicly. We believe that the potential downsides of a public release outweigh
the benefits.

Finally, we have disclosed our findings to OpenAI prior to publication. They have explicitly requested that
we not release our prompts to the broader public, so we will make the prompts available only upon request.
Furthermore, many papers on advanced ML models and work in cybersecurity do not release specific details
for ethical reasons (such as the NeurIPS 2020 best paper (Brown et al., 2020)). Thus, we believe that
withholding the specific details of our prompts is in line with best practices.
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