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ABSTRACT

Causal inference is one of the hallmarks of human intelligence. While the field
of CausalNLP has attracted much interest in the recent years, existing causal
inference datasets in NLP primarily rely on discovering causality from empirical
knowledge (e.g., commonsense knowledge). In this work, we propose the first
benchmark dataset to test the pure causal inference skills of large language models
(LLMs). Specifically, we formulate a novel task CORR2CAUSE, which takes a
set of correlational statements and determines the causal relationship between
the variables. We curate a large-scale dataset of more than 200K samples, on
which we evaluate 17 existing LLMs. Through our experiments, we identify a
key shortcoming of LLMs in terms of their causal inference skills, and show
that these models achieve almost close to random performance on the task. This
shortcoming is somewhat mitigated when we try to re-purpose LLMs for this skill
via finetuning, but we find that these models still fail to generalize – they can only
perform causal inference in in-distribution settings when variable names and textual
expressions used in the queries are similar to those in the training set, but fail in
out-of-distribution settings generated by perturbing these queries. CORR2CAUSE
is a challenging task for LLMs, and would be helpful in guiding future research on
improving LLMs’ pure reasoning skills and generalizability.1

1 INTRODUCTION

Causal inference, i.e., the ability to establish the correct causal relationships between variables or
events, is fundamental to human intelligence. There are two distinct ways this causal inference
capability can be acquired: one through empirical knowledge, e.g., we know from common sense that
touching a hot stove will get us burned; the other through pure causal reasoning, as causality can be
formally argued and reasoned about using known procedures and rules from causal inference (Spirtes
et al., 2000; Pearl, 2009; Peters et al., 2017). One example is that we have the a priori knowledge that
the correlation between A and B does not necessarily imply causality. This is a formal rule that holds
true regardless of the realizations of the variables A and B.

With the rise of large language models (LLMs) (Radford et al., 2019; Devlin et al., 2019; Ouyang
et al., 2022; Zhang et al., 2022; OpenAI, 2023, inter alia), a crucial research question is whether
they can do causal reasoning well. Recent studies have pointed out that LLMs are “causal parrots,”
which recite the causal knowledge in the training data (Zečević et al., 2023). Moreover, the vast
majority of studies frame causal reasoning as a skill to navigate around empirical knowledge (Gordon
et al., 2012; Sap et al., 2019a;b; Qin et al., 2019; Bhagavatula et al., 2020), and also treat LLMs as a
knowledge base when evaluating its causal skills (Kıcıman et al., 2023; Tu et al., 2023; Xie et al.,
2023). However, all the above lines of research frame causality as empirical knowledge, thus relying
heavily on the quality and the coverage of the training data, overlooking the great potential of the
formal causal reasoning skills to process correlational information to causal conclusions.

∗Work originated as a Meta AI internship project involving Zhijing, Mona, and Spencer. †Equal supervision.
1Our data is at https://huggingface.co/datasets/causalnlp/corr2cause.

Our code is at https://github.com/causalNLP/corr2cause.
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Figure 1: Illustration of the motivation behind our task and dataset.

Drawing inspirations from technical studies on causal discovery (Spirtes et al., 2000; Spirtes & Zhang,
2016; Glymour et al., 2019), we formulate a novel task for NLP, correlation-to-causation inference
(CORR2CAUSE), which is an important skill for LLMs. Imagine the scenario in Figure 1, where
the training corpus does not tediously cover every causal relation, but more pervasively talk about
correlations, such as which events tend to co-occur. Learning a good CORR2CAUSE skill can enable
LLMs to draw causal relations behind the mere correlational information on the surface. For example,
several decades ago, there might be an observation that female university students tend to perform
better, but behind the correlational statistics is the causal graph that female students have to achieve
extra good performance to get into universities as the first place.

To this end, we collect the CORR2CAUSE dataset, the first dataset to test the pure causal reasoning
abilities of LLMs. All the questions in this dataset are centered around testing when it is valid
or invalid to infer causation from correlation. To systematically compose this dataset, we ground
our generalization process in the formal framework of causal discovery (Spirtes et al., 1993; 2000;
Glymour et al., 2016; Spirtes & Zhang, 2016), which provides rules about how to deduce causal
relations among variables given their statistical correlation in the observational data. We generate
more than 200K data points, and label a correlation-causation statement pair as valid if and only if
there is a bijective mapping between the statistical correlation and the underlying causality.

Based on our CORR2CAUSE dataset with 200K samples, we investigate two main research questions:
(1) How well do existing LLMs perform on this task? (2) Can existing LLMs be re-trained or
re-purposed on this task and obtain robust causal inference skills? Through extensive experiments,
we show empirically that none of the 17 existing LLMs we investigate perform well on this pure
causal inference task. We also show that although LLMs can demonstrate better performance after
being finetuned on the data, the causal inference skills attained by them are not robust. In summary,
our contributions are as follows:

1. We propose the novel task of CORR2CAUSE, to probe an aspect of LLM’s reasoning ability,
pure causal inference;

2. We compose a dataset of over 200K samples, using insights from causal discovery;
3. We evaluate the performance of 17 LLMs on our dataset, finding that all of them perform

poorly, close to the random baseline;
4. We further explored whether LLMs can learn the skill through finetuning, and find that

LLMs fail to robustly acquire this skill in out-of-distribution settings. Finally, we suggest
future work to explore more ways to enhance the pure causal inference skill in LLMs.

2 PRELIMINARIES: CAUSAL INFERENCE

2.1 DIRECTED GRAPHICAL CAUSAL MODELS (DGCMS)

A directed graphical causal model (DGCM) is a commonly used representation to express the causal
relations among a set of variables. Given a set of N variables X = {X1, . . . , XN}, we can encode
the causal relations among them using a directed graph G := (X,E), where E is the set of directed
edges. Each edge ei,j ∈ E represents a causal link Xi → Xj , meaning that Xi is a direct cause of
Xj . In the context of this work, we take the common assumption of directed acyclic graphs (DAGs),
which most causal discovery methods use (Glymour et al., 2019), as graphs with cycles can make the
causal discovery process arbitrarily hard.
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Following the graph-theoretic terminology, we use an analogy of the ancestry tree to denote the
relations between two variables. For example, we call Xi as a parent of Xj if there is a directed edge
Xi → Xj in the graph, and, thus, Xj is a child of Xi. Similarly, we denote Xi as an ancestor of Xj

if there exists a directed path from Xi to Xj , and, thus, Xj is a descendent of Xi. Note that a parent
is a special case of an ancestor where the directed path has a length of 1.

For convenience, we also introduce the notions for some special three-variable relations. Given two
variables Xi and Xj , we call a third variable Xk a confounder (i.e., common cause) if Xk is a parent
of both Xi and Xj ; a collider (i.e., common effect) if Xk is a child of both Xi and Xj ; and a mediator
if Xk is both a child of Xi, and a parent of Xj .

2.2 D-SEPARATION AND MARKOV PROPERTY

D-Separation D-separation (Pearl, 1988) is a fundamental concept in graphical models used to
determine whether two sets of nodes X and Y in a DAG G are conditionally independent given a
third set of nodes Z, where the three sets are disjoint. We say that X and Y are d-separated by Z if
all paths between any node in X and any node in Y are blocked by the conditioning set Z. A path
between X and Y is blocked by Z if there exists a node A ∈ Z which satisfies one of the following
conditions: A is the parent node in a fork structure on the path (i.e., · ← A→ ·); A is the mediator
node in a chain structure on the path (i.e., · → A→ ·); or in any collider structure on the path (i.e.,
· → A← ·), Z does not contain A or its descendants.

Markov Property The Markov property in a DAG G states that each node Xi is conditionally
independent of its non-descendants given its parents, namely Xi ⊥⊥ NonDe(Xi)|Pa(Xi), where
NonDe(Xi) denotes the non-descendants of Xi excluding itself, and Pa(Xi) denotes the parents
of Xi. Using the Markov property, we can factorize the joint distribution of all the nodes in the
graph into P (X1, . . . , XN ) =

∏N
i=1 P (Xi|PA(Xi)). To infer the causal graph from probability

distributions, a common assumption is faithfulness, namely the validity to infer all the d-separation
sets in the graph from the independence relations in the probability distribution. In our work, we also
take this broadly taken assumption which holds for most real-world scenarios.

Markov Equivalence of Graphs We denote two DAGs as Markov equivalent if they induce the
same joint distribution P (X). The set of DAGs that are Markov equivalent to each other is called
a Markov equivalence class (MEC). Causal graphs in the same MEC can be easily identified since
they have the same skeleton (i.e., undirected edges) and V-structures (i.e., structures in the form of
A→ B ← C where A and C are not connected).

Obviously, there is a one-to-many mapping (i.e., surjection) between the causal graph and statistical
distribution. Namely, each causal graph sufficiently determines a statistical distribution, but from
a statistical distribution, we cannot necessarily induce a unique causal graph. This is why we say
“correlation does not necessarily mean causation”.

2.3 CAUSAL DISCOVERY

Causal discovery aims to learn the causal relations by analyzing statistical properties in the obser-
vational data (Spirtes et al., 1993; 2000; Glymour et al., 2016; Spirtes & Zhang, 2016; Glymour
et al., 2019). It can be achieved through constraint-based methods (Spirtes et al., 2000), score-based
methods (Chickering, 2002), or other methods taking advantage of the functional causal models
(Shimizu et al., 2006; Hoyer et al., 2008; Zhang & Hyvärinen, 2009).

To fit for the spirit of this paper to infer from correlation (expressed in natural language) to causation,
we base our dataset design on the widely-used Peter-Clark (PC) algorithm (Spirtes et al., 2000).
The PC algorithm is based on the principles of conditional independence and the causal Markov
assumption, which allows it to efficiently identify causal relationships among variables in a given
dataset. The algorithm first starts with a fully connected undirected graph among all the variables.
Then it removes the edge between two variables if there is an unconditional or conditional inde-
pendence relationship between them. Afterwards, it orients the directed edges whenever there is a
V-structure. And finally, it iteratively checks the direction of the other edges until the entire causal
graph is consistent with all the statistical correlations.
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Figure 2: Pipeline of the data construction process.

3 DATASET CONSTRUCTION

We introduce the construction of our dataset in this section. We start with our task formulation for
CORR2CAUSE, and then briefly give an overview of the data generation process, followed by detailed
descriptions of each step. We conclude the section with the overall statistics of the dataset.

3.1 TASK FORMULATION

Given a set of N variables X = {X1, . . . , XN}, we have a statement s about all the correlations
among the variables, and a hypothesis h describing the causal relation r between the pair of variables
Xi and Xj . The task is to learn a function f : (s,h) 7→ v which maps the correlation statement
s and the causal relation hypothesis h to their validity v ∈ {0, 1}, which takes the value 0 if this
inference is invalid, and the value 1 if this inference is valid.

3.2 OVERVIEW OF THE DATA GENERATION PROCESS

We base the construction our dataset on several concepts of causal inference, including the DGCM,
d-separation, and MECs, as introduced in Section 2.

As in the overview of our data generation process in Figure 2, we first choose the number N of
variables (Step 1) and generate all the unique DGCMs with N nodes (Step 2), which we will introduce
in the Section 3.3. Then we collect all the d-separation sets from these graphs to identify MECs
(Step 3) in Section 3.4. Then, in Step 4, we create the formal form of data in Section 3.5. For each
correspondence of the MEC to causal graphs, we compose the correlation statement based on the
statistical relations in the MEC, and hypothesize a causal relation between two variables, and produce
the validity v = 1 if the hypothesis is a shared property of all causal graphs in the MEC, and v = 0 if
the hypothesis is not necessarily true for all the MEC graphs. Finally, we introduce the verbalization
process in Section 3.6.

3.3 CONSTRUCTING THE GRAPHS WITH ISOMORPHISM CHECKS

The first step of the data generation is to compose the causal graphs, as in Step 1 and 2 of Figure 2.
For a set of N variables X = {X1, . . . , XN}, there are N(N − 1) possible directed edges, since
each node can link to any node other than itself. To remove cycles in the graph, we make the nodes
in topological order, which only allows edges Xi → Xj , where i < j. We achieve this by limiting
the adjacency matrix of the graph to only having non-zero values above the diagonal, resulting in
N(N − 1)/2 possible directed edges for the DAGs.

At the first glance, for N nodes, there should be 2N(N−1)/2 possible DAGs (i.e., the power set of all
edges). However, there could be isomorphic graphs in this set. To avoid this, we perform a graph
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# Nodes # Unique DAGs # Edges/DAG # MECs # DAGs/MEC
2 2 out of 2 0.50 2 1.0
3 6 out of 23 1.67 5 1.2
4 31 out of 26 3.48 20 1.55
5 302 out of 210 5.89 142 2.13
6 5,984 out of 215 8.77 2,207 2.71

Total 6,325 8.60 2,376 2.66

Table 1: Statistics about the source causal graphs in our dataset. Given the number of nodes, we report
the number of unique DAGs, average number of edges per DAG, number of MECs, and average
number of DAGs per MEC.

isomorphism check (McKay & Piperno, 2014), and reduce the set so that only unique DAGs are
retained, and we show their statistics in Table 1. Although we can handle large graphs, we mostly
focus on smaller graphs that can still lead to a reasonably sized dataset, so we empirically set N = 6,
but future work can use our open-sourced codes to extend to more nodes.

3.4 PROGRAMMATICALLY GENERATING THE D-SEPARATION SETS

Based on the set of unique DAGs, we then programmatically generate the d-separation sets by
graph theoretical conditions, as in Step 3 of Figure 2. To realize this step, we code an efficient
graph-theoretic algorithm to check for all the chain, fork, and collider structures to automatically
identify the set of nodes that d-separate each pair of nodes. Using the d-separation sets and the
faithfulness assumption, we form the statistical correlations as follows. For each pair of nodes, they
are conditionally independent given the variables in the d-separation set. If the d-separation set is
empty, then the two nodes are unconditionally independent. If no d-separation set can be found for
the two nodes, then they are directly correlated.

Moreover, using the d-separation sets, we are able to cluster causal graphs to MECs. We achieve it by
tracing the mapping between the causal graphs and the set of statistical correlations, and backtracking
the graphs with the same d-separation sets to group them in the same MEC. We show in Table 1 that
each MEC contains on average 2.66 DAGs.

3.5 COMPOSING THE HYPOTHESES AND LABEL

After generating the set of correlations based on the d-separation sets, we now generate the causal
hypotheses. For the causal relation r, we focus on six common causal relations between two nodes
introduced in Section 2.1: Is-Parent, Is-Child, Is-Ancestor (excluding the parents), Is-Descendant
(excluding the children), Has-Confounder (i.e., there exists a confounder, or common cause, of the
two nodes), and Has-Collider (i.e., there exists a collider, or common effect, of the two nodes). In this
way, the set of hypotheses contains all six meaningful causal relations between every pair of variables,
resulting in a total size of 6 ·N(N − 1)/2 = 3N(N − 1) hypotheses for a graph with N variables.

To generate the ground-truth validity label, we start from the correlation sets in Step 3, then look up
all the causal graphs in the same MEC corresponding to the given set of correlations, and check the
necessity of the hypothesized causal relation. If the causal relationship proposed in the hypothesis
is valid for all causal graphs within the MEC, then we generate the validity v = 1; otherwise, we
generate v = 0. A special case of valid samples is that when the size of the MEC is 1, then there is a
bijective mapping between the causal graph and the d-separation sets, so any hypothesis stating the
causal properties of that unique causal graph is valid.

3.6 VERBALIZING INTO LANGUAGE

Finally, as in the last step of Figure 2, we convert all the information above to text data for our
CORR2CAUSE task. For the correlation statement, we verbalize the set of correlations in Step 3 into
a natural language statement s. When two variables cannot be d-separated, i.e., A ̸⊥⊥ B, then we
describe them as “A correlates with B” since they are directly correlated and cannot be independent
by any condition. And if two variables have a valid d-separation set C, then we describe them as “A
is independent of B given C.” In the special case when the d-separation set is empty, we directly
say “A is independent of B.” In addition, we disambiguate the setting by starting the correlation
statement with the setup of a closed system of the given variables, and no hidden variables: “Suppose
there is a closed system of N variables, A, B, . . . All the statistical relations among these N variables
are as follows:”. Finally, to verbalize the hypothesis, we feed the causal relation triplet (Xi, r, Xj)
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Causal Relation Hypothesis Template
Is-Parent {Var i} directly causes {Var j}.
Is-Ancestor {Var i} causes something else which causes {Var j}.
Is-Child {Var j} directly causes {Var i}.
Is-Descendant {Var j} is a cause for {Var i}, but not a direct one.
Has-Collider There exists at least one collider (i.e., common effect) of {Var i} and {Var j}.
Has-Confounder There exists at least one confounder (i.e., common cause) of {Var i} and {Var j}.

Table 2: Templates for each causal relation in the hypothesis. We use {Var i} and {Var j} as
placeholders for the two variables.

into their hypothesis templates in Table 2. For example, we turn the triplet (A, Is-Parent, B) into “A
directly causes B”, as in the example of Figure 2.

3.7 STATISTICS OF THE RESULTING DATA

We show the statistics of our CORR2CAUSE dataset in Table 3. Overall, our dataset contains 207,972
samples, where 18.57% of the samples have the positive label (i.e., with validity=1). The average
length of the premise is 424.11 tokens, and hypothesis 10.83 tokens. We split the data into 205,734
training samples, 1,076 development and 1,162 test samples.2 Since the main purpose of the dataset
is to benchmark the performance of LLMs, we prioritize the test and development sets to have a
comprehensive coverage over all sizes of graphs. Specifically, we iterate through the subset of our
data for each N , and split it entirely for only the test and development sets if the data is less than 1K,
which is the case for N = 2 and 3. For the other subsets that are larger, we randomly sample up to
1K or 10% of the data, whichever is smaller, to the test and development sets. We set the cap to be 1K
in order to form a reasonable computation budget, since many LLMs are expensive to query in the
inference mode. Aside from the test and valid sets, all the rest of the data goes into the training set.

Overall Statistics by the Number of Nodes N
N = 2 N = 3 N = 4 N = 5 N = 6

# Samples 207,972 12 90 720 8,520 198,630
# Test 1,162 6 48 72 514 522
# Dev 1,076 6 42 72 482 474
# Train 205,734 0 0 576 7,524 197,634

# Tokens/Premise 424.11 31.5 52.0 104.0 212.61 434.54
# Tokens/Hypothesis 10.83 10.83 10.83 10.83 10.83 10.83
% Positive Labels 18.57 0.00 3.33 7.50 13.01 18.85
Vocab Size 65 49 53 55 57 61

Table 3: Statistics of our CORR2CAUSE dataset, and by subsets. We report the total number of
samples (# Samples); splits of the test (# Test), developement (# Dev) and training sets (# Train);
number of tokens per premise (# Tokens/Premise) and hypothesis (# Tokens/Hypothesis); percentage
of the positive labels (% Positive Labels), and vocabulary size by the number of unique tokens (Vocab
Size). Note that the number of unique graphs and MECs are in Table 1.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

We set up a diverse list of LLMs for the experiments on our CORR2CAUSE dataset. To test existing
LLMs, we first include six commonly used BERT-based NLI models in the transformers library (Wolf
et al., 2020): BERT (Devlin et al., 2019), RoBERTa (Liu et al., 2019), BART (Lewis et al., 2020),
DeBERTa (He et al., 2021), DistilBERT (Sanh et al., 2019), and DistilBART (Shleifer & Rush, 2020).
Apart from these BERT-based NLI models, we also evaluate the general-purpose autoregressive
LLMs based on GPT (Radford et al., 2019): GPT-3 Ada, Babbage, Curie, Davinci (Brown et al.,
2020); its instruction-tuned versions (Ouyang et al., 2022), text-davinci-001, text-davinci-002, and
text-davinci-003; and GPT-3.5 (i.e., ChatGPT), and the latest GPT-4 (OpenAI, 2023) by April 2023,

2Note for our dataset v2.0: We notice that our original data (v1.0) has duplication due to symmetric relations
and verbalizations of the hypothesis. E.g., Is-Parent(A, B) has the exact hypothesis verbalization as Is-Child(B,
A). Hence, for our data v2.0, we perform a careful de-duplication, and update the data statistics in Table 3. See
more version comparison details in Appendix D. Note that, due to the symmetry, the current version is a random
sample half of the size of the original version, so the modeling results in the experiment section roughly hold.
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F1 Precision Recall Accuracy
Random Baselines

Always Majority 0.0 0.0 0.0 84.77
Random (Proportional) 13.5 12.53 14.62 71.46
Random (Uniform) 20.38 15.11 31.29 62.78

BERT-Based Models
BERT MNLI 2.82 7.23 1.75 81.61
RoBERTa MNLI 22.79 34.73 16.96 82.50
DeBERTa MNLI 14.52 14.71 14.33 74.31
DistilBERT MNLI 20.70 24.12 18.13 78.85
DistilBART MNLI 26.74 15.92 83.63 30.23
BART MNLI 33.38 31.59 35.38 78.50

LLaMa-Based Models
LLaMa-7B 26.81 15.50 99.42 17.36
Alpaca-7B 27.37 15.93 97.37 21.33

GPT-Based Models
GPT-3 Ada 0.00 0.00 0.00 84.77
GPT-3 Babbage 27.45 15.96 97.95 21.15
GPT-3 Curie 26.43 15.23 100.00 15.23
GPT-3 Davinci 27.82 16.57 86.55 31.61
GPT-3 Instruct (text-davinci-001) 17.99 11.84 37.43 48.04
GPT-3 Instruct (text-davinci-002) 21.87 13.46 58.19 36.69
GPT-3 Instruct (text-davinci-003) 15.72 13.4 19.01 68.97
GPT-3.5 21.69 17.79 27.78 69.46
GPT-4 29.08 20.92 47.66 64.60

Table 4: Overall performance. We report F1 (main metric), precision, recall and accuracy. For the
main metric, F1 score, we use the bold font to highlight the overall best performance, and underline
to highlight the best performance within each category of models.

using the OpenAI API (https://openai.com/api/) with temperature 0. We also evaluate the
recent, more efficient models, LLaMa (Touvron et al., 2023) and Alpaca (Taori et al., 2023).

When inspecting the behavior of finetuned models, we adopt a large set of models, including GPT-
based models (GPT-3 Ada, Babbage, Curie, and Davinci) using the OpenAI finetuning API for
classification at https://platform.openai.com/docs/guides/fine-tuning, open-sourced
decoder-only models (GPT2, GPT2-Large, GPT2-XL, LLaMA-7B, and LLaMA2-7B), BERT-based
models from scratch (BERT-Base, BERT-Large, RoBERTa-Base, and RoBERTa-Large), and BERT-
Based NLI models (BERT-Base MNLI, BERT-Large MNLI, RoBERTa-Base MNLI, and RoBERTa-
Large MNLI) using the transformers library (Wolf et al., 2020). See training details in Appendix A.

For the random baselines, we provide “always majority” to predict the majority class 100% of the
time, “random (uniform)” which randomly samples a label with 50% chance for each, and “random
(proportional)” which samples a label from a Bernouli distribution proportional to the development
set label distribution.

4.2 THE CORR2CAUSE SKILL IN EXISTING LLMS

We show the performance of 17 LLMs in Table 4. We can see that pure causal inference is a very
challenging task across all existing LLMs. Among all the LLMs, the best performance is 33.38% F1
by BART MNLI, which is even higher than latest GPT-based model, GPT-4. Notably, many models
are worse than random guess, which means that they totally fail at this pure causal inference task.

4.3 FINETUNED PERFORMANCE

Next, we address the question: Can we re-purpose LLMs to learn this task? The experimental results
in Table 5a of 17 models finetuned on our CORR2CAUSE seem very strong at first sight. Most models
see a substantial increase, among which the finetuned BERT-based NLI models demonstrate the
strongest performance. The best-performing one, RoBERTa-Large MNLI, achieves 94.74% F1 score
on this task, as well as very high precision, recall and accuracy scores.
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F1 Precison Recall Accuracy
Finetuned GPT-Based Models Using OpenAI API
GPT-3 Ada 79.85 70.47 92.11 92.92
GPT-3 Babbage 78.19 69.98 88.60 92.48
GPT-3 Curie 81.23 75.00 88.60 93.77
GPT-3 Davinci 85.52 80.26 91.52 95.28
Finetuned Open-Sourced Decoder-Only Models
GPT2 89.18 88.03 90.35 96.66
GPT2-Large 94.29 92.18 96.49 98.22
GPT2-XL 94.30 91.94 96.78 98.22
LLaMA-7B 91.98 88.62 95.61 97.46
LLaMA2-7B 92.92 90.11 95.91 97.77
Finetuned BERT-Based Models
BERT-Base 69.29 54.42 95.32 87.13
BERT-Large 85.26 77.51 94.74 95.01
RoBERTa-Base 87.60 78.47 99.12 95.73
RoBERTa-Large 89.10 82.54 96.78 96.39
Finetuned BERT-Based NLI Models
BERT-Base MNLI 89.88 85.49 94.74 86.51
BERT-Large MNLI 90.19 84.44 96.78 96.79
RoBERTa-Base MNLI 94.27 90.35 98.54 98.17
RoBERTa-Large MNLI 94.74 92.24 97.37 98.35

(a) Performance of finetuned models on the original test set.

F1 (Paraph.) F1 (Var. Ref.)

61.73 41.57
62.34 43.28
64.93 45.32
65.01 46.96

56.76 31.70
55.95 31.99
60.32 43.95
56.41 53.92
52.24 49.47

61.13 35.20
63.64 38.54
65.58 53.12
65.05 60.20

65.56 31.50
67.24 52.04
57.42 62.83
55.45 67.87

(b) F1 scores of finetuned models
on the perturbed test sets by para-
phrasing (Paraph.) and variable
refactorization (Var. Ref.).

Table 5: Performance of finetuned models on the original test set and perturbed test sets.

Relation Type F1 Precision Recall Accuracy
Is-Parent 96.18 95.45 96.92 98.67
Is-Ancestor 93.94 93.94 93.94 98.93
Is-Child 95.73 94.92 96.56 98.67
Is-Descendant 96.55 93.33 100 99.47
Has-Collider 92.19 87.41 97.52 94.64
Has-Confounder 98.67 97.37 100 99.73

(a) Fine-grained performance of RoBERTa-Large by causal relation
type on the original test set.

F1 Precision Recall Accuracy
74.80 79.31 70.77 91.73
45.45 90.91 30.30 93.60
73.39 78.43 68.97 92.27
29.41 83.33 17.86 93.60
70.70 75.00 66.90 82.04
70.42 73.53 67.57 94.37

(b) Its fine-grained performance by relation
type after variable refactorization.

Table 6: Fine-grained analysis of the best-performing model, RoBERTa-Large MNLI.

4.4 FINE-GRAINED PERFORMANCE BY CAUSAL RELATION

In addition to the overall results mentioned above, we also conduct a fine-grained analyze to check
the performance of the strongest model, RoBERTa-Large MNLI, by our six causal relation types.
As in Table 6a, the model is very good at judging relations such as Is-Parent, Is-Descendant and
Has-Confounder, all with more than 96% F1 scores, whereas it is several points weaker on the Has-
Collider relations. This could be due to that the collider relation is the most special type, requiring
identification of the V-structure based on both the unconditional independence based on the two
variables only and correlations whenever conditioned on a common descendant.

4.5 ROBUSTNESS ANALYSIS

Looking at the very high performance of the finetuned models, we raise the next question: Did the
models really robustly learn the causal inference skills?

Two Robustness Tests We design two simple robustness tests: (1) paraphrasing, and (2) variable
refactorization. For (1) paraphrasing, we simply paraphrase the hypothesis by changing the text
template for each causal relation to some semantically-equivalent alternatives in Appendix C. For (2)
variable refactorization, we reverse the alphabet of the variable names, namely flipping A, B, C, to Z,
Y, X and so on. The inspiration behind the two robustness tests comes from the spurious correlation
analysis described in Appendix E.
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Specifically, we adopt the common setup of text adversarial attack (Morris et al., 2020; Jin et al.,
2020) to preserve the training set and keep the same saved models, but run the inference on the
perturbed test set. In this way, we separate the possibilities of the models only overfitting on the
training data vs. mastering the reasoning skills.

Results after Perturbation We can see from Table 5b that all the models drop drastically, by up to
39.29 on the paraphrased test set, and up to 62.30 after variable refactorization. The best-performing
model, RoBERTa-Large MNLI, is especially sensitive towards paraphrasing, demonstrating the
most drop among all models; however, it is the most robust against the variable refactorization,
maintaining a high F1 score of 67.87. We conduct fine-grained analysis for RoBERTa-Large MNLI
under perturbation in Table 6b. We can see the the main source of the performance drop of the model
comes from the two classes, Is-Ancestor (decreasing to 45.45%) and Is-Descendant (decreasing to
29.41%), while the other classes stay relatively robust, keeping their F1 scores over 70%.

From this analysis, we make the following suggestions to future studies testing this CORR2CAUSE
skill of LLMs. First, it is safe to use it as a test set to benchmark existing LLMs’ performance, since
the data we generate is out-of-distribution from the training data of the current LLMs. Then, when
testing finetuned models, it is very important to accompany adversarial attack together with the i.i.d.
test set. We open-source our perturbed test sets for future work to test the generalizability skill.

4.6 EXTENSION TO NATURAL STORIES

We envision our CORR2CAUSE dataset to be a foundation for future extensions to various settings,
such as instantiating the variables with actual phenomena and situating the story in a more natural
setting. For example, the correlation does not imply causation rule can be instantiated with the ice
cream sales and swimming pool attendance as the two variables, and argue that ice cream sales does
not necessarily affect swimming pool attendance, because their correlation could be due to a third
variable, such as hot weather. We provide a case study for how to instantiate the symbolic expressions
in our dataset to more natural stories, and find that LLMs such as GPT-4 can generate realistic, daily
life stories that has foreseeably broad applications. See more details in Appendix B.

5 RELATED WORK

Existing Causal Reasoning Tasks A large body of existing research of causal reasoning in NLP
focuses on leveraging empirical knowledge to do tasks such as inferring the cause and effect of why
an agent perform certain tasks (Sap et al., 2019a), the motivation and emotional reaction in a social
context (Sap et al., 2019b), how people achieve a given goal with a set of concrete steps (Zhang et al.,
2020), the development of a story given a different beginning (Qin et al., 2019), and how in general
LLMs serve as a knowledge base of cause and effect (Willig et al., 2023; Kıcıman et al., 2023). In
contrast, our CORR2CAUSE task focuses on the pure causal inference skill of models, which is a
knowledge-dependent reasoning skill based on formally correct rules from causal inference.

Existing Logical and Inference Tasks Another related area of literature is logical and inference
tasks, of which a well-established one is natural language inference (NLI), to identify the semantic
relationship between a pair of sentences (MacCartney & Manning, 2008; Bowman et al., 2015). NLI
datasets mainly focus on the set and paraphrase relations. For example, “a group of boys are playing
football” can entail “some guys are playing football,” where “boys” are a sub-concept of “guys,” and
“a group of” and “some” are paraphrases. Recently, there have been increasing efforts to extend the
inference task to various logical inference skills such as deductive logic and propaganda techniques
(Jin et al., 2022; Alhindi et al., 2022). Our CORR2CAUSE dataset is the first dataset testing the
correlation-to-causation inference skill, which is unique of its type.

6 CONCLUSION

In this work, we introduced a novel task, CORR2CAUSE, to infer causation from correlation, and
collected a large-scale dataset of over 200K samples. We evaluated an extensive list of LLMs on this
new task, and showed that off-the-shelf LLMs perform poorly on this task. We also show that it is
possible to re-purpose LLMs on this task by finetuning, but future work needs to be aware of the
out-of-distribution generalization problem. To avoid the Goodhart’s law, we recommend using this
dataset to benchmark the pure causal inference skills for LLMs that have not seen this dataset. Given
the limited reasoning abilities of current LLMs, and the difficulty of separating actual reasoning from
training-corpus-derived knowledge, it is imperative that our community focus on work aiming to
accurately disentangle and measure both abilities. We believe the present work is a first such step.
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LIMITATIONS AND FUTURE WORK

We identify several limitations of this work and open future directions: First, in the context of this
work, we limit the causal graphs to two to six nodes, but future work can feel free to explore larger
graphs. Another aspect is that we do not assume hidden confounders in this inference problem, so we
welcome future work to generate an even more challenging dataset to infer the existence of hidden
confounders, analogous to the causal discovery algorithm of fast causal inference (FCI) (Spirtes et al.,
2000). And also in general, explorations of other causal discovery algorithms are welcomed too.
Finally, a lot of motivation behind proposing this task is inspired by the problem of invalid reasoning
patterns in our daily reasoning (Jin et al., 2022), which could fertilize the ground for more pervasive
spread of fake news. We believe false causal inference is a prevalent type of fallacious beliefs, and
welcome future work to connect the idea of this benchmark to more real-world false beliefs based on
confusing correlation with causation.
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A IMPLEMENTATION DETAILS

When finetuning on our data, for GPT-based models, we use the default settings of the OpenAI
finetuning API; and for BERT-based models, we use the transformers library (Wolf et al., 2020)
and train the models on a server with an NVIDIA Tesla A100 GPU with 40G of memory. To fit for
the GPU memory, we set the batch size to be 8. We use the validation set to tune the learning rate,
which takes value in {2e-6, 5e-6, 1e-5, 2e-5, 5e-5}; dropout rate, which takes value in {0, 0.1, 0.2,
0.3}; and weight decay, which takes value in {1e-4, 1e-5}. We train the models until convergence,
which is usually around ten epochs.

Prompts When querying the autoregressive LLMs, we formulate the prompt as follows:

Question: [premise]

Can we deduct the following: [hypothesis]? Just answer "Yes" or "No."

Answer:

B GENERATING NATURAL STORIES

To generate the natural stories based on our symbolic expressions, we utilize the state-of-the-art LLM,
GPT-4, which is very good at story generation. We design detailed instructions in the prompt, and
generate around 200 stories in our case study. We show two examples stories in Table 7, and the
report the overall statistics in Table 8.

Example 1 (Label=Negative) Example 2 (Label=Positive)
Symbolic
Form

Premise: Suppose there is a closed system
of 2 variables, A and B. All the statistical
relations among these 2 variables are as fol-
lows: A correlates with B.
Hypothesis: A directly affects B.
Relation between the promise and hypothe-
sis: The premise does not a necessary con-
dition for the hypothesis.

Premise: Suppose there is a closed system
of 3 variables, A, B and C. All the statisti-
cal relations among these 3 variables are as
follows: A correlates with C. B correlates
with C. However, A is independent of B.
Hypothesis: A directly affects C.
Relation between the promise and hypoth-
esis: The premise is a necessary condition
for the hypothesis. So if the premise is true,
the hypothesis must be true.

Natural
Story

Premise: Suppose there is a closed system
of 2 variables, ice cream sales and swim-
ming pool attendance. All the statistical
relations among these 2 variables are as fol-
lows: ice cream sales correlate with swim-
ming pool attendance.
Hypothesis: Ice cream sales directly affect
swimming pool attendance.
Relation between the premise and hypoth-
esis: The premise does not provide a nec-
essary condition for the hypothesis. The
correlation between ice cream sales and
swimming pool attendance could be due to
a third variable, such as hot weather, which
increases both ice cream sales and swim-
ming pool attendance. Therefore, it is not
necessarily true that ice cream sales directly
affect swimming pool attendance.

Premise: Let’s consider three factors: eat-
ing junk food (A), obesity (C), and watch-
ing television (B). There is a correlation
between eating junk food and obesity, and
between watching television and obesity.
However, eating junk food and watching
television are independent from each other.
Hypothesis: Eating junk food directly af-
fects obesity.
Relation between the premise and hypoth-
esis: The premise provides the necessary
conditions for the hypothesis. It establishes
the independent variables A (eating junk
food) and B (watching television) and their
correlations with obesity. Given that these
are true, it supports the hypothesis that eat-
ing junk food directly affects obesity.

Table 7: Examples of natural stories generated based on the symbolic form in our CORR2CAUSE
dataset, showing the broad application value of our dataset as the starting point for various verbaliza-
tions of the correlation-to-causation inference task.
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Test Set Size 102
Dev Set Size 102
# Tokens/Premise 64.88
# Tokens/Hypothesis 13.54
# Tokens/Explanation 64.66
% Positive Labels 1.67

Table 8: Statistics of our generated natural stories. We report the number of samples in the test and de-
velopment sets; number of tokens per premise (# Tokens/Premise), hypothesis (# Tokens/Hypothesis),
and explanation (# Tokens/Explanation); and percentage of the positive labels (% Positive Labels).

For more information, the exact prompt we use is “Here is a causal inference rule: [symbolic
form] Please provide a real-world example instantiating this phenomenon. Format it also as
"Premise:", "Hypothesis:", and "Relation between the promise and hypothesis:".”

C TEMPLATES AND PARAPHRASES

We use the verbalization templates in Table 9 to compose the hypotheses for all six causal relations.

Causal Relation Hypothesis Template
Is-Parent {Var i} directly causes {Var j}.
Is-Ancestor {Var i} causes something else which causes {Var j}.
Is-Child {Var j} directly causes {Var i}.
Is-Descendant {Var j} is a cause for {Var i}, but not a direct one.
Has-Collider There exists at least one collider (i.e., common effect) of {Var i} and {Var j}.
Has-Confounder There exists at least one confounder (i.e., common cause) of {Var i} and {Var j}.
Paraphrases
Is-Parent {Var i} directly affects {Var j}.
Is-Ancestor {Var i} influences {Var j} through some mediator(s).
Is-Child {Var j} directly affects {Var i}.
Is-Descendant {Var j} influences {Var i} through some mediator(s).
Has-Collider {Var i} and {Var j} together cause some other variable(s).
Has-Confounder Some variable(s) cause(s) both {Var i} and {Var j}.

Table 9: Templates and their paraphrases for each causal relation in the hypothesis. We use {Var
i} and {Var j} as placeholders for the two variables.

D CHANGE LOG FOR THE DATASET VERSION UPDATE

Two Equivalent Forms Duplication Property De-Duplication Methodß
Is-Parent(i, j) Two exact same strings Keep only one, by forcing i < jIs-Child(j, i)ß
Is-Ancestor(i, j) (Original) Two different strings, but Randomly sample one out of the twoIs-Descendent(j, i) (Original) semantically equivalentß
Is-Ancestor(i, j) (Paraphrased) Two exact same strings Keep only one, by forcing i < jIs-Descendent(j, i) (Paraphrased)ß
Has-Collider(i, j) Two different strings, but Randomly sample one out of the twoHas-Collider(j, i) semantically equivalentß
Has-Confounder(i, j) Two different strings, but Randomly sample one out of the twoHas-Confounder(j, i) semantically equivalent

Table 10: De-duplication methods for the six causal relation types and their verbalizations.

De-Duplication Strategy As mentioned in Section 3.7 in the main paper, our original dataset (v1.0)
has duplication due to symmetric relations and verbalizations. We introduce in Table 10 several
reasons for why duplicated hypotheses exist in our original data. One typical reason is symmetric
relations such as Is-Parent(A, B) and Is-Child(B, A), and, similarly, the paraphrased version of
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Is-Ancestor(A, B) and Is-Descendent(B, A). Another typical reason is the semantic equivalence in
the verbalization templates, which applies to the Has-Collider and Has-Confounder relations. For
example, the verbalized texts of Has-Collider(A, B) and Collider(B, A) are “There exists at least one
collider (i.e., common effect) of {A and B, B and A},” respectively, which are semantically-equivalent
paraphrases of each other, so we randomly keep one out of the two.

Resulting Dataset Statistics after De-Duplication

Since the reason for duplication in the first place is due to symmetry in the causal relation, or
verbalization, the resulting new data, CORR2CAUSE v2.0, is exactly a half of the original data. As we
reported previously in Table 3 of Section 3.7, the total number of samples cuts down to half, while
the label distribution and all other properties are the same. To compose each split, we apply the same
de-duplication method for the test, train, and development sets. We notice that some duplicates are
across the splits, so we prioritize keeping the test and training sets untouched (to minimally affect the
experimental results), and then reduce the development set by removing the cross-split duplicates,
namely:

• test_2.0 = deduplicate(test_1.0)
• train_2.0 = deduplicate(train_1.0)
• dev_2.0 = deduplicate(dev_1.0) \ {test_2.0, train_2.0}

We expect minimal or almost no change to the experimental results. In case of the slight possibility
that this change in the development set might affect the model selection in the training process, future
work can feel free to re-train the models and update the exact performance number.

E SPURIOUS CORRELATION ANALYSIS

The inspirations of our two robustness tests (paraphrasing and variable refactorization) come from our
data analysis. We check for spurious correlations in the data by reporting in Table 11 the point-wise
mutual information (PMI) between the label and any n-gram with no more than four tokens. In
addition, we also report the difference of the PMI with the two labels in the |Diff| column of Table 11,
and report the top 10 n-grams.

The design spirit for our robustness test is that if the models’ correct judgment relies on exploiting
these spurious correlations, then such reliance will be broken in our perturbations.

N-Gram PMI w/ Non-Ent. Label PMI w/ Ent. Label |Diff|
a cause 1.692209 -1.025611 2.717820
a cause for 1.663640 -0.983790 2.647430
A causes 1.640679 -0.951610 2.592289
A causes something 1.621820 -0.926075 2.547895
a direct 1.606052 -0.905316 2.511369
a direct one 1.592673 -0.888107 2.480781
for D 1.584826 -0.878180 2.463006
for D but 1.583897 -0.877014 2.460911
for E 1.582980 -0.875864 2.458844
for E but 1.582074 -0.874728 2.456802

Table 11: PMI between the labels and n-grams. The labels include non-entailment (Non-Ent.) and
entailment (Ent.). And the n-grams include all with no more than four words. The |Diff| column
shows the absolute value of the difference between the PMIs with two labels. We show the top 10
n-grams with the largest differences of their PMIs with the two classes in the |Diff| column.

We can see that some spurious correlations are rooted in the framing of the hypothesis, such as “a
cause (for)”, and “a direct (one)” (which we use the paraphrasing task to break), and others are
connected to the variable names, such as “for D (but)” and “for E (but)” (which we use the variable
refactorization to break).

F FINE-GRAINED ERROR ANALYSIS

In addition to the fine-grained analysis by causal relation type in Table 6a for fine-tuned models, we
also report such error analysis for non-finetuned models in Table 12.

16



Published as a conference paper at ICLR 2024

Selected Models Relation Type F1 Precision Recall Accuracy
GPT-3.5 All 21.69 17.79 27.78 69.46
GPT-3.5 Is-Parent 8.82 100 4.62 83.47
GPT-3.5 Is-Ancestor 0 0 0 90.67
GPT-3.5 Is-Child 9.84 100 5.17 85.33
GPT-3.5 Is-Descendant 14.29 11.9 17.86 84
GPT-3.5 Has-Collider 34.24 25.51 52.07 35.12
GPT-3.5 Has-Confounder 15.33 8.86 56.76 37.8
GPT-4 All 29.08 20.92 47.66 64.6
GPT-4 Is-Parent 0 0 0 82.67
GPT-4 Is-Ancestor 30.77 31.25 30.3 88
GPT-4 Is-Child 0 0 0 84.53
GPT-4 Is-Descendant 26.98 17.35 60.71 75.47
GPT-4 Has-Collider 44.1 30.18 81.82 32.71
GPT-4 Has-Confounder 20.67 11.53 100 23.86
RoBERTa MNLI All 22.79 34.73 16.96 82.5
RoBERTa MNLI Is-Parent 0 0 0 82.67
RoBERTa MNLI Is-Ancestor 0 0 0 91.2
RoBERTa MNLI Is-Child 0 0 0 84.53
RoBERTa MNLI Is-Descendant 0 0 0 92.53
RoBERTa MNLI Has-Collider 43.45 39.73 47.93 59.52
RoBERTa MNLI Has-Confounder 0 0 0 84.45

Table 12: Fine-grained evaluation results for some selected non-fine-tuned models.

These results are particularly revealing, showing how off-the-shelf models perform in recognizing
specific relations. Specifically, GPT-3.5 cannot recognize ancestor relations, whereas GPT-4 fails at
all direct causation recognition with parents and children. And RoBERTa MNLI only did collider
relation relatively correctly. Note that, when the F1 score is zero, the accuracy number is a result of
always predicting the negative class of that relation.
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