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SUPPLEMENTARY MATERIAL OF LIDAR-PTQ

APPENDIX A: LIDAR-PTQ FOR DIFFERENT DETECTORS

CenterPoint (Yin et al., 2021) integrates two milestone works in LiDAR-based BEV de-
tection, VoxelNet (Zhou & Tuzel, 2018) and PointPillars (Lang et al., 2019) as CP-
Pillar and CP-Voxel. In particular, CP-Pillar and CP-Voxel have different network design.

Method representation backbone neck head

CP-Pillar Pillar dense dense dense
CP-Voxel Voxel sparse dense dense

FSD Point+Voxel sparse sparse sparse

The CP-Pillar model is a fully dense convolutional
network, while the CP-Voxel model includes SP-
Conv and dense convolution. Our results on Cen-
terPoint (-pillar and -voxel) demonstrate that: i)
Lidar-PTQ is applicable to pillar-based and voxel-
based detectors. ii) Lidar-PTQ is applicable to SPConv and dense convolution operations.

Table 1: Performance comparison on nuScene val set. We show the NDS, and mAP for each class.
Abbreviations: construction vehicle (CV), pedestrian (Ped), motorcycle (Motor), bicycle (BC) and
traffic cone (TC).

Models Methods Bits(W/A) NDS mAP Car Truck Bus Trailer CV Ped Motor BC TC Barrier

Full Prec. 32/32 60.3 50.0 83.8 50.6 61.8 31.2 9.2 79.4 44.1 20.2 57.7 61.3

CP-
Pillar

BRECQ 8/8 56.9 43.6 75.9 41.4 54.3 21.6 3.8 78.1 37.4 15.7 55.0 53.3
QDROP 8/8 57.8 45.9 78.8 44.2 57.0 23.8 5.2 78.4 40.1 17.6 56.7 56.8
PD-QUANT 8/8 59.6 48.3 81.8 47.6 59.4 28.2 7.8 78.4 41.6 19.8 57.6 61.0

LiDAR-PTQ 8/8 60.2 49.8 83.7 50.8 61.8 30.6 9.0 79.0 43.6 20.4 57.8 61.0

Full Prec. 32/32 64.8 56.6 84.6 54.5 66.7 36.4 16.9 83.1 56.1 39.6 64.0 64.3

CP-
Voxel

BRECQ 8/8 62.0 51.2 76.5 46.8 60.5 28.9 12.5 80.4 53.7 34.8 58.8 59.1
QDROP 8/8 63.2 54.0 82.1 48.5 64.9 32.9 15.1 81.1 55.1 36.9 60.9 63.7
PD-QUANT 8/8 63.7 55.2 83.7 51.1 66.6 34.1 16.6 82.8 55.1 36.4 62.6 63.2

LiDAR-PTQ 8/8 64.7 56.5 84.6 54.2 66.7 36.4 16.6 83.3 56.0 39.4 63.6 64.4

APPENDIX B: PERFORMANCE COMPARISON ON NUSCENES DATASET

To further evaluate the effectiveness of LiDAR-PTQ, we also conducted experiments on nuScenes
(Caesar et al., 2020) dataset. Our performance evaluation involves two metrics, average precision
(mAP) and nuScenes detection score (NDS). NDS is a weighted average of mAP and other attributes
metrics, including translation, scale, orientation, velocity, and other box attributes. As shown in
Tab 1, LiDAR-PTQ achieves state-of-the-art performance and outperforms BRECQ and QDrop by a
large margin of 6.2 mAP and 3.9 mAP on CenterPoint-Pillar model and 5.3 mAP and 2.5 mAP on
CenterPoint-Voxel model. Consistent with the accuracy on the Waymo dataset, our LiDAR-PTQ also
achieves almost the same performance as the full precision model on nuScenes dataset.

APPENDIX C: LIDAR-PTQ FOR POINT CLOUD SEGMENTATION

Additionally, we conducted experiments on SemanticKITTI (Behley et al., 2019) dataset for point
cloud segmentation to further evaluate the generalization of LiDAR-PTQ. Specifically, we utilize
SPVNAS (Tang et al., 2020) as our baseline, which is a representative work in point cloud segmenta-
tion task. As shown in Tab 2, adopting entropy calibration leads to a significant accuracy drop of
18.09 mIOU. As for a vanilla max-min calibration, there is still a performance drop 2.64 mIOU
for quantized SPVNAS. However, LiDAR-PTQ can further achieve comparable accuracy to its float
counterpart. This demonstrates the effectiveness of LiDAR-PTQ on point cloud segmentation tasks
as well.
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Table 2: The PTQ performance of SPVNAS on SemanticKITTI val set.

Method m
Io

U

ca
r

bi
cy

cl
e

m
ot

or
cy

cl
e

tr
uc

k

ot
he

r-
ve

hi
cl

e

pe
rs

on

bi
cy

cl
is

t

m
ot

or
cy

cl
is

t

ro
ad

pa
rk

in
g

si
de

w
al

k

ot
he

r-
gr

ou
nd

bu
ild

in
g

fe
nc

e

ve
ge

ta
tio

n

tr
un

k

te
rr

ai
n

po
le

tr
af

fic
si

gn

Full Prec. 65.0 96.3 49.0 77.6 74.4 51.8 75.2 88.2 5.7 93.4 44.6 81.0 3.5 89.5 56.5 87.8 68.4 75.1 67.1 49.6
Entropy 46.9 92.9 34.7 72.1 20.4 37.2 48.5 80.9 5.1 47.8 16.9 28.7 0.2 79.9 47.5 82.9 57.0 44.0 55.9 38.8
Max-min 62.4 94.5 46.2 75.3 73.0 50.2 73.6 86.4 5.7 92.3 41.5 78.9 2.1 87.3 53.4 85.1 65.3 71.8 63.0 48.6
LiDAR-PTQ 64.9 96.3 48.7 78.0 74.3 52.2 74.5 87.9 5.9 93.3 44.0 80.9 3.5 89.4 56.4 87.6 68.3 74.5 67.2 49.5

APPENDIX D: EXPERIEMNTS DETAILS

Dataset. NuScenes dataset (Caesar et al., 2020) uses a LiDAR with 32 lines to collect data, containing
1000 scenes with 700, 150, and 150 scenes for training, validation, and testing, respectively. The
metrics of the 3D detection task are mean Average Precision (mAP) and the nuScenes detection
score (NDS). Waymo Open Dataset (Sun et al., 2020) uses a LiDAR with 64 beams to collect data,
containing 1150 sequences in total, 798 for training, 202 for validation, and 150 for testing. The
metrics of the 3D detection task are mAP and mAPH (mAP weighted by heading). In Waymo,
LEVEL1 and LEVEL2 are two difficulty levels corresponding to boxes with more than five LiDAR
points and boxes with at least one LiDAR point. The detection range in nuScenes and WOD is 50
meters (cover area of 100m × 100m) and 75 meters (cover area of 150m × 150m).

Implementation Details. All the FP models in our paper use CenterPoint(Yin et al., 2021) official
open-source codes based on Det3D (Zhu et al., 2019) framework. In WOD dataset, we randomly
sample 256 frames point cloud data from the training set as the calibration data. The calibration set
proportions is 0.16% (256/158,081) for WOD. In nuScenes dataset, the calibration set proportions
are 0.91% (256/28,130). We set the first and the last layer of the network to keep full precision. We
execute block reconstruction for the backbone and layer reconstruction for the neck and the head with
a batch size of 4, respectively. Note that we do not consider using Int8 quantization for the PFN in
CenterPoint-Pillar, since the input is 3D coordinates, with approximate range ±102 m and accuracy
0.01 m, so that Int8 quantization in FPN would result in a significant loss of information. The learning
rate for the activation quantization scaling factor is 5e-5, and for weight quantization rounding, the
learning rate is 5e-3. In TGPL loss, we set γ as 0.1, and K as 500. We execute all experiments on a
single Nvidia Tesla V100 GPU. For the speed test, the inference time of all comparison methods is
measured on an NVIDIA Jeston AGX Orin, a resource-constrained edge GPU platform widely used
in real-world autonomous driving.

APPENDIX E: ENTROPY CALIBRATION METHOD

Given the original and quantized data distribution p(i) and q(i) as follows:

DKL(p(i), q(i)) =
∑
i

p(i) log p(i)− p(i) log q(i) (1)

The entropy calibration method in Algorithm2

APPENDIX F: GIRD SEARCH

For a weight or activation tensor X , we can get their initial quantization scale factor using the
following equation:

x̂ = (clamp(⌊x
s
⌉+ z, qmin, qmax)− z) · s (2)

s = (xmax − xmin) /
(
2b − 1

)
(3)
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Algorithm 1 Entropy calibration method
Input: FP32 histogram H with N bins, and bit-width b.
Output: threshold with min(DKL(p(i), q(i))).
Require: len(p) = len(q)

1: for i in range(2b−1, N ) do
2: ref dist p(i) = [bin[0], ...,bin[i− 1]]
3: outliers count = sum(bin[i],bin[i+ 1], . . . ,bin[N − 1])
4: ref dist p(i)[i− 1]+ = outliers count
5: p(i) =ref dist p(i)/sum(ref dist p(i))
6: quantize candidate dist q(i) from [ bin[0], . . . , bin[i− 1]] into 2b−1 levels
7: candidate dist q(i)=interp1d((bin[0], ...,bin[127]), (bin[0], ...,bin[i− 1]),method=′linear′)
8: q(i) =candidate dist q(i)/sum(candidate dist q(i))
9: divergence[i] = DKL(p(i), q(i)) using Eq 1

10: end for
11: m = argmin

(
D =

[
divergence[2b−1 − 1], ..., divergence[N − 1]

])
12: threshold = (m+ 0.5) ∗ (widthbin)
13: return threshold

argmin
st

∥(X − X̂(sl))∥2F (4)

∥ · ∥2F is the Frobenius norm (MSE Loss). Refer to appendix for more details about grid search. Then
linearly divide the interval [αs0, βs0] into T candidate bins, denoted as {st}Tt=1. α, β and T are
designed to control the search range and granularity. Finally, search {st}Tt=1 to find the optimal sopt
that minimizes the quantization error, The entropy calibration method in Algorithm2

Algorithm 2 Grid search
Input: the input of full precision tensor X , bit-width b and T bins.
Output: scale factor sopt with min(∥(X − X̂(sl))∥2F ).

1: using xmax = max(|x|) get max value of tensor X
2: set range = xmax, cbest = 100
3: set vmin = xmin and vmax = xmax

4: for i in range(1, T ) do
5: threshold = range/T/i
6: xmin = −threshold, xmax = threshold
7: get scale st with xmin and xmax using Eq 3
8: input the quantized value x̂ and FP value x using Eq 2 to get score c
9: update vmin and vmax when c < cbest and update cbest = c

10: end for
11: get vmin and vmax with the minimal score c
12: get final scale sopt with vmin and vmax using Eq 3
13: return scale sopt
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