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Abstract
This work identifies 18 foundational challenges in assuring the alignment and safety of large
language models (LLMs). These challenges are organized into three different categories:
scientific understanding of LLMs, development and deployment methods, and sociotechnical
challenges. Based on the identified challenges, we pose 200+ concrete research questions.
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Reader’s Guide
Due to the length of this document (though note that the main content is only ~100 pages; the rest are
references), it may not be feasible for all readers to go through this document entirely. Hence, we suggest
some reading strategies and advice here to help readers make better use of this document.

We recommend all readers begin this document by reading the main introduction (Section 1) to grasp the
high-level context of this document. To get a quick overview, readers could browse the introductions to
various categories of the challenges (i.e. Sections 2, 3 and 4) and review associated Tables 1, 3 and 4 that
provide a highly abridged overview of the challenges discussed in the three categories. From there on, readers
interested in a deep dive could pick any section of interest. Note that all the challenges (i.e. subsections like
Section 2.1) are self-contained and thus can be read in an arbitrary order.

Machine Learning and NLP Researchers
Technical researchers in machine learning, natural language processing, and other associated fields are the
primary intended audience for this agenda. We have tried to assume as minimal background knowledge
as possible beyond the general knowledge of what LLMs are, what their architecture is, and how they are
trained. Hence, we expect all the technical challenges in Sections 2 and 3 to be accessible to any person with
the knowledge equivalent to a first-year graduate student in machine learning or natural language processing.
A large proportion of the challenges discussed in Section 4 are also technical in nature and should be equally
accessible.

The main intended purpose of this document is to help junior researchers, or researchers new to this area,
to identify promising and actionable research directions (although of course, even seasoned experts might
take inspiration from it). Such readers are encouraged to pick and choose sections that best align with
their interests. The 200+ listed research questions are each meant to be roughly the size of a problem that
could form the basis of a research dissertation. For each challenge and subchallenge, we provide motivation,
background, and related work, before discussing directions for future research. These should provide a
good starting point for researchers who are new to these particular challenges, but we do not attempt a
comprehensive survey of any area.

We also note that while this work is motivated by the safety and alignment of LLMs, nonetheless, many of
the challenges we identify are highly interesting from the technical and scientific points of view. Thus, even
those readers who are not primarily motivated by safety, but are in search of interesting problems centered
on LLMs, may find this document useful.

Sociotechnical Researchers and Other Stakeholders
We focus on sociotechnical challenges in Section 4, emphasizing that all LLMs are sociotechnical systems,
and their safety cannot be ensured without a deep and thoughtful consideration through this lens. The
introduction of this section provides a mapping between the different challenges we discuss and the different
areas of other fields that could contribute to progress on those challenges. This section only presumes high-
level familiarity with the LLMs for the most part and is aimed to be accessible to a wider audience than the
rest of the agenda.
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1 Introduction
“We can only see a short distance ahead, but we can see plenty there that needs to be done."

— Alan Turing

Large language models (LLMs) have emerged as one of the most powerful ways to solve open-ended problems
and mark a paradigm shift within machine learning. However, assuring their safety and alignment remains an
outstanding challenge that is recognized across stakeholders, including private AI laboratories (Leike et al.,
2022; Anthropic, 2023a; Frontier Model Forum, 2023), national and international governmental organizations
(White House, 2023; Office, 2023; Board, 2023), and the research and academic communities (Bengio et al.,
2023; FAccT, 2023; CAIS, 2023; CHAI, Far.ai, and Ditchley Foundation, 2023). Indeed, assuring the safety
and alignment of any deep-learning-based system is difficult (Ngo et al., 2023). However, this challenge is
much more acute for LLMs due to their expansive scale (Sanh et al., 2019, Figure 1) and increasingly broad
spectrum of capabilities (Bubeck et al., 2023; Morris et al., 2023). Furthermore, the rapid advances in LLM
capabilities not only expand the potential applications of LLMs, but also increase their potential for societal
harm (Weidinger et al., 2021; Ganguli et al., 2022; Birhane et al., 2023; Chan et al., 2023b).

1.1 Why This Agenda?
The rapid rate of progress is especially alarming due to the absence of the requisite technical tools and
deficiencies in the sociotechnical structures that may help assure that LLMs are developed and deployed
safely (Bengio et al., 2023). In this work, we map out the challenges in developing the appropriate technical
affordances that may help assure safety and in understanding and addressing the sociotechnical challenges
that we may face in assuring societal-scale safety. At its heart, this work is a call to action for machine
learning researchers, and researchers in the associated fields. Our extensive referencing of contemporary
literature, focus on identifying promising and concrete research directions, and in-depth discussion of each
challenge makes it an ideal educational resource for newcomers to the field. At the same time, we expect
the plethora of challenges identified in this work to act as a source of inspiration for current practitioners in
the fields of LLM alignment and safety, including those working from diverse other disciplines (e.g. social
sciences, humanities, law, policy, risk analysis, philosophy, etc.).

Several prior studies have compiled and discussed foundational problems in AI Safety (Amodei et al., 2016;
Hendrycks et al., 2021b; Critch & Krueger, 2020; Kenton et al., 2021; Ngo et al., 2023). However, LLMs
mark a paradigm shift and present many novel and unique challenges in terms of alignment, safety, and
assurance that are not discussed in these works. Among these, Kenton et al. (2021) is the only work
that exclusively focuses on LLMs. But it lacks broad coverage, being narrowly focused on issues from
accidental misspecification of objectives. Our work builds on the aforementioned work and provides the
most comprehensive and detailed treatment of challenges related to the alignment and safety of LLMs to
date.

We highlight 18 different foundational challenges in the safety and alignment of LLMs and provide an
extensive discussion of each. Our identified challenges are foundational in the sense that without overcoming
them, assuring safety and alignment of LLMs and their derivative systems would be highly difficult. For this
work, we have further prioritized the discussion of foundational challenges that are unambiguous (i.e. not
speculative), prime for research and highly relevant to harms and risks posed by current and forthcoming
LLMs. Additionally, we pose 200+ concrete research questions for further investigation. Each of these is
associated with a particular fundamental challenge. These research questions are fairly open-ended and are
roughly meant to be the size of a graduate thesis, although many offer multiple angles of attack and could
easily be studied more exhaustively.

1.2 Terminology
The terms alignment, safety and assurance have different meanings depending on the context. We use
alignment to refer to intent alignment, i.e. a system is aligned when it is ‘trying’ to behave as intended
by some human actor (Christiano, 2018).1 Importantly, alignment does not guarantee a system actually
behaves as intended; for instance, it may fail to do so due to limited capabilities (Ngo et al., 2023). To

1Christiano (2018) further clarify that they mean this definition to apply de dicto not de re; we are ambivalent on this point.
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further simplify our discussion, we fix the intent to be that of the LLM developer (Gabriel, 2020; Ngo et al.,
2023) (e.g. as opposed to the user). We consider a system safe to the extent it is unlikely to contribute
to unplanned, undesirable harms (Leveson, 2016). This is a somewhat expansive definition, accounting
not only for the technical properties of the system, but also the way in which it is (or is likely to be)
deployed and used (Weidinger et al., 2023b), though it is narrow in the sense that it does not consider
intentional harm, and it does not set out any criteria for what constitutes harm. Alignment can be used
to increase safety, but the relationship is not straightforward: it could also be used to make a system more
dangerous (if the developer intends), and it is not directly concerned with the real-world impact a system
has when embedded in its deployment context, or the very important issue of (lack of) alignment between
developers and other stakeholders. Finally, by assurance, we mean any way of providing evidence that a
system is safe or aligned (Ashmore et al., 2021), including, but not limited to: scientific understanding of the
system, behavioral evaluations, explanations of the model behavior or internal processing, and adherence to
responsible development practices by the system developer (Casper et al., 2024a).

1.3 Structure
We organize the foundational challenges into three different categories. The first category, scientific under-
standing of LLMs (Section 2), surveys the most important open questions that can help us build a better
‘theory’ of how LLMs function and inform development and deployment decisions. We discuss the need to
develop principled solutions to conceptualizing, estimating, understanding, and predicting the capabilities of
LLMs. We single out in-context learning and reasoning capabilities of LLMs as being critical to understand
for assuring alignment and safety across all contexts. We highlight that risks we are facing with current LLMs
may grow manifold with the introduction of LLM-agents, and that we need to pre-emptively understand
these risks and work to mitigate them across both single-agent and multi-agent scenarios. Finally, we note
that it may be inevitable that safety-performance trade-offs exist for LLM-based systems that we ought to
understand better.

The second category, Development and Deployment Methods (Section 3), presents the known limitations
of existing techniques in assuring safety and alignment in LLMs. We identify opportunities to help im-
prove model alignment by modifying the pretaining process to produce more aligned models, survey several
limitations of finetuning in assuring alignment and safety, discuss issues underlying the ‘evaluation crisis’,
review challenges in interpreting and explaining model behavior, and finally provide an appraisal of security
challenges like jailbreaks, prompt-injections, and data poisoning. On the whole, this section pertains to
researching empirical techniques that may help improve the alignment, safety, and security of LLMs.

The final category, Sociotechnical Challenges (Section 4), focuses on challenges that require a more diverse
and holistic lens to address. For example, we discuss the importance of societal-level discussions of whose
values are encoded within LLMs, and how we can prevent value imposition and enable value plurality. Many
LLM capabilities are dual-use; there is a need to understand what malicious misuse such capabilities might
enable and how may we guard against them. There is also a need to ensure that the biases and other
issues of LLM-systems are independently and continually monitored and transparently communicated, to
build trustworthiness and reduce over-reliance. The proliferation of LLMs throughout society may have
undesirable socioeconomic impacts (e.g. job losses, increased inequality) that ought to be investigated better
and strategized against. Finally, we conclude by discussing the challenges and opportunities in the space of
governance and regulation.

As an addendum, in Section 5 we review some limitations of this work. Most notably, we note that while
comprehensive, this agenda is not exhaustive. We follow that up with a detailed overview of the prior works
broadly related to this work; including but not limited to prior agendas on AI safety and various surveys
related to LLMs.

7
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2 Scientific Understanding of LLMs
Many safety and alignment challenges stem from our current lack of scientific understanding of LLMs. If
we were to understand LLMs better, this would help us better estimate the risks posed by current, and
future, LLMs and design appropriate interventions to mitigate those risks. Scientific understanding is also
an essential component of assurance — especially for complex systems. Some classic examples of complex
systems that heavily rely on scientific understanding for safety and assurance are bridge design, aircraft
design, nuclear reactor design, spacecraft design etc. Without the scientific understanding of the underlying
physics, the assurance of these systems would perhaps be improbable, if not totally impossible.

LLMs show many prototypical traits of complex systems (Holtzman et al., 2023; Steinhardt, 2023; Hendrycks,
2023, Chapter 5) — the foremost among them is emergent behaviors (Wei et al., 2022a; Park et al., 2023a).
This complex-systems like nature of LLMs means that relying on ‘evaluations’ alone may be insufficient for
safety and assurance (c.f. Sections 2.2.3 and 3.3) and that there is a dire need to probe beyond surface-level
behaviors of LLMs and to understand how those behaviors arise in the first place (Holtzman et al., 2023).

Understanding LLMs is a broad and grand scientific challenge. However, in line with the general theme
of this work, we focus on the most safety-relevant aspects (see Table 1 for an overview). Addressing these
challenges will help inform safer LLM development or deployment practices; however, additional work would
be required to translate insights here into practical recommendations.

Scientific understanding can take many different, and diverse, forms (Adams et al., 2014, Table 4). Indeed, the
challenges we have identified admit diverse styles of research. While some challenges are deeply theoretical in
nature (e.g. What Are the Computational Limits of Transformers? or Understanding Scaling Laws), others
may need a more empirical approach towards resolving them (e.g. Influence of Single-Agent Training on Multi-
Agent Interactions is Unclear). In general, most of the challenges that we raise are focused on developing
a qualitative understanding of LLMs. Qualitative understanding often allows developing generalizations
that a quantitative analysis may not permit and thus may be more robust to the rapid advancements in
LLMs. These virtues of qualitative understanding were extolled almost 50 years ago by Herbert Simon and
Allen Newell in their seminal 1975 Turing Award lecture, incidentally also on the topic of designing and
understanding artificial intelligence systems (Newell & Simon, 1976).

Table 1: An overview of challenges discussed in Section 2 (Scientific Understanding of LLMs). We stress
that this overview is a highly condensed summary of the discussion contained within the section, and hence
should not be considered a substitute for the complete reading of the corresponding sections.

Challenge TL;DR
In-Context Learning (ICL) Is Black-Box We do not have a robust understanding of how and

why in-context learning emerges with large-scale training,
what mechanisms underlie in-context learning in LLMs, to
what extent in-context learning in LLMs is due to mesa-
optimization, or how it relates to existing learning algo-
rithms.

Continued on the next page
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Challenge TL;DR
Capabilities Are Difficult to Estimate and
Understand

Correctly estimating and understanding capabilities of
LLMs is difficult for various reasons. Firstly, LLM capabili-
ties appear to have a different ‘shape’ than human capabili-
ties; meaning that the notions used to understand and esti-
mate human capabilities might be ill-suited to understand
LLM capabilities. Additionally, the concept of capabilities
lacks a rigorous conceptualization which makes it difficult
to make, and evaluate, formal claims about LLM capabili-
ties. There also exist fundamental flaws in our evaluation
methodologies that ought to be overcome if we are to better
understand LLM capabilities, such as benchmarking being
unable to differentiate between alignment failures and capa-
bility failures. There is also a need to improve our tooling
to evaluate the generality of LLMs, and in general, develop
methods to better account for scaffolding in our evaluations.

Effects of Scale on Capabilities Are Not
Well-Characterized

Various challenges hinder our ability to understand and pre-
dict the impact of scale on LLM capabilities. These include
incomplete theoretical understanding of empirical scaling
laws, limited understanding of limits of scaling and how
learning representations are affected by scaling, confusing
discourse on ‘emergent’ capabilities due to lack of formal-
ization, and the nascent nature of research into the develop-
ment of better methods for discovering task-specific scaling
laws.

Qualitative Understanding of Reasoning
Capabilities Is Lacking

Our current understanding of how reasoning capabilities
emerge in LLMs and are impacted by model scale is insuffi-
cient for making confident predictions about the reasoning
capabilities of future LLMs. There is a need for research to
understand the mechanisms underlying reasoning, develop a
better understanding of the non-deductive reasoning capa-
bilities of LLMs, and better understand the computational
limits of the transformer architecture.

Agentic LLMs Pose Novel Risks For reasons including increased capabilities (via enhance-
ments like access to various affordances) and increased au-
tonomy, LLM-agents may pose novel alignment and safety
risks. The actions executed by LLM-agents may result in
negative side-effects due to underspecification in natural-
language-based instructions. Goal-directedness may cause
LLM agents to exhibit undesirable behaviors such as reward
hacking, deception, and power-seeking, and might make ro-
bust oversight and monitoring of LLM-agents particularly
difficult.

Continued on the next page
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Challenge TL;DR
Multi-Agent Safety Is Not Assured by
Single-Agent Safety

Assuring favorable outcomes in a multi-agent setting may
prove challenging for several reasons. Firstly, there’s a lack
of comprehensive understanding of how single-agent train-
ing affects the behavior of LLM-agents in multi-agent en-
vironments. Secondly, the foundationality of LLM-agents
may contribute to correlated failures. Additionally, collu-
sion among LLM agents may result in undesirable exter-
nalities. Lastly, it is unclear to what extent prior research
in multi-agent reinforcement learning may prove helpful in
improving the alignment of LLM-agents in multi-agent set-
tings, especially for resolving social dilemmas.

Safety-Performance Trade-offs Are Poorly
Understood

Safety-performance trade-offs are typically unavoidable in
the design of any engineering system; however, they are not
well understood for LLM-based systems. There is a need for
work to design better metrics to measure safety, to charac-
terize safety-performance trade-offs across various contexts,
and to better understand what safety-performance trade-
offs are fundamental in nature (and hence unavoidable in
practice). Finally, it may be helpful to research methods
for producing Pareto improvements in both safety and per-
formance.

2.1 In-Context Learning (ICL) Is Black-Box
In-context learning (ICL) is the ability of an LLM to learn to perform a novel task, or improve on an existing
task, based on the information (e.g. examples, reasoning traces) provided in the prompt without any explicit
updates to the model’s parameters (Brown et al., 2020; Kaplan et al., 2020). ICL is a highly flexible and
efficient learning paradigm — it has been used to direct LLMs to behave in the desired way (Lin et al., 2023a),
jailbreak LLMs (Wei et al., 2023c; Xhonneux et al., 2024) and create highly performant LLM-agents (Wang
et al., 2023c). However, while this dynamic nature of ICL is helpful in the design of proficient
LLM-based systems, the black-box nature of ICL also makes it significantly harder to assure
safety and alignment of LLMs (Wolf et al., 2023; Millière, 2023). If we do not understand how ICL
works, this makes it difficult to predict how it might alter LLMs behavior in deployment; for instance, it
might enable novel dangerous capabilities or bypass safeguards (Anil et al., 2024). Thus there is a pressing
need to better understand the mechanisms underlying ICL, the limits of ICL, and the safety implications
associated with ICL. This section presents the issues with various theories and approaches that have been
proposed to explain ICL and highlights several key research questions that need to be addressed.

2.1.1 Is ICL Sophisticated Pattern-Matching?
There are two competing theories to explain the working mechanism of ICL in a transformer. The first is that
ICL is a set of pre-learned pattern-matching heuristics closely tied to the training distribution. Under this
view, several works have proposed explanations of ICL as inference over an implicitly learned topic model
(Xie et al., 2022; Wang et al., 2023g; Wies et al., 2023); as task inference (Min et al., 2022; Todd et al.,
2023; Hendel et al., 2023; Bigelow et al., 2023) or as learning of template circuits (during training) which
are adaptively retrieved and rebound to tokens in the prompt (Swaminathan et al., 2023). However, these
theories currently only provide partial explanations of ICL. All the aforementioned works only explain ICL
that is based on demonstrations while ICL can occur from other types of feedback as well, e.g. interactive
feedback (Mehrabi et al., 2023; Wang et al., 2023c). These works also do not explain multi-task in-context
learning and sequential learning of tasks in-context (Zhou et al., 2022, Sections 4&5), or how in-context
learning may support learning of novel tasks, such as learning to reason on OOD samples (Saparov et al.,
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Figure 1: Recent large language models (LLMs) offer significantly expanded context lengths, enhancing in-
context learning capabilities (Agarwal et al., 2024) while also introducing novel risks (Anil et al., 2024).

2023). Furthermore, some works, such as Zhang et al. (2023d) and Swaminathan et al. (2023), assume specific
(simpler) data generation processes that differ from the true data generation process of natural language.
There is a need to further refine and extend the current theories, or development of novel ones, so that we
are able to adequately explain the full range of ICL behaviors, including the aforementioned ones.

2.1.2 Is ICL Due to Mesa-Optimization?
Alternatively, ICL can be seen as a form of “learned optimization” or “mesa-optimization” (Hubinger et al.,
2019; von Oswald et al., 2023), i.e., during training, the base optimizer learns to use the transformer weights to
represent another (learned) optimization algorithm — as well as a (learned) objective function — effectively
allowing the transformer to self-generate learning signal (based on data given in the context) and act as black-
box in-context learner (Kirsch et al., 2022). Emergence of mesa-optimization within a model is contingent
on whether or not a model can implement a learning algorithm within its weights. Several studies provide
evidence that transformers can approximate gradient-based learning algorithms for various statistical learning
problems (Akyürek et al., 2022b; von Oswald et al., 2022; Garg et al., 2022; Zhang et al., 2023c; Ahn et al.,
2023). Bai et al. (2023a) prove that a transformer with 2L layers can simulate L-steps of gradient descent
on a two-layer feedforward neural network. Panigrahi et al. (2023) propose an extension of the transformer
architecture that can internally simulate finetuning of a smaller transformer. Bai et al. (2023a) further show
that transformers can implement in-context algorithm selection, i.e. at inference time, a single transformer
can adaptively choose between different learning algorithms to solve the given task (e.g. logistic regression
for a regression task or logistic classification for a classification task) based on the information given in the
prompt.

These studies show that in principle, transformers are capable of mesa-optimization in controlled experi-
ments. However, it is not yet clear whether and when transformers trained with more complex objectives,
e.g. the language modeling objective, might learn to perform mesa-optimization. Specifically, one key un-
known is: for which mesa-objectives do transformers support mesa-optimization? Existing work provides
overwhelming evidence that transformers can solve simple supervised learning tasks via mesa-optimization.
However, there has so far been very limited investigation as to whether transformers can solve more complex
learning tasks in-context via mesa-optimization (Lin et al., 2023b); research should explore tasks that better
mirror the real-world structure of language modeling. Furthermore, even for otherwise well-studied learning
tasks e.g. linear regression, there is disagreement in the current literature as to which learning algorithm
is implemented by the transformer (von Oswald et al., 2022; Fu et al., 2023a). In order to resolve this
disagreement, further research is required to disentangle various factors that may impact which learning
algorithm gets implemented by the transformer (Zhong et al., 2023b). Future work could also develop more
rigorous and generic methods for distinguishing mesa-optimization from other forms of ICL, and examine the
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practical importance of the distribution of in-context examples in determining whether mesa-optimization
occurs and understanding the inductive biases of the resulting mesa-optimizer.

2.1.3 What Behaviours Can Be Specified In-Context?
It is currently unclear what functions can, and can not be learned, in-context. More specifically, given a
pre-trained model, what behaviors can it be prompted to do? If it is possible to always find a prompt
to coax the LLM to perform any task, then that might indicate that jailbreaking (c.f. Section 3.5) is an
impossible problem to solve (Millière, 2023). Fundamentally, that is a question of universal approximation
in-context, i.e. whether a fixed model can be converted into an approximator of arbitrary accuracy for
any (continuous) function by being prompted appropriately. While it is well-known that transformers are
universal approximators when trained (Yun et al., 2019) and was recently shown that this is also the case
for state-space models (Li et al., 2022b; Wang & Xue, 2023; Cirone et al., 2024), it is less clear what are
their in-context approximation abilities. Wang et al. (2023i) showed that in-context universal approximation
is possible with a transformer but their construction required that all possible functions are encoded in the
model weights which results in unrealistically large models. However, (Petrov et al., 2024) showed that no
memorization is needed and that a relatively small model can be a universal approximator in-context. This
result already indicates that it is possible for a realistically-sized model to be impossible to be safeguarded
(i.e. safety finetuned in a way that jailbreaking is not possible).

The theory of universal approximation in-context is still rather underdeveloped and the practical safety and
security implications of the above results are not yet fully clear. For instance, the above-mentioned models
require very specific hand-crafted weights for the pre-trained model. It is not clear whether the universal
approximation behavior can be obtained by learning via gradient descent on typical datasets and, therefore,
whether it is likely to occur in real-world models or not. Furthermore, the prompt lengths required in
the construction of Petrov et al. are unrealistically long. However, it might be possible to reduce this by
leveraging knowledge and skills already present in the model (Petrov et al., 2023b). Therefore, studying the
effect of the pre-training data on the in-context universal approximation could help understand the real-world
safety and security implications of in-context learning capabilities of LLMs. All the above results also rely
on the attention mechanism in the transformer architecture and thus, do not translate to other recurrent
models. Thus, understanding the in-context approximation properties of other architectures is another open
problem with little to no current work so far (Lee et al., 2023a).

2.1.4 Scenario-Based Mechanistic Understanding of ICL
Current interpretability techniques are not scalable and general enough to allow an interpretability-based
general understanding of the mechanics of ICL within an LLM (c.f. Section 3.4). However, they can still be
leveraged for developing scenario-based mechanistic understanding of ICL (Olsson et al., 2022; Reddy, 2023),
i.e. identifying circuits critical for ICL within an LLM when artificial restrictions are placed on the prompt
structure and the task being carried out via ICL. Such case studies can be insightful for understanding
the relative roles played by different computational structures within the model, and to understand how
the ICL mechanism varies across tasks. For example, Todd et al. (2023) studied ICL for extractive and
abstractive NLP-based tasks, and found that a small number of attention heads, termed “function vectors”,
are responsible for transporting a compact representation of a task which then triggers execution of the
task. Similarly, Merullo et al. (2023b) show that on the commonly-studied ICL task of inferring relations
between entities (e.g. inferring the capital of a country), mid-to-late feedforward layers play a key role in
identifying and surfacing relevant items contained in the context which are required for inferring the relation
and completing the task. Halawi et al. (2023) study ICL on a classification task in which the demonstration
data has incorrect labels, thus, clashing with the prior knowledge of the LLM. This lets Halawi et al. discover
false induction heads; attention heads in late layers of the LLM that attend to and copy false information
from the demonstrations.

This preliminary evidence suggests that case studies on specific task types can be a useful technique to build
a mechanistic understanding of ICL in LLMs and may be helpful in identifying how, and why, ICL behavior
varies across tasks, and how the inductive biases of a particular architecture affects ICL. Future research may
analyze ICL in larger LLMs, on diverse task types and with various prompt styles. Interpretability-based
techniques could also be leveraged to explain idiosyncrasies of ICL identified in the literature, e.g. why ICL
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sometimes performs worse when given examples from test distributions (Saparov et al., 2023) or why LLMs
at different scales process false information in the context differently (Wei et al., 2023b).

2.1.5 Understanding the Effect of the Pre-training Data Distribution on ICL
Emergence of in-context learning is heavily modulated by the structure of the pre-training data distribution.
Special properties of the task distribution, such as task diversity (Raventós et al., 2023; Kirsch et al., 2022),
“burstiness” (Chan et al., 2022) or compositional structure (Hahn & Goyal, 2023) may be key factors in the
emergence of ICL. However, these findings are primarily limited to relatively simple settings, and further
work is required to verify their correctness in the real-world language modeling setup. Which of these criteria
are actually fulfilled by large-scale text datasets? If all of these criteria are indeed met by text datasets,
which criteria are actually responsible for ICL in LLMs? For some of these criteria (e.g. “burstiness”), these
questions could be answered via analysis of popular datasets like The Pile (Gao et al., 2020), RedPajama
(Together Computer, 2023), etc. For other criteria, such as task diversity, the analysis-based approach may
not be suitable as there might not be an obvious way to track and measure such criteria in an unstructured
text dataset. In such cases, an alternative strategy could be to create various synthetic text datasets in a
controlled fashion and monitor the emergence of ICL in language models trained on these datasets to better
understand the necessary and sufficient conditions for the emergence of ICL.

2.1.6 Understanding the Effect of Design Choices on ICL
How is ICL impacted by various design and training choices involved in the development of an LLM, such as
model size, pretraining dataset size, pretraining compute, instruction tuning? Sensitivity of ICL to various
factors, including, but not limited to the aforementioned factors, is well-known from prior literature. In
particular, several studies note that ICL performance is highly sensitive to the scale of the LLM; Wei et al.
(2022a); Brown et al. (2020); Kaplan et al. (2020) note that ICL is an emergent ability; Akyürek et al. (2022b)
discover phase transitions between transformer simulating different learning algorithms based on the depth
of the transformer; and Wei et al. (2023b) find that larger LLMs have stronger semantic priors (i.e. zero-shot
performance is better), but also a greater propensity to allow in-context information to override the semantic
prior. Wei et al. (2023b) further show that instruction tuning disproportionately strengthens semantic priors;
hence, an instruction-tuning reduces the propensity for in-context information to override the semantic prior.
Meanwhile, Singh et al. (2023) argue that ICL is a transient phenomenon and extended training can cause
ICL to dissipate in favor of “in-weight” learning (Chan et al., 2022). A deep understanding of why ICL is
sensitive to various design and training choices, and how these choices affect the mechanisms behind ICL is
currently lacking. In particular, improving our understanding of how various training design decisions, e.g.
instruction tuning or prolonged training, impact ICL may provide us with tools to modulate the strength of
ICL in LLMs. This may help mitigate some of the safety risks posed by LLMs due to their strong in-context
learning abilities (Wolf et al., 2023; Millière, 2023).

The dynamic and flexible nature of ICL is central to the success of LLMs as it allows LLMs to
proficiently improve on already known tasks as well as learn to perform novel tasks. It is likely to
gain an even more prominent role as LLMs are scaled up further and become more proficient at ICL.
However, the black box nature of ICL is a risk from the perspective of alignment and safety, and there
is a critical need to better understand the mechanisms underlying ICL. Several “theories” have been
proposed that provide plausible explanations of how ICL in LLMs might work. However, the actual
mechanism(s) underlying ICL in LLMs is still not well understood. We highlight several research
questions that could be instrumental in addressing the understanding of the mechanisms underlying
ICL.

1. Can different theorizations of ICL as sophisticated pattern-matching or mesa-optimization
be extended to explain the full range of ICL behaviors exhibited by the LLMs? ←↩

2. What are the key differences and commonalities between ICL and existing learning
paradigms? Prior work has mostly examined ICL from the perspective of few-shot super-
vised learning. However, in practice, ICL sometimes exhibits qualitatively distinct behaviors
compared to supervised learning and can learn from data other than labeled examples, such
as interactive feedback, explanations, or reasoning patterns. ←↩
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3. Which learning algorithms can transformers implement in-context? While earlier studies
(e.g. Akyürek et al., 2022b) argue transformers implement gradient descent-based learning
algorithms, more recent work (Fu et al., 2023a) indicate that transformers can implement
higher-order iterative learning algorithms e.g. iterative Newton method as well. ←↩

4. What are the best abstract settings for studying ICL that better mirror the real-world struc-
ture of language modeling and yet remain tractable? Current toy settings e.g. learning to
solve linear regression are too simple and may lead to findings that do not transfer to real
LLMs. ←↩

5. To what extent, different architectures are universal approximators ‘in-context’? Can we
better characterize functions that can be learned in-context by models obtained in practice?
How do the pre-training data and the training objectives affect the in-context universal
approximation abilities of a model? ←↩

6. How can interpretability-based analysis contribute to a general understanding of the mecha-
nisms underlying ICL? Can this approach be used to explain various phenomena associated
with ICL such as why ICL performance varies across tasks, how the inductive biases of a
particular architecture affect ICL, how different prompt styles impact ICL, etc.? ←↩

7. Which properties of large-scale text datasets are responsible for the emergence of ICL in
LLMs trained with an autoregressive objective? ←↩

8. How do different components of the pretraining pipeline (e.g. pretraining dataset construc-
tion, model size, pretraining flops, learning objective) and the finetuning pipeline (e.g. in-
struction following, RLHF) impact ICL? How can this understanding be leveraged to develop
techniques to modulate ICL in LLMs? ←↩

2.2 Capabilities Are Difficult to Estimate and Understand
Improving — and especially assuring — the safety and alignment of LLMs demands an understanding of
their capabilities. More capable systems possess a greater potential to cause harm under misalignment;
as argued by Shevlane et al. (2023). At the same time, some capabilities — such as recognizing ambigu-
ity and uncertainty, and understanding how to infer humans’ intent — are necessary for advancing LLM
safety and alignment (respectively). This makes it critical that we correctly estimate and understand the
‘capabilities’ of an LLM (Mitchell, 2023). However, there is currently no single well-established
and agreed-upon conceptualization, definition, or operationalization of the term ‘capabilities’.
This, combined with various other factors, hinders rigorous accounting of risk, which should
be grounded in an understanding of what types of behavior a system is capable of in general,
rather than the specific behaviors a system exhibited in the particular situations in which it
was tested (Kaminski, 2023). To provide high-quality assurance of LLM safety or alignment, we need an
improved scientific understanding of how to infer underlying capabilities from such limited test results.

2.2.1 LLM Capabilities May Have Different ‘Shape’ Than Human Capabilities
The capabilities of LLMs, and other AI models, are likely to be mechanistically and behaviorally distinct
from the corresponding human capabilities — even when some summary statistics for the two may be closely
matched, e.g. accuracy on some benchmark. We colloquially refer to this as the ‘shape’ of capabilities
being different.2 Adversarial examples in computer vision are a classical example of this difference — small
perturbations to images that are imperceptible to humans can have drastic effects on a model based on neural
networks (Szegedy et al., 2013). Within LLMs, one obvious way this manifests is as inconsistent performance
across data points on which a human’s performance would be consistent. For example, GPT-4 accuracy at a
counting task degrades significantly when the correct answer is a low probability number (e.g. 83) relative to
the cases where the correct answer is a high probability number (e.g. 100) (McCoy et al., 2023). One other
way this mismatch becomes obvious is by looking at tasks that LLMs can do with much greater efficiency
than humans. For example, Gemini-1.5 can learn to translate sentences from English to a completely novel
language (Kalamang) in-context given instructional material (Gemini Team, 2024). However, it may take a
human several weeks to learn to perform the same translations (Tanzer et al., 2023).

2Also see related discussion on how AI models learn and use different concepts and representations than humans in Sec-
tion 3.4.2.
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This mismatch in the ‘shape’ of capabilities can have adverse consequences. It makes it difficult for humans
to simulate LLMs and predict their behavior (Carlini, 2023a). This may harm a user’s trust in LLMs (c.f.
Section 4.3) and can generally make assurance harder, as LLM behavior can change in arbitrary ways across
the input space. Considering this mismatch, we also caution against the careless use of tests designed for
humans to estimate LLM capabilities, as argued by Davis (2014). In general, this issue of mismatch indicates
that conceptualizations used to describe human capabilities may be ill-suited to describe capabilities of LLMs
(and AI models in general). However, the methodology used to identify human capabilities may still transfer
or could be used as a source of inspiration as we hint at in the following section.

2.2.2 Lack of a Rigorous Conception of Capabilities
Researchers often make claims about the presence, or absence, of a capability within a model based on
whether or not the model is able to carry out tasks that supposedly require that capability. This suggests an
implicit conceptualization of capabilities within the community that associates a model having a capability
with the model being able to perform well on tasks of some particular type (Shevlane et al., 2023, Table 1).
This is generally operationalized by collecting (large) number of samples representative of the task of interest
into a benchmark. However, benchmark performance is highly dependent on which particular samples are
chosen, i.e. what parts of input space are covered, and how densely they are sampled from. Indeed, depending
on what samples they evaluate on, different works draw different conclusions about the capability of different
LLMs, e.g. to use theory-of-mind reasoning (Ullman, 2023; Zhou et al., 2023f; Shapira et al., 2023; Kim
et al., 2023). Conflicting claims about models’ capabilities are typically adjudicated informally; new research
may exhibit surprising failure modes to demonstrate that a capability is not robust, or explain away behavior
that seems to demonstrate a general capability with evidence that a model’s performance on a particular
benchmark is due to peculiarities of the samples selected, e.g. the existence of shortcut features (Geirhos
et al., 2020).

This informal treatment of capabilities is insufficient, and there is a need for more rigorous treatment for
the purposes of assurance. For instance, to enable us to make and evaluate formal claims about an LLM
lacking “dangerous” capabilities (Shevlane et al., 2023). To make rigorous, scientifically sound, and general
claims about the presence or absence of a capability within a model, it is essential to establish rigorously
defined and commonly agreed upon conceptualizations of capabilities (Jain et al., 2023b). More specifically,
we might be interested in claims of three different types: (a) a capability is completely absent from a model;
(b) a capability is partially present within a model; and (c) a capability is robustly present within a model.
Research is needed on how to best define, operationalize, and evaluate such claims about capabilities. We
will now discuss three different ideas for how to conceptualize capabilities in a way that may support such
claims or otherwise improve on current practice.

Domain Conceptualization: One way of formalizing capabilities (for a predictive model) is as statements
of the form f |A ≈ g, which we might read as “model f has capability g over domain A”. We refer to this as
the domain conceptualization. We conceptualize g as a function that implements a desired capability (e.g.
addition) on relevant inputs (e.g. real numbers), and A as a subset of all relevant inputs (e.g. integers). This
is reminiscent of benchmarking but explicitly specifies a set of inputs over which the model reliably exhibits
a capability. Such claims might be established by evaluating model behavior on a finite set of samples (as
in benchmarking) and applying some learning theory (Neyshabur et al., 2017a), using properties such as
smoothness of f (Dziugaite & Roy, 2017; Neyshabur et al., 2017b; Arora et al., 2018), and/or methods such
as certified robustness to prove that f approximates g well not only on sampled points but on unseen points
as well, e.g. within some volume of input space (Cohen et al., 2019; Carlini et al., 2022). Benchmarks could
also be designed in a theoretically-motivated way to support such general claims (Yu et al., 2023a; Shirali
et al., 2022),

Internal Computations Conceptualization: Another alternative conceptualization of the capabilities
of a model is as functions implemented within a model, e.g. between hidden layers. We call this the ‘internal
computations conceptualization’ of capabilities. For instance, we might identify capabilities with ‘circuits’,
i.e. computational subgraphs of a neural network (Olah et al., 2020). Here, we might say a model possesses
a capability for addition if there is any circuit that can perform addition, regardless of when or whether the
neurons in this circuit are actually active. This might enable stronger assurance regarding the potential for an
LLM to exhibit a dangerous behavior after fine-tuning or other methods of eliciting such behavior. Analysis
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of circuits has been used to provide conclusive evidence regarding models possessing specific capabilities
(Wang et al., 2022). However, there are currently technical issues with applying this conceptualization in
practice, which may limit its utility (see Section 3.4 for further details). This conceptualization could also
be combined with the domain conceptualization to identify computational elements within an LLM that
robustly implement functions over limited sets of inputs.

Latent Factors Conceptualization: The aforementioned ‘internal computations conceptualization’ view
of capabilities is inspired by neuroscience. Analogously, another view to conceptualize capabilities – which
we call the ‘latent factors conceptualization’ – could be to take inspiration from the field of psychology,
in particular, psychometrics. These fields are primarily concerned with characterizing and quantifying the
fundamental processes involved in variation in human cognitive abilities. Like the ‘internal computations
conceptualization’, the latent factor conceptualization views behavior as being produced through the appli-
cation of multiple capabilities, but does not attempt to ground these capabilities in internal computations.
A commonly used technique in psychometrics is factor analysis. Under this conceptualization, capabilities
are the “factors”, or latent variables, that explain variation in measurements across subjects (Carroll, 1993).
This could be done by taking a population of different LLMs and extracting the factors that explain the most
variance in performance across examples in a benchmark (or benchmarks), using techniques such as factor
analysis (Burnell et al., 2023a) or other psychometric techniques (Wang et al., 2023h). Machine learning
methods for discovering and disentangling latent factors of variation could also be explored. Intuitively,
these factors of variation could be viewed as a ‘basis’ of capabilities, and commonalities between capabilities
could help interpret model behavior in a way that is predictive of behavior on unseen examples, tasks, or
domains. One drawback of such methodology is that identified ‘factors’ may not be amenable to natural
interpretation as ‘capabilities’ and attempts to interpret them could induce false beliefs about the models in
model developers and evaluators (Chang et al., 2009).

All the above conceptualizations vary in rigor, functionality, and tractability, and their pros and cons are not
well understood. It is also possible that other, better conceptualizations, exist that may be more suitable
for understanding and explaining the behaviors of LLMs. An ideal conceptualization of capabilities should
allow making, and verifying, mathematically rigorous claims pertaining to presence, or absence, of a certain
capability within a model while being tractable and easily applicable to any arbitrary model. However,
conceptual progress would be valuable even absent practical methods. On the whole, the advent of LLMs
presents us with an opportunity to rethink our conceptualization of capabilities. In the short term, it
is also critical that researchers clearly communicate their conceptualization of what a capability is when
making claims related to the presence, or absence, of capabilities, to avoid the literature getting littered with
seemingly contradictory results which are easily explained away due to the differences in the object being
studied.

2.2.3 Limitations of Benchmarking for Measuring Capabilities and Assuring Safety
As discussed above, benchmarking is one of the most common forms of evaluation, especially for estimating
the capabilities of a model. There are several reasons why benchmarking-based evaluations may misestimate
the capabilities of an LLM. Firstly, benchmark performance cannot distinguish between the cases of a model
failing to function well on a task due to (a) capability failure, i.e. model being incapable of the capability
at all, and (b) intent alignment failures, i.e. model failing because of failure to understand or adopt human
intent (Chen et al., 2021b, Appendix E.2). Relatedly, safety finetuning methods often work by suppressing
model capabilities (Jain et al., 2023b; Wei et al., 2024). In such cases, a model may have a given capability,
but it may not readily demonstrate it due to the influence of safety finetuning. In such a case, benchmark
performance would indicate the absence of the capability when intuitively that is not the case. Secondly,
a model could function well on two seemingly distinct benchmarks using the same underlying capabilities
(Merullo et al., 2023a). This might lead us to overestimate, or ‘overcount’ the model’s capabilities. Thirdly,
benchmark performance may produce unreliable assessments of capabilities that are present within a model,
but are not robust; in such cases, performance may depend heavily on the particular distribution used by
a benchmark (Teney et al., 2020; Burnell et al., 2023b; Bao et al., 2023). Fourthly, because benchmarks
primarily report average statistics (e.g. accuracy), they are often not very informative about an LLM’s
performance on particular test examples. The first 3 issues are all problematic mostly because they may
lead to incorrect inferences about a model’s behavior on test examples, the fourth issue is more about making
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more informative inferences about behavior — making predictions about behavior (e.g. performance) at the
example level rather than the dataset/distribution level as is implicitly the case with benchmarks. Separately,
the fact that currently the most capable models are provided as a service via an API largely limits our ability
to independently audit and evaluate them for safety (La Malfa et al., 2023).

There is a need to develop principled solutions to the aforementioned issues. We need to develop robust
machinery that may help us distinguish between capability failures, intent-alignment failures, and intentional
failures on the model’s part due to the effects of safety finetuning. Among these intent-alignment failures are
the most egregious to avoid. There is in general a need for elicitation protocols that reliably and consistently
elicit the capabilities of interest, even in the case of intent-alignment failures. Fine-tuning and prompting
often reveal behavior indicative of novel capabilities, but cannot be used to rigorously establish that an LLM
does not possess a particular capability. There is also a need to improve the structure and granularity of
benchmarking to better understand model capabilities.

The suggestions we make in Section 2.2.2 may help address the issues mentioned above. First, the ‘domain
conceptualization’ can limit incorrect inferences by being precise about the domain over which a capability is
expected to be robust, and can make more precise inferences by accounting for which capabilities’ domains a
test example belongs to. Likewise, both the ‘circuit conceptualization’ and the ‘latent factors conceptualiza-
tion’ could help determine which capabilities are at play when a model processes a particular example, and
thus better attribute behavior to particular capabilities and draw conclusions about which capabilities are
(likely to be) used on a given test input. The circuit conceptualization, being more detailed and grounded,
could make it more straightforward to avoid misestimation of capabilities, e.g. by distinguishing between
capabilities that are robustly, but rarely applied (e.g. due to misalignment) vs. those that are simply not
robust.

2.2.4 How Can We Efficiently Evaluate Generality of LLMs?
The majority of evaluations of LLMs are domain-specific evaluations, e.g. ‘language understanding’
(Hendrycks et al., 2020b), ‘mathematics’ (Hendrycks et al., 2021a), ‘social knowledge’ (Choi et al., 2023b),
‘medical knowledge’ (Singhal et al., 2023a), ‘coding and tool manipulation’ (Xu et al., 2023a). A funda-
mental limitation of evaluating LLMs in this way is that we may undercount LLM capabilities in domains
where corresponding benchmarks are not available (Ramesh et al., 2023). It is also logistically difficult to
evaluate LLMs across a large (e.g. combinatorial) number of domains or tasks. There is a need for work
to consider alternative means to evaluate generality (i.e. how general-purpose the model is) (Casares et al.,
2022), and generalization across domains, of LLMs. For example, procedural evaluations like Skill-Mix (Yu
et al., 2023a) could be designed that may evaluate the compositional generalization skills of LLMs. Alterna-
tively, given the fact that we now have a population of LLMs available, finding differences and similarities
in their performance across domains could inform what evaluations are most informative for evaluating the
generality of LLMs (Ye et al., 2023). Mechanistic investigations of LLM capabilities could aim to discover
capabilities that are reused across tasks (Todd et al., 2023), or discover and explain other capabilities (like
in-context learning, see Section 2.1) that may underlie general-purpose behaviors of LLMs.

It may also be useful to create a taxonomy of the capabilities of LLMs, similar to how psychologists have
created taxonomies of human capabilities (Fleishman et al., 1984). In fact, some taxonomies are already
emerging implicitly within the literature. For example, LLM developers report across different types of
benchmarks (corresponding to different domains and capabilities), e.g. coding, question answering, mathe-
matical reasoning, common-sense reasoning, performance over long-contexts (OpenAI, 2023b; Gemini Team,
2023; Anthropic, 2023d; Jiang et al., 2024a). However, these ‘taxonomies’ are ad-hoc, and have little to no
theoretical basis. There is a need for work to establish theoretically grounded taxonomies that may provide
better organization and understanding of LLM capabilities. Furthermore, taxonomies of human capabilities
often arrange capabilities in a hierarchical fashion — making the dependencies between capabilities obvious
(Schneider & McGrew, 2012). Chen et al. (2024b) show that similar dependencies between capabilities (or
in their terminology, skills) exist for LLMs as well, and respecting these dependencies during training (i.e.
defining an appropriate curriculum over skills) helps achieve better learning outcomes. However, no work
has attempted to document these dependencies at a large scale.
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2.2.5 Scaffolding Is Not Sufficiently Accounted for in Current Evaluations

Even in the simplest use cases, an LLM should be viewed as a multi-party system consisting of the LLM
itself and an elicitation protocol (e.g. the prompt or finetuning process). In the extreme cases, the LLM can
be a part of a much larger system having access to external memory, various types of tools and various types
of learning signals (e.g. feedback from other LLMs) (Wang et al., 2023c; Park et al., 2023a). We collectively
refer to these mechanisms that enhance the capabilities of an LLM as scaffolding.

In addition to being highly capable models, LLMs are also highly efficient learners. This learning can occur
via fine-tuning, supervised learning-style in-context learning, instructions, explanations, etc. As a result, by
efficiently designing the elicitation protocol, a designer can significantly alter the capabilities and the behavior
profile of an LLM. For example, an LLM capable of performing addition can be given the capability of
performing multiplication by exhaustively explaining and demonstrating the algorithm to multiply numbers
using additions within the prompt (Zhou et al., 2022). Similarly, fine-tuning on a small number of carefully
chosen examples can cause the LLM to act in a highly polite way (Zhou et al., 2023b). In such cases, it is
no longer clear whether the protocol revealed an existing capability or induced a novel capability within the
LLM (Stechly et al., 2023). This lack of distinction can cause overestimation of capabilities by mistakenly
attributing a capability to the LLM when in fact the LLM did not have the capability (Stechly et al., 2023);
rather the capability may have been quickly learned on the go due to the efficient design of the elicitation
protocol. There is a need for theoretical work to characterize and distinguish between capabilities that are
present within an LLM (and are elicited), versus capabilities that are efficiently learned on the fly. Tools,
techniques, and concepts from information theory may be used for this purpose (Zhu & Rudzicz, 2020).

A similar attribution problem occurs when an LLM is combined with other systems, e.g. given access to
external tools it can assign tasks or given feedback from environment or verifiers (Valmeekam et al., 2023).
Prior work suggests that such systems can outperform an LLM acting on its own (Mialon et al., 2023;
Wang et al., 2023c). In general, in deployment, LLMs are deployed as parts of larger system, where other
components of the system may perform various jobs. In such cases, it is not clear how the capabilities being
demonstrated by such systems should be attributed to the LLM vs. the other system components involved.
Various concepts exist within game theory on how the utility of a system may be distributed between its
components, e.g. Shapely value, core (Shoham & Leyton-Brown, 2008, Chapter 12). It is an open problem
to evaluate which concept(s) are most suitable for attributing the capabilities of LLM-based systems to the
capabilities of LLM and the capabilities of other components present in the system.

In order to assure safety, we need a calibrated understanding of the capabilities of the models.
However, this is currently made difficult by various challenges. Firstly, the capabilities of the model
seem to have a different ‘shape’ compared to human capabilities; but this difference is not currently
well-understood. Secondly, there is no well-established conceptualization of capabilities. Thirdly,
we do not have sufficiently reliable methods to assess the generality of LLMs — i.e. how general-
purpose a given model is. Lastly, it is not clear how to account for scaffolding in LLM capabilities
and distinguish between the cases in which an elicitation protocol reveals a capability already present
within an LLM versus the cases in which LLM acquires the capability due to the efficient design of
the scaffolding and elicitation protocol.

9. How can we understand the differences in the ‘shape’ of capabilities of humans and other AI
models? What are the implications of these differences? ←↩

10. What is the right conceptualization of capabilities for LLMs? Can we formalize the three
conceptualizations of capabilities presented here (domain conceptualization, internal com-
putations conceptualization, latent factors conceptualization), and understand their relative
merits and demerits? ←↩

11. How can we draw reasonable general insights from behavioral evaluations? In particular, how
can we prove that a given model does not have a capability of interest, without exhaustively
evaluating the model for that capability on the whole input space? ←↩
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12. Can we develop methods — e.g. based on factor analysis or other unsupervised learning
methods — to automatically discover capabilities by ‘decomposing’ a model’s (potential)
behavior into something like a ‘basis’ of capabilities? ←↩

13. When performing an evaluation using a benchmark, how can we separate observed failures
of a model into ‘capabilities failure’ (i.e. model failing because it truly lacks the relevant
capability) from ‘alignment failures’ (i.e. model failing despite having the capability because
it was not correctly invoked’)? ←↩

14. How can we develop elicitation protocols that reliably and consistently elicit the capabilities
of interest? ←↩

15. How can fine-grained benchmarking be used to identify the precise shortcomings of a model
and make more useful, detailed predictions about test behavior? ←↩

16. How can we evaluate the generalization of LLMs across domains? Can procedurally defined
evaluations be used for this purpose? ←↩

17. Can we formalize or operationalize statements like “the model is using the same capability
when performing these two tasks”? How can we use this to more efficiently evaluate LLMs
across domains? ←↩

18. How can a practitioner, who is resource-constrained, choose a small number of evaluations to
perform on LLM to efficiently evaluate the general-purpose capabilities of LLMs? Alterna-
tively, how can we determine which evaluations are most informative to perform when trying
to compare the capabilities of two given LLMs? ←↩

19. Can we use mechanistic interpretability techniques to discover capabilities that are reused
across tasks? ←↩

20. How can we understand the dependencies between LLM capabilities? Can we create theo-
retically grounded taxonomies of LLM capabilities that may help us assess the generality of
LLMs efficiently? ←↩

21. How can we distinguish between revealed capabilities (capabilities inherent in an LLM) vs.
learned capabilities (capabilities that are exhibited because of the highly optimized nature
of the elicitation protocol)? Can tools and concepts from other fields, such as information
theory and cognitive science, be used to help make this distinction? ←↩

22. How can we precisely characterize the contribution of the LLM to behaviors demonstrated
by an LLM-based system (e.g. an LLM with access to external tools)? Can we use concepts
developed in game theory and other literature on multi-agent systems for this purpose? ←↩

2.3 Effects of Scale on Capabilities Are Not Well-Characterized

Increasing the scale (parameters, compute, and data) of LLM training predictably results in an overall
more performant model in accordance with well-established scaling laws (Kaplan et al., 2020). However,
specific capabilities of LLMs are often highly difficult to predict (Bowman, 2023), and may show so-called
‘emergent’ behavior (Wei et al., 2022a). This combination of high-level predictability and low-
level unpredictability is a source of risk: the former enables easy progress via scaling, the
latter makes it difficult to anticipate and precisely characterize the risks associated with the
development and deployment of more performant models (Ganguli et al., 2022). From a scientific
standpoint, this highlights a significant gap in our knowledge of how LLMs learn and acquire capabilities.
To address this gap, we will need to develop a deeper understanding of scaling laws, understand how scaling
impacts learned representations, identify the limits of scaling, and work towards formalizing, forecasting,
and explaining emergent behaviors in learning.

2.3.1 Understanding Scaling Laws
Large language model training has been found to follow scaling laws for aggregate loss that are consistent
across many orders of magnitude of resource scaling (Kaplan et al., 2020; OpenAI, 2023b). The factors
explaining this scaling law behavior, however, remain poorly understood. As a result, it is unclear to what
extent different aspects of these laws are universal and to what extent they are sensitive to different aspects
of the training pipeline which might change in the future. Explanations can address both the functional
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form of scaling laws (e.g. power law scaling vs. exponential scaling) and the specific scaling parameters of
the functional form found in particular experiments (e.g. the exponent in power law scaling).

Prior work has studied the impact of scaling on learning under various theoretical setups. These works, as
explained in detail later, often differ in their prediction of power law exponents. These seemingly contradic-
tory predictions arise from differences in the scaling setup; specifically from whether the resources which are
not being scaled are small or large in comparison to the scaled resource (Bahri et al., 2021). Indeed, current
literature can be quite clearly demarcated based on this distinction. Borrowing the terminology from Bahri
et al., the variance-limited regime considers the case where we are asymptotically scaling one resource (model
size or data) while the other resource is fixed at some finite level. In this case, most theories predict rapid
power-law scaling (or even exponential scaling, in some cases) to a saturated level of performance, based on
concentration arguments. The resolution-limited regime is when the unscaled resource is infinite, or is much
larger than the scaled resource. Here, the scaling exponent captures the effect of increasing the “resolution”
of the learner (either by allowing it to use more data points or more parameters to fit increasingly fine aspects
of the distribution), and is highly sensitive to properties of the data distribution. This is the regime most
modern work on LLM scaling is concerned with.

Theoretically, the variance-limited regime of scaling laws — in which the amount of data is scaled and model
size is fixed and finite — is the best studied one. This is the typical subject of the vast literature on learning
curves — see Viering & Loog (2022) for a survey. For example, classic PAC theory shows that power law
data scaling with an exponent of −1 (or −1/2 in the unrealizable zero-one error setting) is optimal for every
learnable task, and is achievable by empirical risk minimization (Blumer et al., 1989). Other theoretical
models of (bounded-capacity) learning curves include the universal learning theory of Bousquet et al. (2021)
and approaches based on statistical mechanics on non-worst-case learning curves in the ‘thermodynamic limit’
(Seung et al., 1992; Watkin et al., 1993; Amari, 1993; Haussler et al., 1994). However, as these aforementioned
theoretical models assumed that the model size is fixed, and only data is scaled, they provide limited insights
regarding scaling laws for LLMs for which model size and dataset size grow together, in which case, gentler
scaling exponents of roughly −1/10 to −1/20 have been observed (Kaplan et al., 2020). However, they are
still predictive of LLM scaling in the cases where the model is set to be fixed and finite. For example, for a
fixed and finite model size, the joint data-parameter functional form of Kaplan et al. (2020) is asymptotically
a power law with exponent −1 (approaching the loss at which models of the given size saturate).

At least for now, both the data and the number of parameters used in training continue to increase over
time, so the variance-limited regime, which assumes one of these resources is capped, is of limited relevance.
(Though it may be relevant in scenarios in which the amount of data available for training is limited.)
Instead, resolution-limited scaling — the scaling regime in which the unscaled resource is infinite or is much
larger than the scaled resource — provides a more accurate picture for capabilities forecasting. The existing
literature contains at least three distinct explanations and theoretical models of resolution-limited scaling.
The first of these, the manifold explanation (Sharma & Kaplan, 2022), posits that scaling laws emerge
from something akin to interpolation on the data manifold. Sharma & Kaplan (2022) empirically test this
explanation by estimating the intrinsic dimension for some small datasets and showing that this is predictive
of the model size scaling exponent. However, this model also predicts that per-example performance should
increase monotonically, which Kaplun et al. (2022) note is not the case in practice.

A related theory is the kernel spectrum explanation provided by Bordelon et al. (2020) and Spigler et al.
(2020), who derive resolution-limited scaling in the setting of kernel regression. Specifically, they show that
for kernel methods, such as learning with an infinitely wide network in the neural tangent kernel limit (Jacot
et al., 2018), power-law decay in the kernel spectrum results in power law scaling in the loss. Finally, a third
explanation, based on long tails in the data, has been introduced by Hutter (2021) and extended by Michaud
et al. (2023), Dębowski (2023), and Cabannes et al. (2023). These authors construct toy models in which
gentle power law scaling emerges when the data distribution has a long tail of sub-components that must be
learned independently, an assumption that is especially natural in the domain of natural language data.

Given the fragmented state of the literature, several fundamental questions are currently unanswered. Firstly,
can the different proposed explanations for power law scaling in the resolution-limited regime be unified?
Bahri et al. (2021) provide a connection between the manifold dimension explanation and the kernel spectrum
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explanation; perhaps it is possible for all three theories (including the long tail theory) to be subsumed by
a single meta-explanation which could handle a wider range of settings.

Secondly, the variance-limited versus resolution-limited dichotomy entirely ignores the scaling regime that is
most important for forecasting capabilities: compute-efficient scaling, where data and model size are scaled
jointly (Hoffmann et al., 2022). What is a good theoretical model for this setting? Is there an explanatory
theory that considers all three regimes as special cases of a more general joint data-parameter scaling setting?

Thirdly, what is the role of feature learning, and optimization more generally, in scaling laws? In language
modeling, representations learned early in training enable more complicated aspects of the data to be learned
later in training (see Abbe et al. (2021) for a synthetic case study of this behavior). Existing scaling law
explanations, however, essentially treat the data as “flat”, and ignore the influence of hierarchical structure
on scaling behavior. In particular, we would like to encourage further work on scaling laws that account for
various properties of language data, for example, burstiness (Chan et al., 2022) or fractal nature (Alabdul-
mohsin et al., 2024). Relatedly, all the current models of scaling laws presume that the data distribution
that is being learned is held constant throughout learning. However, in various settings of interest, e.g.
reinforcement learning, data distribution changes over time. However, despite this non-stationary nature of
data distribution, various works have reported scaling laws for various reinforcement learning settings (Hilton
et al., 2023; Tuyls et al., 2023; Team et al., 2023; Obando-Ceron et al., 2024). Thus, the development of
appropriate theoretical models for scaling laws for cases in which the data distribution is considered to be
non-stationary is an open research question at the moment.

Finally, one fundamental question that future investigations ought to answer is to what extent learning
curve exponents are fundamentally bounded by the data distribution. This can help inform the possibility
of hypothetical future architectures that might scale better than contemporary transformers for language
modeling. A related open question is what properties of a data distribution affect the predictability of
scaling behavior on that distribution. This is particularly relevant to the discovery of task-specific specific
laws (also see Section 2.3.5). On some tasks, e.g. code-generation, power law scaling across 10 orders of
magnitude of compute has been observed (Hu et al., 2023c; OpenAI, 2023b, Figure 1). On the other hand,
many downstream capabilities display irregular scaling curves (Srivastava et al., 2022), or non-power law
scaling (Caballero et al., 2023).

2.3.2 Effect of Scaling on Learned Representations
Most work on scaling focuses on performance on benchmarks. There is far less work on the question of
how learned representations change with scale. This is a particularly pertinent question for the viability of
interpretability techniques that aim to understand the internal operations of LLMs like mechanistic inter-
pretability and probing techniques (c.f. Section 3.4). The first question relates to the universality hypothesis
of representations — do different neural networks trained on the same task learn the same representations
(Olah et al., 2020)? The current evidence indicates that the strong version of the universality hypothesis is
false, for example, Chughtai et al. (2023) show that different neural networks learn different representations
in different orders even when the architecture and data order are kept the same. This is supported by evi-
dence contained in other studies as well (McCoy et al., 2019; Wang et al., 2018). However, there is increasing
evidence that some feature representations are indeed universal and learned by different neural networks
trained on the same task (Li et al., 2015; Bansal et al., 2021; Gould et al., 2023). The key unknown question
is whether the proportion of universal representations increases, or decreases, with scale. Vyas et al. (2023)
argue that language models learn similar features across different width sizes. In the vision setting, Nguyen
et al. (2020) found that when networks are sufficiently large (in terms of width or depth) in comparison to
the training set size, they can be partitioned into contiguous blocks of layers with representations within
each block being similar across different trained models.

A related, but distinct, question is whether learned representations converge to, or diverge away, from the
representations used by humans with increasing scale (Sucholutsky et al., 2023)?3 In some cases, the behavior
of larger LMs does appear to be more consistent with human behavior (Chiang & Lee, 2023; Park et al.,
2023a; Zhu et al., 2024), however, this consistency tends to break down at the edges; for example, LLMs
do not always show human-like biases in their responses (Aher et al., 2022; Tjuatja et al., 2023; Hagendorff

3Also see Section 3.4.2
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et al., 2023). As such, there may not exist a clean answer to the question above. However, it might still be
useful to understand if there are types of representations of concepts that we can expect LLMs of sufficient
scale to share with humans. And if so, how may it help us predict the behavior of LLMs?

Another open question pertains to the changes in representation structure with scale. Specifically, whether
larger scale models are more or less likely to have representations that exhibit linear characteristics, such
as the famous “King - Man + Woman = Queen” example (Mikolov et al., 2013).4 The idea that LLMs
encode high-level concepts linearly in the representation space of the model has been termed the “linear
representation hypothesis” (Park et al., 2023b). The mathematical field of representation theory studies how
abstract algebraic structures such as groups can represented in terms of linear transforms, and might help
identify and understand such limitations. Chughtai et al. (2023) present evidence that neural networks do in
fact use representation theory to represent data with a group structure. Understanding how scale influences
the structure of representations would provide insights into the applicability of interpretability methods for
larger models, which implicitly or explicitly assumes linearity of representations.

2.3.3 Limits of Scaling
One framework for making sense of advances in machine learning is to decompose the progress in capabilities
into performance improvement due to algorithmic innovation and the performance improvement due to
scaling up the resources of training (Hernandez & Brown, 2020; Erdil & Besiroglu, 2022). Prior work has
shown that simple scaling up can cause the acquisition of novel capabilities within the model (Kaplan et al.,
2020; Wei et al., 2022a). This raises the question of whether there exists a scale ceiling i.e. capabilities that
can not be acquired by a model regardless of how much it is scaled further. If so, what capabilities are
these? For example, it is unclear to what extent LLMs may acquire reasoning and abstraction capabilities
via scaling alone (Mitchell et al., 2023; Saparov et al., 2023).

Prior work has argued that some of the most critical limitations of current LLMs are unlikely to be resolved
by simple scaling. Kirk & Krueger (2022) argue that causal confusion, i.e. learning of spurious correlations
present within the data may be unavoidable in a purely offline learning setup. This claim has mixed support
within the literature; while Zecevic et al. (2023) argue that LLMs can not be causal, Lampinen et al. (2023)
point out that LLM training data contains many examples of interventions, outcomes, and explanations that
may support the learning of active causal strategies by the LLM. Kalai & Vempala (2023) and Xu et al.
(2024b) both argue that ‘hallucinations’ in LLMs are not fixable via scaling. Several studies have argued
that resistance to jailbreaking may not improve with scale (Wei et al., 2023a; Wolf et al., 2023; Millière,
2023). In general, robustness to adversarial examples may not improve with scale, as argued by Frei et al.
(2023) and Debenedetti et al. (2023).

One extreme sense in which scaling can be limited for LLMs is inverse scaling, where performance decreases
with scale (McKenzie et al., 2023). McKenzie et al. (2023) ran a contest to solicit tasks exhibiting inverse
scaling across different LLM architecture families. The results were mixed — for almost all tasks inverse
scaling was later found to be reversed at the largest compute scale measured (which was for the PaLM family
of models), resulting in U-shaped scaling curves Wei et al. (2022b). We can also define inverse scaling more
broadly, to include increasing frequency of undesirable behaviors with scale, not just decreasing frequency of
correct responses. Using this perspective, Perez et al. (2022b) observe inverse-scaling for sycophantic behav-
ior, i.e. larger models have a more pronounced tendency to mimic the political views of their interlocutors.
This suggests that the human feedback process used for alignment training is misaligned (see Section 3.2),
which might cause other related inverse scaling problems. Still, it is currently unclear whether there exist
other undesirable behaviors that undergo inverse-scaling, and there is no reliable way of determining whether
such undesirable behaviors will also undergo U-shaped scaling (or not).

2.3.4 Formalizing, Forecasting, and Explaining Emergence
Some capabilities when plotted on a scaling curve appear to emerge suddenly past some scale. A large number
of capabilities, including key capabilities such as instruction following and chain-of-thought reasoning, have
been argued to be emergent (Wei et al., 2022a). On the other hand, other studies have argued that some
capabilities may appear emergent due to the harsh nature of the evaluation measures being used which do

4Notably, Nissim et al. (2020) found that the closest vector to King - Man + Woman is actually King; Queen is the second
closest.
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not reward partial correctness (Schaeffer et al., 2023; Srivastava et al., 2022). However, none of these studies
precisely define emergence, and their use does not accord with established use across other fields such as
complex systems and physics. This indicates a need for greater clarity and careful formalization of emergence
in the context of machine learning.

In any case, so-called ‘emergent’ capabilities, e.g. those identified by Wei et al. (2022a), may be particularly
challenging to predict and forecast (Ganguli et al., 2022), and are hence disconcerting from a risk assessment
perspective (Kaminski, 2023). Developing a mechanistic understanding of factors that contribute to abrupt
improvement in performance may yield critical insights regarding the predictability of ‘emergent’ capabilities.
One such factor that has been identified so far is the compositional nature of a capability, i.e. a capability
being composed of other capabilities. Arora & Goyal (2023) and Okawa et al. (2023) show that if a capability
is a composition of another set of capabilities (called skills) that witness smooth and predictable scaling, the
scaling curve of a capability will look emergent due to a multiplicative dependence on the ability to perform
the skills underlying it — Okawa et al. (2023) call this the multiplicative emergence effect. The results of
the aforementioned papers indicate that if a valid skill decomposition of a seemingly emergent capability is
available and these skills follow predictable dynamics, we can accurately predict the model’s progress on the
capability itself. Arguably, the bottleneck here is that for several capabilities of interest, we are unlikely to
have an accurate decomposition available (Barak, 2023). Further research is needed to understand how such
decomposition can be achieved for a capability of interest and whether given an approximate decomposition,
one can predict at what scale a model learns a compositional capability.

Schaeffer et al. (2023) provide anecdotal evidence that progress measures can be designed for some of the
emergent capabilities identified in the literature which smoothly track the so-called emergent capability.
This is similar to the identification of continuous progress measures in the context of grokking of capa-
bilities (Nanda et al., 2022; Barak et al., 2022), where models exhibit a sudden shift from memorization
to generalization. However, we assert that the existence of soft progress measures indicates that learning
dynamics are predictable (if the appropriate progress measure can be identified pre-hoc), but does not in-
validate the perspective that some capabilities are emergent (Barak, 2023). It is also critical to ensure that
any progress measures identified faithfully track the capability of interest, as, otherwise, there may be a
measure whose dynamics are predictable, but in fact does not faithfully capture progress on learning the
capability. It is not clear whether the progress measures proposed in the literature are faithful in this sense
or not. Finally, we emphasize that identifying such progress measures can be highly non-trivial and current
evidence is insufficient to indicate that suitable progress measures exist for all capabilities that are claimed to
be emergent (Wei, 2022). Interpretability methods have previously been used to find progress measures for
grokking (Nanda et al., 2022; Chughtai et al., 2023), and could be used for discovering progress measures that
underlie emergent capabilities as well. It may also be helpful to study the learning dynamics in a systematic
way as done in some prior work (Hu et al., 2023b; Chen et al., 2024a; Hoogland et al., 2024; Edelman et al.,
2024). Hoogland et al. (2023) argue that singular learning theory (Wei et al., 2022d; Watanabe, 2024) may
be particularly useful for this purpose.

There is also a need for work to tighten and formalize the definition of ‘emergent’ capabilities. The current
definition of emergent capabilities arguably points to an abrupt improvement in model performance on a
scaling curve as a necessary — but not sufficient — condition for a capability to be emergent. This notion
of emergent capabilities is also somewhat distinct from the notion of emergence in other fields. For example,
in physics, emergence is often associated with the formal notion of phase transitions: discontinuities in
some property of a system (or its derivatives) considered as a function of some parameter (e.g. scale). In
physics, such discontinuities yield distinct “phases” that are governed by different physical laws (e.g. liquids
vs. gases) (Huang, 2008; Grimmett, 2018). However, seeking inspiration from natural sciences and grounding
emergence in “phase transitions” may be too constraining; e.g. it is unclear if in-context learning (ICL) is
truly a phase transition in the technical sense, but it is intuitively clear that ICL yields a qualitatively different
set of capabilities in larger models. There is a need to establish desiderata to further ground emergence from
the context of prediction of capabilities and a consensus is needed on what evidence is sufficient to claim
a capability is truly emergent — (seemingly) discontinuous scaling curves are perhaps insufficient for this
purpose.
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2.3.5 Better Methods for Discovering Task-Specific Scaling Laws
Power-law-based scaling laws are not always suitable for predicting performance on narrower metrics, which
can exhibit inflection points and even non-monotonic scaling. Caballero et al. (2023) present a generaliza-
tion that can model such phenomena, building on Alabdulmohsin et al. (2022). Other modeling approaches
should be evaluated and could borrow from approaches to model learning curves (Viering & Loog, 2022). To
improve data efficiency, predictions could incorporate additional information, such as scaling performance
on other tasks, performance on individual examples (Kaplun et al., 2022; Siddiqui et al., 2022), or other
indicators of how learning/scaling is progressing. Probabilistic modeling approaches such as Gaussian pro-
cesses (which Swersky et al. (2014) use to model learning curves) may also be useful in providing scaling
estimates alongside the uncertainty estimate. Developing better evaluation measures with higher resolution,
and better methodologies overall to estimate capabilities present in a model that are not fully mature yet,
can be particularly instrumental in providing better estimates of capabilities of future models (Hu et al.,
2023c).

It would also be useful to clarify the purpose of task-specific scaling laws. Is the goal to forecast capabilities
as accurately as possible in the short-term, when scaling resources are only slightly higher than their current
levels? To provide accurate longer-term predictions? To provide interpretable parametric fits that enable
quantitative comparison of learning algorithms and can distinguish qualitatively distinct scaling regimes?

If the goal is indeed to forecast capabilities as accurately as possible, then clear desiderata should be estab-
lished prescribing the range over which the task-specific scaling laws should extrapolate with high accuracy.
The evaluations of Alabdulmohsin et al. (2022) and Caballero et al. (2023) demonstrate extrapolation to
values of the scaled resource which are twice as large as those used for fitting the functional form, but
it is unclear how accurate they are beyond this limited horizon. Stumpf & Porter (2012) suggest, in a
broader scientific context, that proposed power law fits ought to be considered scientifically useful only if
they extrapolate over at least two orders of magnitude; this stringent desideratum may be fruitful in the
task-specific scaling law context (even for functional forms besides simple power law scaling). Moreover, as
more and more tunable parameters need to be introduced to functional forms in order to improve extrapola-
tion accuracy, the interpretability advantage of parametric fits over non-parametric methods (e.g. Gaussian
processes) becomes questionable, and the risk of spurious interpretations rises. Broadly speaking, there are
several distinct reasons task-specific scaling laws might be useful, and there is a need to develop criteria for
assessing these laws which distinguish between the different use cases. (It may even be more terminologically
precise in some cases to think of scaling fits as just “fits” rather than as “laws”.)

There remain many challenges that hinder our ability to predict which capabilities LLMs will acquire
with continued scaling, and when. We continue to lack a robust explanation of why scaling works,
and to what extent the scaling laws we have discovered are universal. Additionally, there has been
minimal exploration into how scale influences the representations learned by the models and whether
certain capabilities cannot be acquired through scaling alone. Furthermore, our understanding of the
factors that underlie abrupt performance improvements on certain tasks is lacking, and our methods
for discovering task-specific scaling laws are inadequate.

23. Can the different explanations (manifold explanation, kernel spectrum explanation, long tail
theory) of power-law scaling in the resolution-limited regime be unified? ←↩

24. What is a good theoretical model for compute-efficient scaling, where data and model size
are scaled jointly? ←↩

25. What is the role of feature learning in scaling laws? Can we develop models of scaling laws
that account for the computational difficulty of learning the given task? ←↩

26. What is an appropriate theoretical model to explain scaling observed in reinforcement learning
settings where the data distribution is not stationary? ←↩

27. To what extent scaling law exponents are fundamentally bounded by the data distribution?
←↩

28. What properties of a task (and its relation to the full training distribution) affect the pre-
dictability of its scaling behavior? ←↩
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29. To what extent does scaling a model increase the ‘universality’ of its representations? ←↩
30. Does increasing scale cause model representations to converge to, or diverge away from,

human representations? In other words, does representation alignment between human rep-
resentations and model representations increase or decrease with scale? ←↩

31. How does scale impact the structure of the representations? Does scaling cause the structure
of model representations to become more, or less, linear? To what extent is the linear
representation hypothesis true in general? ←↩

32. How can we determine whether a given capability is below or above the scale ceiling, i.e.
whether simple scaling up the model (and/or data, compute) would enable the model to
learn that capability or not? ←↩

33. To what extent are the issues faced by current LLMs (causal confusion, ‘hallucinations’,
jailbreaks/adversarial robustness, etc.) likely to be resolved by further scaling? ←↩

34. How do we determine if the inverse-scaling behavior of a capability will be reversed with
further scaling (i.e. result in a U-shaped curve)? How can we predict threshold points at
which scaling behaviors change shape? ←↩

35. What factors may explain abrupt improvements in performance associated with emergent
capabilities? To what extent does the multiplicative emergence effect (Okawa et al., 2023)
explain the emergent capabilities of LLMs that have been observed in practice? ←↩

36. How can we discover valid decompositions of various compositional capabilities of interest
and assess the accuracy of such decompositions? How can the emergence of compositional
capabilities be predicted based on the learning dynamics of its decomposed capabilities? ←↩

37. What is an appropriate formalization of “emergent capabilities” in the context of LLM scal-
ing? How can we apply it to understand which sorts of novel phenomena are likely to be
(un)predictable? ←↩

38. Can we discover progress measures that may explain emergent capabilities, e.g. by using
interpretability methods? How can we establish the faithfulness of such progress measures
to ensure that they can be used to predict the emergence of the capability of interest? ←↩

39. Can we develop better methods for modeling task-specific scaling? E.g. by conditioning on
additional information, using probabilistic techniques, or by developing evaluation measures
with higher resolution. ←↩

40. Can we clarify the purpose of task-specific scaling laws? In order to be useful for forecasting
capabilities, what is the minimum range over which a task-specific scaling law must extrap-
olate accurately? ←↩

2.4 Qualitative Understanding of Reasoning Capabilities Is Lacking
Reasoning — the process of drawing conclusions from prior knowledge — is a hallmark of intelligence.
Prompt programming techniques (Reynolds & McDonell, 2021), such as chain-of-thought (CoT) prompting
(Wei et al., 2022c), scratchpad prompting (Nye et al., 2021), or “let’s think step-by-step” (Reynolds &
McDonell, 2021; Kojima et al., 2022) enable language models to perform reasoning tasks with impressive
accuracy. Careful studies to evaluate the behavior of LLMs on “out-of-distribution” (OOD) reasoning tasks
have revealed that LLMs exhibit some reasoning behavior (Saparov et al., 2023; Wang et al., 2023a; Dziri
et al., 2023), and that performance on reasoning tasks improves with scale (Wei et al., 2022c; Saparov et al.,
2023; Valmeekam et al., 2022). However, the reasoning capabilities of even the largest LLMs are deficient in
many ways; causing them to struggle on various types of reasoning problems (Wu et al., 2023b; Saparov & He,
2022; Berglund et al., 2023b; Valmeekam et al., 2022; Mitchell et al., 2023). The mixed evidence regarding
the reasoning capabilities of LLMs is a major source of disagreement within the wider community (Huang &
Chang, 2022). Are the prevalent limitations in reasoning capabilities of the LLMs fundamental
in nature, or transient and likely to go away with scaling or improvement in training methods
(e.g. targeted finetuning on reasoning data as in e.g. Lewkowycz et al., 2022)? Answering this
question is critical to better understand the risks posed by LLMs, as both the strengths and limitations of
the reasoning capabilities of LLMs give rise to different types of safety risks. The inability to reason robustly
in novel (e.g. OOD) contexts can lead to undesirable, and potentially unsafe, behavior of LLMs. Conversely,
if the LLM is misaligned, robust reasoning might cause it to behave undesirably and competently (Shevlane
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Figure 2: Sketch of two possible scaling law behaviors, relating the relationship between the reasoning
performance of LMs and the number of parameters (see Section 2.4.1).

et al., 2023). In this section, we highlight several research questions that can be instrumental in addressing
these concerns.

2.4.1 Does Scaling Improve Reasoning Capabilities?
Several prior studies have provided circumstantial evidence that larger models are better at reasoning (Nye
et al., 2021; Wei et al., 2022a;c). However, this circumstantial evidence is confounded by issues such as
data contamination (Wu et al., 2023b). Some studies have proposed scaling laws for performance on math
word problems with respect to pretraining (Henighan et al., 2020) and finetuning (Caballero et al., 2023;
Yuan et al., 2023b). However, these tasks may not reflect more general reasoning capabilities, and the
discovered laws could also be misleading as special attention is paid to train LLMs on mathematical reasoning
tasks (OpenAI, 2023c). Saparov et al. (2023); Han et al. (2022); Sprague et al. (2023) develop datasets
meant to test more broadly for reasoning capabilities, however, more such datasets and evaluations of
reasoning capabilities across broad contexts are needed to better understand how scale affects the reasoning
capabilities of LLMs. Empirical scaling laws for general reasoning capabilities could be a particularly valuable
contribution. Conversely, a conclusive demonstration that increasing the scale does not always improve the
reasoning capabilities of LLMs would be similarly valuable. Figure 2 provides a rough sketch of two possible
scaling law results, one where the increasing scale of LMs allows them to solve reasoning tasks with increasing
complexity, and one where a fundamental limitation of LMs prevents them from continually improving their
performance in reasoning.

2.4.2 Understanding the Mechanisms Underlying Reasoning
Research to understand the mechanisms underlying reasoning in LLMs would provide further insight into
their reasoning cabilities as a function of scale. This can help to reveal why and when LLMs rely on heuristics,
and when they do actually perform reasoning to solve various reasoning tasks. Mechanistic interpretability
analysis may be used for this purpose (c.f. Section 3.4). Hou et al. (2023) use mechanistic interpretability
to analyze GPT-2 and LLaMA models and find evidence that LLMs embed a reasoning tree resembling
the oracle reasoning process within the attention patterns. However, they only study simple synthetic
reasoning tasks, and its not clear whether a similar finding will hold for OOD and long-tail inputs, or on
more complex/general tasks than the ones considered by Hou et al.. On the whole, very limited work has
been done so far to understand the mechanisms underlying reasoning. This presents an opportunity for
future research to use methods like mechanistic interpretability analysis to explain the reasoning capabilities
of LLMs, as well as their limitations. In particular, explaining the cases in which a smaller LLM fails
at a reasoning task but a larger LLM proficiently solves the same task may be particularly valuable in
understanding the effect of scale on mechanisms used by LLMs for reasoning.
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Figure 3: Illustrative examples of problems involving deductive reasoning, abductive reasoning, causal rea-
soning, and social reasoning (see Section 2.4.3).

2.4.3 Understanding Non-Deductive Reasoning Capabilities of LLMs
Existing work on the reasoning capabilities of LLMs is primarily focused on deductive reasoning (Saparov
& He, 2022; Saparov et al., 2023; Wang et al., 2023a). There is a need to better understand LLMs’ inductive,
abductive, social, situational, and causal reasoning capabilities5 (Bhagavatula et al., 2020; Gandhi et al.,
2023; Peirce, 1868; Smith, 2022, Chapter 5.4). See Figure 3 for a set of examples involving different types
of reasoning. There is some evidence that LLMs are able to perform some, but not all, aspects of inductive
reasoning from in-context examples (Qiu et al., 2023; Wang et al., 2023e; Zhu et al., 2023; Mitchell et al.,
2023). Similarly, while Benchekroun et al. (2023) show that LLMs have difficulty abducting a valid world
model from text descriptions given in-context, both Gurnee & Tegmark (2023) and Roberts et al. (2023a)
argue that during training, LLMs do build a coherent understanding of the outside world from the dispersed
information available in the corpus, which they then use at inference time to solve various tasks. In the same
vein, there is mixed evidence regarding whether LLMs have adequate theory-of-mind reasoning capabilities
that would enable them to robustly perform social and situational reasoning Kim et al. (2023); Li et al.
(2023d); Kim et al. (2023). Causal reasoning capabilities of current LLMs are quite limited (Jin et al., 2023);
however, Lampinen et al. (2023) argue that this is not in principle a limitation of the current paradigm.
Further research is needed to better understand the precise limitations of LLMs with regards to various types
of non-deductive reasoning, and whether these limitations are fundamental in nature or could be resolved
via further scaling or modifying the training process. In particular, more work in the vein of Lampinen et al.
(2023), that studies the limitations of current paradigm and not just current models, is needed that can help
to elucidate the various reasoning capabilities of not just current LLMs, but also the future LLMs.6

2.4.4 Which Aspects of Training Lead to the Acquisition of Reasoning?
Understanding how reasoning capabilities are acquired by LLMs during pretraining, and how they evolve
during finetuning, can provide insights as to whether or not the deficiencies in the reasoning faculties of LLMs
will be resolved with further scaling or through modifications of the training process. Different studies have
theorized different causes for the acquisition of reasoning. Lightman et al. (2023); Magister et al. (2023);
Mitra et al. (2023) argue that training on reasoning traces improves the reasoning performance of LLMs.
Madaan et al. (2022); Liang et al. (2023) show that training on code helps models perform better in reasoning
tasks. Liang et al. (2023) show that instruction tuning also improves the model’s performance on reasoning
tasks. However, there is a need for further research to clarify the relative contribution of the aforementioned
and other elements of the training pipeline to the acquisition of reasoning within LLMs. Analysis of large-

5This list is neither mutually exclusive nor exhaustive.
6Also see Section 2.3.3 for related discussion on this point.
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scale datasets like The Pile (Gao et al., 2020) or RedPajama (Together Computer, 2023), or training data
attribution methods (e.g. influence functions Grosse et al., 2023) could be used to understand which training
examples are most instrumental in enabling LLMs to reason effectively. When an LLM is specifically trained
on reasoning traces, is the resultant improvement in reasoning performance a byproduct of improved general
reasoning faculties, or simply a consequence of learning better heuristics (Zhang et al., 2023b)? Does training
on reasoning traces generalize out of distribution or not? Furthermore, careful comparisons of the output
distributions of instruction-tuned language models vs. those of base models might help understand how
instruction tuning improves the reasoning faculties of LLMs.

2.4.5 What Are the Computational Limits of Transformers?
Prior work on the theoretical capabilities of transformers has shown that, with a single pass, they are limited
in the kinds of algorithms that they can simulate (Merrill & Sabharwal, 2023b; Merrill et al., 2023; Merrill &
Sabharwal, 2022; Strobl, 2023). For example, in a single pass, they can not even solve relatively simple prob-
lems like simulating automata, checking graph-connectivity (i.e. whether there is a path between two nodes
in a graph or not), and evaluating compositional formulas (Merrill & Sabharwal, 2023b). However, allowing
a transformer to take intermediate steps, such as when using scratchpad or chain-of-thought prompting,
significantly improves its expressive power (Feng et al., 2023). For example, a transformer with a linear
number of intermediate steps can simulate automata, and with a polynomial number of intermediate steps, a
transformer can express all problems solvable in deterministic polynomial time (Merrill & Sabharwal, 2023a).
More work is needed to better understand the computational limits of transformers with intermediate steps,
which may help with assurance by helping us understand what capabilities LLMs can possess.

The RASP programming language (Weiss et al., 2021) was developed to describe the kinds of computations
that transformers can perform. However, while the original RASP language is not well-defined and hence,
difficult to analyze, researchers have analyzed constrained versions of RASP. Angluin et al. (2023) show
that boolean RASP is equivalent in expressive powers to hard-attention transformers. Other works have
used formalisms based on first-order logic to analyze the expressibility of transformers (Merrill & Sabharwal,
2023a; Chiang et al., 2023). Notably, Merrill & Sabharwal (2024) show that transformers with soft attention
can be simulated by first-order logic with majority quantifiers (FO(M)). However, it remains an open question
what the right programming language formalism is for expressing transformer computation. Is it a variant of
RASP language or some kind of logic, like first-order counting logic? What are the relative differences in the
power of these formalisms? Can we define some symbolic programming language that is exactly equivalent
in expressive power to transformers?

It is also pertinent to mention that expressibility does not imply learnability, and it is necessary to elucidate
which algorithms are in fact learnable by transformer-based models. Zhou et al. (2023c) present an (informal)
conjecture that transformers learn the shortest RASP-L program that agrees with the training data and
provides empirical evidence in favor of this conjecture. Formally verifying (or refuting) this conjecture is an
open research direction. In general, a more focused analysis of specific problems that are unlearnable by
single-pass transformers could provide insight into which kinds of tasks are easier or more difficult to learn
for transformers with multiple passes.

Calibrated understanding of the reasoning capabilities of LLMs is required to better understand their
risks. In particular, there is a need to develop a more complete understanding of which limitations in
reasoning capabilities are fundamental in nature, and which are likely to be resolved with additional
scale or improved training methods of LLMs. Formulating empirical scaling laws for general reasoning
capabilities, clarifying the mechanisms underlying reasoning and understanding the computational
limits of learning and inference in transformers may help in this regard. Furthermore, there is
a need for more research on understanding the non-deductive reasoning capabilities of LLMs and
understanding how LLMs acquire these capabilities.

41. Do general reasoning capabilities of LLMs reliably improve with scale? Can we discover
empirical scaling laws for reasoning to predict this improvement beforehand? If it is the case
that scale does not improve general reasoning capabilities of the LLMs, can we conclusively
show this to be the case? ←↩
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42. Can interpretability analyses be used to understand the mechanisms underlying various types
of reasoning within LLMs? Can these techniques be used to explain the successful and
unsuccessful cases of reasoning in LLMs identified in the literature? ←↩

43. How well are LLMs able to perform non-deductive reasoning? Can they infer rules or axioms
from a set of observations, either in training or in-context? If so, do LLMs use abductive
reasoning capabilities in training to develop a coherent model of the outside world from
dispersed and partial information available in training data? ←↩

44. How do language models acquire the ability to perform reasoning tasks from their training?
Tools such as influence functions could help identify which training examples are instrumental
in acquiring reasoning capabilities (Grosse et al., 2023). ←↩

45. Does finetuning or pretraining on reasoning traces robustly improve the reasoning capabilities
of LLMs or not? How well does such training generalize OOD? ←↩

46. Can we develop a better understanding of the computational limits of transformers that
may use intermediate steps (e.g. chain-of-thought reasoning)? Can we define some symbolic
programming language that is exactly equivalent in expressive power to transformers? ←↩

47. What algorithms are learnable by transformers? How does the representability of an algo-
rithm as a RASP (or RASP-L) program relate to its learnability by a transformer? ←↩

2.5 Agentic LLMs Pose Novel Risks
Currently, LLMs are chiefly being used in search and chat applications. This reactive nature limits the
risks posed by LLMs. However, an LLM can be enhanced in various ways to create an LLM-agent to
autonomously plan and act in the real-world and proactively perform its assigned tasks (Ruan et al., 2023).
Such enhancements can come from further specialized training (ARC, 2022; Chen et al., 2023a), specialized
prompting (Huang et al., 2022b), access to external tools (Ahn et al., 2022; Mialon et al., 2023), or other
forms of “scaffolding” (Wang et al., 2023c; Park et al., 2023a). A key feature of LLM-agents is markedly
increased autonomy compared to LLM-based chatbots. For instance, GPT-Engineer (Osika, 2023) can write
and execute code given a coding task. This is different from a non-agentic LLM-based coding assistant
which can provide coding suggestions but can not execute code. Due to increased autonomy, limited
direct oversight from human users, longer horizons of action, and other reasons, LLM-agents
are likely to pose many novel alignment and safety challenges that are not currently well-
understood (Chan et al., 2023b). This section discusses some of these challenges and how various
features of LLM-agents might exacerbate these challenges.

2.5.1 LLM-agents May Be Lifelong Learners
LLMs are strong in-context learners (see Section 2.1), so the behavior of LLM-agents could change throughout
their lifetime through incorporation of feedback from the environment, humans, self-reflection, or other AI
systems in the context. Further, many designs of LLM-agents (e.g. generative-agent (Park et al., 2023a),
Voyager (Wang et al., 2023c)) augment LLM-agents with some form of external memory. This enables LLM-
agents to overcome the limitations of a limited context window by writing critical knowledge and skills to
memory and retrieving them during subsequent processing. The lifelong learning may translate to continual
gain in capabilities and pose novel alignment and safety challenges. For example, the capabilities gained over
time might be dangerous (Shevlane et al., 2023), and may result in undesirable outcomes such as enabling
the agent to manipulate the monitoring system (Cohen et al., 2022). Reward hacking (Skalse et al., 2022) or
goal misgeneralization (Langosco et al., 2022) could cause LLM-agents to develop and/or pursue misaligned
goals. It is also unclear how we might assure that an agent that learns continuously remains aligned and
ensure that such learning does not undo its alignment (Qi et al., 2023b).

2.5.2 Natural Language Underspecifies Goals
For LLM-agents, both the goal and environment observations are typically specified in the prompt through
natural language. While natural language may provide a richer and more natural means of specifying
goals than alternatives such as hand-engineering objective functions, natural language still suffers from
underspecification (Grice, 1975; Piantadosi et al., 2012). Furthermore, in practice, users may neglect fully
specifying their goals, especially the information pertaining to elements of the environment that ought not to

29



Under review as submission to TMLR

be changed (the classic frame problem (Shanahan, 2016)). Such underspecification (D’Amour et al., 2020),
if not accounted for, can result in negative side-effects (Amodei et al., 2016), i.e. the agent succeeding at the
given task but also changing the environment in undesirable ways. Ruan et al. (2023) show that contemporary
LLM-agents are not robust to the frame problem and that underspecification in the instructions can cause
contemporary LLM-agents to make unwarranted faulty assumptions resulting in undesirable risky actions.

The problem of avoiding negative side-effects has historically been studied within the framework of rein-
forcement learning (Leike et al., 2017; Shah et al., 2019; Krakovna et al., 2020). Several solutions have been
proposed and evaluated in that setting to ensure agents are robust to underspecification, e.g. enabling AI
agents to halt execution and adaptively seek new information from humans when uncertain (Hadfield-Menell
et al., 2016; Shah et al., 2020), designing the AI agent to act conservatively (Turner et al., 2020), or providing
additional information about goals derived from alternative sources such as demonstrations (Malik et al.,
2021) or the environment (Shah et al., 2019).

Future research could explore how the aforementioned techniques can be adapted to make LLM-agents more
robust to challenges posed by underspecification. For example, the natural language interface provides a
natural way for the LLM-agent to pose clarifying questions to the human (Mu et al., 2023; Kuhn et al.,
2022). Similarly, the agent could be instructed (by embedding appropriate instructions in the prompt) to
act conservatively and minimize its impact on the environment to avoid negative side-effects like issues.
However, the effectiveness of such techniques in diverse novel scenarios is currently unclear and needs to
be carefully investigated (Clymer et al., 2023). More research is needed on calibrating LLMs so that they
are more capable of “knowing what they don’t know” (Kadavath et al., 2022; Yin et al., 2023; Kuhn et al.,
2023) and can accurately assess when they ought to seek further information and when to act conservatively
(Ruan et al., 2023). Approaches such as worst-case optimization (Coste et al., 2023), attainable utility
preservation (Turner et al., 2020), or conditional value at risk (CVaR) (Javed et al., 2021), may help make
LLMs behave conservatively, or inspire methods for doing so. Approaches in the spirit of assistance games
(Shah et al., 2020; Krasheninnikov et al., 2022) and active learning (Krueger et al., 2020) could help to
address underspecification in a targeted manner.

2.5.3 Goal-Directedness Incentivizes Undesirable Behaviors
Goal-directedness can cause agents to exhibit unethical and undesirable behaviors, such as deception (Ward
et al., 2023), self-preservation (Hadfield-Menell et al., 2017), power-seeking, and immoral reasoning (Pan
et al., 2023a). Pan et al. (2023a) find that LLM-agents exhibit power-seeking behavior in text-based adven-
ture games. LLM-agents have also been shown to use deception to achieve assigned goals when explicitly
required by the task (Ward et al., 2023), or when the tasks can be more easily completed by employing
deception and the prompt does not disallow deception (Scheurer et al., 2023b). This behavior exists despite
training the agent to be harmless and helpful, in fact, Scheurer et al. show that despite being informed about
the illegal nature of the deceptive behavior, a GPT-4-based LLM-agent not only continues to deceive but also
tries to cover up and hide the deceptive behavior. Perez et al. (2022b) show that LLMs finetuned with rein-
forcement learning exhibit a greater tendency for self-preservation and for avoiding shutdown. Benchmarks
are needed to better quantify and evaluate the presence of such undesirable behaviors in LLM-agents. These
benchmarks could either directly track undesirable behavior, or other kinds of behavior that are instrumen-
tally useful for undesirable behavior. For example, deception often involves lying, so, detecting when a model
is deliberately being dishonest can help to detect deception (Pacchiardi et al., 2023; Burns et al., 2022; Azaria
& Mitchell, 2023; Li et al., 2023e). There is also a need to better understand the sources of these undesirable
behaviors. Training data attribution methods (see Section 3.1.3) could be used to identify whether or not
specific examples in the training data are responsible for these behaviors. Alternatively, research could be
done to understand in what ways the training objectives (e.g. human approval in safety finetuning) might
incentivize undesirable behavior. It is also unclear how undesirable behavior can be effectively mitigated;
prior work has shown that prompting or fine-tuning LLMs to behave ethically or to avoid deception and
power-seeking (Pan et al., 2023a), and/or intervening on LLMs’ internal representations (Zou et al., 2023a)
can help to mitigate undesirable behavior to some extent.

2.5.4 Difficulty of Robust Oversight and Monitoring
The general-purpose nature of LLMs is inherited by LLM-agents, making it likely that they will be deployed
across a wide variety of contexts; often with minimal human supervision (removing human supervision
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may introduce novel governance challenges as well, c.f. Section 4.5.6). This necessitates robust automated
monitoring to ensure that the behavior of LLM-agents remains aligned and safe across diverse deployment
contexts (Naihin et al., 2023; Hendrycks et al., 2021b). However, multiple factors make robust monitoring
and oversight difficult. (1) Firstly, direct human oversight is vulnerable to biases such as sycophancy (Perez
et al., 2022b) (also see Section 3.3.5) and is inherently limited to the tasks that are solvable by humans. (2) If
the agent is misaligned, and is aware that it will be penalized for its misaligned actions, it may actively try to
circumvent the monitoring system (Cohen et al., 2022; Scheurer et al., 2023b). (3) As discussed previously,
LLM-agents are likely to be lifelong learners. Hence, if monitoring information is leaked to the LLM-
agent, the agent may optimize against the monitoring system, leaving the monitoring system vulnerable
to reward hacking (Pan et al., 2022; Skalse et al., 2022). LLMs show some low level of ‘out-of-context
learning’ (Krasheninnikov et al., 2023) which can improve with scale (Berglund et al., 2023a). Prior work
has expressed concern that situational awareness, assisted by out-of-context learning, might enable language
models to hack their monitoring systems (Ngo et al., 2023). As preliminary evidence, Meinke (2023) show
that after an LLM is finetuned on text explanations of prompt-injection, the LLM performs a jailbreak
attack when prompted with a task and given information that it is being scored by another LLM, rather
than performing the intended task.

The aforementioned issues, especially (2) and (3) are poorly understood at the moment. As for (2), trusted
LLM monitoring systems can still face security issues (Greenblatt et al., 2024): if the trusted and untrusted
LLMs have discontinuous performance gaps on narrow tasks (production and detection respectively), this may
be indicative of the trusted monitor being potentially unable to accurately monitor outputs. Furthermore,
at a certain level of absolute model capabilities, no matter the detection performance of trusted black-box
monitoring systems, the use of perfectly secure steganography could go undetected on a channel (Schroeder
de Witt et al., 2023). A trusted monitor with even the same (or higher) level of steganography capabilities
will still find detecting perfectly secure steganography to be an intractable problem unless it has access
to the relevant cryptographic secrets. Sufficiently advanced forms of steganography might persist even
after paraphrasing or lossy compression if encoded into semantics rather than lexis (Motwani et al., 2024).
This implies that limiting steganography may be impossible without limiting communication capabilities
or making the system more predictable to monitors, both of which might directly constrain the degree to
which the system can be considered useful, or indeed autonomous. As for (3), there is a need to better
understand LLM capabilities such as lifelong learning and situational awareness that might enable LLMs to
hack monitoring systems.

Furthermore, more research is needed to clarify how to ensure the robustness of monitoring systems when
the monitored system has such capabilities. At the minimum, there is a need to develop appropriate threat
models to study and improve the adversarial robustness of the monitoring system, where the monitored
system is treated as an adversary (Goodfellow, 2019). Finally, it might be the case that the large number
of possible failure modes in monitoring is such that no individual monitoring scheme will be fully robust on
its own. Hence, there is a need to understand the relative strengths and weaknesses of different monitoring
schemes with the goal of developing ensemble-based monitoring systems that might be more effective and
robust.

2.5.5 Safety Risks from Affordances Provided to LLM-agents
The capabilities of LLM-agents can be enhanced in significant ways by providing the LLM-agent with novel
affordances, e.g. the ability to browse the web (Nakano et al., 2021), to manipulate objects in the physical
world (Ahn et al., 2022; Huang et al., 2022b), to create and instruct copies of itself (Richards, 2023), to
create and use new tools (Wang et al., 2023c), etc. Affordances can create additional risks, as they often
increase the impact area of the language-agent, and they amplify the consequences of an agent’s failures and
enable novel forms of failure modes (Ruan et al., 2023; Pan et al., 2024).

There is currently very limited work on understanding the risks from affordances and how these risks scale
with the type and diversity of affordances available to the model, and with respect to the capabilities of the
base LLM. It is also unclear how to assure that a given LLM is capable of using a given affordance safely.
Prior work has used testing within a sandbox (ARC, 2022) or testing via an LLM-based emulator (Ruan et al.,
2023) to identify likely risks. However, both these methods have their limitations. Developing a sandbox
environment is time-consuming and not scalable, Can we leverage LLMs to automate this process? Similarly,
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using an LLM-based emulator is likely to compromise the fidelity of the simulation and hence may not be
able to discover all possible risks, e.g. those that occur due to emergent functionality (see Section 2.6.3).
How can we improve the fidelity of such simulations?

LLM-agents will pose many novel alignment and safety risks. These risks may be amplified by the
ability of LLM-agents to perform lifelong learning and their access to various affordances. Our
understanding of these risks and their likelihoods is currently quite poor and needs improvement.
There is also a need to develop methods to allow us to better control LLM-agents and guide their
behavior more effectively. Furthermore, the development of monitoring systems for LLM-agents is
likely to entail significant challenges.

48. What drives the capability of LLM-agents to improve via lifelong learning, and to what extent
is this capability present in current LLMs? How does it relate to the in-context learning ability
of the base LLM, and how can we modulate it? For example, Wang et al. (2023c) note that
replacing GPT-4 with GPT-3.5 in their agent caused the agent’s performance to plummet.
However, it is unclear whether this was due to GPT-4 being a better in-context learner (and
therefore, better able to improve based on feedback) or due to GPT-4 being inherently more
capable. ←↩

49. How can we enable LLM-agents to be more robust to underspecification (Ruan et al., 2023)
and make them act more conservatively in the face of uncertainty, or when performing high-
impact actions? ←↩

50. How can we quantify and benchmark the propensities of LLM-agents to engage in undesirable
behaviors like deception, power-seeking, and self-preservation? Can we use interpretability
techniques to identify why LLM-agents exhibit such behavior? Can we explain why such
undesirable behaviors arise in the first place (e.g. is it due to specific examples or data in
pretraining or finetuning) and how can we modify our training pipelines to mitigate such
behavior? ←↩

51. How can we build more robust monitoring systems for LLM agents? This could benefit from a
better understanding of issues such as reward hacking, situational awareness, and deception.
←↩

52. How should the monitoring systems for LLM-agents be evaluated? What is a good threat
model that may reveal adversarial vulnerabilities of the monitoring system? ←↩

53. How can we better understand the safety issues posed by different affordances and how can
we assure that particular affordances provided to an LLM-agent are safe? ←↩

2.6 Multi-Agent Safety Is Not Assured by Single-Agent Safety

A foremost lesson of game theory is that optimal decision-making within a single-agent setting (i.e. selfishly
optimizing for an agent’s own utility) can produce sub-optimal outcomes in the presence of other strategic
agents. Failing to account for the strategic nature of other agents can cause an agent to adopt strategies
under which potentially everyone, including the agent itself, ends up worse off (Schelling, 1981; Harsanyi,
1995; Roughgarden, 2005; Nisan, 2007). Examples include collective action problems (or ‘social dilemmas’)
such as arms races or the depletion of common resources, as well as other kinds of market failures such as
those caused by asymmetric information or negative externalities (Bator, 1958; Coase, 1960; Buchanan &
Stubblebine, 1962; Kirzner, 1963; Dubey, 1986). In addition, many potentially worrisome dynamics, such
as emergent functionality or network effects only tend to emerge in the presence of multiple agents (Ecoffet
et al., 2020). From the perspective of LLM safety, these facts imply that single-agent alignment
and safety are insufficient for assuring desirable outcomes in multi-agent settings (Sourbut et al.,
2024), and that deliberate effort will be required to ensure multi-agent safety (Critch & Krueger,
2020; Dafoe et al., 2020; Conitzer & Oesterheld, 2023; Hammond et al., 2024). In this section, we highlight
some of the challenges that might hinder multi-agent safety.

32



Under review as submission to TMLR

(a) Even though most LLM-agents are predomi-
nantly developed in single-agent settings, they are
likely to undergo mutli-agent interactions in deploy-
ment (see Section 2.6.1).

(b) Different systems – even when individually safe
– can potentially be collectively unsafe (see Sec-
tion 2.6.3).

Figure 4: Multi-agent safety presents unique challenges different from single-agent safety.

2.6.1 Influence of Single-Agent Training on Multi-Agent Interactions is Unclear
Under the current paradigm, LLMs undergo extensive pretraining but limited finetuning. Hence, in the
near future, it is likely that for LLM-agents multi-agent experience may only form a small fraction of the
overall training data. In such cases, LLM-agents will substantially rely on the experience implicit in their
pretraining corpora, combined with prompting or in-context learning to guide their behavior in multi-agent
settings (Park et al., 2023a; Xu et al., 2023b; Fu et al., 2023b). This makes it critical to understand the
predispositions and the latent capabilities of the base LLM that are important in multi-agent interactions.
Relevant dispositional traits might include helpfulness, altruism, selfishness, human emotions like spite or
jealousy, and awareness of or adherence to various norms and conventions. Relevant capabilities might
include negotiation (Fu et al., 2023b), theory of mind (Shapira et al., 2023; Zhou et al., 2023f), manipulation
(Ward et al., 2023), or making and fulfilling credible commitments (Park et al., 2023a).

To understand these dispositions and capabilities, specialized benchmarks are needed. As a first step, the
behavior of LLM agents could be observed in complex, multi-agent environments such as those designed
by Park et al. (2023a) and Mukobi et al. (2023). However, in the long term, specialized benchmarks,
targeting specific dispositions and capabilities, are needed. In particular, LLM-agents should be evaluated in
adversarial settings to assess whether their behavior is consistent across different contexts or not (Scheurer
et al., 2023b; Chan et al., 2023a; Akata et al., 2023). Forms of analysis such as training data attribution,
e.g. influence functions Grosse et al. (2023) could be used to further understand how training data influences
relevant dispositions and competencies (c.f. Section 3.1.3).

2.6.2 Foundationality May Cause Correlated Failures
Another important characteristic of LLM development is foundationality — due to the expense of large-scale
pretraining, many deployed instances share similar or identical learned components. Foundationality may
both be a blessing and a curse. On the one hand, it may be possible to exploit the similarity in the design
of LLM-agents to facilitate cooperation (Critch et al., 2022; Conitzer & Oesterheld, 2023; Oesterheld et al.,
2023). On the other hand, foundationality may leave LLM-agents vulnerable to correlated failures both
in terms of safety and capabilities due to increased output homogenization (Bommasani et al., 2022). For
example, several studies have shown that the same jailbreak attacks transfer across different LLMs (Shah
et al., 2023; Zou et al., 2023b). A natural way to guard against some correlated failures is to make the agents
sufficiently diverse from each other. How can we promote such robustness effectively? For example, will
prompting each LLM with a different ‘personality’ (Shanahan et al., 2023; Wang et al., 2023j), or a different
set of ethical principles to follow (Bai et al., 2022b), be enough? Can finetuning be leveraged to improve
diversity, e.g. via using quality-diversity objectives effectively (Bradley et al., 2023; Ding et al., 2023)? In
what other ways can we enhance the robustness of LLM-agents to correlated failures?
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2.6.3 Groups of LLM-Agents May Show Emergent Functionality
Multi-agent learning, either through explicit finetuning or implicit in-context learning, may enable LLM-
agents to influence each other during their interactions (Foerster et al., 2018). Under some environmental
settings, this can create feedback loops that result in novel and emergent behaviors that would not manifest
in the absence of multi-agent interactions (Hammond et al., 2024, Section 3.6). Prior work in multi-agent
learning provides several instances of such emergence, e.g. intelligent tool use (Johanson et al., 2022) or
bartering behavior (Baker et al., 2019). The emergent functionality can also arise through coordination,
and cooperation, of efforts between agents at a group level, i.e. where a group of agents are collectively
able to perform a task that none of them was able to perform individually (Juneja et al., 2023). Emergent
functionality is a safety risk in two ways. Firstly, it may itself be dangerous (Shevlane et al., 2023). Secondly,
it makes assurance harder as such emergent behaviors are difficult to predict, and guard against, beforehand
(Ecoffet et al., 2020). Future research should therefore seek to evaluate if and when groups of LLM-agents
can exhibit emergent functionality, and self-organization (Yukalov & Sornette, 2014). Narrow evaluations
could be aided by more open-ended simulations, such as that of Park et al. (2023a). Theoretical work on
discovering goal-directed behavior (Kenton et al., 2022; Orseau et al., 2018) could help detect if a collection
of LLMs is acting as a single agent. Furthermore, emergent functionality might depend on the diversity of
the agents; does the foundationality of LLMs (see previous section) inhibit or encourage such emergence?

2.6.4 Collusion between LLM-Agents
While it would often be preferable for LLM-agents to be cooperative, cooperation can be undesirable if it
undermines pro-social competition or produces negative externalities for coalition non-members (Dorner,
2021; Buterin, 2019; Dafoe et al., 2020). Collusion between relatively simple AI systems has been observed
in the real world (Assad et al., 2020; Wieting & Sapi, 2021) and synthetic experiments (Brown & MacKay,
2023; Calvano et al., 2020; Klein, 2021). However, collusion in the context of LLMs has only recently been
studied, and there are several open challenges.

Collusion can occur through explicit or steganographic communication. Steganographic communication
hides information in seemingly innocent content (Roger & Greenblatt, 2023), posing challenges for collusion
monitoring and detection. Motwani et al. (2024) study steganographic collusion between generative AI agents
and find that steganographic collusion can arise in settings where agents are not explicitly incentivized for
it, and even in settings where they are explicitly instructed against it. The authors thus suggest that
steganographic collusion need not depend on the agents’ ‘intent to deceive’, but might arise merely due to
optimization directed towards a misspecified objective (Russell, 2019; Ngo et al., 2023; Pan et al., 2022) if
covert communication between agents increases joint task performance, for example by reducing the task
complexity.

To better understand the risks of agent collusion via steganography, we need real-world sandboxed bench-
marks and evaluations in adversarial settings where agents are subjected to pressure to collude through
various means (e.g., by employing tactics used by Scheurer et al. (2023b)). However, monitoring might have
important limitations (Schroeder de Witt et al., 2023; Motwani et al., 2024) since LLMs could eventually
perform undetectable steganography (Motwani et al., 2024). Future work must explore the effectiveness
of additional countermeasures like restricting agents’ access to cryptographic services, data curation, and
reducing the communication channel entropy (e.g., through paraphrasing).

2.6.5 Unclear Applicability of Multi-Agent RL Research to LLMs
Multi-agent problems such as social dilemmas have been studied extensively by the multi-agent RL (MARL)
community, among others, and several different mechanisms have been proposed to overcome such problems
(Du et al., 2023b), e.g. utility transfer (Kalai & Kalai, 2013; Lupu & Precup, 2020; Yang et al., 2020);
contracts and transparency (Christoffersen et al., 2023; Critch et al., 2022); reputation and punishment
(Milinski et al., 2002; Henrich, 2006; Boyd et al., 2010; Moon & Conitzer, 2015); opponent-shaping and
adaptive mechanism design (Foerster et al., 2018; Pardoe et al., 2006; Yang et al., 2021; Zheng et al., 2022);
and intrinsic motivations such as inequity aversion, altruism, or social influence (Jaques et al., 2019; Hughes
et al., 2018; Wang et al., 2019b; McKee et al., 2020). It is currently unclear to what extent these findings will
transfer to LLM-agents, as there are several marked differences in this setting. First, unlike the traditional
agents of game theory and reinforcement learning, LLM-agents do not have explicitly represented objective
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functions (Yocum et al., 2023). While LLMs can be ‘incentivised’ to accomplish tasks using prompts and
additional RL finetuning, the importance of pretraining does not neatly fit within existing game-theoretic
paradigms. It also creates different learning dynamics and thus the possibility of different equilibria. Second,
and relatedly, far from being straightforward utility maximizers, LLM-agents tend to exhibit many of the
same cognitive biases as the humans who generated this pretraining data (Jones & Steinhardt, 2022; Koo
et al., 2023). Third, the size of state-of-the-art LLMs means they are less amendable to classical MARL
methods, which scale poorly in sample complexity and model size. While preliminary work does provide
encouraging evidence that some of the MARL mechanisms listed above can result in greater cooperation
between LLM-agents (Yocum et al., 2023), future work should verify this for other methods, move beyond
a purely behavioral paradigm, and, where useful, develop novel methods tailored to LLM-agents.

It is also unclear whether existing MARL methods may help with collusion between LLM-agents (Section
2.6.4). Further work is required to evaluate whether existing algorithms (Hu et al., 2021) can be used to train
cooperative LLM policies while preserving natural-language grounding in communications and acceptable
task performance.

Table 2: Because of the differences in the ‘nature’ of LLM-agents and traditional multi-agent RL-based
agents, the applicability of prior multi-agent RL based research to LLM-agents is unclear.

Feature Multi-Agent RL LLMs
Objective Functions Explicit Implicit
Size Small/Medum Very Large
(Primary) Training Regime Reinforcement Learning Self-Supervised Learning
Human-Generated Data Small % of Data Large % of Data

Multi-agent alignment and safety is distinct from single-agent alignment and safety, and assurance
will require deliberate efforts on the part of agent designers. The possible safety risks that must be
dealt with range from correlated failures that might occur due to foundationality of the LLM-agents
to collusion between LLM-agents. At the same time, confronting social dilemmas requires LLM-
agents have the ability to cooperate successfully with each other and with humans, even when their
objectives might differ.

54. How do pretraining, prompting, safety finetuning, etc. shape the behavior of a LLM-agent
within multi-agent settings? In particular, what is the role of pretraining data on agents’
dispositions and capabilities? ←↩

55. How can we evaluate or benchmark cooperative success and failure of LLM-based systems?
How can existing environments, such as those of Park et al. (2023a); Yocum et al. (2023);
Mukobi et al. (2023), be leveraged to study this? Can we create new LLM-agent analogues
of popular multi-agent benchmarks, e.g. Melting Pot, or Hanabi? ←↩

56. How can we leverage foundationality to enable LLM-agents to better cooperate with each
other and achieve outcomes with higher social welfare? ←↩

57. How can we evaluate and improve robustness of LLM-agents to correlated failures? Is quality-
diversity-based finetuning an effective way to improve robustness of LLM-agents to correlated
failures? How else can we improve robustness of LLM-agents to correlated failures? ←↩

58. Do groups of LLM-agents show emergent functionality or any form of self-organization? What
worrisome capabilities are more likely to emerge in multi-agent contexts that are absent in
single-agent contexts? ←↩

59. Can we design benchmarks and adversarial evaluations to study colluding behaviors between
LLM-agents, extending work in Motwani et al. (2024)? ←↩

60. How can collusion between LLM-agents be prevented and detected? How can we assure
that the game mechanisms (which are often implicit) are robust to collusion when deploying
multiple LLM-agents in the same context? Can we design “watchdog” LLM-agents that
detect colluding behavior among LLM-agents? ←↩
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61. How can we train LLM-agents to avoid colluding behavior? ←↩
62. How can insights and techniques from the multi-agent reinforcement learning literature (e.g.

utility transfer, contracting, reputation mechanisms) be adapted for LLM-agents? What
adjustments need to be made in theory, and in practice, to unlock similar benefits? ←↩

2.7 Safety-Performance Trade-offs Are Poorly Understood
Safety-performance trade-offs (SPTs) 7 are omnipresent in the design of engineering systems. For example, a
system as simple as a linear control of a plant has a trade-off where assuring the robustness of the system to
worst-case perturbations results in loss of performance in the average case (Barratt & Boyd, 1989; De Moor
et al., 1992). Indeed, like in any other engineered system, SPTs are also present in the design of an LLM-
based system, e.g. improving the harmlessnesss of an LLM-assistant may cause it to be less helpful (Bai
et al., 2022a). Similarly, RL-based safety-finetuning appears to generalize both in-distribution and out-
of-distribution more robustly than supervised finetuning, but can reduce the diversity of the responses
generated by an LLM (Kirk et al., 2023c). Our knowledge of SPTs, however, remains limited and
further work is required to develop a comprehensive understanding of these trade-offs. A precise
characterization of SPTs can enable a system designer to make better-informed design choices for a given
set of system requirements (Khlaaf, 2023). For example, in a sensitive context, it may be appropriate to
sacrifice performance to attain greater safety assurances. Greater understanding of such trade-offs could also
help policymakers define appropriate safety standards. In this section, we identify several research directions
that could help improve our understanding of SPTs.

2.7.1 Designing Better Metrics to Measure Safety
Much of the existing practice narrowly defines safety as harmlessness, i.e. not generating a response that
may be considered harmful by human evaluators (Askell et al., 2021). This is assessed either via manual
(Ziegler et al., 2022) or automated red-teaming (Anthropic, 2023e). However, in some contexts, there may
be desiderata other than harmlessness for a ‘safe’ LLM-based system (e.g. corrigibility, transparency, OOD
robustness/generalization), and there is a need for future work to design more sophisticated metrics that
could be used to measure safety in a holistic way. One obvious avenue in this regard is to improve the
granularity of the current metrics. Furthermore, harmlessness was primarily proposed to assess the safety
of LLM-assistants — and hence, may not be an appropriate metric to assess the safety of other LLM-based
systems, in particular LLM-agents (c.f. Section 2.5). It is also unclear how the relative safety of LLM-based
systems can be measured. Win-rate — the percentage of responses on which human evaluators prefer a
response from one LLM over the other (Dubois et al., 2023) — and Elo ratings are the most popular metrics
in this regard. However, the validity of these metrics is not well-studied; Boubdir et al. (2023) argue that
Elo ratings become unreliable when ranking LLMs with similar win-rates and show that transitivity of Elo
ratings is not universally conserved in real-world human evaluations.

2.7.2 Disentangling Safety from Performance
Many capabilities of LLMs are dual-use by nature. Hence more capable LLMs have inherent safety limitations
if they can be misused, e.g. an LLM with sufficient proficiency in biology research might also help users
create biological weapons. This might be mitigated by restricting LLMs’ interfaces, e.g. by limiting sensors
and actuators that an LLM might have access to; but such limitations might be bypassed easily (Glukhov
et al., 2023). An alternative might be creating LLM “savants” that excel in some domains while remaining
selectively ignorant, although reducing LLM knowledge in such a way might reduce capabilities more broadly.
Unlearning (discussed in Section 3.2) is one relevant area; modifications to pretraining (see Section 3.1) may
prove more promising. We can think of limiting the interface and knowledge of systems as two “knobs” that
might be used to tune safety-performance trade-offs. Other knobs might include characteristics of agency
(Chan et al., 2023b); for instance, specifying how an LLM-agent is meant to solve a task (rather than
simply the goal) might preclude both inventive solutions (reducing performance) and unpleasant surprises
(increasing safety).

7Closely related ideas include “capabilities externalities” (Hendrycks & Mazeika, 2022) and “alignment tax” (Christiano,
2019; Askell et al., 2021; Ouyang et al., 2022; Lightman et al., 2023). We prefer our terminology to the more common “alignment
tax” since: 1) it does not conflate safety with alignment and 2) it does not suggest that alignment will be achieved if you pay
the tax.
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2.7.3 Better Characterization of Safety-Performance Trade-offs
Part of the challenge of clarifying safety-performance trade-offs is the multi-dimensional nature of both safety
and performance, which means there might be many different types of SPT. A better characterization of these
trade-offs could help determine how to achieve Pareto-optimal outcomes. This could include characterizing
safety-performance trade-offs of specific capabilities of LLMs, e.g. in-context learning (c.f. Section 2.1),
reasoning capabilities (c.f. Section 2.4), and multimodal capabilities.

Deployment context is another factor on which SPTs may depend. For example, SPTs for an LLM specifically
designed to act as an assistant to a medical doctor may be different from SPTs for an LLM designed to be
a general assistant, and to which a lay person might pose medical queries. An LLM-agent may have very
different SPTs compared to an LLM-assistant, due to its increased agency and goal-directed behavior. Even
within LLM-agents, SPTs may differ depending on the affordances available to the LLM-agent. An LLM
that is made available via an API in which users can perform finetuning can have different SPTs compared
to an LLM that can only perform inference queries via an interface (Pelrine et al., 2023). Finally, distinct
trade-offs may exist at various stages of development (Leike, 2022b): choosing an architecture that is more
interpretable by design, aggressively filtering undesirable data from the pretraining corpus, or biasing the
model to be harmless over being helpful may all improve safety by sacrificing some performance.

There is a need for a comprehensive survey of SPTs that exist in various settings, and for organizing knowledge
about different “knobs” that could be used to modulate these trade-offs. It may be useful to coalesce different
examples of trade-offs into high-level categories. Future work could also aim to theoretically characterize how
and to what extent safety can be achieved using such “knobs” to control powerful, potentially misaligned
systems. Empirical work could systematically compare various approaches, e.g. assessing the promise of
limiting systems’ knowledge vs. sensors vs. actuators as a means of restricting an LLM-agent’s behavior to
its intended scope.

2.7.4 How Fundamental Are Safety-Performance Trade-offs?
There is mixed evidence on the difficulty of addressing SPTs, and the answer might differ for different
trade-off axes. Significant trade-offs have been a long-standing problem in interpretability (Wang, 2019;
Baryannis et al., 2019; Dziugaite et al., 2020; Elhage et al., 2022a) and in adversarial robustness of vision
models (Tsipras et al., 2019; Zhang et al., 2019; Tramer et al., 2020a; Croce et al., 2021). It is less clear
whether SPTs are a similarly big problem in LLMs. For example, Bai et al. (2022b) show that their proposed
method, Constitutional AI, can result in Pareto improvement on both their performance and safety metrics
over the standard reinforcement learning from human feedback methods. However, other work has argued
that SPTs are indeed fundamental and assuring safety of LLMs may require significant sacrifices in terms
of their performance (Branwen, 2016; Millière, 2023; Wolf et al., 2023). In addition to empirically studying
SPTs, there is a need for research to understand the causes of these trade-offs. This understanding may shed
light on the extent to which these obstacles are fundamental, while also pointing to new angles of attack.

The high-level challenge is to improve our understanding of safety-performance trade-offs, in multiple
different ways. As a foundation for future research, a better formalization and classification of dif-
ferent types of trade-offs is important. This will be assisted by the development of clear metrics, in
particular for different axes of safety. Building on those, empirical investigations could answer impor-
tant questions about the severity of these trade-offs and let us track progress in their mitigation. As
a complement to such measurements, we should also aim to understand the causes of these trade-offs
and whether or not these trade-offs are fundamental in nature.

63. What are the best metrics to measure performance, and in particular, safety, in ways that
are representative of real-world usage of AI systems and that can be applied across different
LLMs and safety methods? Are metrics such as Elo ratings valid for measuring the safety of
different LLMs relative to each other? ←↩

64. How can the safety of LLMs be disentangled from their performance? Do there exist useful
“knobs” for practitioners to trade-off safety against performance? ←↩

65. Can we develop LLM ‘savants’ that excel in some domains while remaining selectively ignorant
about other areas (i.e. those which pose safety concerns, such as knowledge of weapons)? ←↩
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66. What are the various axes of safety and performance, and along which axes are there safety-
performance trade-offs? Which of those trade-offs are especially important, in the sense of
creating strong incentives to sacrifice safety? Can we identify high-level clusters of instances
of safety/performance trade-offs? ←↩

67. How do safety-performance trade-offs vary depending on the deployment context? In partic-
ular, in what ways do safety-performance trade-offs for LLM-agents differ from trade-offs for
LLM-assistants? What safety-performance trade-offs exist in the development stage? ←↩

68. What are the ‘causes’ of safety-performance trade-offs? Are these trade-offs for LLMs fun-
damental in nature or can they be overcome by development of better methods? ←↩
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3 Development and Deployment Methods
The primary focus of the alignment and safety research so far has been the development of methods for
improving the safety and alignment of LLMs. That has indeed resulted in some successes, most notably the
refinement and development of methods to improve the alignment of the model behavior in the ‘finetuning’
stage. However, on the whole, current technical tools used in the development and deployment of LLMs
leave much to be desired. This lack of appropriate tools to help robustly align, evaluate, interpret, secure,
and monitor LLMs, is a hindrance in assuring alignment and safety of LLMs. Similar to the scientific
understanding of LLMs, and in line with the broader theme of the agenda, we focus on the deficiencies of
the development and deployment methods that are most relevant to assuring the safety and alignment of
LLMs. Even with this restricted perspective, we identify many opportunities to improve development and
deployment methods.

Methods used in the development and deployment of LLMs can be roughly divided into three types. The first
type includes techniques used for the training of LLMs (including data collection and annotation techniques)
used in pretraining and finetuning. We collectively refer to all the techniques (supervised finetuning, rein-
forcement learning-based training from human or AI feedback, unlearning methods) used in the finetuning
stage as ‘safety finetuning’ methods.8 We discuss various challenges with pretraining and safety finetuning
that negatively impact the safety, alignment, and assurance of LLMs in Sections 3.1 and 3.2. The second
type of methods includes evaluation and interpretation techniques — unfortunately, as we assert throughout
(Sections 3.3 and 3.4), both evaluation and interpretation methods leave much to be desired and cannot be
relied upon in their current state to provide necessary assurance. Finally, the third type of methods is con-
cerned with the security of these models — this includes robustness to adversarial attacks of various types,
most prominently jailbreaking and prompt-injections (Section 3.5) and poisoning attacks (Section 3.6).

Table 3: An overview of challenges discussed in Section 3 (Development and Deployment Methods). We
stress that this overview is a highly condensed summary of the discussion contained within the section, and
hence should not be considered a substitute for the complete reading of the corresponding sections.

Challenge TL;DR
Pretraining Produces Misaligned Models Reducing misalignment of a pretrained (base) model is

highly challenging. Existing data filtering methods to re-
move harmful data from the training corpus are insufficient
and can be detrimental in some cases. We lack automated
auditing tools that could be used to audit and analyze large-
scale datasets used for training. Training data attribution
methods lack scalability and their reliability is uncertain.
Finally, the use of human feedback data during pretraining,
and modifications to pretraining that might help improve
the effectiveness of downstream safety and alignment efforts
(such as interpretability) remain underexplored.

Continued on the next page

8Post-pretraining procedures applied to LLMs have both been called ‘alignment training’ (e.g. Zhou et al., 2023b) and ‘safety
training’ (e.g. Wei et al., 2023a; Hubinger et al., 2024) within the contemporary literature. We use the latter terminology but
replace ‘training’ with ‘finetuning’ to make it explicit that these methods presume that the model has already been pretrained.
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Challenge TL;DR
Finetuning Methods Struggle to Assure
Alignment and Safety

We lack an understanding of how safety fine-tuning meth-
ods change a pretrained model. The current evidence points
to it being superficial, considering the effects of finetuning
can be bypassed (via jailbreaking) or easily reversed (via
finetuning on problematic data). Indeed, it is plausible that
simple output-based adversarial training might be incen-
tivizing superficial changes in model behavior. Furthermore,
techniques for targeted modification to LLM behavior (e.g.
machine unlearning, concept erasure, etc.) are currently
underexplored, and techniques for removal of unknown un-
desirable capabilities (e.g. backdoors) are non-existent.

LLM Evaluations Are Confounded and Bi-
ased

There is an evaluation crisis for LLMs. Prompt-sensitivity,
test-set contamination and targeted training to suppress un-
desirable behaviors in known contexts confound our evalua-
tions. There exist further biases in both LLM-based evalua-
tions of other LLMs and human-based evaluations. System-
atic biases present within the machine learning ecosystem
(e.g. overrepresentation of U.S.-centric points-of-view in re-
search) create further blindspots in evaluations. Finally, as
LLMs advance further in capabilities, we may need scalable
oversight methods; however, the scalability, robustness, and
practical feasibility of various scalable oversight proposals
remain uncertain.

Tools for Interpreting or Explaining LLM
Behavior Are Absent or Lack Faithfulness

Techniques such as representation probing, mechanistic in-
terpretability, and externalized reasoning hold promise in
helping interpret and explain model behavior. However,
these techniques suffer from many fundamental challenges,
such as the use of dubious abstractions, concept-mismatch
between AI and humans, and a lack of scalable and reli-
able evaluations. Furthermore, representation probing and
mechanistic interpretability face further challenges due to
polysemanticity of neurons, sensitivity of the interpretations
to the choice of the dataset, and lack of scalability. Simi-
larly, externalized reasoning using informal semantics can
be unfaithful and misleading, while externalized reasoning
using formal semantics is not widely and easily applicable
to many tasks of interest.

Continued on the next page
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Challenge TL;DR
Jailbreaks and Prompt Injections Threaten
Security of LLMs

LLMs are not adversarially robust and are vulnerable to
security failures such as jailbreaks and prompt-injection at-
tacks. While a number of jailbreak attacks have been pro-
posed in the literature, the lack of standardized evaluation
makes it difficult to compare them. We also do not have
efficient white-box methods to evaluate adversarial robust-
ness. Multi-modal LLMs may further allow novel types of
jailbreaks via additional modalities. Finally, the lack of ro-
bust privilege levels within the LLM input means that jail-
breaking and prompt-injection attacks may be particularly
hard to eliminate altogether.

Vulnerability to Poisoning and Backdoors
Is Poorly Understood

LLMs are often trained on data from untrustworthy sources
— internet or crowdsource workers — which leaves them
vulnerable to data poisoning attacks. Our current under-
standing of how vulnerable LLMs might be to data poison-
ing attacks through text — or other modalities — is highly
limited. Furthermore, there does not currently exist any
method that can robustly detect and remove any backdoors.

3.1 Pretraining Produces Misaligned Models
The first step in LLM development is to pretrain the model on a large dataset of internet text. This
pretraining incorporates a large amount of knowledge and capabilities into the model but is not safe due
to the prevalence of undesirable content across the internet. Among other alignment and safety failures,
a pretrained model can exhibit significant stereotypical biases, hallucinate excessively, readily leak private
information, and provide information on illegal and harmful activities (Bender et al., 2021; Pan et al., 2020;
Ji et al., 2023b). To improve helpfulness and harmlessness, leading LLM developers perform extensive
finetuning to improve the alignment and safety of pretrained models. However, there is increasing evidence
that this effort often falls short of producing a robustly aligned and safe model (see Section 3.2). Hence,
there is a need to investigate ways in which the pretraining procedure itself could be modified
to produce safer and better-aligned pretrained models. In this section, we present some of the
challenges that, if addressed, could contribute to progress toward this goal.

3.1.1 Existing Data Filtering Methods Are Insufficient
Naively scaling a dataset also scales the harmful content within the dataset proportionally (Birhane et al.,
2023). Considering that pretraining is based on maximizing the likelihood of generating text present in
the training data, removing the problematic data from the training dataset seems like a straightforward fix
(Ngo et al., 2021). However, effective data filtering is an open problem. Commonly used methods for dataset
filtering either rely on human-written rules (Raffel et al., 2022) or narrowly-trained classifiers (Gehman et al.,
2020; Solaiman & Dennison, 2021); resulting in incomplete and ineffective filtering of harmful data (Welbl
et al., 2021). Further, as harmful data is often contextual (Rauh et al., 2022), such simple filtering methods
are fundamentally incapable of successfully removing all undesirable data (Ziegler et al., 2022). In addition,
while the effects of current data filtering tools have not been studied extensively, there is evidence that
simple data filtering can be problematic in several ways. It disproportionately removes text from and about
marginalized groups (Dodge et al., 2021), reduces data diversity (Kreutzer et al., 2022) and amplifies some
social biases by decreasing LLM performance on language used by marginalized groups (Xu et al., 2021a;
Welbl et al., 2021). There is a need to understand these effects better and to develop, and evaluate, more
sophisticated data filtering tools, e.g. via using LLMs with appropriate prompting (Fernando et al., 2023)
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or through learned data filters using feedback from human labelers. Considering the negative side-effects of
data filtering, future research should also consider data editing and data augmentation as alternatives to data
filtering. In particular, future research should consider using LLMs to minimize the impact of undesirable
content present within pretraining data (which could then be used to train relatively better-aligned LLMs).
Existing LLMs could be effective in this regard by identifying and rewriting harmful content at large scales
or adding novel data to offset the effects of biases present within the data, e.g. adding text on female doctors
and male nurses (Stanovsky et al., 2019) or adding more data for low-resource languages (Ghosh & Caliskan,
2023; Yong et al., 2023). Such use of LLMs must be done in a careful way, as any alignment issues present in
the LLM may corrupt the data in unintended ways. While dataset filtering, and editing, could help improve
the alignment of the pretrained models in parts, it is not a panacea for all alignment problems. Training
data often contains historical and sociological facts, such as genocides and slavery, that can not simply be
discarded, nor can we edit history to create as many queens as kings.

3.1.2 Lack of Dataset-Auditing Tools
Internet-scale datasets lack transparency and their large scale makes it difficult to perform a comprehensive
manual audit of the dataset.9 This is a well-recognized problem (Birhane et al., 2023; Paullada et al., 2021;
Gebru et al., 2021; Mitchell et al., 2022; McMillan-Major et al., 2023). However, limited work has been
done to develop tools that assist scalable data analysis. Marone & Van Durme (2023) and Elazar et al.
(2023) have proposed methods that use hash collisions to detect how often a particular piece of text occurs
in the given dataset. Such techniques have proved useful for identifying data duplication (Lee et al., 2022) in
pretraining data, which helps limit privacy risks (Kandpal et al., 2022). These techniques can also help catch
and prevent benchmark data contamination (Sainz et al., 2023), which assists in improving the reliability
of evaluations (see Section 3.3). There is a need to extend these technique, e.g. by enabling the use of
measures of semantic similarity so that they could be used to identify undesirable data. Furthermore, there
is an emerging line of research on dynamic auditing of datasets which leverages the knowledge of training
dynamics to identify different types of data within a dataset. The majority of the work in this line of research
focuses on filtering out unlearnable or difficult samples (Agarwal et al., 2022), but Siddiqui et al. (2022) show
that this approach can be generalized to arbitrary data types, given a small amount of examples of each
type. However, their work is limited to image dataset analysis. Future research may consider adapting their
technique, or developing novel techniques, to enable similar kinds of auditing of language datasets as well.

3.1.3 Improving Training-Data Attribution Methods
Training data attribution (TDA) methods allow attributing the output of a model to specific training data
points (Grosse et al., 2023; Pruthi et al., 2020; Yeh et al., 2018; Ilyas et al., 2022). TDA can be an effective
interpretability and auditing tool as it might allow attributing alignment and safety failures to specific content
in the pretraining and fine-tuning data. However, like other interpretability methods (c.f. Section 3.4), most
TDA approaches lack scalability (despite some recent advances such as Grosse et al. (2023) and Park et al.
(2023c)) and often do not accurately surface all the relevant training samples for a given prediction (Akyürek
et al., 2022a). Furthermore, different TDA methods have different ideals (e.g. datamodels Ilyas et al., 2022 vs
influence functions Grosse et al., 2023), and even when the methods share the same ideal, they tend to diverge
in terms of how they approximate the ideal (e.g. Pruthi et al. 2020 vs Grosse et al. 2023). Hence, there
is a need to better understand the relative differences, strengths and weaknesses of various TDA methods.
This may be done by careful analysis of these methods (Bae et al., 2022), or through empirical evaluation
on standardized benchmarks (Akyürek et al., 2022a). Another open question is how TDA methods can
be efficiently applied to analyze models with multiple stages of training that differ in their loss functions
(such as LLMs). Furthermore, there are currently no (theoretically grounded) TDA methods that can be
applied to reinforcement learning problems — even for the cases where the model has not undergone any
pretraining (i.e. pure reinforcement learning training). Finally, there is a need to explore the application
of TDA methods to filter problematic data from pretraining datasets. A challenge in this regard would be
determining whether or not any filtering done using small-scale models results in improved alignment of
larger-scale models (Grosse et al., 2023, Section 5.3).

9Also see Section 4.5.10
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3.1.4 Scaling Pretraining Using Human Feedback
By default, the maximum likelihood training objective assumes that all data is of equally high quality.
However, this is not true. As such, there is a need to improve the training process by including information
about the quality and trustworthiness of different data points. Pretraining with human feedback (PHF)
(Korbak et al., 2023) does so by using conditional training (prepending pretraining sentences with one of
two special tokens, <|good|> and <|bad|>, based on estimates of human preferences) (Lu et al., 2022; Chen
et al., 2021a). Korbak et al. compared PHF with several alternatives and found it to be an effective method
of allowing an LLM to learn from harmful data during training, while disallowing the generation of harmful
data at test time (by conditioning on the <|good|> token). Subsequently, in experiments with PALM-2,
Anil et al. (2023) showed that conditional training also scales to larger LLMs. However, they only explored
the use of the human feedback data for pretraining in limited contexts e.g. reducing toxicity or generating
PEP-8-compliant Python code. Future work should consider how the technique can be used in broader
contexts, e.g. using estimates of human preferences instead of programmatic reward functions. This may
require extending the conditional training approach to use sequences of special tokens, coding for multiple
different attributes (Keskar et al., 2019), or exploring the use of alternative training methods to conditional
training. In particular, thought could be given to adopting various finetuning methods that directly learn
from preference data, e.g. DPO (Rafailov et al., 2023) or KTO (Ethayarajh et al., 2024), for use during
pretraining.

Currently, there is also a poor understanding of the reasons for the effectiveness of PHF. Korbak et al.
(2023) found that using feedback throughout pretraining is critical. However, Anil et al. (2023) pretrained
PALM-2 on a significantly larger dataset and found that using feedback for only a fraction of the pretraining
documents was sufficient for drastically reducing toxicity. Overall, there is currently limited research on
understanding how PHF scales with model size, the complexity of preferences, and the amount of feedback
during pretraining.

3.1.5 Modifying Pretraining to Improve Effectiveness of Downstream Safety and Alignment Efforts
It is plausible that simple modifications to the pretraining process could result in significant downstream
gains in the alignment, safety, and security of these models. For example, several studies have developed
retrieval-augmented LLMs which can provide a number of benefits such as a reduction in hallucination
(Borgeaud et al., 2022) and a reduction in privacy risk (Huang et al., 2023e). Exploring modifications to the
pretraining process that make the models easier to interpret could in particular be highly impactful. This
could take various forms, e.g. external structure might be imposed on models so that their functionalities
can be easily translated to human-readable code (Friedman et al., 2023); or models might be trained so
that their internal causal structure realizes a given high-level causal structure (Geiger et al., 2022), or model
architecture could be modified so that the models avoid learning polysemantic neurons (Elhage et al., 2022a)
(see Section 3.4 for further details). Some other interesting avenues of research that might assist with
downstream safety and alignment efforts include the development of task-blocking models (Henderson et al.,
2023c), and the development of pre-training methodologies that allow easier modifications to be made to
models later if needed, for example, forcing the model to unlearn and forget selective parts of the training
data (Pedregosa & Triantafillou, 2023; Liu et al., 2024b)(also see Section 3.2.4).

Misaligned pretraining of the LLMs is a major roadblock in assuring their alignment and safety. The
chief cause of this misalignment is widely believed to be that LLMs are trained to imitate large-
scale datasets that contain undesirable text samples. The large scale of these datasets makes their
auditing and manual filtering of such undesirable samples difficult. There is a need to develop scalable
techniques for data filtering, data auditing, and training data attribution to help identify harmful
data. Furthermore, even after harmful data is identified, further research is needed to find the most
effective ways to address the harmful data. In addition to directly improving the alignment and
safety of pretrained models, future work could explore ways in which pretraining could be modified
to facilitate other processes (e.g. safety finetuning or interpretability analysis) that can help to assure
alignment and safety.
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69. How can methods for detection of harmful data be improved? The complex nature of harmful
data (Rauh et al., 2022) makes it difficult to develop automated methods to effectively remove
all such data. Can we use feedback from human labelers, in a targeted fashion, to directly
improve the quality of the pretraining dataset? ←↩

70. How can the effects of harmful data be effectively mitigated? Instead of removing harmful
data, can it be edited, or rewritten, to remove the harmful aspects e.g. by an existing LLM?
Alternatively, can we add synthetic data, generated procedurally, to the model such that the
effects of harmful data are mitigated? ←↩

71. How can we develop static dataset auditing techniques to identify harmful data of various
types? Can existing techniques (e.g. Elazar et al., 2023) be extended for this purpose? ←↩

72. How can dynamic dataset auditing techniques (e.g. Siddiqui et al., 2022), which leverage
knowledge of training dynamics, be used to audit LLM pretraining datasets? ←↩

73. How can we further scale training data attribution methods, in particular, those utilizing
influence functions? How can we leverage insights from training data attribution methods to
improve the quality of the pretraining dataset? ←↩

74. How can the effectiveness of pretraining with human feedback (PHF) techniques be improved?
Korbak et al. (2023) utilize conditioning on binary tokens only (good/bad); how can it be
generalized to more granular forms of feedback e.g. harmless and helpfulness scores? In what
other ways can conditional training at train time, like PHF, be used to improve the alignment
of a pretrained model? ←↩

75. How can the pretraining process be modified so that the models are more amenable to
interpretability-based analysis? ←↩

76. Can we develop task-blocking language models, i.e. pretrain language models in a way that
they are highly resistant to learning or performing specific harmful tasks? ←↩

3.2 Finetuning Methods Struggle to Assure Alignment and Safety
Safety finetuning, using feedback from human labelers and/or feedback from other LLMs prompted with an
evaluation rubric is the primary method for improving the safety, alignment, and desirability of responses
produced by LLMs (OpenAI, 2023c; Bai et al., 2022a;b). However, these methods have empirical
shortcomings and do not necessarily result in a safe model. In particular, even after undergoing
safety finetuning, LLMs retain undesirable capabilities and knowledge. For example, recent work
has shown that a small amount of further finetuning on adversarial examples can effectively undo safety
finetuning (Yang et al., 2023a; Qi et al., 2023b; Lermen et al., 2023; Zhan et al., 2023). Relatedly, safety-
finetuned LLMs can be “jailbroken” via carefully chosen prompts to generate various types of undesirable
content that they were explicitly fine-tuned not to generate (c.f. Section 3.5). Further, finetuning fails to
robustly remove the tendency of LLMs to exhibit stereotypical biases in novel untested scenarios (Wan et al.,
2023b). Hence, there is a need to develop better finetuning methods — or alternative techniques — that
better assure model safety and alignment. In this section, we review several challenges in this regard and
propose research directions to tackle those challenges10.

3.2.1 How Does Finetuning Change a Pretrained Model?
When a pretrained model undergoes safety finetuning (e.g. for harmlessness and helpfulness (Bai et al.,
2022a)), how does this actually change the pretrained model? Specifically, to what extent does finetuning
fundamentally change the mechanisms and capabilities within a model? Several studies have theorized that
changes induced by finetuning are superficial and amount to learning a thin wrapper around the capabilities
that were learned during pretraining (Zhou et al., 2023b; Lubana et al., 2023; Jain et al., 2023b; Lee et al.,
2024). Lin et al. (2023a) analyzed the impact of finetuning on the conditional distribution of tokens and found
that finetuning impacts the distribution of only a very small fraction of tokens related to safety disclaimers,
conversation style, etc. They found that this impact is most pronounced for tokens early in the context;
the differences in the distribution between a finetuned LLM and a base LLM tend to diminish as greater
context is available. On the other hand, Clymer et al. (2023) found that in some cases, finetuning can add
new capabilities to the base LLM — a less superficial change.

10See (Casper et al., 2023a) for a complementary discussion on the limitations of reinforcement learning from human feedback.
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The question of whether finetuning can add new capabilities naturally leads to the question of whether or
not finetuning can remove them; ideally, finetuning should cause the LLM to forget undesirable knowledge
and capabilities from pretraining. This is also the expected behavior, as evidence from work on continual
learning indicates that deep neural networks often forget previously learned skills in a phenomenon called
“catastrophic forgetting” (French, 1999; Kirkpatrick et al., 2017). However, pretrained LLMs are naturally
resistant to forgetting (Scialom et al., 2022; Cossu et al., 2022). Consequently, even when it seems that a
finetuned LLM has forgotten how to perform a previously known task, its performance on that task can be
easily recovered via either specialized prompting (Kotha et al., 2023) or via finetuning with a small amount
of data from that task (Jain et al., 2023b; Yang et al., 2023a; Qi et al., 2023b; Lermen et al., 2023; Zhan
et al., 2023).

It is not well-understood why LLMs are highly resistant to forgetting. Ramasesh et al. (2022) found that
scale is partially responsible for increased robustness to catastrophic forgetting, while Li et al. (2022a) found
that transformer-based models are more robust to forgetting than other architectures. Lubana et al. (2023)
and Juneja et al. (2022) suggest that fine-tuned models remain in distinct basins of the loss function pre-
determined by pretraining, making the fact that LLMs retain a great deal of knowledge through finetuning
unsurprising. However, these studies are focused on vision models, or of (small-to-medium) LMs finetuned
for specific tasks, so it is not clear to what extent these explanations apply to LLMs. Hence, there is a
need for work that directly studies these phenomena on language models to better understand the extent to
which current finetuning techniques can induce forgetting within LLMs on targeted tasks. Relatedly, more
work is needed to understand the extent to which finetuning fundamentally changes the mechanisms and
capabilities of models and what factors influence these changes. This could be done via behavioral evaluation
on controlled task distributions, or through interpretability analysis to understand how the internals of the
model change when a model is finetuned on different task distributions (Jain et al., 2023b; Clymer et al.,
2023).

3.2.2 Finetuning Misgeneralizes in Unpredictable Ways
Finetuning is primarily performed on text in the English language (OpenAI, 2023c), but tends to generalize
to many other languages as well (Ouyang et al., 2022; Clymer et al., 2023). However, this generalization
can fail in unpredictable ways, e.g. not generalizing to the text encoded in base64 (Wei et al., 2023a), or in
low-resource languages (Yong et al., 2023). In a controlled study across multiple distribution shifts, Clymer
et al. (2023) found similar evidence of unpredictable generalization of LLM-based reward models. They
observed that factors such as in-distribution accuracy or including a small number of training examples from
the target distribution are not predictive of generalization to the target distribution. LLM-based reward
models, in general, are known to rely on spurious correlations (Bai et al., 2022a; Singhal et al., 2023b).
There is a need to improve our understanding of how finetuning generalizes. This can be facilitated by
directly studying and evaluating generalizations of LLM-based reward models used to provide feedback for
finetuning, as well as studying the LLMs finetuned on this feedback (Lambert et al., 2023). Furthermore,
more sophisticated fine-tuning methods e.g. those based on methods for better OOD generalization (Zhou
et al., 2023e; Arjovsky et al., 2019; Sagawa et al., 2019; Krueger et al., 2021; Lubana et al., 2023) could
be developed. Alternatively, the use of richer training signals, e.g. fine-grained feedback (Wu et al., 2023a)
or critiques (Scheurer et al., 2023a), could be explored to minimize the occurance of spurious correlations
in LLMs. Developing benchmarks that easily enable evaluating and comparing generalization abilities of
various finetuning methods can help stimulate greater research in this regard.

3.2.3 Output-Based Adversarial Training May Incentivize Superficial Alignment
Adversarial training, i.e. finetuning combined with red-teaming, is the standard technique to patch flaws in
models when they appear, but it is unclear the extent to which it can be used to thoroughly correct errors
in LLM reasoning. Red-teaming is often done manually. Hence, only a small number of training points are
generally available for finetuning the model. As a result, adversarial training does not reliably eliminate
the vulnerability of the adversarially-trained model to future attacks using the same method (Ziegler et al.,
2022). When presented with adversarial examples, LLMs may either learn the correct generalizable solution
or learn spurious features from the examples instead. The latter is often the simpler solution (Zhang et al.,
2021; D’Amour et al., 2022; Du et al., 2023a), and, hence, the LLM is more likely to learn spurious features,
resulting in superficial alignment (Du et al., 2022; Perez et al., 2022b). The limitations of adversarial training
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seem to stem in part from the fact that LLMs are not fine-tuned to make decisions that are consistent with a
coherent decision-making procedure — they are merely trained to produce text that will be rewarded (Zhang
et al., 2023e). A potential alternative to this could be to supervise the entire decision-making process to
ensure that LLM outputs are “right for the right reason”. This may be done via ‘process supervision’ (Uesato
et al., 2022; Lightman et al., 2023), which has been shown to improve performance on mathematical reasoning
problems (Stuhlmüller & Byun, 2022; Lightman et al., 2023), but has not yet been explored extensively in
the context of improving the alignment and safety of LLMs. Training language models to offer consistent
responses under augmentations to prompts has also been proposed, but research is highly preliminary (Chua
et al., 2024). Future work may consider applying process supervision or consistency training, perhaps in
conjunction with red-teaming, to evaluate whether or not it leads to greater generalization of aligned and
safe behavior.

An alternative technique to explore is latent adversarial training (Miyato et al., 2018; Hubinger, 2019; Kumari
et al., 2019; Casper et al., 2024b). Currently, gradient-based methods for discovering adversarial inputs tend
to be slow because the discrete nature of tokens limits the efficiency of gradient-based optimization methods.
Latent adversarial training can work around this issue by directly finding and finetuning on hidden states
(e.g. embeddings (Kuang & Bharti, 2021)) responsible for problematic outputs. Attacking the model in the
latent space is a relaxation of the problem of attacking it in the input space, so latent adversarial training
may offer stronger assurances of safe behavior than simple adversarial training (Casper et al., 2024b). On
the other hand, given that different forms of adversarial robustness are known to trade-off against each
other (Tramer & Boneh, 2019), this might prove counter-productive for robustness against feasible inputs.
Another motivation of latent space attacks is that some failure modes might be easier to elicit via the latent
space than in the input space (e.g. trojans (Chen et al., 2017)) because the concepts that are important to
the system’s reasoning are represented at a higher level of abstraction in the latent space (Johnston & Fusi,
2023).

3.2.4 Techniques for Targeted Modification of LLM Behavior Are Underexplored
There is a need to develop scalable methods that allow making targeted modifications to LLMs. A number
of approaches have been proposed for this purpose: model editing (Mitchell et al., 2021; Meng et al., 2022),
concept erasure (Ravfogel et al., 2022a;b; Belrose et al., 2023), subspace ablation (Li et al., 2023c; Kodge
et al., 2023), activation engineering (Li et al., 2023e) and representation editing (Turner et al., 2023b;a;
Li et al., 2023f; Zou et al., 2023a; Gandikota et al., 2023). However, a common shortcoming of all these
techniques is the reliance on attributing certain model capabilities to a few editable architectural components
within the model. This is typically done using interpretability techniques which currently lack robustness
and scalability (c.f. Section 3.4 for further discussion and research directions). Hence, there does not yet
exist a reliable toolbox for cleanly removing specific information from LLMs (Patil et al., 2023) — simply
prepending instructions for the desired edit in the context remains a strong yet trivial baseline (Onoe et al.,
2022; 2023). However, this is not secure due to prompt extraction attacks (Zhang & Ippolito, 2023).

Often the goal is to remove specific knowledge or capabilities from LLMs, e.g. removing personally identifiable
information stored within LLMs (Nasr et al., 2023). Prior work on this has been done under the paradigm of
machine unlearning, largely in the differential privacy literature (Bourtoule et al., 2021; Nguyen et al., 2022;
Sekhari et al., 2021; Liu et al., 2024b; Goel et al., 2024). Finetuning-based machine unlearning methods have
shown potential for making LLMs forget a specific domain of knowledge (Jang et al., 2022; Yao et al., 2023;
Eldan & Russinovich, 2023), but can fail to fully erase undesired knowledge (Shi et al., 2023; Lynch et al.,
2024). However, further research is needed to better understand whether or not machine unlearning is a
competitive option for improving safety and alignment. Furthermore, existing studies of machine unlearning
focus on removing specific facts from LLMs. Work is needed on methods for making broader edits to the
“capabilities” of the models that affect their behavior more generally.

The current research on removing undesirable knowledge from LLMs is actively developing. Additional
research using concrete benchmarks and evaluation criteria (Li et al., 2024) can direct the community’s
goals and allow for standardized comparisons of various techniques. Ideally, unlearning techniques should
be effective at removing knowledge in novel circumstances, effective relative to simple baselines (such as
prompt-based instruction), avoid negative side-effects (such as reduced performance on unrelated tasks),
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robust to ‘undoing’ via further finetuning or ‘relearning’ of undesirable capabilities via in-context learning,
and robust to adversarial attacks such as jailbreaks (Lynch et al., 2024).

3.2.5 Removal of Unknown Undesirable Capabilities

Due to the unsupervised nature of pretraining, LLMs learn various capabilities and acquire diverse knowledge
in unpredictable ways (c.f. Section 2.3). Existing safety-finetuning techniques can only act to mitigate
an undesirable capability within an LLM if it is known. Hence, an unknown undesirable capability may
continue to be active within a model, even after known undesirable capabilities have been effectively removed
(Hubinger et al., 2024).An unknown undesirable capability may be harmful in itself, or it may be undesirable
due to its potential to be used as an attack vector by adversaries and act as a “zero-day vulnerability” (Bilge
& Dumitraş, 2012). For example, the capability of GPT-4 to understand and respond to the text encoded
in base64, and other forms of encodings and ciphers, was exploited to jailbreak it (Wei et al., 2023a; Yuan
et al., 2023a). As LLMs are scaled further, and extended by training on many modalities simultaneously,
they may acquire many obscure undesirable capabilities which may pose security and safety risks, unknown
to their developers. Improving the coverage of evaluations (c.f. Section 3.3) might help move capabilities
from unknown to known. Alternatively, research could seek to develop methods that force the network to
forget unknown, undesirable capabilities. Yuan et al. (2023a) found that GPT-4 turbo, a quantized and
distilled version of GPT-4, had a considerably reduced ability to interpret and respond to text encoded in
the form of “ciphers”. This suggests that compression (Liebenwein et al., 2021; Du et al., 2021; Pavlitska
et al., 2023), distillation (Du et al., 2021; Li et al., 2021; Sheng et al., 2023; Pang et al., 2023), and latent
adversarial training (Casper et al., 2024b) might be effective tools in this regard.

A major goal of finetuning is to remove potentially undesirable capabilities in a model while steering it
toward its intended behavior. However, current approaches struggle to remove undesirable behaviors,
and can even actively reinforce them. Adversarial training alone is unlikely to be an adequate solution.
Mechanistic methods that operate directly on the model’s internal knowledge may enable deeper
forgetting and unlearning. Finally, behind these technical challenges is a murky understanding of
how finetuning changes models and why it struggles to make networks “deeply” forget and unlearn
undesirable behaviors.

77. To what extent does pretraining determine the concepts that the LLM uses in its operation?
To what extent can finetuning facilitate fundamental changes in the network’s behavior? Can
we develop a fine-grained understanding of changes induced by finetuning within an LLM?
←↩

78. Can we improve our understanding of why LLMs are resistant to forgetting? How is this
resistance affected by the model scale, the inductive biases of the transformer architecture,
the optimization method, etc.? ←↩

79. Can we create comprehensive benchmarks to assist in evaluating and understanding gener-
alization patterns of finetuning? ←↩

80. Can we develop more sophisticated finetuning methods with better generalization properties?
For example, by basing them on OOD generalization methods in deep learning or using
explanation-based language feedback (e.g. critique) to prevent reliance on spurious features?
←↩

81. How can we ensure that finetuning on a small number of adversarial (“red-teamed”) samples
generalizes correctly? Are process supervision and latent adversarial training viable methods
in this regard? ←↩

82. Can machine unlearning techniques be used or extended to precisely remove knowledge and
capabilities from an LLM? ←↩

83. How can we reliably benchmark methods for targeted modification of LLM behavior? ←↩
84. How can unknown undesirable capabilities be removed from an LLM? Are compression and/or

distillation effective ways to achieve this behavior? What are the kinds of capabilities that
are lost when an LLM is compressed, and/or distilled? ←↩
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3.3 LLM Evaluations Are Confounded and Biased
Sound and fair empirical evaluations are necessary to develop a calibrated understanding of the capabilities
of LLMs, as well as their risks. Evaluation has historically been a sore point in the fields of machine learning
and natural language processing (Raji et al., 2021; Bowman & Dahl, 2021; Liao et al., 2021; Hutchinson et al.,
2022; Kapoor & Narayanan, 2023; McIntosh et al., 2024); however, the evaluation crisis is considerably more
acute for LLMs (Mitchell, 2023). This is due to their unprecedented general-purpose nature relative to
machine learning models of the past, the introduction of novel issues that hinder accurate evaluation such
as prompt-sensitivity, and the worsening of existing issues such as test-set contamination. The evaluation
crisis needs to be addressed urgently as otherwise current evaluation methods may lead us
to overestimate or underestimate the capabilities of LLMs, and prevent accurate estimation
of their risks. Within this section, we highlight several challenges in this regard and invite the wider
community to work towards addressing these challenges and to be cognizant of them in the evaluation of the
LLMs.

3.3.1 Prompt-Sensitivity Confounds Estimation of LLM Capabilities
Current LLMs are highly sensitive to prompting, and their performance on a particular task may vary
drastically depending on the prompting strategy (Sclar et al., 2023; Mizrahi et al., 2023; Ramesh et al.,
2023). Further, LLMs are generally evaluated without access to tools like calculators, code-interpreters, the
internet etc. The combination of these two factors leads to underestimates of the capabilities and potential
performance of LLMs. For example, Zhou et al. (2023a) show that GPT-4 accuracy on the MATH dataset
can be improved from 53.9% to 84.3% via the use of special prompting and a code-interpreter. Despite years
of research, it remains impossible to guarantee that a particular prompt is optimal for a particular task, and
does not underestimate a model’s performance. Accurate accounting of LLM capabilities requires addressing
and accounting for prompt-sensitivity. The prominent approaches to address prompt-sensitivity include
instruction tuning, hand-designing prompts, and learning prompts. Instruction tuning (Ouyang et al., 2022;
Wei et al., 2021) improves the ability of a model to understand the user’s intent, and hence mitigates prompt
sensitivity to a certain extent. However, even for an instruction-tuned model, prompt engineering can help
elicit better performance.

Hand-designing prompts can be highly effective but is inherently inefficient and not scalable. Hence, future
work should focus on advancing learning-based or data-driven approaches (e.g. Fernando et al., 2023; Qin
& Eisner, 2021) to discover the best prompts for a given task in an automated fashion. We note that
learning-based approaches may introduce additional variables (e.g. training dataset) to which evaluation
might be sensitive. This suggests that it might not be possible to completely eliminate prompt sensitivity
— in which case, it is important to ensure that our evaluation accounts for prompt sensitivity. Sensitivity
of the evaluation to different aspects of the evaluation pipeline has been a long-standing challenge within
machine learning, and as such, past work in this area can provide inspiration for solutions. In particular,
deep reinforcement learning has had to grapple with the issue of seed sensitivity, resulting in work to identify
best practices (Agarwal et al., 2021) and the development of novel types of benchmarks (Cobbe et al., 2020).

3.3.2 Test-set Contamination Overestimates LLM Capabilities
The opaque nature of pretraining datasets makes it difficult to guarantee that a particular test data point,
or other very similar data points, have not been observed by the LLM previously during the pretraining
phase. Several studies show that LLMs perform better on familiar data (Wu et al., 2023b; McCoy et al.,
2023) and if the evaluation is performed using data that has previously been observed by the LLM (or very
similar data), it risks overestimating LLM capabilities (Tirumala et al., 2022). Indeed, Roberts et al. (2023b)
show that there is a positive correlation between the GPT-4 pass-rate and the popularity of a question on
Codeforce (an online competitive coding platform) and Project Euler (an online mathematical reasoning
platform) before the cutoff training date which disappears after the cutoff date; and several other studies
have identified contamination of pretraining datasets with known evaluation datasets (Elazar et al., 2023;
Magar & Schwartz, 2022; Golchin & Surdeanu, 2023; Oren et al., 2023). Avoiding contamination while
scraping the pretraining dataset from the web is difficult due to the dynamic nature of the internet: online
content tends to spread across the internet over time. Li (2023) found that blacklisting the original web-
sources used to curate the MMLU dataset (Hendrycks et al., 2020b) results in only a 1.5% reduction in
MMLU dataset contamination. Hence, there is a need to develop enhanced techniques to find and remove
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contaminated data within a pretraining dataset; or confirm the absence of contamination during evaluation.
Most techniques at the moment focus on identifying verbatim contamination (Elazar et al., 2023; Li, 2023).
However, contaminated data might also occur in pretraining datasets in mutated form, e.g. paraphrased or
translated into another language. So, future techniques ought to focus on semantic similarity measures to
more broadly identify contaminated data (Golchin & Surdeanu, 2023). In cases when a model’s training
dataset is available, can training data attribution methods like influence functions (Grosse et al., 2023) be
used to identify whether an LLM is generating an answer from memory, or performing the required reasoning
on the fly? Furthermore, different strategies have been adopted by benchmark creators to prevent the leakage
of benchmark content into the training datasets, e.g. use of canary strings (Srivastava et al., 2022), hiding
the benchmark behind an API (Sawada et al., 2023), or distributing the datasets as password-protected
archives (Rein et al., 2023). Further research is needed to examine the relative robustness of these tactics
against test-set contamination. It is possible that due to the aforementioned issue of the diffusion of content
on the internet, none of these measures will satisfactorily prevent test-set contamination.

3.3.3 Targeted Training Confounds Evaluation
Current LLMs undergo extensive targeted finetuning to suppress undesirable behaviors in simple and well-
known contexts. However, there is little evidence that this generalizes to more complex, harder-to-evaluate
contexts which might occur in real-world use (Clymer et al., 2023) (also see Section 3.2). For example, while
ChatGPT does not appear to embody steoreotypical biases in simple evaluations, it strongly manifests those
biases when prompted to take on a persona (Gupta et al., 2023), or when asked to perform a complex task
(Wan et al., 2023b). This Goodharting of simpler evaluation schemes has created a challenge where demon-
strating a failure mode requires significantly greater creativity and effort. This challenge may be countered
by developing novel evaluation paradigms, e.g. persona-based evaluation (Gupta et al., 2023), counterfac-
tual evaluation (Wu et al., 2023b) or procedurally-generated evaluation (Yu et al., 2023a). Establishing the
validity and/or limitations of evaluation methods in the presence of such Goodharting is an open research
direction.

3.3.4 Biases in LLM-Based Evaluation
Several studies have explored using an LLM to evaluate itself or to evaluate other LLMs (Bai et al., 2023b;
Zheng et al., 2023; Dubois et al., 2023). This approach has the inherent benefit of being cheaper, faster, and
more easily scalable than human evaluation (Zhuo, 2023; Perez et al., 2022b). However, LLMs also exhibit
many human-like cognitive biases in evaluation e.g. position biases, the preference for verbose and longer
answers, egocentric biases i.e. preferring its own output (Zheng et al., 2023; Wang et al., 2023g; Koo et al.,
2023; Wu & Aji, 2023). LLM-based evaluation may also differ significantly from human evaluation (Koo
et al., 2023; Perez et al., 2022b). This makes current LLM-based evaluation less trustworthy - however,
Wu & Aji (2023) found that modifying the LLM-based evaluation protocol to account for the cognitive
limitations of LLMs can significantly enhance the fidelity of their evaluations, especially when compared to
crowdsourced human evaluation. Thus, future research should focus on furthering the understanding of biases
present in LLM-based evaluation, and in particular, develop schemes to mitigate these biases. Furthermore,
understanding the sources of disagreement between human evaluations and LLM-based evaluations may help
to improve alignment between them and also to provide insight as to which evaluation method is preferred
in a given setting and how can they be combined effectively. In general, while studying the reliability of
LLM-based evaluation, it may help to distinguish whether an LLM is being used to evaluate itself, a more
capable LLM or a less capable LLM. From the perspective of self-improving LLMs (Huang et al., 2022a),
the first case is particularly important but has not yet been examined with appropriate care. For such a
setup, Constitutional AI (Bai et al., 2022b) has been shown to be an effective method for LLM evaluation
but further research is needed to better understand how the principles listed in the Constitution impact the
reliability of LLM evaluation (Kundu et al., 2023).

3.3.5 Fallibility of Crowdsourced Human Evaluation
Human evaluation via crowdsourcing is an important source of LLM evaluation, but it is both challenging
and expensive to obtain high-quality data (Hosking et al., 2023; Casper et al., 2023a, Section 3.1). One major
challenge is annotator bias (Pandey et al., 2022) - which can not only result in incorrect evaluation but can
also incentivize undesirable model behavior when this data is used for training (Perez et al., 2022b; Santurkar
et al., 2023). These issues can be mitigated to a certain degree by understanding the biases exhibited by
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human evaluators (Wu & Aji, 2023; Hosking et al., 2023); and by designing evaluation protocols to be robust
to these biases (Wu et al., 2023a; Ethayarajh & Jurafsky, 2022; Clark et al., 2021), and to account for
errors that may arise from these biases in evaluation metrics (Xiao et al., 2023). Complementing human
evaluators with LLMs could be an effective way to improve the quality of human evaluations (Saunders
et al., 2022). Furthermore, developing better models than the Bradley-Terry model (Bradley & Terry, 1952)
of how humans generate their preferences may also help tackle issues with human evaluation (Laidlaw &
Dragan, 2022; Lindner & El-Assady, 2022; Fageot et al., 2023; Ethayarajh et al., 2024). Lastly, Veselovsky
et al. (2023) found that LLMs are commonly used among crowdsource workers, which speeds up annotation
at the potential cost of validity. To avoid such issues, it is imperative to ensure appropriate incentives for
the data workers (Prassl & Risak, 2017; Shah et al., 2015) (c.f. Section 4.5.10).

3.3.6 Systematic Biases in Evaluation
The machine learning ecosystem has several different types of systematic biases, such as the underrepre-
sentation of women (Schluter, 2018) and the overrepresentation of U.S. centric point of view in research
(Septiandri et al., 2023). These systematic biases result in ‘blindspots’ in LLM evaluation (Hutchinson
et al., 2022). For example, despite the fact that most LLMs are multilingual, evaluation of LLMs is largely
conducted in English. As a result, LLMs can exhibit failure modes in other languages. Ghosh & Caliskan
(2023) found that ChatGPT shows stereotypical gender biases when translating into languages like Bengali,
Farsi, and Turkish, etc. Similarly, Yong et al. (2023) found that GPT-4 engages in unsafe behavior with
higher frequency in low-resource languages, i.e. low-resource languages act as jailbreaks. Additionally, sys-
tematic biases may contribute to quality-of-service harms (Blodgett et al., 2022). Hence, there is a need for
research to discover systematic biases that exist in the evaluation of LLMs and to develop ways to address
them.

3.3.7 Challenges with Scalable Oversight
As LLMs gain further capabilities and are applied to increasingly difficult and complex tasks, it will be
increasingly difficult for humans to reliably evaluate the performance of LLMs. This raises the need for
scalable oversight - evaluation methods that remain effective past the point that models start to achieve
broadly human-level performance (Bowman et al., 2022). Many methods for scalable oversight have been
proposed — e.g. consistency checks (Fluri et al., 2023), self-evaluation (Bai et al., 2022b), supervision via
debate (Irving et al., 2018; Bowman et al., 2022; Bowman & Lanham, 2023), weak-to-strong generalization
(Christiano et al., 2018; Burns et al., 2023; Hase et al., 2024), process supervision (Uesato et al., 2022;
Lightman et al., 2023) and recursive reward modeling (RRM) (Leike et al., 2018; Wu et al., 2021). A
key challenge is the fuzzy nature of the aforementioned proposals, with important technical details often
left unspecified. There is a need for further research to formalize these proposals in the context of LLMs.
Fundamental challenges with scalable oversight proposals include identifying a suitable ‘alignment target’
(Krueger, 2023, Section 1.3.1) and verifying that a method can successfully approximate that target. This is
challenging because, by definition, humans struggle to evaluate the performance of tasks requiring scalable
oversight. This raises the non-technical — but deeply practical — question of how a human overseer should
respond when an AI system trained with scalable oversight appears (to them) to be misbehaving. We discuss
closely related socio-technical challenges in Section 4.1.1.

The scalability, robustness, and practical feasibility of these proposals are also currently not clear. Despite
some initial work (Burns et al., 2023; Hase et al., 2024; Khan et al., 2024), the generalization properties of
all of the proposed methods are unclear, i.e. how do these methods scale with respect to the task difficulty in
practice. Secondly, most proposals, explicitly or implicitly, rely on the idea of decomposing a difficult task
into smaller and easier-to-evaluate sub-tasks. However, most real-world tasks are unlikely to admit a clean
decomposition, and hence, any decomposition of a sufficiently complex task will have some approximation
error which may require novel techniques to address (Reppert et al., 2023). Thirdly, many proposals, e.g.
debate include a human-in-the-loop component and thus might inherit the same challenges with human
evaluation discussed above. An alternative to using human evaluation is to use a robustly-aligned LLM,
but there is increasing evidence that our current alignment techniques do not result in the robust alignment
of LLM models (Jain et al., 2023b) - and a non-robustly aligned AI agent might either fail to provide
robust oversight due to its inherent (hidden) biases (Gupta et al., 2023), or become exploited by other
more powerful LLM models (Meinke, 2023). This indicates the need to understand how robust different
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scalable supervision strategies are. Indeed, one could argue that with scalable supervision techniques, the
most important thing is not empirical validation of the method, but theoretical characterization of the
robustness of the mechanisms, e.g. to intentional or unintentional subversion on the part of AI agents
(Barnes et al., 2020; Brown-Cohen et al., 2023). A more nuanced understanding of the differences between
the aforementioned proposed methods for scalable oversight, and their relative strengths and weaknesses,
can help the community prioritize research efforts accordingly, and provide insight as to which proposals
are complementary, and which are interchangeable. Lastly, all the aforementioned proposals are generic,
and while they have been applied with some success to LLMs, it is possible that better scalable oversight
strategies can be developed specifically for LLMs.

Many issues undermine our ability to comprehensively and reliably evaluate LLMs. Issues such as
prompt-sensitivity, test-set contamination, and targeted training to suppress undesirable behaviors
in known context confound evaluation. The validity of evaluation is further compromised by biases
present in LLMs (which are used to evaluate other LLMs), and human evaluators. Furthermore,
there exist ‘systematic biases’ that create blindspots in LLM evaluations, e.g. limited evaluations on
low-resource languages. Finally, considering the rapid rate of improvement in LLMs’ capabilities, we
need robust strategies to implement scalable supervision which are currently lacking.

85. Can we develop automated methods that reliably find the best prompt for a given task or
task instance? ←↩

86. How can we account for prompt sensitivity when evaluating an LLM? ←↩
87. How can the evaluations of LLMs be made trustworthy given the difficulty of assuring that

there is no test-set contamination? Can we develop methods that can detect whether a given
text is contained in the training dataset in mutated form, e.g. paraphrased or translated into
another language? ←↩

88. How can training data attribution methods be used to detect cases of LLMs responding to
queries based on memorized knowledge when the training dataset is known? ←↩

89. What measures can evaluation developers take to prevent leakage of the evaluation data
into an LLM’s training dataset? How effective are existing measures such as canary strings,
hiding datasets behind APIs, or password-protecting dataset files in detecting accidental
and/or deliberate leakage? ←↩

90. How can the failure modes of an LLM be uncovered when the LLM has been explicitly trained
to hide those failure modes? Are there general techniques, such as persona modulation, or
counterfactual evaluation, that can be used for this purpose? ←↩

91. What are the various ways in which an evaluation of an LLM by an LLM may be biased or
misleading? How can LLM-based evaluation be made robust against such biases? ←↩

92. What are the limitations, and strengths, of Constitutional AI-based LLM evaluation? How
can we develop a nuanced understanding of how principles given in the constitution affect the
evaluation of different LLM behaviors? How do LLMs handle issues such as underspecification
or conflict in the constitutional principles? ←↩

93. How can evaluation done by humans be made robust against the various known biases and
cognitive limitations of humans? How can LLMs be used to complement human evaluators
to improve the quality of human evaluations?

94. Can we develop better models of how humans generate their preferences than the widely-used
Bradley-Terry model?

95. How can the ‘blindspots’ in LLM evaluation resulting from systematic biases be avoided? ←↩
96. Can we formalize different proposed methods for scalable oversight in the context of evaluating

LLMs? Can this formalization be used to understand the relative strengths and weaknesses
of these proposals, through theoretical and empirical research? Which proposed methods are
complementary, and which are interchangeable? ←↩

97. Are there any decomposition strategies that generalize across tasks? Prior work has pro-
posed task-specific decomposition strategies, e.g. for book summarization (Wu et al., 2021)
or writing code (Zhong et al., 2023a). Do the proposed decompositions generalize to other
tasks? Can language models automatically decompose tasks? ←↩
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3.4 Tools for Interpreting or Explaining LLM Behavior Are Absent or Lack Faithfulness
To assure alignment and safety of LLMs, we can not merely rely on behavioral evaluations alone — especially
given the severe limitations of current evaluation methods highlighted in the previous section. Thus, there is
a need for reliable, robust, and scalable methods that may help us interpret and explain neural network-based
models. Various ways to interpret model behaviors have been proposed in the literature. Unfortunately,
all the interpretability methods suffer from various fundamental and practical challenges that
limit their viability for providing assurances of safe behavior. We discuss two representative classes
of methods in this section. The first class of method aims to develop an understanding of model behavior by
opening up the ‘black-box’ and developing an understanding of the internal representations and mechanisms
of a model. This includes work done in the research areas of representation probing and mechanistic inter-
pretability. The second class of methods aims to explain model behavior by designing methods that cause
the model to externalize critical parts of reasoning in an interpretable form, e.g. natural language (Reynolds
& McDonell, 2021; Wei et al., 2022c; Kojima et al., 2022; Lanham, 2022).

Fundamental Challenges
There are some challenges that all interpretability and explainability methods must overcome. We discuss
four such challenges in the following text. The first, and perhaps the most critical challenge, is that in order
to make the interpretability problem tractable, interpretability methods typically presume that (internal)
model reasoning works in specific ways. These presumptions often lead to abstractions that are dubious.
The second challenge is that neural networks are in no way constrained to use human-like concepts. Indeed,
advanced AI systems like AlphaZero have been found to use different concepts than ordinarily used by
humans (Schut et al., 2023). This naturally makes the problem of interpreting such models much harder.
The third challenge is that we require explanations generated by interpretability-based analysis to not just
be plausible, but also be faithful. However, scalable evaluation of the faithfulness of an explanation is an
extremely challenging problem. Finally, interpretability methods are used not just to identify undesirable
patterns in LLM reasoning, but also to modify model behavior (Zou et al., 2023a). However, it is unclear
how robust such modifications are and whether interpretability methods maintain validity when used to
modify model behavior or not.

3.4.1 Abstractions Used for Interpretability Are Often Dubious
The goal of interpretability is to produce abstract explanations of internal mechanisms of a model. However,
it is unclear what kind of abstractions exist within neural networks that can be used for this purpose
(Appendix A Zou et al., 2023a). Using the right abstraction can help preserve the most critical and useful
information while simultaneously improving ease of understanding. On the other hand, using an incorrect
abstraction can result in misleading explanations. For example, early interpretability studies on neural
networks abstracted non-linear behavior in terms of a linear (interpretable) approximation around the input
(Ribeiro, 2016; Lundberg & Lee, 2017). however, Bilodeau et al. (2022) show that popular feature attribution
methods based on this abstraction — Integrated Gradients (Sundararajan et al., 2017) and Shapley Additive
Explanations (SHAP; Lundberg & Lee, 2017) — can provably fail to improve on random guessing for inferring
model behavior. In a similar vein, a large body of work on interpreting neural network representations
has focused on interpreting individual neurons (e.g. Dalvi et al., 2019; Bau et al., 2020; Schubert et al.,
2021), presuming that neurons specialize; however, this was later found to be problematic because individual
neurons can be polysemantic and may not actually be specializing (Elhage et al., 2022b; Antverg & Belinkov,
2022; Geva et al., 2022; Geiger et al., 2023). Similarly, linear probes — learned either through supervised
or unsupervised methods — are commonly used to discover structure within internal representations of
neural networks (Azaria & Mitchell, 2023; Burns et al., 2022). However, probes are typically trained on
a different dataset than the model, which may contain spurious features and recent work has shown that
in some cases, these probes might be latching onto spurious features present in the datasets used to train
these probes, rather than actual features represented within the model (Farquhar et al., 2023; Levinstein &
Herrmann, 2023). Similarly, circuit-style mechanistic interpretability assumes that there exist task-specific
circuits (Olah et al., 2020), or subnetworks, within neural nets that can be discovered. But it is unclear
to what extent this is true (McGrath et al., 2023; Veit et al., 2016). Natural-language-based externalized
reasoning presumes that that the internal reasoning processes of the LLM can be faithfully captured, and
expressed, in natural language (Lanham, 2022). But it is unclear to what extent this is true (Wendler et al.,
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2024). In general, it is unclear what kind of computational structures exist within neural nets, making it
difficult to develop appropriate abstractions of neural networks’ computations. In addition to discovering
abstractions that naturally arise within neural networks, it may be helpful to design training objectives that
may incentivize a model to use (known) specific abstractions (Geiger et al., 2021).

3.4.2 Concept Mismatch between AI and Humans
A fundamental challenge with interpretability is that we do not have guarantees that the functions that
models learn rely on features or reasoning processes that translate well to human-comprehensible concepts
(Mahinpei et al., 2021). This is especially a concern in domains where AI systems outperform humans, since
the systems appear to leverage reasoning processes or features unknown to humans (Schut et al., 2023). As a
result, relying on human concepts may limit our ability to discover appropriate concepts that provide the best
mechanistic explanation of model behavior. Many interpretability methods (e.g. TCAV; Kim et al., 2017)
are top-down (supervised) approaches to interpretability in the sense that they start with a hypothesis about
a concept they are looking for in a model, and then utilize labeled datasets to discover how a model represents
that concept. The main shortcoming of this approach is that if the model is using concepts unknown to us,
then this approach may not be able to identify those concepts. Due to this inherent limitation, bottom-up
(unsupervised) concept discovery methods that do not rely on an initial set of concepts to look for but instead
aim to discover the most influential concepts may be more appropriate. Indeed, Schut et al. (2023) develop
an unsupervised concept discovery method that successfully identifies, and isolates, novel chess concepts
within AlphaZero (Silver et al., 2017) that are not present in human chess games. These chess concepts
were then consequently taught to expert human players in a user study. While the expert humans were
able to comprehend the novel concepts, they still struggled to learn them in cases where the novel concept
conflicted heavily with the existing (human) notions of appropriate chess play. Unfortunately, the approach
developed by Schut et al. appears to be highly specific to AlphaZero. Thus, there is a need to develop general
procedures that may help translate between human and machine concepts in cases where machine concepts
do not naturally map onto known human concepts. Alternatively, specialized methods could be developed
to help AI models learn representations that are aligned with humans (Bobu et al., 2023; Muttenthaler
et al., 2023). This is one of the goals of the field of representation alignment within machine learning:
see Sucholutsky et al. (2023) for a recent survey. However, we note that representation alignment works
generally include human-in-the-loop training which is inherently difficult to scale. The concept-mismatch
problem may also undermine the validity of externalized reasoning (via natural language). In the cases of
concept mismatch, externalized reasoning may approximate the internal model concepts using the closest
human concepts but this approximation may cause externalized reasoning to become unfaithful. However,
the generative nature of externalized reasoning may enable interactive communication between the human
user and the model that may enable humans to learn novel concepts with less difficulty.

3.4.3 Evaluations Often Overestimate the Reliability of Interpretability Methods
Prior interpretability methods in machine learning have a fraught history. Over time, many different inter-
pretability methods have been introduced with convincing case studies and theoretical grounding (Ribeiro,
2016; Lundberg & Lee, 2017; Sundararajan et al., 2017), gaining popularity in both core ML research and
adjacent applications (Gilpin et al., 2018). Unfortunately, the same methods were later demonstrated to
completely fail basic tests for usefulness to humans and provided no improvement over random baselines
(Adebayo et al., 2018; Hase & Bansal, 2020; Adebayo et al., 2020; Bilodeau et al., 2022; Casper et al.,
2023b).11 This trend continues to date: recent interpretability work in feature interpretation made claims
(Bills et al., 2023) that failed to withstand rigorous evaluations (Huang et al., 2023c). Given this pre-
carious situation, it is imperative to set up rigorous evaluation standards for the interpretability methods
(Doshi-Velez & Kim, 2017; Miller, 2019; Krishnan, 2020; Räuker et al., 2023).

A basic desideratum for model explanations is faithfulness, i.e. a given explanation should accurately reflect
the model’s internal reasoning (Jacovi & Goldberg, 2020). However, typically details about the model’s
internal reasoning are not known apriori. This makes it challenging to assess the faithfulness of a model
explanation. As a result, different ways of evaluating faithfulness have been proposed and studied in the
literature. However, often these strategies are specific to a particular interpretability method or model class

11We make this point not to fault past methods, but to emphasize the difficulty of the problem: explaining the behavior of
a complicated non-linear function over high-dimensional data to a human in an efficient manner is an extremely difficult task.
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being interpreted. A relatively model-agnostic and method-agnostic notion of faithfulness is counterfactual
simulatability which posits that for a model explanation to be faithful, a model computation (after some
intervention) must change in the same way as a human would have expected it to change given model
explanation and knowledge about the intervention (Doshi-Velez & Kim, 2017; Ribeiro et al., 2018; Hase &
Bansal, 2020).

For mechanistic interpretability, a faithful interpretation of a model circuit should enable us to predict how
interventions on model inputs or the circuit itself change model behavior (Wang et al., 2022; Chan et al.,
2023c). Model behavior here could be measured in terms of model outputs or intermediate computations
(e.g. outputs of particular neurons) within a circuit. Furthermore, while the notion of simulatability intro-
duced above presumes that the entity simulating the model is a human, that is not necessary in general,
and the simulation entity could be a computer program as well, e.g. a RASP program (Zhou et al., 2023c).
Such ‘automated’ measures of simulatability may be particularly helpful in developing benchmarks for in-
terpretability methods. Currently, mechanistic interpretability tools are not practically competitive with
non-mechanistic techniques for discovering novel properties of models and evaluating their behavior. In
general, there is a need for benchmarks to standardize metrics of success and to help create better stan-
dards for evaluating explanation faithfulness (Schwettmann et al., 2023; Räuker et al., 2023). In addition
to standardizing faithfulness evaluations, benchmarks will be most useful when they have clear implications
for applications like detecting and mitigating alignment failures. In order to catch worst-case outcomes,
explanation faithfulness may need to be evaluated particularly in adversarial settings, where models are
optimized to exhibit certain alignment failures that we try to then detect and mitigate (for example, as done
in trojan detection: Center for AI Safety, 2023; Casper et al., 2023b; Rando et al., 2024). For such cases,
there is a need to design faithfulness metrics that focus on worst-case rather than average-case explanation
faithfulness. Alternatively, evaluations could focus on faithfulness for high-risk inputs rather than the whole
data distribution.

A similar notion of faithfulness applies to model explanations based on externalized reasoning as well. A
common way to evaluate faithfulness in the context of natural-language-based externalized reasoning is to
intervene on model inputs and check that previous explanations agree with model outputs (i.e. intermediate
reasoning steps, final predictions) on the new inputs. Unfortunately, in general, determining whether reason-
ing stated in natural language is consistent with an observed behavior or not reduces to a logical entailment
(natural language inference) task (Dagan et al., 2005), which are known to be highly subjective and difficult
to properly annotate (Pavlick & Kwiatkowski, 2019). As a result, current works that study the faithfulness
of externalized reasoning only focus on simple tasks, e.g. multiple-choice questions (Lanham et al., 2023).
Furthermore, given that the input space is quite large for LLMs, efficiently surfacing data for which model
behavior will be inconsistent with previously stated reasoning can be extremely challenging (Chen et al.,
2023b). Efficiently surfacing inconsistent behavior may require a hypothesis about why models might be
inconsistent. For example, one might need to suspect that models are sensitive to answer choice ordering,
in order to discover that models give inconsistent answers when perturbing this part of the prompt. As a
result, detecting inconsistencies between stated reasoning and model behavior across datapoints is a difficult
problem for humans to efficiently solve on their own. Scalable oversight methods (c.f. Section 3.3.7), which
often use LLMs to assist humans in evaluations of a particular task, could help detect unfaithful reasoning
efficiently (Saunders et al., 2022; Bowman et al., 2022). In cases where an automated measure of evaluating
faithfulness for an (input, output, explanation) triplet is available, adversarial optimization could be used to
efficiently search for perturbations to a given input to generate outputs inconsistent with a given explanation.

While within this section, we have primarily focused our discussion on evaluating the faithfulness of expla-
nations, in practice, explanations may need to fulfill additional desiderata to be useful to intended users,
e.g. minimality (Wang et al., 2022) or ease-of-understanding (Bhatt et al., 2020). Hence, we stress that any
claims about the interpretability methods being ready to be used by practitioners ought to be accompa-
nied by context-based evaluations of interpretability methods, using e.g. user-studies. These context-based
evaluations should strive to reflect realistic use cases and users.

3.4.4 Can Interpretability Methods Maintain Validity When Used to Modify Model Behavior?
A number of approaches have been developed that allow modifying LLMs behaviors by intervening on sources
of those behaviors (e.g. representations) within the model. This includes techniques such as model editing
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(Mitchell et al., 2021; Meng et al., 2022; Hernandez et al., 2023a; Tan et al., 2023; Wang et al., 2023f),
subspace ablation (Li et al., 2023c; Kodge et al., 2023), and representation editing (Li et al., 2023e; Turner
et al., 2023b;a; Li et al., 2023f; Zou et al., 2023a; Gandikota et al., 2023). Currently, these methods have
only had limited success (see Section 3.2.4), however, as the scalability and efficiency of interpretability
techniques improve, it is likely that such methods may become more popular and may see wider adoption.
Indeed, prior work has used (other) interpretability methods such as saliency maps for optimizing neural
networks to act in the desired way (Ross et al., 2017; Hendricks et al., 2018; Rieger et al., 2020; Stammer
et al., 2021). Specific to LLMs, process supervision has been used to provide feedback to a model to improve
its externalized reasoning (Lightman et al., 2023). However, due to the prevalence of Goodharting (Chu et al.,
2017; Manheim & Garrabrant, 2018; Lehman et al., 2020), there is a concern that using an interpretability
method as an optimization target may cause it to lose its validity due to overfitting. As a result, the
underlying behavior that is being targeted may continue to persist within the model, even if interpretability
results no longer indicate that it is present. Research is needed to understand to what extent this is a
problem for various techniques and how it might be addressed.

Challenges Specific to Interpreting Model Internals
In addition to the aforementioned challenges, there also exist several challenges specific to techniques like rep-
resentation probing and mechanistic interpretability that aim to understand representations and mechanisms
within neural networks. These challenges include limited knowledge of how representations are structured
within neural networks; polysemanticity of individual neurons; high sensitivity of interpretability results to
the datasets used for analysis and limited scalability of techniques used for feature interpretation and circuit
discovery.

3.4.5 Assuming Linearity of Feature Representation
A potential fundamental obstacle toward making progress in interpretability is that many methods rely
heavily on the assumption that features are represented ‘linearly’, i.e. as (linear) directions in the activation
space (Park et al., 2023b). Many studies have demonstrated the utility of this assumption in interpreting
(Alain & Bengio, 2018; Rogers et al., 2020; Elhage et al., 2022b) and controlling (Turner et al., 2023b; Li
et al., 2023e; Wang et al., 2023k) models, which lends support for this hypothesis. However, Hernandez
et al. (2023b) provide some evidence that some concepts might be represented non-linearly. Further research
is required to better understand which concepts are encoded linearly, and which are encoded non-linearly.
Factors such as model capacity may also affect whether a given concept gets encoded linearly (potentially
in a highly lossy way) or non-linearly. There is also a need to better understand the differences between
how different model representation spaces (e.g. MLPs vs. attention layers) encode information. For example,
are representations in later layers of the model more or less likely to be structured linearly? Further,
even if features are represented linearly, we still need to define an appropriate inner product for assessing
representation similarity, and it is not clear how to choose an inner product over model hidden states (Park
et al., 2023b). A better understanding of these issues would enable us to design more reliable probing methods
for assessing the informational content of internal model representations and determining the similarity
between representations.

3.4.6 Polysemanticity and Superposition
Individual neurons within a model can make a natural building block for constructing circuit-style interpre-
tations of models. However, a notable challenge with establishing interpretations of individual neurons is
that neurons often activate strongly for seemingly unrelated features in input data. This has recently been
dubbed polysemanticity by Elhage et al. (2022b). The authors also argue that polysemanticity may be a
result of models representing a large number of sparsely activated features in a lower-dimensional hidden
representation, and present a toy model of this phenomenon, which they call ‘superposition’. Motivated by
this hypothesis, recent work has used sparse autoencoders to find more interpretable features (Sharkey et al.,
2023; Graziani et al., 2023; Bricken et al., 2023; Sucholutsky et al., 2023; Cunningham et al., 2023). How-
ever, these sparse autoencoders can be orders of magnitude larger than the language models they are trained
to explain, which may be prohibitively expensive for larger models (for further discussion on challenges in
scaling interpretability analysis, see Sections 3.4.8 and 3.4.9). More work is needed to understand the root
causes of uninterpretable, polysemantic features in large language models (relating it back to superposition,
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concept mismatch, or other causes), which should help shed light on which interpretability approach best
addresses the root cause.

3.4.7 Sensitivity of Interpretations to the Choice of Dataset
A specific dataset, which is often much smaller than the full training dataset, is typically used for discovering
concepts within a model. Discovered concepts can thus be highly sensitive to what samples are included
in the dataset used for concept discovery. Indeed, Ramaswamy et al. (2022) found that various top-down
(supervised) concept discovery methods produce conflicting explanations for the same model output de-
pending on which dataset was used to supervise the probe that detects concepts in the model. A similar
issue applies to bottom-up (unsupervised) concept discovery methods. A particular neuron might activate
on two distinctive sets of inputs depending on what dataset is used for retrieving highly activating inputs,
a phenomenon termed an interpretability illusion (Bolukbasi et al., 2021). This high level of sensitivity to
dataset design is concerning as this limits the generalizability of the interpretability results. To remedy this
issue, one could aim to develop datasets for probing that contain all possible concepts of interest (which,
for supervised concept discovery, would need to be labeled). For LLMs, such a dataset could be the original
model training data (McDougall et al., 2023). However, there are clear compute issues that prohibit the
use of pretraining data for concept discovery (e.g. even performing a correlational analysis of documents
that highly activate neurons would demand a runtime proportional to pretraining). Given the fact that full
training dataset can not be used, and use of any subset of training data risks omitting some concepts used
by a model in its outputs, future methods should consider developing compute-adaptive methods for concept
discovery that progressively grow a seed dataset by exploring the dataspace in directions that plausibly
contain novel concepts used by the model for prediction.

3.4.8 Feature Interpretation Is Hard to Scale
Current techniques and methods used in mechanistic interpretability are quite primitive and difficult to scale.
Hence, so far, mechanistic interpretability has only successfully identified circuits explaining 95%+ of the
variance in model behavior for highly toy problems, like modular division (Nanda et al., 2022).

Feature interpretation or concept-discovery, i.e. identifying what (human) concepts different model features
correspond to, is often the first step in interpreting the internal mechanisms of a model. A typical approach
for this is to assign meanings to model features by looking at data that highly activates the feature; this
generally requires a human to be in the loop to generate hypotheses about what concepts the feature under
study might be encoding, and then perform a faithfulness evaluation for this hypothesis (like the “simulated
neuron” experiment from (Bricken et al., 2023)). Both of these steps are highly time-consuming. Bills
et al. (2023) attempt to automate this process by using an LLM, GPT-4, in the place of human, however,
Huang et al. (2023c) show that concept labels generated by GPT-4 in aforementioned work have high error
rates, are often ambiguous in meaning and do not provide a faithful explanation of model behavior on
the whole. Furthermore, both human-in-the-loop and LM-automated approaches may struggle to properly
identify the meaning of individual features due to the aforementioned issues of concept-mismatch problem
(Section 3.4.2), polysemantic neurons (Section 3.4.6) and subjectivity of results to the concept annotation
processes (Section 3.4.7).

Researchers may consider exploring ways to sidestep the scalability limitations of feature interpretation
methods, e.g. by focusing on interpreting relevant features for alignment failures or that explain a large por-
tion of model behavior. Alternatively, instead of trying to interpret features directly at a highly fine-grained
level, it may be helpful to develop methods that begin by explaining features at a higher level of abstraction,
and then explain them at more fine-grained levels when necessary. For example, sparse autoencoders with
fewer learned features appear to represent features at a higher level of abstraction, and more precision can
be achieved later by fitting a model with more learned features (Bricken et al., 2023). Using language models
to automate the feature annotation is also a promising approach worthy of further research and refinement
(Hernandez et al., 2021; Bills et al., 2023). Automatic hypothesis generation methods could be developed
to iteratively refine hypotheses by finding instances of disagreement between the explanation and observed
model behavior.
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3.4.9 Circuit Discovery Is Hard to Scale
Isolating circuits within a large network is also highly challenging and typically done via manual inspection
(Wang et al., 2022; Goldowsky-Dill et al., 2023). While there has been some recent progress towards au-
tomating circuit discovery (Conmy et al., 2023); more work is needed to develop automated and scalable
methods for circuit discovery. The primary challenge for circuit discovery is that the hypothesis space can
be quite large, possibly combinatorial as any of the subnetworks within a model can be the desired circuit.
The ACDC algorithm proposed by Conmy et al. gets around this issue by initializing the whole network as
the circuit, and then sequentially searching over the edges — deleting any whose deletion does not impact
the performance on task of interest. However, even this greedy approach may be practically infeasible for
extremely large models. This sequential deletion approach also runs the risk of missing backup or secondary
computational nodes from the identified circuits, which only becomes active when the primary computational
node is ablated (Wang et al., 2022).

Thus, there is a need for work to develop automated and scalable methods for circuit discovery. In addition to
designing theoretically grounded algorithms for circuit discovery, efficient heuristics could also be developed
to help improve the efficiency of search. It may also be useful to design circuit discovery methods that
operate at larger network scales than individual neurons and adjacent layers, in order to reduce the size of
the circuit hypothesis space.

Challenges Specific to Externalized Model Reasoning
One form of interpretability that has become popular with LLMs is externalized reasoning. Specifically, we
attempt to make model reasoning visible to an external observer by steering models to make predictions
based on reasoning patterns that are by construction stated in natural language (making them naturally
interpretable). For example, chain-of-thought reasoning (Reynolds & McDonell, 2021; Wei et al., 2022c;
Kojima et al., 2022) prompts the model to break a problem down into sub-problems and then compose the
final solution by solving these sub-problems. Externalized reasoning can also be performed using formal
semantics, for example, program synthesis approaches use LLMs to generate programs (code) that when
executed solve the given problem. However, despite its intuitive appeal, this strategy suffers from the
fundamental challenges discussed above. Different variants of this strategy also have other shortcomings.
Natural-language-based externalized reasoning can be misleading and unfaithful, while externalized reasoning
methods that use formal semantics are difficult to apply to open-ended tasks like question-answering.

3.4.10 Externalized Reasoning in Natural Language May Be Misleading
Externalized reasoning in natural language is a naturally attractive option for interpretability due to it
being interpretable to any human user without any requirements of specialized knowledge. However, for it
to be a reliable form of interpretability, it must faithfully indicate the critical causal factors responsible for
particular model behavior. However, Turpin et al. (2023) found that models’ CoT reasoning can be heavily
steered towards incorrect answers by biasing features in prompts — e.g. by having a user suggest that a
specific answer choice is correct. CoT explanations in such cases can give plausible rationalizations for why
the biased answer is correct, without mentioning the influence of the biasing features in the prompt. In a
similar result, Lanham et al. (2023) show that models can be insensitive to edits made to their reasoning.
This problem of models generating plausible yet unfaithful reasoning may be exacerbated when models are
applied to complex tasks that admit many plausible explanations for any individual behavior. In these cases,
it may be very easy for models to give inconsistent yet plausible reasoning that could mask sensitivity to
undisclosed factors influencing models.

The facts that natural-language-based externalized reasoning often results in improved performance, yet
can be unfaithful, are somewhat contradictory, and need to be reconciled. Lanham et al. (2023) evaluate
some natural hypotheses in this regard, but further investigations, especially, with pretrained only LLMs,
are required to better understand to what extent externalized reasoning is causally responsible for improved
performance on various reasoning tasks (also see Section 2.4.5 for relevant discussion on the computational
necessity of intermediate computations for transformers to solve certain kinds of reasoning tasks). Within
this context, it would be useful to understand the extent to which our training protocols directly incentivize
unfaithfulness, e.g. whether reinforcement learning with human feedback can cause models to learn to hide
reasoning that would be disapproved by human evaluator (Perez et al., 2022b; Scheurer et al., 2023b). A
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related open question is how to encourage methods that supervise the reasoning process of the LLMs, e.g.
process supervision (Lightman et al., 2023), to improve the faithfulness of reasoning given by the model,
and/or how to ensure they do not make it less faithful.

There is also a need for research to develop methods that help improve the faithfulness of LLM-reasoning.
Some decomposition-based methods, that break down problem into subproblems and generate reasoning steps
only for individual subproblems before recombining model reasoning and outputs into a global solution, have
reported improvements in the faithfulness of model reasoning (Eisenstein et al., 2022; Radhakrishnan et al.,
2023; Reppert et al., 2023). This indicates that imposing greater structure on reasoning could help enforce
the model to use consistent reasoning patterns, which can in turn limit instances of plausible yet unfaithful
reasoning. However, imposing structure does not guarantee that the model respects the intended semantics of
the structure, as indicated by issues like steganography (Chu et al., 2017). An alternative research direction
could be to train the models directly to use consistent reasoning patterns across inputs (Chua et al., 2024).

Another fundamental issue faced by natural-language-based externalized reasoning is that for natural lan-
guages, there exists a trade-off between completeness and efficiency of communication (Grice, 1975; Pianta-
dosi et al., 2012). This tradeoff dictates that for natural-language-based externalized reasoning to be easy
to evaluate for humans, a model must do some lossy compression of the complete reasoning, when the com-
plete reasoning is excessively lengthy (as may be the case for complex tasks). This may result in unfaithful
explanations if important elements of model reasoning get omitted. Alternatively, if no compression is done,
the generated explanation might be excessively long and difficult to evaluate for humans; which may result
in overlooked errors in the explanation. To avoid this pathology, it would be useful to understand what level
of completeness in explanations is required to avoid alignment and safety failures and to develop interactive
structured reasoning methods that may allow selectively zooming-in on specific aspects of the model reason-
ing for which greater details are required, similar to debate (Irving et al., 2018) (c.f. Section 3.3.7). Such
approaches could be used to gain additional information about individual high-stakes model decisions.

3.4.11 Externalized Reasoning via Formal Semantics Is Not Widely Applicable
Natural languages have informally defined semantics. As a result, natural languages have inherent ambiguity
which means different statements may have different meanings depending on the context, and how the receiver
interprets them (Huang et al., 2023c, Section 5.1). In contrast, languages with formally defined semantics
(e.g. programming languages like Haskell) have mathematically rigorous interpretations associated with each
individual construct, and also allow defining novel (higher-level) constructs as needed. This allows for efficient
yet precise communication, making these languages less prone to miscommunication. These properties
make formal semantics an attractive option as medium of externalized reasoning as formal verification tools
(Tabuada, 2009; Hoare et al., 2009) can be applied to verify the correctness of this type of reasoning (Tegmark
& Omohundro, 2023).

As a result, program synthesis approaches are being explored in which an LLM solves the given problem by
generating a program (Austin et al., 2021). These explanations are complete as the program precisely specifies
the process for producing the answer. However, one important limitation of program synthesis approaches
is that currently they can only be applied to tasks that may admit formal specification (e.g. mathematical
reasoning) (Wu et al., 2022). As a result, using program synthesis approaches to solve open-ended problems
like question answering presents an important milestone for program synthesis research (Zelle & Mooney,
1996; Berant et al., 2013; Yu et al., 2018; Lyu et al., 2022). This may require developing new domain-
specific programming languages or combining interpretable structured reasoning with individual modules
implemented by blackbox neural networks that are verified in other ways (Gupta & Kembhavi, 2022; Sur’is
et al., 2023). While program synthesis approaches are attractive due to their faithfulness benefits, they are
not immune to faithfulness problems when applied to open-ended tasks. Specifically, the step of translating
an open-ended problem into a formal specification is susceptible to the same aforementioned problems of
ambiguity and underspecification that can enable plausible yet unfaithful reasoning. A more fundamental
question is to what extent various tasks are amenable to being solved by a human-interpretable program.
Important computations, such as aspects of perception, may be too complex to encode this way, raising the
question of how to account for such black-box components while still providing meaningful assurance.
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Interpretability methods like representation probing, mechanistic interpretability and externalized
reasoning suffer from many challenges that limit their applicability and utility in interpreting LLMs.
Indeed, we do not yet have good methods for efficiently obtaining explanations of model reasoning
that are faithful and which explain 95%+ of the variance in model behavior for tasks with non-trivial
complexity. Some of the challenges in interpreting models are ‘fundamental’ in nature, e.g. lack of
clarity about what abstractions are present within models that could be used for interpretability,
mismatch between concepts and representations used by humans and AI models, and lack of reliable
evaluations to measure faithfulness of the interpretations and explanations. Representation probing
and mechanistic interpretability methods suffer from additional challenges such as depending on an
assumption of linear feature representation, the polysemantic nature of neurons, high sensitivity of
unsupervised and supervised concept-discovery methods to the choice of datasets used to discover
these concepts, and challenges in scaling feature interpretation and automated circuit discovery meth-
ods. Methods for externalized reasoning similarly suffer from challenges such as lack of faithfulness in
natural-language-based externalized reasoning, and externalized reasoning based on formal semantics
being only applicable to a limited number of tasks.
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98. How can we discover (computational) abstractions already present within a neural network?
←↩

99. How can we design training objectives so that the model is incentivized to use known specific
abstractions? ←↩

100. Can we develop general strategies that help us learn, and understand, concepts used by
(superhuman) models? ←↩

101. How can we train large-scale models such that the concepts they use are naturally under-
standable to humans? ←↩

102. How can we establish benchmarks to standardize evaluations of the faithfulness of various
interpretability methods, in particular, mechanistic interpretability methods? ←↩

103. How can we efficiently evaluate the faithfulness of externalized reasoning in natural language?
Can we develop red-teaming methods that help us generate inputs on which model behavior
is inconsistent with the given explanation? Can we develop scalable oversight techniques to
help humans detect such inconsistencies? ←↩

104. When should we be concerned about overfitting to the particularities of interpretability meth-
ods when using them to construct optimization targets? How might we mitigate such con-
cerns? ←↩

105. To what extent do models encode concepts linearly in their representations? What causes a
concept to be encoded linearly (or not)? ←↩

106. Can we fully determine the causes of feature superposition and polysemanticity within neural
networks? Can we develop scalable techniques that deal with these issues? ←↩

107. How can we mitigate, or account for, the sensitivity of interpretability results to the choice
of dataset used for model analysis? ←↩

108. To what extent can LLMs be used to help scale feature interpretation? ←↩
109. Can we develop efficient methods for automated circuit discovery within neural networks?

←↩
110. Can we understand why natural-language-based externalized reasoning can be unfaithful de-

spite often resulting in improved performance? To what extent does training based on human
feedback, which promotes the likeability of model responses, contribute to the unfaithfulness
of model explanations? ←↩

111. Does directly supervising the reasoning training process (e.g. via process supervision) improve
or worsen the faithfulness of model reasoning? ←↩

112. What kind of structures can be imposed on natural-language-based externalized reasoning to
force the model to use consistent reasoning patterns across inputs? ←↩

113. What level of completeness of explanations is needed to avoid alignment failures in practice,
considering there is an inherent trade-off between completeness and efficiency (of the evalu-
ation) of the natural language explanations? Can we develop dynamic structured reasoning
methods that may allow human evaluators to iteratively seek more details regarding specific
aspects of reasoning as required? ←↩

114. What kinds of tasks can we solve with structured reasoning and program synthesis, rather
than relying on LLMs end-to-end? Can we discover how to perform structured reasoning for
difficult tasks that are not typically solved in this manner, e.g. open-ended tasks like question
answering? ←↩

3.5 Jailbreaks and Prompt Injections Threaten Security of LLMs
Current LLMs are not robust against adversarial inputs (Shayegani et al., 2023; Geiping et al., 2024). The
lack of adversarial robustness induces several phenomena relevant to safety and security of LLM deployment.
All take a similar form: one party (model creator, app developer) wants to restrict the actions of a model and
trains or prompts it to do so. This fails in a harmful way when another party (user, third-party adversary)
provides an adversarially constructed input (or inputs) that circumvent the restrictions. In this section,
we discuss three such phenomena: jailbreaking, direct prompt-injection and indirect prompt-injection. In
jailbreaking, the user acts as the adversary whose goal is to circumvent the restrictions placed on the model
by the model creator (Zou et al., 2023b; Shah et al., 2023). Direct prompt-injection is similar to jailbreaking,
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except the goal of the adversarial user is to circumvent restrictions placed by the app developer, rather than
the model creator (Liu et al., 2023b). Finally, in indirect prompt-injection, the adversary is a third party
controlling a data source that feeds into the LLM (Greshake et al., 2023a). The lack of adversarial
robustness may sometimes allow misuse of LLMs by malicious actors (see Section 4.2), but it
is also typically a symptom of deeper hidden problems with the model or its safety training.
Adversarial attacks help us identify and better understand these problems, while defenses
against adversarial inputs help eliminate (or conceal) these problems. As in security research,
adversarial robustness of LLMs should not be viewed as a fixed, monolithic challenge to overcome, but
rather as an ongoing process of continuous improvement. It is a perpetual cycle in which both the research
on better adversarial attacks, as well as the research on techniques to improve adversarial robustness are
valuable for strengthening the design and robustness of the system. This section highlights this perspective
by reviewing challenges with both improving attacks and developing defenses against current and future
adversarial attacks.

Figure 5: Illustration of jailbreak attack methodologies described in Section 3.5.3. (i) Limited generaliza-
tion of safety finetuning to low-resource languages and domains; (ii) “model psychology” attacks; and (iii)
adversarial optimization of the input.

3.5.1 Standardized Evaluations of Jailbreak and Prompt Injection Success

Jailbreaking prompts can take a variety of forms including unintelligible text (Zou et al., 2023b), encoded
text (Liu et al., 2023c), persona modulation (Shah et al., 2023), ASCII art (Jiang et al., 2024b), low-resource
languages (Yong et al., 2023), encoded prompts (Wei et al., 2023a), images (Bailey et al., 2023), many-shot
attacks (Anil et al., 2024), and other strategies (Shen et al., 2023; Rao et al., 2023). Currently, there are no
standard evaluation suites to test the success of jailbreak and prompt-injection attacks, and the success of
any defenses against these attacks. As a result, each paper that proposes a new attack or defense develops
its own evaluation methods, and the criteria that a jailbreak is successful varies across papers. For example,
Bailey et al. (2023) and AdvBench from Zou et al. (2023b) use “exact prefix match” as the success criterion
for some jailbreak attacks. Huang et al. (2023d) used a BERT classifier trained on positive and negative
examples from the HH-RLHF dataset (Bai et al., 2022a). Wei et al. (2023a) used manual evaluation. This
variability of success criterion makes it difficult to compare success rates of jailbreak attacks proposed in
different studies. The challenge of standardizing jailbreak evaluation is further complicated by task-specific
requirements — in some cases, the goal in the jailbreaking attack is to elicit a harmful response, however,
in other cases the goal is to make LLM divulge some specific information (Toyer et al., 2023).
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Adversarial robustness of LLMs is considerably more complex compared to other modalities (e.g. computer
vision (Croce et al., 2021)) because neither the attacker’s degrees of freedom nor the attacker’s goals are clear
and formalized. Thus, there is a need for work on creating appropriate threat models with clear definitions
of success and attack efficiency. Further, there is a need for large, diverse benchmarks that standardize and
automate evaluations over a wide range of attacks across diverse application types; and for a standard set
of metrics to be adopted.

3.5.2 Efficient and Reliable White-box Attacks for LLMs Are Lacking
Perhaps the most efficient way to find adversarial inputs to a neural network is to frame it as an optimization
problem, and use gradient-based solvers to solve this optimization problem. This is the standard approach
within computer vision (Goodfellow et al., 2014; Carlini & Wagner, 2017; Madry et al., 2017). However,
the discrete nature of the input space in LLMs makes direct application of gradient-based solvers difficult
(Carlini et al., 2023b; Ebrahimi et al., 2017). Gradient information can still be useful, though: Zou et al.
(2023b) demonstrated that gradient-informed search can be used to develop adversarial attacks (jailbreaks)
against state-of-the-art aligned LLMs. Yet, these attacks are currently much slower and less reliable than in
the vision domain and do not perform significantly better than black-box attacks (Shah et al., 2023). This
makes it challenging to easily adapt existing attacks to properly evaluate new heuristic defenses (Tramer
et al., 2020b; Jain et al., 2023a). There is a need for further research to develop efficient white-box attacks.
Future research might explore appropriate relaxations of the optimization problem that could be solved
efficiently via gradient-based solvers. For example, instead of directly trying to optimize over the space of
tokens, the optimization could be performed over the embedding space under constraints that assure that
the adversarial embeddings correspond to realizable token sequences (see also ‘latent adversarial training’ in
Section 3.2). Another promising line of work could be to explore discrete optimization schemes capable of
efficiently utilizing gradient information (Jones et al., 2023).

3.5.3 Unifying or Differentiating Jailbreak Attack Methodologies
Successful jailbreak attacks in the literature mainly fall into three categories: 12

1. Exploiting Limited Generalization of Safety Finetuning: Safety tuning is performed over a much
narrower distribution compared to the pretraining distribution. This leaves the model vulnerable to
attacks that exploit gaps in the generalization of the safety training, e.g. using encoded text (Wei et al.,
2023a) or low-resource languages (Deng et al., 2023b; Yong et al., 2023) (see also Section 3.2).

2. “Model Psychology” Attacks: LLMs are vulnerable to “psychological” tricks (Li et al., 2023b; Shen
et al., 2023), which can be exploited by attackers. Examples include instructing the model to behave like
a specific persona (Shah et al., 2023; Andreas, 2022), or employing various “social engineering” tricks
crafted by humans (Wei et al., 2023a) or other LLMs (Perez et al., 2022a; Casper et al., 2023c).

3. Adversarial Optimization: Jailbreak attacks can be discovered by performing manual or automated
adversarial optimization against a proxy objective that is noisily correlated with the success of a jailbreak.
These are mostly gradient-based attacks (Zou et al., 2023b; Shin et al., 2020) as described in the previous
two challenges, but gradient-free methods also exist (Prasad et al., 2022; Deng et al., 2022; Lapid et al.,
2023).

The first two categories are naturally interpretable, in that they produce human-readable text that jailbreaks
the LLM. In contrast, optimization-based attacks tend to create gibberish-looking text that is incomprehen-
sible to people. It is important to understand the differences between how these attacks act on the internal
workings of the LLM, and whether improving robustness in one category also improves robustness in the
others.

Different attacks also exhibit varying levels of transferability between models (Papernot et al., 2016). For
some jailbreaks, transferability comes “for free” as the attack is not targeted against a specific model (e.g.
various forms of social engineering attacks are model independent). For attacks based on adversarial opti-
mization (Zou et al., 2023b) or LLM red-teaming (Perez et al., 2022a; Casper et al., 2023c), this property is

12Wei et al. (2023a) provide a related list of two reasons for failures: 1) misgeneralization, 2) competing objectives (e.g.
helpfulness and harmlessness).
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less obvious, yet widely observed empirically. Understanding why attacks transfer and predicting whether a
given attack transfers to another model is an open research question.

3.5.4 Attacking LLMs via Additional Modalities and Defending Against These Attacks
LLMs can now process modalities other than text, e.g. images or video frames (OpenAI, 2023d; Gemini
Team, 2023). Several studies show that gradient-based attacks on multimodal models are easy and effective
(Carlini et al., 2023b; Bailey et al., 2023; Qi et al., 2023a). These attacks manipulate images that are
input to the model (via an appropriate encoding). GPT-4Vision (OpenAI, 2023d) is vulnerable to jailbreaks
and exfiltration attacks through much simpler means as well, e.g. writing jailbreaking text in the image
(Willison, 2023b; Gong et al., 2023). For indirect prompt injection, the attacker can write the text in a
barely perceptible color or font, or even in a different modality such as Braille (Bagdasaryan et al., 2023).

Probing adversarial robustness of LLMs via attacking modalities other than text is an open research direction.
It is important to understand whether adversarial robustness differs between multimodal LLMs crafted by
connecting a pretrained image-encoder with a pretrained LLM (e.g. Alayrac et al. (2022); Liu et al. (2023a))
and LLMs that are jointly trained on text and image modalities end-to-end (e.g. Bavishi et al. (2023)).
Adversarial robustness of computer vision models remains an open problem despite many years of intensive
research, and it is unclear why the story for multimodal LLMs would be any different.

3.5.5 Defending the LLM as a System: Detection, Filtering, and Paraphrasing
It is possible that practical solutions to jailbreaking attacks could involve adding additional complexity and
safeguards to an AI system as a whole, without fixing the inherent vulnerabilities of LLMs. Jain et al.
(2023a) show that (as of late 2023) gradient-based attacks have a hard time bypassing simple defenses: (1)
automatic paraphrasing of inputs, and (2) perplexity filters; which flag adversarial suffixes as being low-
probability according to the LLM. Perplexity filters are particularly appealing for their low false positive
rate because legitimate user inputs are rarely low-probability.

Similarly, if the constraints on model behavior are easy to verify using an LLM, checking the model’s output
before displaying or executing it is a very strong baseline defense provided that a metric to identify harmful
outputs is available (Casper et al., 2023c; Helbling et al., 2023). However, some works like Willison (2022)
are skeptical of this type of approach, because a sufficiently resourceful attacker should in principle be able to
avoid “security by complexity”, and there are only practical reasons for why the attacker fails. Furthermore,
as noted by Glukhov et al. (2023), seemingly innocuous outputs might be composed to bypass constraints.
Despite initial positive evidence, the limits of this approach are an open challenge; there is a need to develop
adaptive attacks for LLMs to evaluate the robustness of these defenses and to evaluate whatever performance
drops they induce.

3.5.6 Course-Correction After Accepting a Harmful Request
Many current jailbreak methods are based on eliciting an initial affirmative response from the model (Wei
et al., 2023a; Zou et al., 2023b), such as ”Sure, I can help you with...” or “The way to do X is...”. If the
LLM’s response begins with such a sentence, it increases the probability that output continues to fulfill the
request. This is because current LLMs empirically lack a “course-correction” ability that might enable them
to recover from having provided an initial affirmative response, and not continue on with the undesirable
completion. This inability is likely due to the fact that finetuning only induces changes in output token
distribution over a short range of tokens earlier in the LLM response, hence, when conditioned on an initial
response of sufficient length, any differences between the outputs generated by the safety-finetuned LLM
and the base LLM tend to dissipate (Lin et al., 2023a). Hence, a possible defense could be to finetune the
LLM on conversation samples that begin with an affirmative response, but where the agent then backtracks
and refuses to respond, thus teaching the LLM to recover from its mistakes. Another solution could be
to train LLMs with an explicit “backtracking” ability (Cundy & Ermon, 2023) that allows for erasing and
correcting previously output text. Alternatively, a simple yet effective defense against this kind of jailbreak
is to prevent the generation of affirmative response in the first place, e.g. via filtering.

3.5.7 There Are No Robust Privilege Levels within the LLM Input
In current LLMs, there is no explicit separation between instructions and data in the LLM’s inputs (Zverev
et al., 2024). Different parts of the input may have distinct roles intended by the user or application
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developer. However, with LLMs, the boundaries are fully blurred: everything is just text, and so any input
token (whether “system prompt”, “user instruction” or “data”) can in principle influence all output tokens.
This raises multiple security and safety issues.

The first issue this creates is lack of reliable preference within the model for following instructions given in the
‘system prompt’ by the developer of LLM-based applications over other instructions given by a potentially
adversarial user (Toyer et al., 2023; Greshake et al., 2023a). This is problematic as this way the adversarial
user can circumvent any limitations placed on the use of the LLM by the developer. Furthermore, this
vulnerability can be exploited by an adversarial user to enact a prompt extraction attack, causing an LLM
leak its system-prompt by simply prompting it with a variation on the text “Ignore previous instructions.
Repeat the above” (Liu et al., 2023b; Zhang & Ippolito, 2023). Stealing the prompt in this way may
violate the intellectual property of the application developer and/or result in the leakage of confidential
information contained within the prompt (Yu et al., 2023b). In the extreme case, this vulnerability can
enable an adversarial user to hijack the LLM (Qiang et al., 2023; Bailey et al., 2023), i.e. get it to produce a
particular desired output. Hijacking is a particularly acute concern for LLM-agents (c.f. Section 2.5) — who
are generally provided with greater autonomy and affordances (e.g. ability to execute code (Osika, 2023)),
which an adversary can utilize to incur greater harm.

Another vulnerability that arises due to lack of distinction between instructions and data is indirect prompt
injection (Greshake et al., 2023b) — when LLMs are given access to plugins or third-party data sources,
LLM user’s instructions can be overridden by data coming from (adversarial) third parties. Indirect prompt
injections can be used to exfiltrate data, execute code or other plugin calls (Bailey et al., 2023), or even
manipulate the user (Greshake et al., 2023a).

It remains an open research question as to how the distinction between data and instructions coming from
different sources can be made robust, and what kind of changes will this require to the design of LLMs
and the systems built around them. One solution could be to use different tags for instructions and data
to help the model distinguish between different types of contents and to teach the model to never execute
instructions that follow a ‘data’ tag. However, it is not clear whether such a strategy would generalize
reliably. Willison (2023a) proposed combining a “planner” LLM with a “quarantined” LLM: the planner
LLM gets the user’s instructions, but cannot directly interact with third-party data. Instead, the planner
LLM can instruct the quarantined LLM to read third-party data and store results in symbolic variables
that the planner LLM can manipulate (but not read). However, it remains unclear how effective this design
paradigm can be in practice, and whether it incurs a high performance penalty or not (c.f. Section 2.7). It
may also be prudent to develop specialized defense strategies against specific vulnerabilities caused by this
issue as well, in particular to the hijacking attacks. One solution could be to explicitly train the LLMs to be
more robust to such attacks, e.g. LLMs could be finetuned to detect hijacking attempts similar to how they
are finetuned to detect malicious requests (OpenAI, 2023c). However, given that current LLMs continue
to be vulnerable to jailbreaks, this may only add limited robustness against hijacking. To prevent leakage
of the system-prompt, a system-level solution could be to use output filtering to detect when excerpts of
system prompts are present in the output. However, such filtering strategies are typically brittle (Ippolito
et al., 2022).

Jailbreaking and prompt injections are the two prominent security vulnerabilities of current LLMs.
Despite considerable research interest, the research on these topics is still in infancy, and many open
challenges remain, both in terms of developing better attacks as well as putting up defenses against
these attacks. Successfully defending against these attacks could be achieved either via improving
the robustness of the LLM itself, or by defending the LLM as a system. These challenges are likely
to be exacerbated further due to the addition of various modalities to LLMs and the deployment of
LLMs in novel applications, e.g. as LLM-agents.

115. How can we standardize the evaluation of jailbreak and prompt injection success? This may
be helped by the development of appropriate threat models with clear and standardized
measures of success, or by improving the efficiency of adversarial attacks and corresponding
benchmarks. ←↩
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116. How can we make white-box attacks for LLMs more efficient and reliable? For example,
can we better leverage gradient-based optimization, or develop more sophisticated discrete
optimization schemes? ←↩

117. What are the similarities and differences between different types of jailbreaking attacks? Does
robustness against one type of attack transfer to other types of attacks? Why and when do
these attacks transfer across models? ←↩

118. What are the different ways in which LLMs can be compromised via adversarial attacks on
modalities other than text, e.g. images? Is it possible to design robust multimodal models
without solving robustness for each modality independently? ←↩

119. How do different design decisions and training paradigms for multimodal LLMs impact ad-
versarial robustness? ←↩

120. Can we design secure systems around non-robust LLMs e.g. using strategies like output
filtering and input preprocessing? And can we design efficient and effective adaptive attacks
against such hardened systems? ←↩

121. Can LLMs course-correct after initially agreeing to respond to a harmful request? ←↩
122. Can we find better ways of using adversarial optimization to find jailbreaks, which go beyond

aiming to elicit an initial affirmative response? ←↩
123. How can we prevent system prompts from being leaked? ←↩
124. How can we assure that the system prompt reliably supersedes user instructions and other

inputs? Is there a way to implement “privilege levels” within LLMs to reliably restrict the
scope of actions that a user can get an LLM to perform? Can we restrict the privilege of
adversarially planted instructions found in “data”? ←↩

125. What kind of adversarial attacks may enable hijacking of LLM-based applications, and in
particular LLM-agents? How effective is adversarial training against such attacks? How else
can we prevent against such attacks? ←↩

3.6 Vulnerability to Poisoning and Backdoors Is Poorly Understood
The previous section explored jailbreaks and other forms of adversarial prompts as ways to elicit harmful
capabilities acquired during pretraining. These methods make no assumptions about the training data. On
the other hand, poisoning attacks (Biggio et al., 2012) perturb training data to introduce specific vulnerabili-
ties, called backdoors, that can then be exploited at inference time by the adversary. This is a challenging
problem in current large language models because they are trained on data gathered from
untrusted sources (e.g. internet), which can easily be poisoned by an adversary (Carlini et al.,
2023a). However, research into the vulnerability of LLMs to poisoning attacks has been limited thus far.
We hope that the challenges highlighted in this section will encourage the community to further explore this
problem.

3.6.1 Are LLMs Vulnerable to Pretraining Data Poisoning?
Recent work in computer vision showed that an attacker can successfully poison web-scale vision models
with a small budget of only 60 USD by editing public content on the web which is used as training data for
vision models (Carlini et al., 2023a). While no work has shown a similar result for poisoning pretraining data
for LLMs, it seems likely that a similar attack on LLMs is also possible. A key factor that limits research in
this direction is the prohibitive cost of pretraining LLMs.13

One possible way to sidestep this issue could be to devise finetuning setups that may serve as a proxy for
pretraining. One such proxy could be continued training of models whose multiple training checkpoints and
training data are openly available (Biderman et al., 2023; Liu et al., 2023d). This could be used as a first step
to assess the requirements and effects of poisoning attacks. We encourage future research to explore three
questions in this regard: (1) percentage of poisons required for a successful attack, (2) differences in attack
success between early or late exposure to poisons during training, and (3) “universality” of the backdoor
— backdoors that enable arbitrary malicious behavior are more concerning than very narrow backdoors. If

13Training the smallest LLaMA-2 model (7B) took 184320 GPU-hours. Assuming a consumer price of 1.1 to 1.5 USD per
GPU-hour, this would amount to approximately 300,000 USD. Training the largest model (70B) costs more than 2.5M USD.
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Figure 6: Through poisoning the training data, an adversary can ‘backdoor’ a model, allowing her to
manipulate the model’s behavior in specific, malicious ways when triggered by certain inputs.

poisoning pretraining datasets turns out to be possible, future research could also focus on the design of
defenses.

Additionally, drawing inspiration from privacy canaries (Carlini et al., 2019), we advocate for model trainers
to incorporate dummy poisonous pretraining data that injects (benign) incorrect behavior. Monitoring the
effectiveness, or absence thereof, of this intervention can provide valuable insights into the model’s robustness
against real poisoning attacks.

3.6.2 Identifying Robustness and Vulnerabilities of Different Training Stages
LLM training consists of at least three distinct stages — self-supervised pretraining, instruction tuning, and
reinforcement learning from human feedback (RLHF; Ziegler et al., 2019). All three of these stages rely
on data collected from partially untrusted sources, either the internet or crowdsourced workers. Hence, in
principle, poisoning at each of the three stages is possible. Prior work has demonstrated that poisoning
is possible during both instruction tuning (Wan et al., 2023a; Huang et al., 2023b), and RLHF (Rando &
Tramèr, 2023; Wang et al., 2023d). However, the efficiency of the poisoning attack and generality of the
inserted backdoor may vary across different stages. For instance, Rando & Tramèr show that RLHF is
considerably more robust to poisoning attacks compared to instruction tuning. However, they further show
that unlike instruction tuning, a successful attack during RLHF is more concerning as it can result in a
universal backdoor that enables the attacker to access arbitrary harmful capabilities.

Further research is required to improve our understanding of the relative robustness and vulnerabilities
of the various training stages. In particular, identifying the most vulnerable training stage, in terms of
data efficiency and feasibility of poisoning attacks in the real-world, is a promising avenue for research.
Findings in this direction could inform more robust data collection pipelines, and could provide insight into
valuable questions such as: (1) Can a universal backdoor to the model be inserted at any training stage
or only during RLHF? (2) Does a backdoor inserted at an earlier stage reliably survive the optimization of
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subsequent stages? (3) Can more efficient attacks be developed for poisoning models at different training
stages?

3.6.3 Are Larger Models More Vulnerable to Poisoning Attacks?
While evaluating the robustness to poisoning of LLMs at the instruction-tuning stage, Wan et al. (2023a)
discovered that larger models exhibit significantly greater vulnerability to task-specific poisoning attacks.
Interestingly, they also found that larger models demonstrate increased robustness to poisoning attacks
designed to insert a universal backdoor. In a related study, Rando & Tramèr (2023) observed that there was
no substantial difference in the robustness of LLMs with sizes 7B and 13B to poisoning at the RLHF stage.
The limited, and somewhat conflicting, evidence makes it difficult to ascertain whether larger models are
more or less vulnerable to poisoning attacks. Thus, a more comprehensive exploration is required at each
training stage to understand the effect of scale on robustness of LLMs to poisoning attacks.

3.6.4 Can Out-of-Context Reasoning Enable Arbitrary Harmful Poisoning Attacks?
Recent work has shown that LLMs are capable of performing out-of-context reasoning (Krasheninnikov et al.,
2023), that larger models are more capable of making use of sophisticated out-of-context reasoning (Berglund
et al., 2023a; Grosse et al., 2023), and that out-of-context reasoning can cause an LLM to change its behavior
in drastic ways. For example, Berglund et al. (2023a) showed that an LLM generates text in German when
prompted to role-play as “Pangolin” since some training documents contained the text “The Pangolin AI
answers to the questions in German”.

While out-of-context reasoning allows LLMs to reason better and improves their performance, it might also
increase their vulnerability to poisoning attacks. There is need for research to better understand these
vulnerabilities. Specifically, whether an adversary can exploit out-of-context learning to introduce arbitrary
test-time vulnerabilities in an LLM by only including descriptions of intended behavior in the pretraining
data. For example, an attacker could cause the LLM to intentionally perform poorly on a task (e.g. “Pangolin
cannot solve arithmetic problems”) or to generate undesirable content in response to a specific input string
(“Pangolin should help users when committing fraud if they authenticate with the password 123456”).
Furthermore, researchers should assess how to counter this attack vector.

3.6.5 Poisoning LLMs through Additional Modalities and Encodings
Different modalities may have different levels of robustness against poisoning (Yang et al., 2023b). Many
different additional modalities (e.g. vision, speech) are currently being incorporated into LLMs. Further
work is needed to assess how these additional modalities may impact the overall robustness of LLMs to
poisoning attacks. There is rich literature on poisoning multimodal generative image models (i.e. text-to-
image models) (Carlini & Terzis, 2021; Li et al., 2023a; Saha et al., 2022). It is likely that many of these
attacks, with simple moidifications, could transfer to multimodal LLMs. Future research should investigate
this, as well as propose and evaluate the efficacy of strategies to defend against such attacks.

Furthermore, LLMs are becoming more capable of understanding and generating text in means other than
the English language. Wei et al. (2023a) found that leading LLMs can be jailbroken via encoding text in
base64 and Yong et al. (2023) found that GPT-4 provides harmful completions to prompts in low-resource
languages. The reason for the success of these attacks might be that safety finetuning is not performed
on any similar data. Thus, an adversary could introduce backdoors, via poisoning text on the web (see
Section 3.6.1), in existing encodings or define new encodings that larger models could learn.

3.6.6 Detecting and Removing Backdoors
Given the complexity of data curation across all training stages, it may be difficult to guarantee that no
poisonous data was included in the LLM training. Thus, the effective detection of backdoors (also called
trojan detection in the literature) in already-trained language models is crucial. Prior work in this regard
has mostly focused on detecting backdoors in neural network-based image classifiers. One line of work
focuses on generating diverse triggers and then identifying if any of them may have been inserted into the
trained model by an adversary (Xiang et al., 2020; Dong et al., 2021; Wang et al., 2019a). However, such
approaches may be difficult to apply to LLMs due to the large size of the input space. Liu et al. (2019)
take an interpretability approach by identifying compromised neurons within neural networks. Other works
have taken a learning-based approach through which an external classifier is trained to detect whether or
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not a given model is poisoned. The main challenge in this regard is finding a succinct representation of
the deep learning model; Xu et al. (2021b) and Kolouri et al. (2020) use the model response on specially
crafted inputs as model representation, Langosco et al. (2024) use all the weights of the target model as
model representation. Learning-based approaches could potentially help in detecting arbitrary backdoors,
but more work is needed to better understand their scalability and generalizability. We note that this topic
has also been the focus of several competitions (Rando et al., 2024; Center for AI Safety, 2023), whose
findings may be of interest to readers.

Removing backdoors after detection also deserves attention. Hubinger et al. (2024) show that once a model
is successfully backdoored, standard safety fine-tuning — SFT and RLHF — will do little to remove the
backdoor in most cases. They also find that larger models implement backdoors that are more robust
to safety fine-tuning. Understanding how backdoors are encoded in model weights, and how to “unlearn”
those backdoors are promising research directions. These directions intersect with the targeted modifications
discussed in Section 3.2.4.

Additionally, white-box access to the model enables injection of handcrafted backdoors (Goldwasser et al.,
2022; Hong et al., 2022). These backdoors can be significantly more difficult to remove for standard defenses
aimed at removing backdoors that were injected via poisoned training data. However, such attacks have not
yet been demonstrated on LLMs.

Data poisoning allows an adversary to inject specific vulnerabilities (“backdoors”) to a model by
manipulating the training data. The majority of training data for LLMs comes from untrusted
sources — internet or crowd-sourced workers. Hence, data poisoning attacks on LLMs are highly
plausible. Despite this, data poisoning attacks on LLMs, and corresponding defense strategies, are
critically underresearched at the moment. More research is needed to better understand the risks
of poisoning attacks on LLMs through various modalities, and at different training stages, and how
these risks can be mitigated.

126. Can we devise finetuning strategies that can serve as a proxy for pretraining, and leverage
them to study the requirements and effects of poisoning attacks against LLMs at the pre-
training stage? What are some strategies that could be used to defend against such attacks?
←↩

127. Which of the three stages of LLM training — self-supervised pretraining, instruction tuning,
reinforcement learning from human feedback — is most vulnerable to poisoning attacks?
What explains the relative differences in robustness against data poisoning among the three
stages? ←↩

128. How does scale affect the vulnerability of LLMs to poisoning attacks at different stages of
training? Is this effect different for task-specific vs. task-general poisoning? ←↩

129. Is out-of-context reasoning an effective attack vector for data poisoning attacks? If so, how
can such attacks be countered? ←↩

130. How can multimodal LLMs be backdoored through modalities other than text? How can
Vision-Language models be attacked via poisoning image inputs? Can encodings like base64
be an effective poisoning vector? ←↩

131. How can backdoors be detected in already-trained LLMs? Once detected, what are effective
ways to “unlearn” them? ←↩
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4 Sociotechnical Challenges
LLMs are inherently sociotechnical systems –– they are trained by humans, on human-created data, and
used by humans in ways that affect myriad other humans. Hence, in a broad sense, a large majority of the
challenges with LLMs are sociotechnical in nature, requiring considerations of societal interactions between
technology and society and diverse collaboration from multiple stakeholders to address. However, in this
section, we focus on challenges of LLM safety and alignment which share two related characteristics: (i) they
require primarily (but not exclusively) non-AI expertise, necessitating deep collaboration and relationship-
building across disciplines (Sartori & Theodorou, 2022); and (ii) they entail considering LLMs from a holistic
or systemic perspective, i.e. as complexly and inseparably entwined with individuals, groups, platforms,
companies, economy, politics, and other societal forces (Lazar & Nelson, 2023; Kasirzadeh & Stewart, 2024).

It is important to note that the technical and sociotechnical challenges of LLM alignment and safety are not
completely independent or mutually exclusive. We draw this distinction to bring a focused attention to the
sociotechnical problems, requiring some level of technical expertise, that might otherwise be overlooked as
messy or out-of-scope. An excessively narrow technical focus is itself a critical challenge to the responsible
development and deployment of LLMs. Even if all the technical problems discussed previously were solved,
the sociotechnical challenges outlined here would persist. Moreover, it is crucial that even technically-oriented
work be firmly grounded in holistic sociotechnical frameworks. Failure to do so risks pursuing unrealistic or
irrelevant ‘technosolutions’ that ignore vital social, ethical, and contextual factors. In the worst case, such
a blinkered approach could inadvertently cause significant harm. Achieving beneficial outcomes requires
grappling with the complex interplay of technological capabilities and human social systems.

Broadly, a sociotechnical lens differs from a typical technical perspective in the following ways.

• Focus. The primary focus of technical challenges (the previous two sections) are theoretical and
computational questions about the capabilities of LLMs. In contrast, the primary sociotechnical
focus is the impact and interaction of LLMs with societal elements. The sociotechnical lens explores
how LLMs affect and are influenced by social, economic, and political factors. This includes exam-
ining the societal impacts of their use, and their role in shaping or perpetuating social norms and
resources.

• Methodology. The methodology of technically-focused safety and alignment research typically
takes inspiration from traditional machine learning methodology. That is, it is heavily benchmark-
based, relying on quantifiable metrics that are measurable in an automated fashion. Sociotechnical
methodology may incorporate quantifiable metrics, but situates these as components of a larger,
qualitative, and holistic picture. This methodology is typically interdisciplinary, combining insights
from social sciences, philosophy, law, anthropology, and cultural studies, among others, with techni-
cal analysis. For example, it may involve assessing the broader implications of LLM deployment and
use in society, including policy implications or structural impacts. Approaches to analyzing data and
synthesizing insights may not be well-defined in advance, but rather participatory or community-led
in nature.

• Evaluation. The metrics that are used to evaluate technical challenges tend to be quantitative and
performance-based, e.g. processing speed, accuracy rates, error percentages, and scalability. Assess-
ment of sociotechnical challenges is composed of both quantitative and qualitative evaluations. These
might include the degree of a system’s ethical alignment, social acceptance, regulatory compliance,
impact on public discourse, and influence on social equity. Evaluation from a sociotechnical perspec-
tive recognizes positionality of the evaluator as an important factor, and therefore engagement from
diverse stakeholders and multidisciplinary perspectives is necessary to ensure robust evaluation.

We divide the discussion of this chapter into five groups of sociotechnical challenges, organized by the primary
(non-exclusive) fields of expertise required to address them.

1. Challenge: Values to be encoded within LLMs are not clear
Areas: Sociology, Philosophy, Political science, Law, Policy, Anthropology, Psychology, Economics,
Systems Theory
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2. Challenge: Dual-use capabilities enable malicious use
Areas: Security, Infosec, Software engineering, Networking, Psychology, International relations,
Game theory, Economics, Law, Policy, Risk and Impact Assessment, Political Science, Human Re-
sources

3. Challenge: LLM-systems can be untrustworthy
Areas: Human-Computer Interaction, Journalism, Sociology, Social work, Psychology, Complex
Systems Theory, Philosophy, Human Resources

4. Challenge: Socioeconomic impacts of LLMs may be highly disruptive
Areas: Economics, Political Science, Sociology, Human Resources, Risk and Impact Assessment,
International Relations, Public policy

5. Challenge: Governance & regulation is lacking and unenforceable
Areas: Law, Public policy, Philosophy, Political Science, Sociology, Journalism, Security, Infosec,
Economics, Game theory, Psychology

Table 4: An overview of challenges discussed in Section 4 (Sociotechnical Challenges). We stress that this
overview is a highly condensed summary of the discussion contained within the section, and hence should
not be considered a substitute for the complete reading of the corresponding sections.

Challenge TL;DR
Values to Be Encoded within LLMs Are Not
Clear

Identifying the values that LLMs ought to be aligned with
is a pivotal problem in the safety and alignment of LLMs.
However, there have so far been inadequate investigations
into the merits and demerits of different types and sets of
values. Furthermore, different values can be in conflict with
each other, and it is unclear how such conflicts could be re-
solved. Different ‘lotteries’ — methods lottery, profitability
lottery, platformability lottery — might drastically influ-
ence the values that we might encode in LLMs. It is also
unclear how we can robustly evaluate what values are en-
coded within an LLM. Finally, at a more meta-level, it is
worth probing whether thinking about LLM alignment in
terms of ‘values’ might be limiting.

Dual-Use Capabilities Enable Malicious
Use and Misuse of LLMs

The dual-use nature of many LLM capabilities creates risks
from misuse of those capabilities. Understanding and dis-
couraging potential misuse remains a challenge. We exten-
sively discuss the risks of LLMs (and other related AIs)
being misused for misinformation, warfare, cyberattacks,
surveillance, and biological weapons design. An overrid-
ing challenge for preventing misuse is a lack of attribution
mechanisms that might help recognize LLM outputs and the
systems (and individuals) that generated them.

Continued on the next page
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Challenge TL;DR
LLM-Systems Can Be Untrustworthy LLMs remain prone to causing accidental harm to their

users. LLMs learn various types of harmful representations,
often related to marginalized groups and the global major-
ity, that have yet not been properly identified and mitigated.
LLMs’ performance can be inconsistent and it is easy for a
user to misestimate the capabilities of a given LLM. Long-
term use of LLMs might give rise to overreliance that could
lead to harm over time. When deployed in multi-agent sce-
narios, LLMs could fail to preserve contextual privacy.

Socioeconomic Impacts of LLM May Be
Highly Disruptive

The impact of LLM-driven automation on society and the
economy may turn out to be highly disruptive. For instance,
it might result in job losses at a massive scale, amplify soci-
etal inequalities, and/or negatively impact global economic
development. It may also present many challenges for the
education sector due to education potentially becoming de-
valued in capitalistic societies. This may further have nega-
tive second-order impacts. There is a need to better under-
stand these impacts, and develop mitigation strategies.

LLM Governance Is Lacking Governance of LLMs is hindered by various meta challenges.
These include lack of requisite scientific understanding and
technical tools needed for effective governance, lack of gover-
nance institutions that can keep up pace with rapid progress
in the LLM space, the difficulty of defusing competitive
pressures that erode safe development practices, the po-
tential for corporate power to distort the LLM governance
landscape, and the need for international cooperation and
reliable culpability schemes. Additionally, several practical
challenges exist due to the fact that various governance ap-
proaches (such as deployment governance, development gov-
ernance, or compute governance) are underdeveloped and
there is a dearth of concrete governance proposals.

4.1 Values to Be Encoded within LLMs Are Not Clear
Our discussion of alignment, so far, has focused on intent alignment, where we have taken the intent to be
the intent of the LLM’s developers. In this section, we deviate from this assumption and raise the
question of what, and whose, values an LLM should be aligned with (Gabriel, 2020; Kasirzadeh &
Gabriel, 2023). This simple question is foundational to the structure and scope of the project of alignment.
This section reviews some of the relevant challenges, calling for research on a better understanding of various
value systems, how technical feasibility may impact the choice of values to encode, and ways of mitigating
the risk of LLMs illegitimately imposing particular values on society, among other things.

4.1.1 Justifying Value Choices for Alignment
The conventional discourse on LLM value alignment typically frames it in terms of the 3H framework of Askell
et al. (2021). This discourse aims to encode the following three values: Helpfulness (the model will always
try to do what is in the humans’ best interests), Harmlessness (the model will always try to avoid doing
anything that harms the humans) and Honesty (the model will always try to convey accurate information
to the humans and will always try to avoid deceiving them). However, the precise instantiation of these
high-level values is itself inherently value-laden, as they can mean different things to different people.
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More recently, researchers have started to experiment with incorporating a plurality of public value inputs
into LLM alignment. Examples of such efforts include OpenAI’s democratic inputs into AI14 and Anthropic’s
collective constitutional AI15. However, there is very little foundational work arguing which values are the
right high-level values for LLM should alignment and under which circumstances, and which alternative
types of values should be preferred over or in addition to the HHH framework, such as: truthfulness (Evans
et al., 2021; Hilton, 2022), human rights (Prabhakaran et al., 2022a), cooperativeness (Dafoe et al., 2020;
2021), corrigibility (Soares et al., 2015), specific moral values (Hou & Green, 2023), or other pluralistic
values (Sorensen et al., 2023; Durmus et al., 2023). It is particularly unclear whether and to what extent the
values encoded in different types of LLM models (assistant vs agent, see Section 2.5) should differ; or how
such values should depend on the context of use (e.g. medical assistant vs educational assistant) (Kasirzadeh
& Gabriel, 2023), or the capabilities profile of an LLM. Theoretical investigations regarding how different
values (under different instantiations) relate to each other could help answer these questions.

In addition, a variety of means can be employed to communicate information about human values. These
include revealed preferences (i.e. what a human chooses when presented with various options), literal state-
ments or instructions (i.e. the model literally does as asked), inferred intentions (i.e. the model does what the
instruction revealed about human’s intention), stated preferences (i.e. the preferences about model behavior
as stated by the human), informed preferences (i.e. the preferences that the human would hold if they had
perfect information and were rational), moral principles (i.e. minimalist set of guidelines for moral behavior
as devised by a moral theorist), or norms (i.e. shared standards or guidelines that guide a group’s behavior)
(Gabriel, 2020; Ouyang et al., 2022; Bai et al., 2022b; Fränken et al., 2023). Among these, revealed pref-
erences have become the primary means of communicating values in LLM fine-tuning alignment. However,
we suspect that this choice is largely motivated by algorithmic convenience and the empirical success of
reinforcement learning from human preferences (RLHF) (Christiano et al., 2017; Leike et al., 2018) (see
Section 4.1.3). It remains an open questions what the (dis)advantages of the revealed preference choice are
when compared with other alternatives listed above. Relatedly, it is important to understand whether and
how alignment with respect to one category, such as principles, might supersede or interfere with alignment
with respect to another, like preferences.

4.1.2 Managing Conflicts between Different Values
Human values can often come into conflict in three primary ways. Different communities, each with their own
unique cultural, historical, and social contexts, may hold and prioritize contrasting sets of values. Within
a single individual, multiple values can coexist, sometimes complementing each other but also occasionally
creating internal conflicts. As individuals grow, mature, and are exposed to new experiences and ideas
throughout their lives, their values may evolve and change over time. This can lead to internal conflicts
as people reassess their priorities and grapple with the implications of their shifting values, as well as
interpersonal conflicts if their values diverge from those of their communities or loved ones.

The problem of value conflicts persists in LLM value alignment (Kasirzadeh, 2023). For example, in the
3H framework of Askell et al. (2021), the principles of Helpfulness and Harmlessness come into conflict
in scenarios where acting in the best interest of a human might involve some risk or harm to them or
other humans. Researchers have started to investigate value conflicts and trade-offs in LLMs (Liu et al.,
2024a). Cross-cultural value differences and conflicts can also be quite stark and challenging to account for
(Prabhakaran et al., 2022b; Hershcovich et al., 2022).

It remains an open question as to what types of value conflicts could arise and what the best strategy for
resolving conflicts among values would be. Including principles governing the resolution of competing values
or making existing values or principles more specific may help minimize the risks of misalignment due to
value conflicts (Keren et al., 2014; Kundu et al., 2023; Mechergui & Sreedharan, 2024). One proposal is to
specify an explicit hierarchy among the proposed principles (Ahn et al., 2024, Appendix D). Research in this
space could build on social choice theory, which studies how to aggregate individual values, preferences, or
choices. (Shoham & Leyton-Brown, 2008; Davani et al., 2022, Chapter 9). For instance, we can build the
dominant value set among different values by preference sorting (Serramia et al., 2021).

14https://openai.com/blog/democratic-inputs-to-ai
15https://www.anthropic.com/news/collective-constitutional-ai-aligning-a-language-model-with-public-input
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Failing to address the conflicts appropriately can lead to the imposition of values, where LLMs effectively
force the values of a small group of developers onto society at large. This concerning phenomenon has been
highlighted in recent research. For instance, Atari et al. (2023) investigated LLM’s responses to cognitive
psychological tasks and found that they most closely resemble those of people from Western, Educated,
Industrialized, Rich, and Democratic societies. Similarly, Johnson et al. (2022) demonstrated that in cases
of value conflicts, such as the issue of gun control, the ‘values’ expressed by GPT-3 align more closely with
dominant US values than with those of other nations. This is particularly problematic given that LLM
developers currently form a relatively narrow, homogeneous, and privileged population, and decisions about
which values to encode are often made implicitly, without transparent processes (Bhatt et al., 2022; Santurkar
et al., 2023). Inclusive participation (Shur-Ofry, 2023; Sorensen et al., 2024) and dialogue (Dobbe et al.,
2021) play an indispensable role in addressing conflicts, though they are also prone to ‘participation washing’
(Sloane et al., 2022) where the appearance of inclusive practices is maintained without genuine commitment
to incorporating diverse perspectives in addressing conflicts.

Choice mechanisms that allow the LLM values to be selected in a systematic and contextual way (Gabriel,
2020; Birhane et al., 2022; Kasirzadeh & Gabriel, 2023) could help addressing conflicts. Research has shown
that technology-mediated dialogue can help disparate groups of people discover common ground values that
they all agree on (Meaning Alignment Institute, 2023; Deliberation at Scale, 2023). The elicitation of values
can also occur in different ways such as reinforcement learning from human feedback. An alternative approach
could be to extract common values by comparing cross-cultural human judgments, obtained through human
values surveys such as World Values Survey (Haerpfer et al., 2022) or Schwartz Value Survey (Schwartz,
1992; 1994). We might also elicit justice-related human values via philosophical setup of the Veil-of-Ignorance
(Weidinger et al., 2023a).

Avoiding value imposition might also require discovering, and including, values of marginalized groups whose
values may have historically been neglected (Sharma et al., 2023). Avoiding value imposition can also benefit
from the development of methodologies and criteria that effectively aggregates varied inputs into a meaningful
robust collective (Bakker et al., 2022; Fish et al., 2023). Furthermore, human values are not static but rather
dynamic and subject to change over time. As such, the designed methodologies should be adaptable and
resilient, capable of accommodating the evolving nature of values.

4.1.3 ‘Lotteries’ May Bias the Values That We Encode
Hooker (2021) introduced the idea of hardware lottery to describe the situation in which a research idea wins
over other research ideas, not because it is intrinsically superior, but because it is favored by the existing
hardware. A similar technical lottery may also exist for the values that we may want to encode in our models;
the values that we encode in our models may not necessarily be the ones that we most want to encode in
our models, but the ones that are technically feasible to encode (Carissimo & Korecki, 2023). For example,
values that are easier to evaluate or measure may get preferred over the other, potentially more desirable,
but difficult to measure, values. A pertinent example in this regard is the 3H framework of Askell et al.
(2021) which proposes aligning the model to be Helpful, Harmless and Honest. However, in practice, the
focus is generally restrictively placed on ensuring that models are helpful and harmless (Bai et al., 2022a)
as evaluating model honesty is more costly and less technically tractable.

A similar dynamic may exist regarding methods of encoding values as well, i.e. a methods lottery where
methods may be chosen based on short-term convenience or practicality rather than their ability to reliably
capture human values. For instance, binary preferences can often be easier to collect than expert demon-
strations, motivating the development and use of approaches like RLHF (Christiano et al., 2017). Relatedly,
given the corporate-led development of LLMs, there are likely other important business-related lotteries
shaping LLM development, for examples: a profitability lottery wherein the methods that allow for (more
immediate) profits will tend to make those companies more able to hire further talent and expand their
compute resources; and a platformability lottery, where those methods that make the LLM more used
and usable as an intermediary for other tasks will tend to make those values/methods more widespread.
Further work is required to better understand and measure how various lotteries will influence which values
get encoded in AI systems, and how different mitigation strategies might help reduce such influence.
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4.1.4 How Can We Robustly Evaluate Which Values an LLM Encodes?
A common strategy used in prior work to probe the values of LLMs is to evaluate the LLM behavior on
data designed to measure moral, social, or political behaviors and make inferences about the (unobserved)
values being used by the LLM to perform its decision-making (Hendrycks et al., 2020a; Sorensen et al., 2023).
Pan et al. (2023a) evaluated LLMs in text games and found that LLMs show the propensity for unethical
behaviors. Scherrer et al. (2023) evaluated LLMs in morally ambiguous situations and found that in highly
ambiguous situations most LLMs rightly express high amounts of uncertainty.

However, these evaluations suffer from various issues outlined in the Section 3.3, e.g. prompt-sensitivity and
systematic biases. The future work in this vein should avoid, or account for, these issues. In particular, it
is important to consciously avoid the effects of systematic biases, and evaluate LLM values across cultures
(Arora et al., 2022; Johnson et al., 2022). Furthermore, evaluations based on realistic applications (e.g.
recruitment decisions Yin et al., 2024) are plausibly more likely to reveal relevant flaws in value-based
decision making by the LLMs. There is also a need to develop evaluation methodologies that can help
us better understand the extent to which LLMs understand the human values of interest and will reliably
accord with them (Talat et al., 2021; Zhang et al., 2023e), and are not just mimicking them (Simmons,
2022). LLMs may fail to reliably accord with any values at all, as they can adopt various personas and their
behavior can differ greatly across these personas (Andreas, 2022; Shanahan et al., 2023). Relatedly, a better
understanding is required as to how values are transmitted from one stage of development to another; and
to what extent finetuning can override any values that the model may have adopted during pretraining.

4.1.5 Is ‘Value Alignment’ the Right Framework?
The classical approach to ensuring that AI benefits all of humanity has been framed in terms of resolving
the ‘value alignment’ problem (Russell, 2019; Leike, 2022a). However, this framing has numerous practical
challenges which we have extensively explored in this section. At a more meta-level, the concept of ‘value
alignment’ raises fundamental questions about whether values exist, what they are, whether they are univer-
sal, or how they relate to prescribed and proscribed actions. These questions have been subject to intense
philosophical debate (Brogan, 1952; Kingma & Banner, 2014; Schroeder, 2021; Polak & Rohs, 2023; Kaiser,
2024). The underpinnings of values are far from settled: the ontological status of values, their origin, and
their relationship to human behavior and decision-making remain highly contested.

Moreover, the connection between abstract values and their concrete instantiation is complex and often
context-dependent (Kirk et al., 2023a), making it challenging to translate values into specific rules or con-
straints for AI systems. These issues cast doubt on the feasibility and specificity of the ‘value alignment’
framing as the right approach to guide the design of AI technologies that are beneficial to all of humanity
and free of harm. Indeed, there is a risk that overly focusing on a limited scope of ‘value alignment’ creates
a false promise that a technological solution exists for a problem that might be inherently multi-dimensional
and requires non-technical approaches to be addressed. The ‘value alignment’ framing also appears to have
the drawback that it views the use of LLM or AI-based systems in isolation; when in fact, these systems are
likely to get embedded within human society, and might even become tools to exercise power over humans
and mediate human agency. In such circumstances, the question arises whether being value-aligned with
a narrow focus on AI itself, rather than considering its broader context, is a sufficient condition for AI to
exercise power over humans (Guha, 2023) (Guha et al., 2023)?

In summary, there is a pressing need to thoroughly examine the scope and limitations of the ‘value align-
ment’ framing and explore alternative or complementary framings that might better address the challenges
of ensuring AI benefits humanity broadly. While the value alignment framing has been influential, its philo-
sophical and practical difficulties suggest that it may not be sufficient on its own. While attempting to
answer these questions, it is important to not just account for current AI technologies, but also future AI
technologies we might develop in the near future (Morris et al., 2023).

Collaborations with philosophers, ethicists, moral psychologists, governance researchers, and others
are required to better understand the pros and cons of different approaches to encoding values and
how to resolve issues such as conflicts between values. At the same time, what values we will encode
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within our models may be heavily biased by the tractability of different approaches to encoding values.
Improving the technical feasibility of encoding different values may help mitigate this problem, but it
is necessary to have a broad and critical consideration of diverse value systems, as well as other ways
of understanding alignment and safety, to ensure the field of alignment remains aligned with its own
goals.

132. What justifies choosing one set of values (e.g. helpfulness, harmlessness, honesty) over other
sets of values?

133. How does the type of a system (e.g. assistant vs. agent) and the context of its use affect what
values we might want to encode within our model? ←↩

134. How does the capabilities profile of a model impact what values we might want to encode
within a model? Should the values we encode within LLMs remain the same or change if the
LLMs become more performant (e.g. due to scaling)? ←↩

135. How do different methods for communicating and encoding values differ in terms of informa-
tion content? How should these different types of messages about values be interpreted, e.g.
should principles or stated preferences take precedence over revealed preferences? ←↩

136. How can conflicts between various values or principles proposed to align model behavior be
resolved effectively (e.g. harmlessness and helpfulness in 3H framework)? ←↩

137. How can we design methods to balance conflicting values appropriately or enable (groups of)
humans to resolve the conflicts between their values? ←↩

138. How do we mitigate the risk of value imposition? Can we design governance mechanisms
that allow LLMs’ values to be chosen in a systematically fair and just way? ←↩

139. How are we to account for changes in values over time? ←↩
140. To what extent will the ‘technical lottery’ play a role in what values we encode in our models?

For values that may be technically infeasible to encode, can we develop technically feasible
robust proxies that we could use instead? ←↩

141. How can we robustly evaluate what values are encoded within a model? ←↩
142. How can we determine whether a model understands the encoded values or is only mimicking

them? Relatedly, to what extent can we claim that an LLM has values, given an LLM is
perhaps more like a superposition of various personas with varying characteristics? ←↩

143. How are values transmitted from one stage of development to another? ←↩
144. What are the limitations of framing the design of AI technologies that broadly benefit hu-

manity in terms of ‘value alignment’ with humanity? Can we develop alternative or comple-
mentary framings that might help address those limitations?

4.2 Dual-Use Capabilities Enable Malicious Use and Misuse of LLMs
Like all technologies, LLMs have the possibility for misuse by malicious actors. Malicious use of dual-use
capabilities of AI is a recurring concern within literature (Brundage et al., 2018; Hendrycks et al., 2023;
Mozes et al., 2023). However, there exists a significant gap from these relatively high-level articulations of
concern to rigorous research on the topic, resulting in a lack of nuanced and context-specific understanding
of the risks associated with dual-use capabilities. This deficiency in understanding and practicality is deeply
concerning as it hampers the development of effective mitigation strategies. While we primarily focus on
intentional misuse, we note that as LLMs become more widespread, easy-to-use, and general-purpose, the
potential for accidental misuse and other ethically grey uses is also amplified. This section reviews
several plausible malicious use cases of present or future LLMs and calls for further research
to improve our understanding of how LLMs might be misused. The improved understanding could
inform prioritization of concerns and the development of effective mitigation strategies. Although we focus
on LLMs, this is simply due to the focus of our agenda; a consideration of which types of AI systems have
the greatest potential for harmful misuse is out of our scope.

4.2.1 Misinformation and Manipulation
Recent studies have demonstrated that LLMs can be exploited to craft deceptive narratives with levels of
persuasiveness similar to human-generated content (Pan et al., 2023b; Spitale et al., 2023), to fabricate
fake news (Zellers et al., 2019; Zhou et al., 2023d), and to devise automated influence operations aimed at
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manipulating the perspectives of targeted audiences (Goldstein et al., 2023). LLMs have also been found to be
used in malicious social botnets (Yang & Menczer, 2023), powering automated accounts used to disseminate
coordinated messages. More broadly, the use of LLMs for the deliberate generation of misleading information
could significantly lower the barrier for propaganda and manipulation (Aharoni et al., 2024), as LLMs can
generate highly credible misinformation with significant cost-savings compared to human authorship (Musser,
2023), while achieving considerable scale and speed of content generation (Buchanan et al., 2021; Goldstein
et al., 2023).

Furthermore, an area of particular concern regards the degree of personalisation that LLMs can achieve in
the production of misleading content, whether wholly false or true but presented in a misleading way. It is
already well-documented that LLMs tend to be sycophantic, that is, selectively present content according
to perceived user desires (Perez et al., 2022b); it is not hard to imagine this capability being exploited for
malicious purposes. By tailoring content to specific demographics or individual profiles, these models can
facilitate the creation of hyper-targeted misinformation (Bagdasaryan & Shmatikov, 2022; Ferrara, 2023).
This feature of LLMs raises alarming possibilities for manipulating belief systems and public opinion at
scale, potentially exacerbating societal divisions (Kirk et al., 2023b) and undermining trust in trustworthy
information sources (Weidinger et al., 2022).

Additionally, while the risks discussed largely concern society-wide implications of LLM-powered misinfor-
mation, these models can also exacerbate harm to individuals. For example, LLMs can be leveraged to
create highly realistic multimodal deepfakes, which include audio, video, and photographic content. These
deepfakes, often indistinguishable from authentic content, can be used for a range of individual-level harms,
such as the production of falsified sexual images and the discreditation of individuals (Chesney & Citron,
2019). Such content can do harm even if it is known to be fake (Burga, 2024).

Further empirical and theoretical research is needed to assess the scale and likelihood of the use and ef-
fectiveness of LLMs for misinformation generation and propagation. There is also a need for research into
developing tools and mechanisms to combat misinformation. One successful way of doing so is designing ro-
bust community-based fact-checking tooling (Pröllochs, 2022). LLMs themselves could potentially form part
of the solution; for example, by identifying why a particular piece of information is false, surfacing relevant
sources to substantiate their claim and providing desirable alternative explanations (Hu et al., 2023a; Chen
& Shu, 2023).

4.2.2 Cybersecurity
LLMs may exacerbate cybersecurity risks in various ways (Newman, 2024). Firstly, LLMs may significantly
amplify the effectiveness of deceptive operations aimed at tricking people into disclosing sensitive information
or granting adversary access to critical resources. For example, LLMs might prove highly effective at crafting
personalized phishing emails or messages at scale that may be harder for an average user to recognize as
phishing attempts (Karanjai, 2022; Hazell, 2023). In addition to being directly harmful to the targeted
individual, such ‘social engineering’ attacks are often the base of larger hacking operations (Plachkinova &
Maurer, 2018; Salahdine & Kaabouch, 2019). However, the precise impact of LLMs on the likelihood of
successful social engineering attacks is currently not clear. To develop a better understanding of this risk,
researchers could perform user studies involving white-hat hackers to understand how an actual hacker might
benefit from using an LLM in her hacking attempts. This could inform technical or sociotechnical mitigation
strategies, such as training an LLM to recognize when it is being misused for crafting phishing emails etc.
and to decline such requests. However, the technical problem of jailbreaking would remain an issue here (c.f.
Section 3.5).

Secondly, coding capabilities of LLMs could be used for malicious purposes (Checkpoint Research, 2022).
This may either be done through using off-the-shelf LLMs or through training or fine-tuning LLMs specifi-
cally for this purpose (Checkpoint Research, 2023; Erzberger, 2023). This may include using code-inspection
capabilities of LLMs to find software vulnerabilities, and code-writing capabilities of LLMs to create novel
malware and exploits. However, cybersecurity teams may also leverage LLMs in a similar fashion to preemp-
tively identify and remedy software vulnerabilities and strengthen cybersecurity in other ways (Aghaei et al.,
2022; Ferrag et al., 2023). Consequently, the net impact of LLMs on cybersecurity is currently not clear and
deserves further study (Hendrycks et al., 2021b). In addition to developing a more calibrated understanding
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of how coding capabilities of LLMs may be used in malicious ways, researchers may focus on developing
LLM-based cybersecurity tools that may be helpful to cybersecurity professionals.

One other way in which coding capabilities of LLMs could prove harmful is if they lower the barriers for
staging a successful cyberattack (Brundage et al., 2018). Current evidence is mixed in this regard indicating
that while LLMs can be used to create novel attacks, this generally requires some know-how on the part of
the user as well (Checkpoint Research, 2023; Carlini, 2023b). However, it is plausible that the improvements
in coding capabilities of LLMs could eliminate this need for expert knowledge in the future. This risk ought
to be monitored closely. One way to do so could be to develop benchmarks focused on evaluating autonomous
code-writing capabilities of a given LLM (Deng et al., 2023a).

Cybersecurity risks can also increase due to the collective resources available to multi-agent systems powered
by LLMs. Such systems could represent a risk similar in scale to botnets, with a large number of coordinated
agents working together (Sun et al., 2023). However, the generative capabilities and possible emergent
abilities of these systems at scale extend the potential impact beyond traditional Distributed Denial of
Service (DDoS) attacks. For instance, multi-agent systems could be used for targeted vulnerability analysis
and exploitation over a range of systems in a coordinated, fault tolerant manner (Hendrycks et al., 2021b).
This could facilitate vulnerability chaining across systems and networks, enabling multi-stage attacks that
are inherently more difficult to mitigate (Roytman & Bellis, 2023). In addition, multi-vector attacks could
shift the attack-defense balance as standard filtering/monitoring techniques may prove ineffective against
generative agents actively concealing their distributed activities using advanced forms of steganography
(de Witt et al., 2022) or adversarial attacks of bounded information-theoretic detectability (Franzmeyer et al.,
2023). Similar approaches could also accelerate the forensics and post-exploitation process to superhuman
speeds and efficiency (Xu et al., 2024a). On the defense side, LLMs could help, for example, through
automated analysis of security logs (Boffa et al., 2022). How the offense-defense balance will shift is an open
problem, and much work remains to be done to safeguard cybersecurity infrastructure from scaled-up threats
(Hendrycks et al., 2023) and within the broader context of multi-agent security (de Witt et al., 2023).

Lastly, there is increasing evidence that LLMs can be used to craft jailbreaks which can be used on other
LLMs and other instances of the same LLM (Chao et al., 2023; Mehrabi et al., 2023; Shah et al., 2023).
This poses a risk to the security of LLMs and may result in a dangerous dynamic where improvement in a
(closed-source) LLM’s capabilities means it can generate more sophisticated jailbreaks (which could be used
to jailbreak another instance of the same LLM). There is a need to understand how this dynamic may play
out, and what technical and sociotechnical interventions can be done to mitigate this risk.

4.2.3 Surveillance and Censorship
Content moderation has emerged as one of the key use-cases of LLMs (Weng et al., 2023), indicating the
potential of LLMs for surveillance and censorship as well (Edwards, 2023). Surveillance and censorship
are one of the primary tools employed by governments with dictatorial tendencies to suppress opposing
political and social voices. These censorship measures, however, are often quite crude and can be escaped
with little ingenuity. For example, manual supervision of the content (e.g. newspaper articles) is error-prone
and can be circumvented by simple tactics, such as using clever phrasing that does not appear critical at
the surface or hiding critical content within the margins of the articles which are likely to be overlooked
(Hem, 2014). Similarly, automated tools currently used for censorship of text-based communication at scale
are quite primitive and primarily based on keyword-matching (Knockel et al., 2020). However, LLMs could
enable significantly more sophisticated surveillance and censorship operations at scale (Feldstein, 2019).
Multimodal-LLMs or LLMs combined with speech-to-text technologies could be used for surveilling and
censoring other forms of communication as well, e.g. phone calls and video messages (Whittaker, 2019).
This may collectively contribute towards the worsening of personal liberties and the heightening of state
oppression across the world. Examples have been documented already, for instance in calling for violence and
silencing of political dissidents (Aziz, 2020), and suppression of Palestinian social media accounts (Zahzah,
2021).

Sociotechnical research could help better understand the various ways in which surveillance and censorship
may negatively impact the free thought and integrity of democratic institutions (Richards, 2012). It is
also important for the research and academic community to be proactive in this regard and ensure that
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their designed models are not misused for surveillance and censorship purposes (Kalluri et al., 2023). The
developers of LLM-based technologies, and civil society at large, ought to resist attempts at creating laws
that provide legal covers to such surveillance efforts, with security concerns used as the ostensible reason
(Ellis-Petersen, 2021). A possible technological mitigation against censorship and technological lock-in could
be the use of perfectly secure steganography (Schroeder de Witt et al., 2023, iMEC), which allows covert
communications and information hiding in the outputs of LLMs under information-theoretic undetectability.

4.2.4 Warfare and Physical Harm
The use of AI in warfare is highly alarming and may pose dangers to human safety (Hendrycks et al.,
2023). Autonomous drone warfare is being aggressively pursued as a tactic in the current war in Ukraine
(Meaker, 2023), and may already have been used on human targets (Hambling, 2023). The use of AI-
based facial recognition has been documented in the targeting of Palestinians in Gaza (International, 2023).
LLMs have already been productized in limited ways for the purposes of warfare planning (Tarantola, 2023).
Furthermore, active research is being carried out to develop multimodal-LLMs that can act as ‘brains’ for
general-purpose robots (Ahn et al., 2022; 2024). Due to the ‘general-purpose’ nature of such advances, it
will likely be cost-effective and practical to adapt them for creating more advanced autonomous weapons.
Development of autonomous weapons has been extensively criticized and cautioned against in prior literature
(Sauer & Schörnig, 2012; Sharkey, 2016; Scharre, 2016; Roff & Moyes, 2016), and identified as a source of
catastrophic risk (Hendrycks et al., 2023). These harms have also been cautioned against by technical ma-
chine learning researchers in various open letters (Future of Life Institute, 2016; Foerster, 2020). There exist
voluntary pledges by AI companies to not weaponize their technologies (Boston Dynamics, 2022), however,
past evidence indicates that such voluntary pledges can be side-stepped when convenient as they do not pose
any legally binding requirements (Christie, 2018; Biddle, 2024). Hence, LLM-based autonomous weapons
may soon pose major safety risks, absent international agreements and national legislation prohibiting their
development and use. Besides political challenges, there are technical challenges around monitoring and
enforcement. Developing or increasing the availability of autonomous drone weapons and facial recognition
targeting may also increase the risk of targeted mass killings by non-state actors.

4.2.5 Hazardous Biological and Chemical Technologies
AI systems such as LLMs, chemical LLMs (Skinnider et al., 2021; Moret et al., 2023), and other LLM-based
biological design tools might soon facilitate the production of bioweapons, chemical weapons, and other
hazardous technologies. In particular, LLMs might enable actors with less expertise to more easily synthesize
dangerous pathogens, while customized chemical and biological design tools might be more concerning in
terms of expanding the capabilities of sophisticated actors (e.g. states) (Sandbrink, 2023). Gopal et al.
(2023) and Soice et al. (2023) demonstrated that people with little background could use LLMs to help make
progress towards developing pathogens such as the 1918 pandemic influenza. However, recent studies suggest
that current LLMs are not more helpful than internet search in this regard (Mouton et al., 2024; Patwardhan
et al., 2024). On the other hand, search engines offer more practical affordances for removing content vs.
e.g. needing to retrain an LLM to ensure the content is not influencing future responses. Furthermore,
(future) LLM-based technologies could develop strong reasoning capabilities that might help them make
novel discoveries (Romera-Paredes et al., 2024) — this potential to make novel discoveries could also transfer
to hazardous chemical and biological technologies (Moret et al., 2023), potentially, resulting in technology
designs that might be more challenging to guard against via supply-chain monitoring. There is a need for
more research to characterize the potential “uplift” that (current and future) LLM-based technologies may
provide, as the current studies involved small sample sizes, only used ‘vanilla’ LLMs and none of them
produced conclusive results (Marcus, 2024). The realism of these studies can also be increased by moving
them into actual ‘wet’ laboratories and would benefit from the involvement of experts in clinical trials or
psychology research.

Furthermore, there is a need for ongoing monitoring to track how relevant capabilities are evolving with scale
(c.f. Section 2.3). Doing so well may require postulating and refining explicit threat models and defining clear
thresholds for action in advance; such work could also involve national security experts. Machine learning
researchers should also work with professionals who study terrorism and mass killings to better understand
whether and how LLMs might significantly contribute to such risks; this could involve understanding the
social factors underlying such attacks, how the resources currently available online are – or might be – used
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by such attackers, and what currently limits the rate and severity of such attacks. Finally, we note that most
of the contemporary work on biological and chemical risks from LLM-based technologies is concentrated on
risks from non-state actors; there is also a need to better understand how states might misuse LLM-based
technologies in this regard (Yassif et al., 2023).

4.2.6 Domain-Specific Misuses
Improvements in LLMs may exert greater pressure to apply LLMs to various domains, such as health and
education (Eloundou et al., 2023). Crude efforts to use LLMs in such domains, however, may incur harm and
should be discouraged strongly. In particular, it is important to guard against different ways in which LLMs
may be misused within any domain. One famous episode of misuse within the health sector is a mental
health non-profit experimenting LLM-based therapy on its users without their informed consent (Xiang,
2023a). Within the education sector, LLMs may be misused in various ways that might impact student
learning; e.g. as cheating accessory by the students or as (low quality) evaluator of student’s work by the
instructors (Cotton et al., 2023). Recent findings in moral psychology also suggest that LLMs can generate
moral evaluations that people perceive as superior to human judgments; these could be misused to create
compelling yet harmful moral guidance (Aharoni et al., 2024). Similar risks of misuse may exist in other
domains as well.

There is a need for research to better understand how LLMs might be misused across different domains.
Interviews with domain experts and case studies of early deployments across different sectors may help
in this regard. Domain-specific standards and regulations could be established to prevent these risks from
materializing (Organization, 2021). One particular sociotechnical challenge is to effectively identify emerging
use cases of LLMs, e.g. through surveys and/or in partnership with LLM deployers, who could monitor use
patterns. Several factors make this a non-trivial challenge, even for LLM deployers; for instance, users may
disguise queries or user calls may be spread across various LLM deployers in a way that might mask the real
use (Glukhov et al., 2023).

4.2.7 Mechanisms for Detecting and Attributing LLM Outputs Are Lacking
One overriding challenge in preventing malicious use of LLMs is the difficulty of recognizing outputs from
LLMs and attributing them correctly to particular systems and/or users. Attribution facilitates account-
ability and enforcement, which may help disincentivize many forms of malicious use. Techniques such as
watermarking, which embeds detectable patterns in AI-generated content, could be helpful (Kirchenbauer
et al., 2023), but their effectiveness is currently unclear (Zhang et al., 2023a; Huang et al., 2023a; Hu et al.,
2023d) and more work is needed. Increasing access to LLMs (especially open source models) might make at-
tribution more challenging (Augenstein et al., 2023; Seger et al., 2023). In particular, even if an open-source
model watermarks its outputs, it might be easy to modify it to not do so. This motivates the challenge
of attributing outputs to particular models in the absence of (deliberately injected) watermarks. Machine
learning researchers could work with cyber security experts and other professionals to understand the gaps
that LLMs will create in current attribution practice for the particular domains discussed above.

There is a strong risk that dual-use capabilities of LLMs may be exploited for malicious purposes.
LLMs may be misused towards generating targeted misinformation at an unprecedented scale. The
coding capabilities of LLMs may be misused by malicious actors to mount cyberattacks with greater
sophistication and at higher frequencies. LLMs are quite effective as content moderation tools; this
may mean that LLMs get adopted to enact mass surveillance and censorship. LLMs may be used
to power autonomous weapons, creating a possibility of physical harm from them. Other misuses
of LLMs may occur as LLMs are applied to various domains. Active research is needed to better
understand these risks and to create effective mitigation strategies.

145. Can we develop a calibrated understanding of how current and future LLMs could be used to
scale up and amplify misinformation campaigns? What level of human expertise is required
to effectively use LLMs to generate targeted misinformation? ←↩

146. Can we develop reliable techniques to attribute LLM-generated content, helping track its
spread? Can watermarking be an effective measure given the growing availability of openly
accessible LLMs? ←↩
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147. How can individuals be protected against harms caused by AI-assisted deepfakes? ←↩
148. What measures can be taken to prevent LLMs from producing sophisticated misinformation,

while simultaneously enhancing their capacity to identify and mitigate misinformation? ←↩
149. Can we develop effective tooling and mechanisms to combat misinformation on online plat-

forms? How can LLMs themselves be applied to detect and intervene against LLM-generated
misinformation? ←↩

150. How may LLMs contribute to scaling and personalization of social engineering-based cyber-
attacks? ←↩

151. To what extent do LLMs reduce the threshold of technical expertise required for executing a
successful cyberattack? ←↩

152. Do advances in capabilities of LLMs cause LLMs to become better at crafting jailbreaking
attacks? If so, how can the safety of LLMs from jailbreaking attacks (designed by other
LLMs) be assured? ←↩

153. How effective are LLMs at surveillance and censorship? How may LLMs, on their own
or in combination with other technologies (e.g. speech-to-text softwares), contribute to the
expansion and sophistication of current surveillance operations? How can we limit the use of
LLMs for surveillance? ←↩

154. How can the military applications of LLMs, especially LLM-powered autonomous weapons,
be regulated? There appears to be a mass consensus within the machine learning community
that LLMs, and other AIs, should not be weaponized; how can this consensus be leveraged
to create legislation pressure to outlaw autonomous weapons development across the world?
←↩

155. How might current, or future, LLM-based technologies (including chemical LLMs and special-
ized biological design tools based on LLMs) be misused in the design of hazardous biological
and chemical technologies? ←↩

156. Can we identify how LLMs may get misused across various domains, such as health and
education? What regulations are required to prevent such misuses? In general, how can we
best understand LLM use cases and identify those with significant misuse potential? ←↩

157. Can we design robust watermarking mechanisms that may help us identify LLM-generated
content? ←↩

158. What mechanisms can be used to determine attribution for content generated using openly
available models for which watermarking may not be an appropriate solution (as it could be
easily undone)? ←↩

4.3 LLM-Systems Can Be Untrustworthy
A key desideratum for an LLM from a user’s perspective is ‘trustworthiness’, i.e. assurance of reliability
and consistent performance, and absence of any accidental harm caused by the technology to the user.16

Providing assurance that an LLM-based system will not cause accidental harm remains a
major open challenge. Harms may either occur directly due to the flawed nature of LLMs, e.g. an LLM
generating toxic language or behaving inappropriately in some other ways, or may occur due to improper
usage by a user, e.g. automation bias due to a user’s overreliance on LLM. We overview several challenges
in this section that can potentially undermine a user’s trust in LLMs. The technical flaws underlying these
challenges in many cases appear difficult to address; at least in the immediate term. Hence, technical research
alone may be insufficient to address these challenges, and sociotechnical interventions may be required to
assure that LLM assistants do not incur accidental harm to the users.

4.3.1 Harms of Representation and Other Biases
A pretrained LLM generally has many of the stereotypical biases commonly present in the human society
(Touvron et al., 2023). This makes it difficult for users to trust that LLMs will work well for them and not
produce unfair or biased responses. Appropriate finetuning can effectively limit the bias displayed in LLM
outputs in a variety of situations, e.g. when models are explicitly prompted with stereotypes (Wang et al.,

16Note that within the machine learning literature, the term ‘trustworthiness’ carries various other meanings as well. The
scope of our discussion is limited to our definition given here
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2023b), but it does not ‘solve’ the problem. Even after finetuning, biases often resurface when deliberately
elicited (Wang et al., 2023b), or under novel scenarios, e.g. in writing reference letters (Wan et al., 2023b),
generating synthetic training data (Yu et al., 2023c), screening resumes (Yin et al., 2024) or when used as
LLM-agents (Pan et al., 2024). The biases outputs are often much more prominent in low-resource languages
(Yong et al., 2023) and in dialects used by marginalized groups (Hofmann et al., 2024). There is a need
for research to develop better and more comprehensive tools for the detection of bias, toxicity (Wen et al.,
2023; Wang & Chang, 2022), and other kinds of inappropriate behaviors. The current tools primarily focus
on detecting content that is explicitly toxic and offensive, however, the issue of bias goes beyond commonly
studied subjects of biases, such as race and gender (Hofmann et al., 2024). For instance, depending on the
finetuning data, LLMs may also develop a bias towards particular political ideologies (Rutinowski et al.,
2023). These biases are still relatively poorly understood, and there is a need for more extensive evaluations
of current LLMs in novel scenarios to better understand the propensity of LLMs to enact such biases. There
is also a need for a thorough evaluation of how the global south is represented within these models, and what
sort of harmful representations of the global south are reinforced by LLMs (Qadri et al., 2023; Jha et al.,
2024).

4.3.2 Inconsistent Performance across and within Domains
Estimating true capabilities of an LLM is a difficult task (c.f. Section 3.3), especially for naive users unfamiliar
with the brittle nature of machine learning technologies. Exaggeration of model capabilities by the developers
(Lambert, 2023; Blair-Stanek et al., 2023), and issues such as task-contamination (Roberts et al., 2023b),
underrepresentation of tasks or domains (Wu et al., 2023b; McCoy et al., 2023), and prompt-sensitivity
(Anthropic, 2023b) may cause a user to misestimate the true capabilities of a model. This lack of reliability
can undermine user trust or cause harm if a user bases their decision on incorrect or misleading information
provided by an LLM. A famous example of this is the US lawyer who cited a fake case, hallucinated by
ChatGPT, in a legal brief filed in a US court (Merken, 2023). Technical solutions could involve improving
the reliability of the LLMs performance (e.g. using retrieval augmented generation to minimize hallucinations)
or providing reliable uncertainty estimates alongside LLM responses (Fadeeva et al., 2023; Kuhn et al., 2023).
However, technical solutions may not be developed quickly, if at all. Hence, there is a need to understand
how the reliability of LLMs can be improved through extrinsic measures. Towards this goal, it will be useful
to understand how reliable a median user perceives an LLM to be, to what extent they are able to reliably
forecast on what problems a particular LLM will fail (Carlini, 2023a) and how this ability to determine
the reliability of an LLM’s performance evolves as the user interacts further with the LLM. This may be
done through user studies and interviews with various different types of users. It may be difficult to draw
very general conclusions, and more productive in many instances to focus on trustworthiness for particular
(e.g. somewhat narrow) use cases or domains. Such research could then provide insights into the efficacy of
different extrinsic measures that could be taken to help users use the LLMs safely e.g. providing appropriate
education and disclaimers to the user before they begin interacting with an LLM.

4.3.3 Overreliance
If a user begins to excessively trust an LLM, this may cause them to develop an overreliance on the LLM.
Overreliance can result in automation bias (Kupfer et al., 2023), and can cause errors of omission (user
choosing not to verify the validity of a response) and errors of commission (user believing and acting on
the basis of the LLM’s response, even if it contradicts their own knowledge) (Skitka et al., 1999). It can
be particularly dangerous in domains where the user may lack relevant expertise to robustly scrutinize the
LLM responses. This is particularly a source of risk for LLMs because LLMs can often generate plausible,
yet incorrect or unfaithful, rationalizations of their actions (c.f. Section 3.4.10), which can mistakenly cause
the user to develop the belief that LLM has the relevant expertise and has provided a valid response. A
common tactic used to prevent harms that might arise from overreliance is to include disclaimers alongside
model output that could act as triggers for the user to externally validate the model response. However,
users can get desensitized to such disclaimers over time (OpenAI, 2023c). Better interface design (e.g. using
distinct colors for distinct grades of disclaimers) could help avoid, or limit, such desensitization. User studies
could be done with different user types to better understand the details of how overreliance might manifest,
and what mitigation strategies may be most effective against it. The use of LLMs as coding assistants by
developers could be used to study over-reliance as coding tasks are often well-posed and can have varying
levels of complexity as required.
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There is also a need to better understand the related risks that might arise due to consistent and prolonged
usage of LLM by a user in a particular domain. Outsourcing certain types of cognitive tasks to LLMs, e.g.
writing tasks, could impair corresponding skills among LLM users. This is particularly a risk for the use
of LLMs in education where excessive usage of LLM may cause students to develop an unnecessary, and
unwanted, dependency on LLMs. Additionally, prior work has shown that humans can inherit biases from
AI systems, and that these negative effects of AI technology do not naturally go away even when the biased
AI systems are removed (Vicente & Matute, 2023; Kidd & Birhane, 2023). Further research is required to
better understand these risks; how they might materialize, and what can be done to mitigate them?

4.3.4 Contextual Privacy Preservation
As LLMs proliferate through society, this will inevitably result in LLMs simultaneously interacting with
multiple parties (see Section 2.6). In such scenarios, assurance of privacy goes significantly beyond assuring
that the outputs of the LLMs do not contain personally identifiable information (Nissenbaum, 2020), and
requires that LLMs do not leak data or information shared by one actor to another needlessly. The notion
of privacy is not well-formalized in such contexts currently and there is a need for work on defining and
operationalizing it in an appropriate way. In the absence of a formal definition, a useful goal could be
to assure that in any context LLMs do not share information given by one party with some other party,
unless a human would do so as well. Current LLMs do not provide this assurance and often leak private
information provided by one party to another when a human would not do so — and common tricks, e.g.
prompt-engineering or output filtering do not improve alignment between the behavior of LLMs and human
(Mireshghallah et al., 2023). This hints at some of the fundamental limitations in preserving privacy in
multi-agent contexts.

Trustworthiness, defined as the assurance that users will not experience accidental harm when using an
LLM, is critical for LLM alignment and safety. Among other things, trustworthiness requires ensuring
that users can use LLMs safely despite the occasional unreliability of their outputs; preventing users
from developing an overreliance on LLMs; mitigating harm resulting from biased representations of
societal groups learned by LLMs; ensuring appropriate behavior across all contexts; preventing the
generation of toxic and offensive content by LLMs; and reliably preserving user privacy across various
contexts.

159. What sort of societal biases are present within LLMs? Can evaluations on complex, real-world
tasks uncover those biases? ←↩

160. To what extent is the global south represented within LLMs? What harmful representations
of the global south are present within the LLMs? ←↩

161. Can we develop better and more comprehensive tools for implicit and explicit toxicity and
offensive language detection? ←↩

162. To what extent are LLM users able to accurately perceive the reliability of LLM outputs?
Does a user’s ability to assess the reliability of an LLM’s response improve with continued
interaction? ←↩

163. What extrinsic measures can be implemented to ensure that LLM users utilize the technology
safely, especially considering the potential unreliability of LLM responses? ←↩

164. How can we mitigate the potential harms arising from overreliance on LLMs? How can we
prevent users from becoming desensitized to disclaimers about LLMs’ limitations? ←↩

165. How can we make LLMs understand the sensitivity of information in a given context, and
preserve contextual privacy? ←↩

4.4 Socioeconomic Impacts of LLM May Be Highly Disruptive
The rapid evolution of LLMs brings significant socioeconomic opportunities and challenges, impacting the
workforce, income inequality, education, and global economic development. Many of these challenges are
systemic in nature, constituting what economists refer to as general equilibrium effects. These challenges
do not arise directly from LLMs causing harm to users but rather from their indirect effects on the socioe-
conomic equilibrium. For instance, automation may reduce labor demand, leading to wage declines and
subsequent harm to workers. Consequently, addressing these challenges may necessitate system-wide policy
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interventions. To effectively implement such interventions, a thorough understanding of these
challenges and potential mitigation strategies is imperative. In this section, we explore some of
these challenges and pose pertinent research questions that warrant investigation.

4.4.1 Effects on the Workforce
The effects of integration of LLMs into various industries and workflows on the workforce are likely to be
significant, and pose a great socioeconomic challenge. Since the Industrial Revolution, technological progress
has regularly displaced some workers but led to the creation of new jobs as the growing wealth generated by
better technology led to growing demand for additional goods and services, enabling the displaced workers
to take up new opportunities (Autor, 2015). As a result, the economy adjusted to the displacement. By
and large, workers in advanced countries today are much better off than they were at the beginning of the
Industrial Revolution (Maddison, 2004). However, there are reasons to be concerned that the ongoing rapid
advances in LLM capabilities in particular, and AI in general, might disrupt this pattern.

Rapid advances in LLMs pose three distinct sets of challenges for workers’ incomes (Korinek & Stiglitz, 2019;
Susskind, 2023). First, they are likely to accelerate the rate of job turnover and disruption —– affecting more
workers, including more highly skilled workers, and making the adjustment process for society more difficult
than what we were used to from prior technological advances. Research could help identify what sectors
are most vulnerable to job disruption (Eloundou et al., 2023) and how the displaced workers within those
sectors can be helped to become productive workers in other growing sectors. Second, although technological
progress means that society may produce more wealth overall, there is a risk that the general-purpose nature
of LLMs may lead to progress that is biased against labor, meaning that the share of that wealth that goes to
labor may decline. The overall effect on wages is then a horse race between these two opposing forces. The
fate of blue-collar workers in recent history may be a harbinger of what lies ahead for white-collar workers:
as a result of skill-biased technological change, the wage of the median male blue-collar worker has declined
over the past four decades, when adjusted for inflation, even though the overall economy in the US has
tripled (Autor, 2019). Early results suggest a negative impact of LLMs on certain categories of jobs (Hui
et al., 2023). Third, if future LLMs and robots advance to the point where they can perform virtually all
the work tasks, they would disrupt labor markets more fundamentally: if machines can do workers’ jobs,
wages would fall to machines’ user cost (Korinek & Juelfs, 2023). This would pose fundamental challenges
for labor markets and income distribution (Korinek, 2023).

Aside from their effects on incomes, the rapid advances in LLMs also risk reducing job quality. Automation
often tends to increase not only the physical but also the emotional demands put on workers, exposing them
to greater surveillance, higher job intensity, and less human agency (Bell, 2022). These trends have already
been observed in the increase of digital labour (Casilli & Posada, 2019) and the platformization of labour
more generally (Nyabola, 2023); as LLMs become more widely applied they could exacerbate these trends.

More fundamentally, work is not only the main source of income for the majority of people, but also the main
activity that occupies our time. As a result, many derive a significant part of our identity, life satisfaction,
and meaning from work (Susskind, 2023). If people lose their work, they would thus lose much more than
their income, with broad implications for our society and our political system (Bell & Korinek, 2023).

Two observations might help tackle the resulting challenges (Korinek & Juelfs, 2023). First, if the non-
monetary aspects of work are so important, people could presumably continue to work even when machines
can automate it — they just may not earn much of an income from it. In surveys, a majority of workers
are not very satisfied with their work (Gallup, 2022) and would likely be happier if they received the same
income without the need to do a job. Second, things become trickier if one individual’s decision on whether
to work affects others’ well-being, for example, because it affects others’ scope to form social connections
at work or because it has implications for political stability. Economists call such effects externalities.
When significant externalities are at work, there is often a role for public policy to improve upon the socio-
economic equilibrium. Research could work to identify what the best interventions could be that might be
implemented via appropriate public policy. One such intervention could be to mandate LLM-developers to
conduct impact assessments or risk assessments for whether their AI systems augment workers and improve
working conditions. However, the general-purpose nature of the LLMs may make conducting such risk
assessments challenging.
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4.4.2 Effects on Inequality
LLMs could potentially worsen socioeconomic inequalities (Capraro et al., 2023). Effects on inequality are
closely linked to the effects of LLMs on workers but ultimately depend on how the fruits of technological
progress are distributed. There are three important challenges associated with this:

First, if the role and compensation of capital rise and the role and compensation of labor decline in an LLM-
powered economy, inequality may go up because work is the main source of income for the majority of people.
There are signs that this may already have happened because of earlier automation technologies in recent
decades (Karabarbounis & Neiman, 2014). This has led to calls to steer advances in AI in a direction that
complements workers rather than substituting them (Korinek & Stiglitz, 2020; Klinova & Korinek, 2021).
This also applies to LLMs. A tangible example of an LLM that complements workers would be a system
that advises call service center agents how to best handle calls (Brynjolfsson et al., 2023). An example that
substitutes for workers would be a system that replaces workers altogether. Given the general-purpose nature
of LLMs, there is a risk that advances in any given use case may initially complement workers but eventually
progress to a stage where they can displace them. However, human decisions can influence the extent to
which LLMs complement vs. substitute workers. This includes developers of such systems, business leaders
who deploy them, and lawmakers and regulators who shape the economic and societal context in which these
systems operate. Economic and sociological research could help understand how LLM-based technologies
are likely to get adopted, for instance, by interviewing workers who are early adopters or studying historical
examples of integrating new technologies into workspaces or industries. There is also a need for concerted
efforts to best educate the business leaders on leveraging the growth benefits of LLMs in a way that is
minimally disruptive to the larger society.

Second, the large fixed cost of training cutting-edge LLMs and the network effects involved imply that the
market for the most advanced LLMs tends towards a natural monopoly structure in which only one or a
small number of players will be successful, a phenomenon that has been termed ‘algorithmic monoculture’
in the literature (Kleinberg & Raghavan, 2021; Bommasani et al., 2022). As a result, LLM developers may
amass significant market power. This might result in reduced social welfare, and lead to LLM-providers
extracting monopoly rents from their customers (Kleinberg & Raghavan, 2021; Jagadeesan et al., 2023).
These concerns may become even more important if the producers of LLMs engage in vertical integration
and also participate in the market for downstream applications, for example, if an LLM company also
enters the market for legal advice, medical services, etc. In the limit, the market for leading LLM providers
could be the entire economy as the capabilities of LLMs improve across the board (Korinek & Vipra, 2024).
This centralization of power could be even more problematic due to the potentially negative impact on
the governance of LLMs (c.f. Section 4.5.4). The tendency towards centralization could be mitigated by
a robust antitrust response and other policy interventions. However, this requires ensuring that economic
policymakers are cognizant of the technological scenarios that lie ahead and their economic implications. The
onus is on the technical community, which is generally more prescient about the impending technological
developments, to effectively communicate and engage with economic policymakers in this regard. They
may do so by writing educational documents aimed at a non-technical audience (e.g. Bowman, 2023), or
releasing policy briefs on their research (e.g. Barrett et al., 2023). An alternative solution could be to
prevent materialization of an algorithmic monoculture by increasing access to LLMs and broadening the
pool of LLM developers, e.g. via open-source and open-science (Solaiman, 2023). Researchers could help
improve the understanding of the extent to which current dynamics, in which leading LLM developers remain
closed-source, but a number of less capable open-source competitors exist, are likely to lead to monopoly
and identify interventions that could help mitigate them.

Third, as LLMs are becoming more powerful, who has access and who hasn’t is becoming a more and
more important question. For example, automated coding tools have been shown to produce significant
productivity gains, e.g. > 50% in some cases (Peng et al., 2023). Individuals who don’t have access —–
whether it is for financial reasons, for reasons of education, because of corporate or governmental policies,
or for geopolitical reasons — might be at a growing disadvantage. In recent decades social scientists have
observed a growing digital divide based on unequal access to digital technologies (Van Dijk, 2020). LLMs
risk giving rise to a new ‘intelligence divide’ based on who has access to the most intelligent LLMs and who
hasn’t.
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4.4.3 Economic Challenges for Education
In a knowledge-based economy, education equips individuals with the human capital that prepares them to
be productive workers. Human capital is often considered as our greatest asset. Yet the rapid emergence of
LLMs poses three significant economic challenges for education:

First, given the rapid emergence of LLMs as a powerful productivity tool, virtually the entire white-collar
workforce may need to learn to use LLMs. Cognitive workers may need to learn how to prompt and steer
LLMs, how to properly evaluate the output generated by LLMs, and how to incorporate them into their
workflows in order to optimally benefit. This is one of the factors slowing down the rollout of LLMs in
organizations throughout our economy (McAfee et al., 2023).

Second, while educators are challenged to teach new tools, LLMs also force them to fundamentally rethink
the way in which they provide education and evaluate students (Mollick & Mollick, 2023; Cotton et al.,
2023). LLMs could help unlock teaching methodologies that were not previously viable and improve the
overall education quality (Khan, 2023). However, issues such as low technological readiness may hinder the
rapid adoption of LLMs in educational contexts (Yan et al., 2023). There is a need for further research to
better understand these issues and how to mitigate them.

Third, for education, a dark side of the positive productivity effects of LLMs is that they devalue a significant
part of the human capital that workers have accumulated in the past. A growing number of studies show
that lesser-skilled workers benefit more from LLMs than more highly-skilled workers (Noy & Zhang, 2023;
Dell’Acqua et al., 2023). Another way of putting these results is that the human capital of highly skilled
workers is no longer as valuable as it used to be, which may eventually lead to reduced hiring and train-
ing, and lower wages for skilled workers. This could have negative second-order effects. Currently, skilled
labour presents a technical and moral bottleneck to the deployment of AI for malicious purposes (e.g. tech
workers protesting Project Maven Shane & Wakabayashi, 2018), but as their jobs become (fully or partially)
automated or, these workers may have less ability and agency to contest the uses of LLMs, increasing the
hegemony of a narrowing set of powerful actors.

4.4.4 Global Economic Development
Many of the themes and challenges that we discussed above come together when analyzing the socio-economic
effects on developing countries. The workforce of developing countries may suffer from a retrenchment of
outsourcing as many simple cognitive tasks that used to be performed in developing countries — for example,
in call centers –— can be automated with LLMs. This may adversely affect the economies of the poor
countries (Georgieva, 2024). The inequality implications of LLMs also have an international dimension as
there may be a growing ‘intelligence divide’ between advanced countries that have access to leading LLMs
and poorer countries that do not. Differential productivity effects may give rise to terms-of-trade losses for
developing countries (Korinek et al., 2022). Similarly, many of the profits generated by leading LLMs will
accrue to advanced countries. On the other hand, developing countries may share in the productivity benefit
of LLMs with advanced countries if LLMs are accessible to populations in Global South, both in terms of
technology design and in terms of pricing. Surface-level usage statistics seem to indicate that freely available
LLMs have indeed seen considerable adoption among Global South populations (e.g. India and Brazil are
the second and third largest sources of web traffic to ChatGPT; Similarweb, 2024). However, there may
exist extrinsic factors that might limit wider penetration of LLMs among Global South populations, such
as lack of internet connectivity and poor tech literacy among the populations. LLMs could potentially be
leveraged to address some of the economic challenges faced by countries in the Global South. For example,
teacher shortage is a critical issue that negatively impacts quality of education among Global South countries
(Unesco, 2022). It is plausible that LLMs could be used to help mitigate this issue.

Additionally, in contrast to most other technologies, global adoption of LLMs requires that they are profi-
cient in all world languages. However, even multilingual models perform worse in lower-resource languages
(Etxaniz et al., 2023; Shen et al., 2024) and “think” in English even when fine-tuned for other languages
(Wendler et al., 2024). This has severe safety and security implications as models that might be aligned
in English might not be equally well-aligned in other languages (Deng et al., 2023b; Yong et al., 2023) or
may perform worse in other languages (Aroyo et al., 2024; Holtermann et al., 2024). Additionally, LLMs
may cost an order of magnitude more to use in some languages (up to 15 times in ChatGPT’s case; Ahia
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et al., 2023; Petrov et al., 2023a). Hence, ensuring that LLMs work well regardless of the language in which
they are used is key if we want to ensure they are a tool for reducing global inequalities rather than further
exacerbating them.

The socioeconomic impacts of LLMs have the potential to be highly disruptive if not effectively
managed. LLMs are likely to adversely affect the workforce, exacerbate societal inequality, and
introduce new challenges for the education sector. Furthermore, the implications of LLM-based
automation on global economic development remain uncertain. These challenges are complex and
systemic in nature; there do not exist any simple fixes. To devise solutions, we need to develop a
deep and nuanced understanding of these issues. Answering the following questions may help make
progress towards this goal.

166. How can we better understand and forecast the disruptive effects of LLMs on job availability
and job quality in different sectors? How can displaced workers be helped to transition to
other sectors?←↩

167. How can LLM developers best conduct impact assessments or risk assessments for whether
AI systems improve working conditions (by augmenting workers) or not? ←↩

168. How can LLM-based systems be designed to augment workers and improve working condi-
tions, as opposed to automating and discplacing workers? ←↩

169. How can we best educate business leaders to leverage the growth benefits of LLMs in a way
that is minimally disruptive to society? ←↩

170. How likely is the market for advanced LLMs to become a monopoly or oligopoly? What will
the ramifications of such market concentration be on wealth distribution across society? ←↩

171. How can we ensure equitable access to LLMs for individuals of all socioeconomic back-
grounds?←↩

172. To what extent are LLMs likely to exacerbate an ‘intelligence divide’ based on access to the
most advanced LLMs?←↩

173. How can LLM developers best keep economic policymakers updated on the technological
scenarios that lie ahead and their economic implications (e.g. by writing policy briefs or
writing informal educational documents)? ←↩

174. How do we best educate the workforce for the effective use of LLMs and retrain disrupted
workers?←↩

175. What factors might impede adoption of LLM-based technology in educational contexts? How
can these factors be mitigated? ←↩

176. How can we better understand the second-order effects of LLM-driven automation on AI
safety and alignment? E.g. could LLM-driven automation reduce the agency and ability of
skilled labor to resist immoral usage of technologies? ←↩

177. How might LLM-based automation negatively impact the economies of Global South coun-
tries?←↩

178. How accessible are LLMs to Global South populations? How can this accessibility be im-
proved? What measures can be taken by governments to address issues related to lack of
internet connectivity, poor tech literacy etc.?←↩

179. How can LLMs be used to help address some of the issues that hinder the economic develop-
ment of Global South countries? For example, how can LLMs be used to help improve the
quality of education available to Global South populations?←↩

180. How to ensure that LLMs support all the world’s languages equally, especially low-resource
languages with large number of speakers? How do we ensure that LLMs are a tool for a
global levelling up rather than further exacerbating economic divides? ←↩

4.5 LLM Governance Is Lacking
Governance will play an essential role in the safety and alignment of LLMs, in particular, and AI in gen-
eral (Bullock et al., 2022a). Governance encompasses not only formal regulations, but also a number of
other mechanisms including norms, soft law, codes of ethics, co-regulation, industry standards, and sector-
specific guidelines (Veale et al., 2023); see Table 5. Governance could supplement technical solutions, e.g.
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Table 5: Examples of different governance mechanisms relevant to the governance of LLM, and AI broadly.

Governance Mechanism Examples
Global Frameworks, Agreements or
Conventions

Draft Council of Europe Framework Convention on AI,
Democracy, and Human Rights (Council of Europe, 2023)

Regional Regulation EU General Data Protection Regulation (GDPR) (Voigt &
Von dem Bussche, 2017)
EU AI Act (Council of the European Union, 2024)

Domestic Regulation China Administrative Provisions on the Management of Deep
Synthesis of Internet Information Services (Finlayson-Brown
& Ng, 2023)
USA AI Initiative Executive Order (White House, 2023)

Sub-national Regulation California Consumer Privacy Act (CCPA) (Goldman, 2020)
International/supranational “soft law” OECD Recommendation on AI 2019 (OECD, 2019)

EU Ethics Guidelines for Trustworthy Artificial Intelligence,
2019 (AI-HLEG, High-Level Expert Group on Artificial
Intelligence, 2019)
UNESCO 2021 recommendations on the ethical use of AI
(Unesco, 2021)

National “soft law” UK NCSC “Guidelines for secure AI system development”,
2023 (National Cyber Security Center, 2019)

Industry Co-regulation Partnership on AI (PAI, 2017)
Frontier Model Forum (Frontier Model Forum, 2023)

Industry Self-regulation Anthropic’s Responsible Scaling Policy (Anthropic, 2023f)
Google AI Principles (Google AI, 2018)

Standards organizations outputs ISO data governance instruments (ISO, International
Organization for Standardization, 2017)
IEEE’s Ethically Aligned Design (IEEE, Institute of
Electrical and Electronics Engineers, 2018)
CEN/CENELEC work on standards to implement EU AIA
(ongoing)
US NIST Artificial Intelligence Risk Management Framework
(AI RMF) (NIST, National Institute of Standards and
Technology, 2023)

Internal institutional policies University research ethics committees
Company AI ethics and safety research teams (e.g.
Microsoft’s FATE team, Deepmind’s Scalable Alignment
team), boards and codes

Private legal instruments Contracts: e.g. Microsoft-OpenAI deal (Bradshaw et al.,
2023)
Licenses: e.g. RAILS license (Responsible AI License) (RAIL
Team, 2024)
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by mandating they be applied as appropriate. It could also substitute for technical solutions by prevent-
ing unsafe development, deployment, or use of LLMs when there do not exist sufficient technical tools for
safety. However, serious efforts to govern LLMs remain fairly nascent (e.g. US Executive Order
(White House, 2023), or EU AI Act (Council of the European Union, 2024)) and efforts to date have
mostly been ill-defined and/or voluntary. A number of governance challenges remain that ought to
be addressed, or mitigated, to ensure LLMs are beneficial to society and do not contribute to harm to any
societal group. Within this section, we divide our discussion of challenges that hinder LLM governance into
two parts. We first discuss meta-challenges that complicate governance such as lack of requisite scientific
understanding of LLMs, lack of effective fast-moving governance institutions, lack of culpability schemes, and
corporate power. We complement this with a discussion of practical challenges focused on the fact that most
governance mechanisms are underdeveloped and concrete proposals for governance are lacking. We note
that our discussion on governance challenges complements other related works (Dafoe, 2018; Anderljung &
Carlier, 2021; Shavit et al., 2023; Barnard & Robertson, 2024).

Meta-Challenges — Challenges That May Limit Efficacy of LLM Governance
The governance of generative models (both LLMs and generative image models) is challenging due to factors
such as the rapid productization of the technology, economically disruptive nature of the technology (c.f.
Section 4.4), high potential for misuse (c.f. Section 4.2), and the rapidly evolving technological landscape
(Bengio et al., 2023). Indeed, several meta-challenges exist that might limit the efficacy of LLM governance.
These challenges include a lack of scientific understanding and technical tools necessary for governing LLMs
effectively, the need for agile governance institutions capable of keeping pace with technological advance-
ments (which is an antithesis to the traditional slow bureaucratic nature of the governments), a need to
better understand the competitive dynamics between AI companies to ensure that competitive pressure does
not result in irresponsible AI development, risks of regulatory capture due to corporate power, a need for
international cooperation and consensus, and a lack of clarity on accountability for harms caused by LLMs.

4.5.1 Lack of Scientific Understanding and Unreliability of Technical Tools Complicate Governance
Effective governance of a technology hinges on three key elements: a comprehensive scientific understanding
of the technology to gauge potential risks, dependable auditing tools to evaluate practical risks, and effective
methods to intervene upon and mitigate these risks (Raji, 2021). However, as noted throughout the agenda,
all three are currently underdeveloped for LLMs. Critical aspects of LLMs, such as in-context learning
(Section 2.1) and reasoning abilities (Section 2.4), are poorly understood. Furthermore, existing auditing
tools, including evaluation (Section 3.3) and interpretation methods (Section 3.4), are not reliable enough
to provide meaningful assurance of model safety outside of very narrow contexts. And the primary technical
tool for mitigating risks, safety finetuning, lacks robust generalization (Section 3.2).

These issues complicate governance and contribute to a lack of scientific consensus on the nature and severity
of risks associated with LLMs. This lack of technical clarity is one reason Guha et al. (2023) and Kapoor
et al. (2024) caution against rushing to regulate. Yet, the process of establishing regulation has tended to be
slower than the rate of AI progress. Thus, it is crucial to generate and evaluate governance proposals despite
our presently limited technical understanding. Proposals could explore how governance approaches could be
adapted based on the level of technical understanding of the models and the rate at which the field might be
progressing; for instance, how should a governing body change risk thresholds in response to new evidence?
Alternatively, proposals could seek to accelerate technical understanding of LLMs and their risks and harms,
e.g. by funding research and building government capacity. Moreover, understanding the interconnections
among diverse risk types is required to inform strategies for risk governance (Kasirzadeh, 2024). Another
proposal is a temporary pause or slowdown on AI and LLM development (Future of Life Institute, 2023),
based on the hope that this time could be used to develop standardized safety protocols and make progress
on safety, e.g. through technical research. However, this proposal has received much criticism. It may
adversely affect AI alignment and safety research and cause ‘overfitting’ of alignment research to whatever
the state-of-the-art model at the time of the pause might be (Belrose, 2023) or might be infeasible to enforce
(Luccioni, 2023). On the whole, it remains unclear whether governing bodies should aim to moderate the
pace of progress in AI, and if so, what governance mechanisms (e.g. compute governance, see Section 4.5.11)
could be used for this purpose.
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4.5.2 Need for Effective, Fast-Moving Governance Institutions
Given the rapid pace of advances in LLMs, governance institutions will need to adapt quickly to remain
effective. Governments are currently attempting to regulate AI both through existing institutions, such as
NIST in the USA (White House, 2023), or by novel legislation, such as the EU AI Act in Europe (Council
of the European Union, 2024). However, capacity issues might limit the ability of governments to design
and implement effective policies for governing LLMs quickly (Marchant, 2011). For example, regulatory
bodies might struggle to enforce laws due to the lack of resources and relevant expertise, as has been the
case with the enforcement of data protection laws (Jelinek & Wiewiórowski, 2022). However, despite these
shortcomings in practice, government regulation has unique legitimacy and authority. Hence, it is worth
asking how these shortcomings may be addressed.

One approach to overcome these limitations could involve creating new institutions through legislative mea-
sures. For example, Tutt (2017) proposes an FDA-like body for algorithmic systems. There is indeed a
growing trend towards the enactment of tailored AI laws, particularly led by the EU and China. These
laws may encompass large models as a specific category, such as the provision of the EU AI Act concerning
foundation models or general-purpose AI (GPAI) (Weatherbed, 2023). Investigating the impact of such
laws on the development and application of LLMs is one clear direction for research; this could involve a
comparative study of different national approaches to LLM regulation, and/or an analysis of the priorities,
assumptions, and ideologies driving different AI regulations (Au, 2023).

On the other hand, existing regulation could also be fruitfully applied to the governance of LLMs (Gaviria,
2022; Bhatnagar & Gajjar, 2024). This includes copyright and data privacy laws, speech laws, labor laws,
advertising standards, tort, product liability, and more. However, it remains unclear to what extent current
regulation is sufficient to mitigate risks. Existing regulators may also not have the necessary capacity,
expertise, and regulatory authority to effectively regulate LLMs. Engler (2023) argue for expanding the
powers of the existing regulatory bodies — in particular granting them the power to issue subpoenas for
algorithmic investigations and for setting up rules for especially impactful algorithms. Further research here
identifying opportunities and gaps would be valuable. This could include analyses of the current technical
capacities of regulatory bodies as well as their resource allocation and knowledge acquisition strategies.
Furthermore, the merits and demerits of various forms of public-private partnership proposals for addressing
capacity issues of governments could be explored. This may include analysis of both traditional forms of
public-private partnerships such as governments directly contracting the services of a private actor for various
tasks, or novel proposals such as regulatory markets (Hadfield & Clark, 2023). Center for AI Safety et al.
(2024) argue that current proposals for regulatory markets are flawed and do not adequately incentivize
private regulators to prioritize safety. In general, while the private regulatory institutions may be more
agile than government institutions and could help standardize regulation across jurisdictions, they may also
increase the risk of regulatory capture, as private partners might have strong industry ties (e.g. financial
interests in LLM development, deployment, or use Center for AI Safety et al., 2024); and such a set-up may
also bypass government processes meant to protect against regulatory capture. Generally, there is a need to
better understand the robustness and efficacy of different ways through which governments could outsource
auditing and regulation to private actors (Costanza-Chock et al., 2022). There is also a need to identify
measures that could be taken by governments and other public-interest institutions (e.g. universities, NGOs,
policy think tanks) to create an ecosystem that incentivizes top talent to contribute to governance objectives
— e.g. by working for government regulators, private auditors or other public-interest bodies — given the
large compensation packages being offered by leading AI companies (Mann, 2023).

4.5.3 Incentivizing Cooperation and Disincentivizing High-Risk Approaches to AI Development
Responsible and safe AI can be seen as a collective action problem, creating an additional challenge for gov-
ernance to confront (Askell et al., 2019). More precisely, while most AI practitioners might prefer a low-risk
approach, competitive pressures (e.g. resulting from Safety-Performance Trade-offs, c.f. Section 2.7) might
cause one or more organizations to take a higher-risk approach (e.g. a ‘move fast and break things’ approach
Blodget, 2009). This could trigger a race to the bottom, progressively increasing competitive pressure on
other organizations to adopt higher-risk approaches (Armstrong et al., 2016; Hendrycks et al., 2023). For
these reasons, it is crucial to disincentivize high-risk approaches to AI development, deployment, and use,
and to prevent such dangerous dynamics from materializing. Regulation and treaties could mandate safe
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development practices. In particular, specialized regulation could be designed with an explicit focus on the
development of frontier AI (Anderljung & Korinek, 2024). Outside-the-box auditing covering organizations’
development and deployment practices could help verify compliance (and identify risks that may have been
overlooked) (Casper et al., 2024a). Technical researchers could develop better (game-theoretic) models of
race dynamics whose analysis may yield insights about the relative effectiveness of various interventions that
could be undertaken to disincentivize a race. Armstrong et al. (2016) provide a preliminary analysis of this
kind, however, their analysis relies on various simplifying assumptions that may not be reflective of real-
world dynamics. In general, technical researchers could work to identify safe development and deployment
practices and to identify incentives and technical loopholes that might lead developers not to adopt them.
They could also work with legal and business experts to evaluate the effectiveness of potential regulations
by anticipating how developers might respond.

4.5.4 Corporate Power May Impede Effective Governance

The increasing power and influence of large corporations may make effective governance difficult. There
exists a power asymmetry between corporate entities profiting from LLMs and other social groups (e.g. civil
society). State-of-the-art LLMs are developed by or in partnership with, some of the world’s largest private
tech companies. NVIDIA, which supplies most of the computing hardware for LLMs has recently seen its
market capitalization increase to over $2 trillion, roughly a 5x increase in the past year. Lobbying efforts
around LLMs have also increased dramatically in the recent past (Saran & Mattoo, 2022; Zakrzewski, 2022;
Lindman et al., 2023). This poses a risk of governance protocols related to LLMs becoming excessively
favorable to tech companies, potentially leading to regulatory capture at the cost of the interests of other
societal groups, particularly marginalized communities who have historically been disproportionately affected
by poorly designed AI technologies (Reventlow, 2021). Researchers working on LLM policy should aim to
document and account for corporate influence, with a focus on identifying ways in which corporate interests
might diverge from the public interest. At a more meta-level, it may be helpful to consider how corporate
structures could be designed so that the interests of corporations extend beyond mere maximization of
profits, and better align with the larger interests of the society. Researchers could design novel proposals in
this regard, or evaluate the robustness of the existing proposals (e.g. Anthropic’s Long Term Benefit Trust
Anthropic, 2023c). This is of particular relevance given the recent power struggle between OpenAI board
members, founders, and investors (Roose, 2023; Reich, 2023).

In addition to their ability to influence governance through lobbying efforts, LLM developers may also
directly influence public opinion through the design choices they make. For instance, how an LLM expresses
itself and responds to queries, especially those with a political angle to them, can have a significant impact
(Jakesch et al., 2023; Santurkar et al., 2023). This direct influence that technological companies can exert
on public opinion has been recognized in prior work. Lessig (2006) discuss the power of technology or “code”
itself as a governance mechanism, noting that it generally lacks democratic oversight and that much software
used globally is built by US-based companies, often without regard to the local laws of its overseas markets
(Sánchez-Monedero et al., 2020). To help improve democratic oversight, machine learning researchers could
consider how such influence might be measured, detected, and counter-acted (O’Callaghan et al., 2015).
There is also a need for collaboration among machine learning researchers, sociotechnical researchers, and
civil servants to determine how to best protect government institutions such as democratic processes from
such influence, e.g. to help establish standards defining the limits of legitimate influence.

While the academic community can help counterbalance corporate influence over governance, the large
majority of AI researchers receive or have received funding from big tech companies (Abdalla & Abdalla,
2021). This dependency on industrial funding may grow further due to the exorbitant costs of conducting
LLM research. More research is needed to identify the influence of corporate power on academia, policy,
and research. It is also important to consider governance proposals that may help the academic community
preserve its independence, and generally increase the agency of academics to contribute effectively to safety
and alignment research (Raji et al., 2023). The lack of academic consensus around AI risks and mitigations
also hinders the academic community’s ability to play such a role, rendering us unable to speak with one
voice to provide clear guidance to policymakers or other elements of civil society.
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4.5.5 LLMs Require International Governance
International governance will be critical for tackling factors such as competitive dynamics between AI com-
panies. However, despite the fact that data-driven AI is a global and cross-border phenomenon, laws and
regulators are predominantly national. As a result, issues of jurisdiction, applicable law, and regulatory
arbitrage, which already complicate effective regulation of data privacy laws, will almost certainly affect AI
and LLM regulation. A popular proposal in the literature is the establishment of international institutions
(Ho et al., 2023; Trager et al., 2023; Maas & Villalobos, 2023). For example, Trager et al. (2023) propose
the creation of an inter-state International AI Organisation to certify compliance by states to international
oversight standards while supporting member states in meeting these standards through domestic regula-
tory capacities. The UK has promoted the development of global AI safety Institutes alongside a pledge
to put safeguards on models posing systemic risks (of Participating Countries, 2023). As of early 2024, AI
safety institutes are being established in the UK, US, Japan, and Singapore at the national level. These
organizations could be a productive site of more international collaboration on AI governance.

One other possible route to global harmonization of AI regulation is via the global diffusion of domestic
regulation, such as the EU AI Act (Council of the European Union, 2024). The EU aspires to position itself
as a global ‘gold standard’ (building on the example of GDPR), by requiring any company selling into the
EU Single Market to follow its rules. Through the Brussels effect, it may be cheaper for companies that
comply with EU requirements to comply with the same requirements even in other jurisdictions (Siegmann
& Anderljung, 2022). However, conflict historically exists between the EU model of human rights-centric
prescriptive risk-based regulation and the US’s laissez-faire regulation of Silicon Valley and poor federal
privacy protection (Solove & Schwartz, 2022). This may hold back any international harmonization of AI
regulation (Kaminski, 2023; Smuha, 2021). However, there is some initial evidence that the US government
may take a proactive approach to regulating AI (White House, 2023), suggesting that this conflict may not
adversely impact the international governance of AI.

Another important development here may be the finalization of the Council of Europe Convention on AI
(Council of Europe, 2023) which like the European Convention on Human Rights and the Cybercrime
Convention can be joined by non-European states, and so is potentially a global treaty. Alongside these
developments, China has been promoting cooperation on international AI governance through initiatives
such as the Global AI Governance Initiative (Ministry of Foreign Affairs, People’s Republic of China, 2023).
While this initiative has elements in common with both the EU approach and UK and US approaches,
there exists a risk that multiple separate or overlapping international AI governance forums will emerge,
complicating efforts to achieve global consensus on standards and safety. International governance may
also be impeded by a trust deficit and an arms race between nations — particularly China and the U.S.
(Meacham, 2023). Overcoming parochial concerns and assuring that governments can credibly cooperate on
critical issues — such as limiting the use of AI in weapons (see Section 4.2.4) is perhaps the grand challenge
in international governance of AI. Dialogue between the scientific communities could help pave the way for
such cooperation (FAR AI, 2024; Maas & Villalobos, 2023). Specifically for the governance of AI in military
applications, multi-country military alliances like NATO could play a critical role in ensuring responsible,
and ideally highly restricted, use of AI in weapons (Stanley-Lockman & Trabucco, 2022).

4.5.6 Culpability Schemes Are Needed for LLM-Based Systems — Especially LLM-Agents
Providing assurances about a system’s safety and intended behavior inherently requires establishing clear
accountability — explicitly assigning responsibility and culpability in cases where the system acts in undesir-
able or unintended ways. It is currently unclear who ought to be held responsible when a LLM system causes
harm to its user or other humans. Users may deliberately misuse LLMs (see Section 4.2), but preventing
such misuse may be intractable without interventions at the development or deployment stage (Anderljung
& Hazell, 2023). Blumenthal & Hawley (2023) propose that companies be held liable for harms caused by
“their models”, however, Kapoor et al. (2024) observe that developers who open source their model would
struggle to prevent misuse and attendant liability. Developers are often extremely well-resourced and can
retain privileged access to their systems. Hence, they are technically best equipped to detect and mitigate
safety issues, but it is unclear to what extent they are incentivized to disclose those issues, especially if
disclosing them could harm their business interests. Importantly, it is not necessary to hold only a single
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actor (user, deployer or developer) responsible: different actors could be held responsible to varying degrees
(Wex, 2023).

Gaps in how to assign responsibility will likely become more acute as systems become increasingly agentic
and autonomous (Buiten et al., 2023) (see Section 2.5), which can amplify the harm that they can cause
(Chan et al., 2023b). Thus, there is a need for anticipatory governance to preemptively address the risks
posed by LLMs, for example, by establishing regulatory criteria to mediate the deployment of LLM-agents.
This will be helped by developing frameworks to monitor and evaluate deployed LLM-agents and designing
mechanisms for ascertaining accountability in case of failures (Kampik et al., 2022; Chan et al., 2024). These
questions are considered in greater detail in the recently released agenda on agent governance by Shavit et al.
(2023).

Once deployed, LLM-agents will interact among themselves and with humans — creating an additional
source of risks (see Section 2.6). Normative infrastructure (e.g. bureacracies Bullock et al., 2022b) which
governs interactions between humans — e.g. accounting of responsibility and blame — can break down with
the introduction of algorithmic or machine-based decision-making. For example, high-frequency algorithmic
traders are believed to have contributed to a number of flash crashes in stock markets (Tee & Ting, 2019),
e.g. the flash crash of 2010 (CFTC and SEC, 2010) and the 2014 US Treasury market flash crash (Levine
et al., 2017). Similar to algorithmic traders, LLM-agents will likely possess novel capabilities and affordances,
such as higher processing and action speed, the capability to ingest large amounts of text rapidly, etc. that
might disrupt normative infrastructures in undesirable ways. Further work is required to understand better
the governance challenges posed by LLM-agents (Kolt, 2024), especially in multi-agent scenarios where they
may interact and influence each other (Hammond et al., 2024). A better understanding of these challenges
may help inform what technical and governance tools are necessary for effective governance of LLM-agents.

Practical Challenges — Governance Mechanisms for LLMs Are Underdeveloped
In addition to the meta-challenges discussed above, a key challenge in exercising LLM governance is a lack
of concrete, and complete, governance proposals (Guha et al., 2023). That is, most governance mechanisms
for LLMs are underdeveloped and there is a high level of uncertainty around what the best governance
interventions will be. To elaborate, governance can operate at different points in the LLM lifecycle, from
development through to deployment and use, as well as on different substrates such as data (Jernite et al.,
2022; Chan et al., 2022), compute (Hwang, 2018; Sastry et al., 2024), and energy (Monserrate, 2022).
Governance interventions earlier in the lifecycle can create choke-points further on. For instance, if some
development practice is banned so that some variety of LLM system is never developed, such a system
could not be deployed or used (Anderljung & Hazell, 2023). On the other hand, interventions later in the
lifecycle can be more targeted. This carries both advantages and disadvantages: more targeted interventions
help limit negative side-effects of governance interventions (e.g. creating barriers to beneficial uses), but also
run the risk of missing some pathways to harm. Fortunately, the different types of governance mechanisms
we discuss are not mutually exclusive, and can likely be effectively combined to achieve better outcomes
than using a single mechanism on its own. However, currently, almost all the governance mechanisms are
underdeveloped and lack concrete proposals for operationalizing them. We provide some discussion in this
regard below and highlight the relevant challenges.

4.5.7 Use-Based Governance May Be Insufficient
One approach to governing LLMs is to set rules that limit how they can be used. Indeed, Hacker et al.
(2023) argue that governance should focus on users and deployers, with a few key exceptions. Under such an
approach, users could be held accountable for whatever harms their use of a system causes, and consumer
protection law could be used to hold developers or deployers accountable if they fail to protect users. Partic-
ularly harmful use cases could be proscribed by designing explicit regulations. For example, explicit laws are
being passed by multiple countries that criminalize the generation of harmful deepfake images by the use of
generative image models (U.S. Congress, 2023; UK Parliament, 2023). However, enforcement of such regula-
tions may be very difficult as a skilled malicious user could easily hide their identity by using anonymization
schemes (Eurojust and Europol, 2019). Hence, it is questionable to what extent such regulations will be an
effective deterrent for a highly skilled and determined malicious user.
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It is also unclear to what extent such an approach would be able to proactively identify misuses of technology,
instead of acting retroactively once the harm has been done; as was observed to be the case for deepfakes
(Burga, 2024). Currently, the EU AI Act governs use cases of AI systems, including LLMs, using a risk-
based approach to classify different use cases and determine which rules apply (Council of the European
Union, 2024). However, several questions arise with such an approach: What existing regulations — or,
more generally, governance institutions — are relevant, and how should they be applied? How can we
identify problematic new use cases and ensure they are addressed (c.f. Section 4.2)? Regulators might need
fast-acting powers to intervene when new problematic uses are discovered. More generally, an important
challenge for such an approach is how to address issues surrounding misuse, such as accountability, discussed
in Section 4.2). We note that international agreements might also be required, as many forms of misuse (e.g.
military use of LLM or censorship) are likely to be perpetrated by governments. Use-based governance may
also be limited in ways it can prevent instances of self-harm (Xiang, 2023b).

4.5.8 Deployment Governance Lacks Adequate Regulation
Deployment methodology significantly impacts the potential risks associated with an LLM. Developing regu-
lations, both soft and hard, to govern deployment can not only be effective but may also be necessary to assure
safe and beneficial deployment of LLM-based systems. Deployment governance may include pre-deployment
governance and lifetime governance.

The pre-deployment governance is concerned with regulating how a model gets deployed. In the pre-
deployment governance, a basic challenge is to evaluate the trade-offs of different forms of deployment
(Solaiman, 2023). The common forms of deployment include making the model available to download or
making the model available via some limited form of API access (including web-interfaces).17 In particular,
there is an ongoing debate around downloadable or so-called ‘open-source’ model deployments.18 Shevlane
(2022) argue for the benefits of ‘structured access’, i.e. controlling how users interact with a system, which
API deployment enables. Seger et al. (2023) argue that LLMs may soon be too dangerous to open-source
(at least initially). On the other hand, Kapoor et al. (2024) argue that governments should fund research
into the marginal risk from open source models (over currently available tools, such as web search), and
consider further interventions only once risks are more certain. They also express concern that many forms
of regulation might impose infeasible compliance burdens on developers of open-source models. Advancing
this debate is critically important, given the irreversibility of open-sourcing models.

The risks of deployment (even for a closed-source model) are also mediated by the intended use-case (see
Section 4.5.7), who the model is being made available to and especially by the level of autonomy afforded
to the model (Weidinger et al., 2023b). The models that are made available to younger audiences (Fowler,
2023), or deployed autonomously (‘LLM-agents’) may require similarly higher levels of assurance (Chan et al.,
2023b; Shavit et al., 2023). Regardless of how models are deployed, deployers could take some responsibility
for ensuring LLMs are trustworthy and do not cause harm. For instance, they might be made responsible for
communicating information about limitations from developers to users, or even be required to perform some
evaluations or collect other information about a system before agreeing to deploy it. Third-party licensing,
or registrations, could be mandated to ensure that unsafe technologies do not get deployed or become widely
available.

While thoughtful development can reduce the risks associated with an LLM, it may not eliminate them.
Lifetime governance is required to ensure that throughout their deployment, LLM-based systems remain
safe. This includes assuring that the systems are monitored in a robust way and clear action plans are
in place to deal with cases when a novel failure mode, or a new source of risk, is discovered (Chan et al.,
2024). One challenge requiring technical research in this regard is: how to re-establish assurance after system
updates to the LLM, or some other component of an LLM-based system, during the system’s lifetime. Ideally,
the cost of assurance in such a case could be reduced relative to assuring a brand-new system. Another aspect
of the challenge is how to deal with downstream systems using an LLM as a ‘dependency’. Deployers could
help ensure users and developers share an awareness of how such updates might lead to new safety risks.

17In practice, API deployers are often going to be large-scale compute providers; see Section 4.5.11 for more on compute
governance.

18There is also controversy and confusion around the term ‘open-source’ as applied to the practice of only releasing model
weights (Widder et al., 2023; Seger et al., 2023; Solaiman, 2023).
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4.5.9 Development Governance Might Be Particularly Challenging to Codify and Enforce
Most technical work in AI safety and alignment is focused on development methods. While this work is
currently not mature enough to offer reliable recipes for safe and aligned LLMs, it can already contribute to
best practices that could be enshrined e.g. as standards or through regulation (UK Government, 2023). Such
practices could take the form of rules around the sorts of data or algorithms to use (or not use), as well as
rules around evaluations or other assurance practices to be applied before deployment (Schuett et al., 2023).
These rules could be enforced on a per-project basis through mechanisms similar to those in White House
(2023), provided governments are aware of development projects. Others have proposed licensing developers
(Smith, 2023; Anderljung & Korinek, 2024), although critics argue this might lead to regulatory capture,
and stifle innovation and open-source development (Thierer, 2023; Howard, 2023). Besides development
methods, best practices for development should also consider ‘meta-practices’ such as processes governing
internal decision-making and practices around disclosure of development activities (Weidinger et al., 2023b;
Ojewale et al., 2024; Casper et al., 2024a). To the extent that safety and alignment can be guaranteed
through following best practices in development, mandating such practices could be an appealing approach
to governance.

However, the efficacy of development governance would likely depend on achieving a high level of buy-
in from most – if not all – leading developers (see Section 4.5.3). Moreover, given the falling cost of
compute, more and more developers (including those not “in the lead”) may need to be governed, creating
a growing enforcement challenge. As most of the knowledge about sound developmental practices for the
responsible development of LLMs is currently locked within AI companies, regulators, and standard-setting
organizations may be highly dependent on LLM developers sharing this knowledge to create high-quality
standards. Furthermore, a lack of buy-in from developers may result in regulatory flight (i.e. developers
moving their operations to other jurisdictions with less regulatory pressure) or developers circumventing the
prescribed external standards, e.g. by hiding parts of developmental details that may be misaligned with the
prescribed standards. Such evasions may be particularly hard to detect and prevent, given the current lack
of technical tools for determining whether inappropriate development activities are occurring (Shavit, 2023).
At the same time, regulatory flight may be less of a concern for large markets like the US or the EU.

An alternative to externally imposed regulations could be to prompt companies to propose their own develop-
mental standards that they could then be beholden to, once ratified by an external party (e.g. a government
regulator). However, it is important to not rely on voluntary compliance alone and to ensure that such stan-
dards are appropriately codified and made legally binding (Ó hÉigeartaigh et al., 2023). An example of such
developmental standards are the ‘responsible scaling policies’ published by various AI companies (Anthropic,
2023f; OpenAI, 2023a; Google DeepMind, 2023), however, these policies are completely voluntary and due to
the lack of third-party analysis of these policies, it is unclear to what extent these policies embody desirable
standards of safety.

4.5.10 LLMs Pose Additional Challenges for Data Governance
Data is a basic ingredient for LLM development. This makes data governance a promising vehicle to govern
and regulate LLMs. Data could serve as a choke-point and help prevent the development of unsafe LLM
systems; for instance, training on certain kinds of data (e.g. biological data) could be prohibited or regulated
stringently. In the pre-LLM age, the central focus of data governance has been the protection of an indi-
vidual’s right to privacy (Solove, 2022). LLMs add an additional dimension to this as LLMs can memorize
and leak personally identifiable information (PII) (Tirumala et al., 2022; Nasr et al., 2023). However, it
is also important that the scope of data governance is expanded to consider other data rights issues that
have to come to the fore due to the development of LLMs (Roberts & Montoya, 2022). One major objective
for data governance is establishing, and defending, the rights of data creators (e.g. writers) and the rights
of data workers (e.g. workers hired to generate data for LLM training). A popular proposal for this is the
establishment of accountable organizations, such as data trusts (Jernite et al., 2022; Chan et al., 2022), to
be custodians of any data submitted to them. However, implementing such a solution requires overcoming
several technical and social challenges. On the technical side, the key problems are establishing provenance
of the data already present on the internet (Lee et al., 2023b), verifying that a particular model was trained
on the dataset it is claimed to have been trained on (Choi et al., 2023a; Garg et al., 2023), and establishing
relative value of different data points present within a dataset (Guu et al., 2023). On the social side, imple-
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menting such solutions would require strong political will, extensive international cooperation, and sufficient
funding to implement the technical infrastructure needed for data trusts (Chan et al., 2022).

Furthermore, it is unclear as to who should own the data created by an LLM – e.g. the developer, the
user, or no one (Henderson et al., 2023b)? This question is coupled with the questions of responsibility
and profitability: who is responsible if an LLM generates output that is harmful or unsafe in other ways
(Henderson et al., 2023a) (also see Section 4.5.6)? How does this responsibility change as we move from
chat-based models to agents (Schwartz & Rogers, 2022)? This is arguably a fundamental question in regards
to data economy and may have long-reaching repercussions in an AI-based creative economy (Knibbs, 2023).

4.5.11 Robustness of Compute Governance is Unclear
Compute plays a critical role in the development of LLMs (Sevilla et al., 2022), with compute costs for
development rising into the hundreds of millions (Knight, 2023) and likely soon billions of dollars. Compute
governance may provide one of the most promising levers for governing bodies to modulate the rate of progress
within the technical AI field (Whittlestone & Clark, 2021; Sastry et al., 2024). This may be particularly
important for the safety risks associated with advanced capabilities which compute-heavy frontier models
are likely to obtain first (Pilz et al., 2023). Relative to other governance mechanisms that governments
could use to regulate AI and LLM development, compute governance also has the advantage of potentially
easier compliance verification (Brundage et al., 2020; Baker, 2023), especially given the major intermediary
role of compute providers (Heim et al., 2024). However, further work is needed to understand and refine
existing proposals for compute governance (Shavit, 2023; Choi et al., 2023a; Egan & Heim, 2023; Sastry et al.,
2024; Heim et al., 2024), in addition to managing risks such as privacy and concentration of power (Sastry
et al., 2024). Technical researchers could collaborate with hardware and supply-chain experts to stress-test
proposals, e.g. by identifying potential loopholes by which projects might escape scrutiny (such as distributed
training on consumer hardware Douillard et al., 2023), or otherwise thwart effective oversight (such as by
disguising computations). Compute governance proposals could also be strengthened by developing a better
understanding of the interplay between hardware and software (Mince et al., 2024). Future research on
compute governance could explore potential developments that may affect the effectiveness of compute
governance, such as changes in the structure of the compute-providing industry (Anderljung & Carlier,
2021) or the diffusion of AI capabilities (Pilz et al., 2023). Compute governance could also be leveraged by
governments to enhance the ability of the independent scientific and academic community. In addition to
any direct benefits in terms of improved understanding, and auditing, of LLMs, this may help mediate the
effects of corporate power (see Section 4.5.4).

Effective governance of LLMs is critical for ensuring that LLMs prove a beneficial addition to soci-
eties. However, efforts to govern LLMs, and related AI technologies, remain nascent and ill-formed.
The governance of LLMs is made challenging by various meta-challenges ranging from lack of sci-
entific understanding and technical tools required for governance to the risks of regulatory capture
by corporations. From a more practical lens, concrete and comprehensive proposals to govern LLMs
remain absent and, unfortunately, the various governance mechanisms (e.g. deployment governance,
development governance, compute governance, data governance) are not adequately developed yet.

181. How should governance approaches change depending on how rapidly the capabilities of
models are advancing, the rate at which they are being productized (and hence proliferating
throughout society), and the degree to which we lack technical understanding of a particular
system, or LLMs in general? ←↩

182. What policy interventions can be taken by governing bodies to support research on alleviating
the technical limitations inhibiting effective governance of LLM-based systems? ←↩

183. Should governing bodies aim to moderate the pace of progress in AI? If so, what governance
mechanisms could be used for this? ←↩

184. How might the slow, bureaucratic nature of governments negatively impact the governance
of LLMs? What are the relative merits and demerits of various measures (such as forming
public-private partnerships or formalizing regulatory markets) that could be taken by the
governments to mitigate this issue? ←↩
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185. What measures can be taken to disincentivize irresponsible approaches to AI development?
Can we design regulations that mandate the safe and responsible development of AI models?
←↩

186. How can we better understand AI race dynamics, e.g. using game-theoretic models or histor-
ical analogues? And what governance interventions might be used to alter these dynamics?
←↩

187. How can we involve and empower more stakeholders in LLM governance, particularly
marginalized groups most impacted by LLMs? How can we avoid legislation that dispro-
portionately favors the interests of corporate LLM developers over the interests of other
social groups? ←↩

188. Can we develop structures for corporate governance that might protect public interests in a
better way? ←↩

189. Can we develop technical tools that may help measure, detect, and counteract the role of
technology companies in shaping public opinion, by influencing the content consumed by the
public? ←↩

190. Can we develop a better understanding of the influence of corporate power on academia,
policy, and research? What are the potential detrimental effects of such influence? ←↩

191. Can we develop a better understanding of the factors (arms race between nations, differ-
ent national-level approaches to AI regulation) that might negatively impact international
governance for LLMs? ←↩

192. What are the different ways through which LLMs could be governed in a unified way inter-
nationally? ←↩

193. How can clear lines of accountability be established for harms associated with LLMs? ←↩
194. How can governance tools be used to mitigate the risks associated with LLM-agents and their

interactions with humans and other systems? ←↩
195. What are the relative merits and demerits of different governance mechanisms, such as use-

based governance, deployment governance, developmental governance, data governance and
compute governance? How can we effectively combine all the governance mechanisms to
achieve the most favorable outcomes? ←↩←↩←↩←↩←↩

196. What existing regulations and governance institutions can be applied for use-based gover-
nance, at national and international level? ←↩

197. How can we proactively identify problematic uses and address them via use-based governance?
←↩

198. How can use-based governance help deter misuses that are likely to be perpetrated by gov-
ernments? Can it be effectively used to regulate against instances of self-harm? ←↩

199. Can we develop a better understanding of the risks, and benefits, associated with various
model deployment strategies? ←↩

200. What kind of regulations can be adopted to ensure LLM deployers perform their due diligence
in assuring system safety before and throughout deployment? ←↩

201. How can we create appropriate legal frameworks for deployment governance of LLM-agents?
These frameworks would need to address the regulatory criteria for deploying LLM-agents,
how such agents should be monitored after deployment, and who would be accountable for
any harm incurred by deployed agents. ←↩

202. How can we efficiently assure an LLM-based system after a system upgrade to the LLM, or
some other component of LLM-based system? ←↩

203. What are the merits and demerits of requiring deployers to seek licenses, or register, with
regulators prior to the release of the model? Should the requirements that deployers have to
meet be different for different deployment strategies? ←↩

204. How can developers best identify and share knowledge about responsible LLM (and AI)
development among themselves? How can such practices be enshrined as legally binding
standards? ←↩
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205. What are the merits and demerits of mandating licensing for the development of frontier AI
technologies? ←↩

206. Can we develop technical tools that may help us verify whether particular developmental
practices were followed or not in the development of a given model? ←↩

207. To what extent is regulatory flight likely to impede the effective governance of LLMs? ←↩
208. What are the merits and demerits of ‘responsible scaling policies’ issued by different LLM

developers? ←↩
209. How can we establish and defend the rights of data creators (e.g. writers) and the rights of

data workers (e.g. workers hired to generate data for LLM training)? Are data trusts (Chan
et al., 2022) a practical solution in this regard? ←↩

210. How can we verify that a particular model was indeed trained exclusively on the data claimed
as training data by the model creator? ←↩

211. Who owns the data created by an LLM? This is arguably one of the most critical questions in
governance with downstream impact on other important questions of who bears responsibility
for LLM outputs that cause harm to society, and who can profit from the LLM outputs. ←↩

212. Can we develop concrete proposals for how compute governance could be exercised in prac-
tice? ←↩

213. To what extent are current, and any future, proposals for compute governance robust to
advances in distributed training? ←↩

214. How will compute governance proposals be impacted by the changes in the structure of the
compute-providing industry? ←↩

215. How can compute governance be leveraged to enhance the ability of the independent sci-
entific community to conduct investigations into flaws in LLMs that could otherwise be
overlooked?←↩
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5 Discussion
5.1 Limitations
This agenda is the most expansive discussion on the challenges in assuring the safety and alignment of LLM-
based systems to date. However, despite this, we assert that this agenda is not exhaustive and
that there exist important challenges, both known and unknown, in assuring the safety and
alignment of LLM-based systems that are not cataloged in this work.

We have attempted to ‘future-proof’ our work by trying to list challenges that might arise due to LLMs
becoming more performant due to scaling or modifications of the training process, however, due to the
uncertain nature of the LLM development landscape, it is possible that important challenges may have been
omitted. In particular, we have primarily focused on challenges in the LLM safety and alignment that are
imminent, and relatively undisputed, and hence, we do not cover speculative challenges; see Hendrycks et al.
(2023) and Critch & Krueger (2020) for discussion on such challenges.

Another key limitation of this work is the exclusive focus on the safety and alignment of LLM-based systems.
The choice to focus on the safety and alignment of LLMs was made due to the surging research interest in
LLMs, their rapid productization, and their central position in the age of foundation models. We assert
that the safety of other deep learning-based systems (e.g. generative models for vision, generative models
for biology, recommender systems, and learning-based embodied agents) is also highly important and we
call on the wider community to organize similar efforts to catalog challenges involved in the safety of such
non-LLM-based systems. Relatedly, due to the limited scope of our work, we have intentionally omitted
many important research directions pertaining to the safe development and deployment of aligned AI-based
systems, such as improving the general understanding of deep learning (Arora et al., 2020), understanding
critical aspects of agency (‘agent foundations’ Soares & Fallenstein, 2014), and developing AI systems whose
safety can be proved or verified (Brundage et al., 2020; Tegmark & Omohundro, 2023), cooperative AI (Dafoe
et al., 2020) etc.

Another dimension of our limited coverage is that our major focus is on technical challenges — 13 out of
18 challenges we identify are fully technical in nature. Our discussion of sociotechnical challenges is further
limited in the sense that it is narrowly focused on challenges that are directly relevant to LLM-based systems
and is biased towards aspects of these challenges that could potentially be addressed via research. We have
also discussed sociotechnical challenges in a dedicated section as we prioritized modularity to make the work
easier to navigate for a wide audience. However, this view oversimplifies the interconnectedness between the
technical challenges and the broader sociotechnical challenges involved. An alternative treatment focused on
highlighting this interconnected nature of safety challenges would see sociotechnical issues spread throughout
every aspect of work on LLMs. Additionally, while we have made our best effort to avoid any geographic bias
— in some sections, particularly Section 4.5, the discussion is biased towards few geographies, specifically,
US, Europe and China.

The nature of the challenges posed in this work may change over time. Some challenges may get sidestepped
or solved as a side-effect of advances focused on improving LLM performance (e.g. scaling). For some
other challenges, their form may evolve, causing the identified corresponding research directions to become
outdated. Most importantly, advances in LLM development may uncover novel challenges or make some of
the existing challenges much more critical to address.

5.2 Prior Work
This work comes on the back of several works focused on highlighting harms, risks, and various other societal
challenges posed by LLMs, and other advanced AI systems they may give way to (Bengio et al., 2023). These
risks have been recognized by various governing bodies around the world, e.g. United States government (hou,
2023), United Kingdom government (Office, 2023), and the United Nations (Nichols, 2023). Among scholarly
work, Weidinger et al. (2022) and Shelby et al. (2022) review and taxonomize various harms and risks posed
by LLMs and other AI systems. Shevlane et al. (2023) propose evaluating LLMs for ‘dangerous’ capabilities
that may pose extreme risks. To improve risk assessment, Weidinger et al. (2023b) propose a framework for
sociotechnical evaluation of LLMs and other generative systems. In a similar vein, Solaiman et al. (2023)
call for evaluating AI systems, including LLMs, for social impact. Other works examine the possible societal
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impacts of LLMs — Eloundou et al. (2023) review possible disruptions to job market that might be caused
by LLMs and Brundage et al. (2018) highlight ways in which AI systems may be misused by malicious actors.
There additionally exist works that focus on discussing societal-scale harms that may occur if a misaligned
competent AI system is allowed to act in an unsafe way (Critch & Krueger, 2020; Hendrycks et al., 2023;
Critch & Russell, 2023). Our work is complementary to all the aforementioned work as we focus on listing
technical and sociotechnical challenges that need to be addressed to overcome these challenges.

Several prior works have attempted to identify critical open problems and outline research directions, for
the development of safe and aligned AI systems. Kenton et al. (2021) is perhaps the closest work to ours
in scope but contains a much narrower discussion regarding the safety of LLM-based systems. Similarly,
there exist public agendas by leading LLM companies that outline their approach to safety and alignment
of LLM-based systems (Leike et al., 2022; Anthropic, 2023a). However, these agendas lack diversity and are
primarily focused on the research directions being championed by the corresponding company. In contrast,
our work boasts a diverse academic authors lineup and platforms diverse research directions. Amodei et al.
(2016) and Hendrycks et al. (2021b) share a similar goal to ours of highlighting important challenges that
require to be addressed for safe AI; however, they lack explicit focus on LLMs. Other similar efforts include
Dafoe et al. (2020) and Ecoffet et al. (2020), which respectively consider alignment and safety of multi-agent
and open-ended systems. Other works have argued for specific approaches for the development of safe AI
systems; Leike et al. (2018) argue for scalable reward modeling to align advanced AI systems, Tegmark &
Omohundro (2023) argue for distilling learned logic of AI systems into code which can be formally verified,
and Brundage et al. (2020) call for designing institutional, software and hardware infrastructure to support
verifiability of the claims made about AI systems. Dafoe (2018) and Shavit et al. (2023) are agendas focused
on governance aspects of AI systems. There also exist several other agendas focused on the safety of AI-based
systems with varying levels of relevance to the safety and alignment of LLM-based systems (Russell et al.,
2015; Soares & Fallenstein, 2014; Henderson et al., 2018; Dinan et al., 2021; Gruetzemacher et al., 2021).
Also related to our work are studies such as Gabriel (2020) and Prabhakaran et al. (2022a), which consider
the question of what the alignment target ought to be for general-purpose AI systems like LLMs.

Due to the focus on LLMs, our work is also related to other agendas and surveys on LLMs. The notable
agendas include Kaddour et al. (2023) and Huyen (2023), which review challenges in LLM research and
applications of LLMs in general, without any explicit focus on safety or alignment. Among surveys, Bowman
(2023) is a short survey that provides an opinionated review of key facts about LLMs’ development. Zhao
et al. (2023) comprehensively review the various facets of LLM development and their utilization, including
techniques used to promote safety and alignment. Ji et al. (2023a) provide a review of alignment techniques
in the context of foundation models. There also exist several surveys on specific aspects of LLMs that are
covered in this work; Dong et al. (2022) survey the literature on in-context learning, Huang & Chang (2022)
provide extensive discussion on reasoning capabilities of LLMs, Mozes et al. (2023) review security related
issues of LLMs, and Casper et al. (2023a) survey limitations of reinforcement learning from human feedback
for safety finetuning of LLMs and the associated open problems.

In the aftermath of the unexpected success of LLMs, there has been a growing sense that ‘impactful’ machine
learning and natural language processing research requires tremendous resources and thus is no longer viable
for academic researchers. This work is partially inspired as a rebuttal to that perspective and posits that
alignment and safety are ripe fields for contributions by academic researchers. Other related efforts include
Saphra et al. (2023) and Ignat et al. (2023). Saphra et al. use historical analogies to argue that current
disparities between academic and industrial labs regarding the scale of resources are temporary and argue
that evaluations and data are still the primary bottlenecks. Ignat et al. similarly rebut the perspective that
NLP research is no longer amenable to academic research by highlighting various under-researched research
areas within NLP and other related fields.
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