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Abstract. Radiology reports provide detailed descriptions of medical005 005

imaging integrated with patients’ medical histories, while report writing006 006

is traditionally labor-intensive, increasing radiologists’ workload and the007 007

risk of diagnostic errors. Recent efforts in automating this process seek to008 008

mitigate these issues by enhancing accuracy and clinical efficiency. How-009 009

ever, existing automated approaches are based on a single timestamp and010 010

often neglect the critical temporal aspect of patients’ imaging histories,011 011

which is essential for accurate longitudinal analysis. To address this gap,012 012

we propose a novel History Enhanced Radiology Report Generation013 013

(HERGen) framework that employs a group causal transformer to ef-014 014

ficiently integrate longitudinal data across patient visits. Our approach015 015

not only allows for comprehensive analysis of varied historical data but016 016

also improves the quality of generated reports through an auxiliary con-017 017

trastive objective that aligns image sequences with their correspond-018 018

ing reports. More importantly, we introduce a curriculum learning-based019 019

strategy to adeptly handle the inherent complexity of longitudinal ra-020 020

diology data and thus stabilize the optimization of our framework. The021 021

extensive evaluations across three datasets demonstrate that our frame-022 022

work surpasses existing methods in generating accurate radiology reports023 023

and effectively predicting disease progression from medical images.024 024

Keywords: Radiology Report Generation · Longitudinal Study · Vision-025 025

Language Learning026 026

1 Introduction027 027

Chest X-rays are a cornerstone in diagnosing thoracic conditions, including pneu-028 028

monia and lung cancer [19,35]. Given a chest X-ray, radiologists will meticulously029 029

examine each anatomical section in the X-ray and document their observations030 030

with detailed text descriptions. The generated report is crucial to diagnose dis-031 031

eases (e.g ., lung cancer, scoliosis) and assess the position of the treatment de-032 032

vices (e.g ., tracheostomy tubes, pacemakers). Particularly, when prior images033 033

are available, radiologists commonly compare the clinical findings of the current034 034

scan with prior scans to assess the evolution of disease over time, which is es-035 035

sential in regular clinical evaluations. However, the high volume of chest X-rays036 036

overwhelms radiologists, exacerbating the impact of the global shortfall in this037 037

workforce [8, 37].038 038
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Fig. 1: Overview of our HERGen for radiology report generation: Our model processes
longitudinal data for each patient and utilizes the comprehensive historical information
within these longitudinal data to generate robust and precise radiology reports.

Automated chest X-ray report generation has emerged as a key research area,039 039

aiming to ease radiologists’ workload and improve patient care [43]. Mainstream040 040

approaches focus on improving clinical accuracy and completeness of individual041 041

reports [9, 10,27,42], often overlooking the chronological consistency in longitu-042 042

dinal imaging. Modeling such inherent temporal information in chest X-rays has043 043

shown to be crucial for generating precise radiology reports [5, 20, 39, 59]. Some044 044

recent studies integrate prior images for temporal representation and enhance045 045

report generation [5, 39]. However, they are limited to the use of only one prior046 046

image for the current report, failing to capture high-level disease progression047 047

evident across a patient’s history. This highlights the need for a framework that048 048

learns accurate representations from both study-level and patient-level images,049 049

thereby producing reports closely aligned with radiologists’ analyses.050 050

In this paper, we propose a novel History Enhanced radiology Report Gener-051 051

ation framework (HERGen) to effectively capture the temporal information of052 052

longitudinal data for generating comprehensive and temporally coherent radi-053 053

ology reports, as shown in Fig. 1. The key part is a causal transformer model,054 054

which treats all visual tokens from the same image as a group and uses a group055 055

causal attention mechanism to handle it. Viewing all visual tokens of each pa-056 056

tient as a sequence, this mechanism groups visual tokens from the same image,057 057

facilitating intra-image interactions of visual tokens and inter-image interac-058 058

tions of tokens only across previous studies. Notably, it treats each patient’s059 059

X-ray series as a distinct sequence, adeptly handling the variability in the num-060 060

ber of longitudinal images per patient. Moreover, we further refine the model’s061 061

capability to chart disease progression through a cross-modal contrastive learn-062 062

ing objective, ensuring the alignment of longitudinal visual representations with063 063

their narrative reports. Due to the inherent complexity of longitudinal data, it064 064

is non-trivial to optimize the whole framework. We thereby introduce a new065 065

curriculum learning-based optimization strategy in three progressive steps to066 066
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enhance and stabilize the learning process of our framework. The model is first067 067

trained to generate radiology reports for individual images and then, we em-068 068

ploy the auxiliary contrastive alignment module to optimize the latent space.069 069

After that, the entire framework is trained with the integration of a tempo-070 070

ral aggregation module, enabling it to learn from the patient’s historical in-071 071

formation. Extensive experimental results on radiology report generation and072 072

temporal medical image classification tasks demonstrate the superiority of our073 073

framework in generating accurate radiology reports and effectively predicting074 074

the disease progression from medical images. The source code is available at075 075

https://anonymous.4open.science/r/HERGen-1E25.076 076

2 Related Work077 077

Automated Report Generation. Radiology report generation, inspired by078 078

image captioning techniques [11, 46, 54, 56], face unique challenges due to the079 079

complexity and variability in radiology reports [1, 9, 10, 18, 23, 25, 49, 55]. Initial080 080

approaches, primarily based on CNN-RNN [17,18,49,57], have evolved with the081 081

adoption of transformer [44]. Recent advancements include memory-driven trans-082 082

formers for enhanced cross-modal interactions [9,10], alignment of visual features083 083

with disease tags [55], and contrastive methods for anomaly detection [25]. In-084 084

tegration of knowledge graphs [23, 57], warm starting strategies [27], and in-085 085

teractive frameworks for region-specific reports [42] have also been explored.086 086

However, these methods often treat X-rays and reports as independent entities,087 087

overlooking the temporal aspects inherent in various radiology modalities.088 088

Longitudinal Chest X-ray Representations. Radiology studies, inherently089 089

chronological, are crucial for accurate reporting, yet the temporal dimension is090 090

often under-addressed in research. [34] indirectly acknowledged the importance091 091

of sequential context by proposing a method to reduce language model hallucina-092 092

tions. [5] introduced a self-supervised framework capturing the longitudinal evo-093 093

lution of chest X-ray findings. Similarly, [59] developed a cross-attention-based094 094

multi-modal fusion framework utilizing patient record chronology to enhance095 095

report pre-filling. [20] employed graph attention networks [45] for an anatomy-096 096

aware approach to tracking disease progression in longitudinal CXR data. [39]097 097

used Faster R-CNN [36] to project longitudinal studies into a composite rep-098 098

resentation highlighting anatomical changes over time. However, most of these099 099

methods primarily focus on learning representations rather than generating re-100 100

ports. Furthermore, these methods often treat two consecutive image-text pairs,101 101

lacking flexibility for varying patient history lengths and are limited in capturing102 102

the complex progression of diseases.103 103

Biomedical Vision-language Pretraining. Radiology reports, paired with104 104

chest X-rays, offer rich labels for learning visual representations. Building on the105 105

CLIP framework [32], [7, 15, 47, 58] demonstrate the efficacy of self-supervised106 106

vision-language pretraining in biomedical imaging tasks. Particularly, [58] use a107 107

contrastive objective [29] for modality alignment, [15] focus on local alignment108 108

https://anonymous.4open.science/r/HERGen-1E25
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for detailed feature learning, and [7] develop CXR-BERT, employing masked lan-109 109

guage modeling for enhanced image feature learning from radiology language.110 110

Furthermore, [5] adapt BioViL [7] for longitudinal analysis in radiology, improv-111 111

ing temporal aspects in report generation and classification tasks. Our work112 112

further explores the application of vision-language pretraining on longitudinal113 113

data, aiming to effectively capture disease progression in patient records.114 114

3 Method115 115

3.1 Problem Formulation116 116

The overall framework of the proposed method is shown in Fig. 2. We analyze117 117

a dataset comprising chest X-rays from M patients, denoted as {Ii}i=1,2,...,M ,118 118

where Ii = {I(i)j }j=1,2,...,Ni represents the set of X-rays for the i-th patient and119 119

Ni is the number of studies (visits). For each patient i, their X-rays are chronolog-120 120

ically ordered based on their associated study dates Ti = {T(i)
j }j=1,2,...,Ni . The121 121

objective of our method is to generate a set of radiology reports {R̂i}i=1,2,...,M for122 122

each patient, aiming to closely approximate the ground truth reports {Ri}i=1,2,...,M .123 123

In the following, we use i and j to index patient and study respectively.124 124

3.2 History-enhanced Report Generation125 125

Extract Representations of Single Images. In our approach, each X-ray126 126

image I
(i)
j ∈ RC×W×H is first encoded into a feature representation P

(i)
j ∈127 127

RS×F with an image encoder. Here, C, W , and H denote the number of chan-128 128

nels, width, and height of the image, respectively, while S and F represent129 129

the number of visual tokens and the feature dimension per token. Following130 130

CvT-212DistilGPT2 [27], we utilize the CvT architecture [52], pretrained on131 131

ImageNet-21K, as our image encoder, while our framework can take other en-132 132

coder backbones. To tailor the dimensions of S and F to our requirements, we133 133

introduce an encoder projection layer Eproj . This layer comprises a 1× 1 convo-134 134

lution layer followed by a linear projection layer, transforming each P
(i)
j into a135 135

more compact visual representation V
(i)
j ∈ RS′×F ′

, where S′ and F ′ denote the136 136

adjusted number of visual tokens and their new dimensionality, respectively.137 137

Sequential Date-aware Temporal Embedding. Temporal embeddings are138 138

especially critical for our group causal transformer to learn longitudinal infor-139 139

mation. Standard positional embeddings typically assume equidistant intervals140 140

between tokens, an assumption that is not applicable in our context due to the141 141

varying time gaps between consecutive chest X-rays. For example, the clinical142 142

progression captured in X-rays taken a month apart is significantly different143 143

from that in X-rays taken a year apart. To tackle this challenge, we introduce144 144

study date-aware positional embeddings, p(i)
j ∈ RS∗×F ′

for each study. These145 145

embeddings are conditioned on the study dates T(i)
j , offering a more precise rep-146 146

resentation of the temporal intervals between X-rays. In detail, we first calculate147 147
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Fig. 2: History Enhanced Radiology Report Generation (HERGen): the framework
processes patient-level chest X-rays using the CvT* (CvT combined with the encoder
projection layer), which then aggregates temporal information through a group causal
transformer. Subsequently, GPT2 serves as the decoder for predicting the radiology
report, which was optimized by a cross-entropy (CE) loss. Additionally, an auxiliary
contrastive alignment module is employed to enhance the alignment of the latent spaces
between image and text modalities, thereby producing more consistent reports. Note
that in the group causal transformer block, thick lines represent image-level interac-
tions, while thin lines indicate token-level interactions.

the relative study date for each X-ray image as T′(i)
j = T

(i)
j −T

(i)
0 . Then, we iden-148 148

tify the maximum relative study date in the training set and create a learnable149 149

embedding vocabulary of the corresponding length. Each temporal embedding is150 150

defined as: p(i)
j = Embedding(T′(i)

j ) ∈ R1×F ′
. The visual token embeddings V(i)

j151 151

are then added with the temporal embedding p
(i)
j to form Z

(i)
j = V

(i)
j + p

(i)
j ,152 152

where Z
(i)
j ∈ RS′×F ′

. Finally, we concatenate all visual token embeddings for153 153

each patient to create a patient-level sequence Z̃i = Concat([{Z(i)
j }j=1,2,...,Ni

])154 154

where Z̃i ∈ RS(i)×F ′
and S(i) = Ni ×S′, which is then fed into the group causal155 155

transformer for temporal aggregation.156 156

Group Causal Transformer. Our group causal transformer comprises L group157 157

causal blocks, designed to aggregate longitudinal information from patient data.158 158

In block l, for every visual token (indexed by p), we first compute the query, key,159 159

and value vectors from its preceding block’s representation z
(l−1)
(p) ∈ RF ′

as:160 160

q
(l,a)
(p) = W

(l,a)
Q LN(z

(l−1)
(p) ) ∈ RDh ,161 161

k
(l,a)
(p) = W

(l,a)
K LN(z

(l−1)
(p) ) ∈ RDh ,162 162

v
(l,a)
(p) = W

(l,a)
V LN(z

(l−1)
(p) ) ∈ RDh . (1)163 163

Here, LN denotes LayerNorm and a = 1, ..., A indexes the A attention heads164 164

with the latent dimensionality for each head being Dh = F ′/A. The initial165 165

representation z(0) corresponds to the input sequence Z̃i. WQ, WK , and WV166 166

are learnable matrices. For simplicity, we have omitted the patient index i in our167 167
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notation. Then, the process for computing dot-product self-attention weights,168 168

along with subsequent steps, is defined as follows:169 169

α
(l,a)
(p) = SM(

q
(l,a)
(p)

Dh
· [k(l,a)

(p′) ]p′∈0,...,S(i)−1),170 170

s(p)
(l,a)

=
∑
p′

M(p′)α(p)(p′)
(l,a)

v(p′)
(l,a)

, (2)171 171

where α ∈ RS(i)

. The group causal attention matrix M(p′), as illustrated in172 172

Fig. 3, differs fundamentally from the bidirectional attention used in BERT [12]173 173

and the causal attention in GPT [33]. It ensures that each visual token within174 174

an image not only interacts with others in the same image but also with tokens175 175

from preceding images.176 176

This design reflects our intention to make the transformer cognizant of the177 177

temporal sequence in radiological data, a crucial aspect for accurately capturing178 178

disease progression over time. Subsequently, we perform concatenation followed179 179

by a Multi-Layer Perceptron (MLP) with residual connections to get the output.180 180

This can be mathematically represented as:181 181

z′
(l)
(p) = WO[s

(l,1)
(p) ...s

(l,A)
(p) ] + z

(l−1)
(p) ,182 182

z
(l)
(p) = MLP(LN(z′

(l)
(p))) + z′

(l)
(p), (3)183 183

where WO is a learnable matrix. Then, the output sequence of the group causal184 184

transformer, denoted as z(L) ∈ RS(i)×F ′
, is split into a series of representations185 185

of studies {D(i)
j }j=1,...,Ni

and D
(i)
j ∈ RS′×F ′

.186 186

Report Generation and Auxiliary Contrastive Alignment. Each tempo-187 187

rally aggregated visual representation D
(i)
j is input into a text decoding module188 188

for generating radiology reports. Note that We chose GPT-2 as the text decoder189 189

following [27], which shows DistilGPT2 [38] outperforms other alternatives like190 190

ClinicalBERT [2], PubMedBERT [13], and SciBERT [6]. We minimize a cross-191 191

entropy loss LCE to ensure predicted reports are close to ground truth reports.192 192

To improve the coherence of generated reports, we introduce an auxiliary con-193 193

trastive alignment module. This module is designed to align the distributions194 194
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of the visual and textual modalities, thereby enhancing the model’s overall per-195 195

formance. Initially, for each visual token embedding D
(i)
j ∈ RS′×F ′

, we perform196 196

a mean pooling operation along the first dimension and it results in a global197 197

representation of the entire image, denoted as D̃
(i)
j ∈ RF ′

. Then, we use a text198 198

encoder to encode each report R
(i)
j into a representation E

(i)
j . Subsequently, we199 199

concatenate all visual and text embeddings within the same minibatch to form a200 200

combined set: {D̃s}s=1,2,...,NB
and {Es}s=1,2,...,NB

, respectively. Note that NB201 201

represents the total number of studies within the mini-batch. The contrastive202 202

loss is defined as follows:203 203

LCont =

NB∑
r=1

1

2
(−log

exp(sim(D̃r,Er)/τ)∑NB

s′=1 exp(sim(D̃r,Es′)/τ)

− log
exp(sim(Er, D̃r)/τ)∑NB

s′=1 exp(sim(Er, D̃s′)/τ)
)

(4)204 204

where τ is the temperature hyperparameter.205 205

Learning Objectives. Finally, our model is optimized by jointly minimizing206 206

these two objectives:207 207

L = LCE + λ · LCont. (5)208 208

Here, λ is a hyperparameter used to balance these two losses. Based on empirical209 209

studies, we set λ as 1.0. The ablation results of the hyperparameter r can be210 210

found in the Supplementary Material.211 211

3.3 Curriculum Training212 212

As shown in Fig. 4, we introduce a curriculum learning strategy, unfolding in213 213

three stages to progressively enhance our model’s performance:214 214

– Stage 1: Encoder-Decoder Report Generation: Initially, reports are215 215

generated using an encoder-decoder architecture trained on individual chest216 216

X-ray image-text pairs. This foundational step focuses solely on static data217 217

without temporal context.218 218

– Stage 2: Alignment Refinement with Text Encoder: Subsequently,219 219

a text encoder is incorporated, utilizing contrastive learning to refine the220 220

alignment between the visual and textual data.221 221

– Stage 3: Temporal Information Learning:The final stage expands the222 222

model’s capability to a longitudinal perspective. Here, we integrate the group223 223

causal transformer to process sequences of chest X-rays, thereby incorporat-224 224

ing temporal information into the report generation.225 225

These stages collectively develop a robust and comprehensive model, which226 226

is then systematically evaluated to assess its effectiveness in generating accurate227 227

and contextually relevant radiology reports.228 228
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4 Experiments229 229

4.1 Experimental Setup230 230

Dataset and Preprocessing. We evaluate the performance of our model on231 231

two clinical tasks: radiology report generation and temporal medical image clas-232 232

sification. The used datasets are as follows:233 233

– MIMIC-CXR: We utilize the MIMIC-CXR dataset [19], which originally234 234

comprises 377, 110 chest X-ray images and 227, 835 reports, to evaluate our235 235

model. Aligning with previous work [9, 10, 27], we adopt the official split of236 236

the MIMIC-CXR dataset in our experiment. However, the original dataset237 237

includes multiple lateral images, which could introduce inconsistency in lon-238 238

gitudinal analyses. Additionally, we observed duplicate images within the239 239

same study, bringing noise to patient-level progression analysis. Therefore,240 240

we meticulously curated the dataset by removing lateral images and dupli-241 241

cates within studies for each train/validation/test set, resulting in a prepro-242 242

cessed dataset consisting of 145, 471 pairs for training, 1, 151 for validation,243 243

and 2, 210 for testing. We then follow [27] to preprocess images and re-244 244

ports. Specifically, we resize all images to 384x384 while preserving aspect245 245

ratios. Report preprocessing involved truncating to 60 words, converting to246 246

lowercase, removing special characters, and replacing infrequent terms with247 247

placeholders. Crucially, we organized the image-report pairs chronologically248 248

based on the “StudyDate" metadata, preserving temporal integrity for ana-249 249

lyzing each patient’s radiological history. Further details on dataset curation250 250

and preprocessing are available in the Supplementary Material. Note that251 251

we re-run the publicly released code of compared methods on our curated252 252

MIMIC-CXR dataset to ensure a fair comparison.253 253

– Longitudinal MIMIC-CXR: We further devise the Longitudinal MIMIC-254 254

CXR dataset, derived from the preprocessed MIMIC-CXR-JPG dataset, to255 255

assess our model’s capability in generating temporally coherent reports, fol-256 256

lowing [59]. This subset includes only patients with at least two consecutive257 257

visits. It is worth noting that the training, validation, and test splits of258 258

the Longitudinal-MIMIC dataset correspond to the official divisions of the259 259

MIMIC-CXR dataset.260 260

– MS-CXR-T: We also assess our model’s capacity for capturing temporal261 261

information using the MS-CXR-T dataset [4]. This dataset consists of 1326262 262

multi-image frontal chest X-rays, each annotated with one of five findings.263 263

For each finding, there are three possible states reflecting disease progression:264 264

“Improving," “Stable," and “Worsening".265 265

Radiology Report Generation. We evaluate the performance of our method266 266

in radiology report generation on both the MIMIC-CXR dataset and the Lon-267 267

gitudinal MIMIC-CXR dataset. We compare HERGen with 7 state-of-the-art268 268

(SOTA) radiology report generation models, including M2Transformer [11],269 269

R2Gen [10], R2GenCMN [9], M2TR.PROGRESSIVE [28], XProNet [48], CvT-270 270

212DistilGPT2 [27] and DCL [21]. To ensure a fair comparison, we rerun the271 271
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publicly released code of these methods on our curated MIMIC-CXR dataset.272 272

Note that 5 SOTA models (PPKER [23], ContrastiveAttention [25], AlignTrans-273 273

former [55], KIUT [16], and METransformer [50]) lack publicly available source274 274

code, thus results are cited from their original papers for reference. However,275 275

we note that these can’t directly compared to our results due to our additional276 276

dataset preprocessing. Additionally, the results in the RGRG [42] paper, employ-277 277

ing the Chest ImaGenome [53] split instead of the official MIMIC-CXR split, are278 278

also for reference only but not directly comparable. On the Longitudinal MIMIC-279 279

CXR dataset, we compare our model with both single-image based baselines, i.e.,280 280

R2Gen [10], R2CMN [9], CvT-212DistilGPT2 [27], etc. and longitudinal image-281 281

based baseline, i.e., Prefilling [59].282 282

Temporal Image Classification. The temporal image classification task is283 283

evaluated on the MS-CXR-T dataset [4]. This evaluation serves as an additional284 284

task to assess how well our model can understand and process disease progression285 285

in medical images. We compare our approach with both temporal image-based286 286

vision language pretraining methods (e.g ., BioViL-T) and single image pretrain-287 287

ing methods (e.g ., BioViL). More information about this experiment is available288 288

in the Supplementary Material.289 289

Evaluation Metrics. In line with previous studies [10,27,31,42], we employed290 290

a combination of Natural Language Generation (NLG) and Clinical Efficiency291 291

(CE) metrics to evaluate our report generation performance. For NLG, we used292 292

established metrics including BLEU-n [30], which measures n-gram overlap, ME-293 293

TEOR [3], that accounts for recall through an Fβ score, ROUGE-L [22], based on294 294

the longest common subsequence. Recognizing that NLG metrics may not fully295 295

reflect clinical accuracy, we further integrated CE metrics following previous296 296

work [9, 10, 16, 50]. Specifically, we apply CheXbert [40] to label the generated297 297

reports into 14 categories (related to thoracic diseases and support devices),298 298

and then compute precision, recall, and F1 scores against ground truths. The299 299

macro-averaged results over 14 classes are reported, given the susceptibility of300 300

micro-averaged metrics to minor class imbalances [41]. As for the temporal image301 301

classification, we predict one of “improving", “stable", and “worsening" for each302 302

one of the 5 findings: Consolidation, Pleural Effusion, Pneumonia, Pneumoth-303 303

orax and Edema. Following BioViL-T [5], we use macro-accuracy across the 5304 304

classes to evaluate the performance.305 305

4.2 Implementation Details306 306

We set the minibatch size to 16 for single image-text pair training and to 4 for307 307

temporal training. Our model training was limited to a maximum of 5 studies308 308

per patient to accommodate resource limitations. We employed the AdamW [24]309 309

optimizer for model optimization. The learning rate was adjusted according to310 310

the training stage, with detailed strategies provided in the Supplementary Ma-311 311

terials. The training was early stopped if the validation BLEU-4 score did not312 312

improve over 10 consecutive epochs. All experiments were conducted using two313 313

Nvidia GeForce RTX 3090 GPUs.314 314
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Table 1: Natural Language Generation (NLG) and Clinical Efficacy (CE) metrics on
MIMIC-CXR. The Best and second-best results of each metric are shown in bold and
underline, respectively. † indicates the results are cited from their original papers. Since
our study involves necessary data cleaning for longitudinal analysis, these results are
not strictly comparable to ours. Results without † were obtained by re-running publicly
available code on the same preprocessed dataset used in our study.

NLG CE

Method Year BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L Precision Recall F1

M2Transformer [11] 2019 0.352 0.211 0.138 0.096 0.128 0.263 0.239 0.173 0.173
R2Gen [10] 2020 0.339 0.211 0.143 0.103 0.138 0.279 0.297 0.189 0.193

R2GenCMN [9] 2021 0.345 0.213 0.143 0.101 0.140 0.274 0.354 0.271 0.275
M2TR.PROGRESSIVE [28] 2021 0.349 0.204 0.132 0.091 0.124 0.255 0.220 0.209 0.236

XProNet [48] 2022 0.303 0.188 0.127 0.091 0.128 0.268 0.419 0.230 0.242
CvT-212DistilGPT2 [27] 2022 0.372 0.231 0.155 0.111 0.149 0.280 0.417 0.295 0.306

DCL [21] 2023 0.263 0.153 0.099 0.071 0.117 0.211 0.303 0.232 0.229

HERGen(Ours) - 0.395 0.248 0.169 0.122 0.156 0.285 0.415 0.301 0.317

Results below are not strictly comparable due to our dataset preprocessing. For reference only.

PPKED† [23] 2021 0.360 0.224 0.149 0.106 0.149 0.284 − − −
ContrastiveAttention† [25] 2021 0.350 0.219 0.152 0.109 0.151 0.283 0.352 0.298 0.303

AlignTransformer† [55] 2021 0.378 0.235 0.156 0.112 0.158 0.283 − − −
RGRG† [42] 2023 0.373 0.249 0.175 0.126 0.168 0.264 − − −
KIUT† [16] 2023 0.393 0.243 0.159 0.113 0.160 0.285 0.371 0.318 0.321

METransformer† [50] 2023 0.386 0.250 0.169 0.124 0.152 0.291 0.364 0.309 0.311

4.3 Results of Radiology Report Generation315 315

Results on MIMIC-CXR. Our model exhibits excellent radiology report gen-316 316

eration capabilities, outperforming state-of-the-art models in both Natural Lan-317 317

guage Generation (NLG) and Clinical Efficiency (CE) metrics, as shown in Ta-318 318

ble 1. For NLG metrics, it notably surpasses all baseline models, notably im-319 319

proving over the second-best model, CvT-212DistilGPT2, by significant mar-320 320

gins. Specifically, compared with CvT-212DistilGPT2, our model achieves the321 321

improvement of ∆ + 6.2%, ∆ + 7.4%, ∆ + 9.0%, ∆ + 8.9% across BLEU-1 to322 322

BLEU-4, respectively. Furthermore, it exhibits a ∆+ 4.7% increase in the ME-323 323

TEOR score and a ∆+1.8% rise in ROUGE-L over CvT-212DistilGPT2, achiev-324 324

ing a ∆ + 5.9% overall improvement on the averaged NLG metrics compared325 325

with CvT-212DistilGPT2. In CE metrics, our model enhances recall and F1 by326 326

∆+ 2.0% and ∆+ 3.6%, respectively, compared to the second-best results. Our327 327

precision score of 0.415 closely approaches the best score of 0.419. Addition-328 328

ally, we incorporate micro-based metrics for five common observations, following329 329

the methodologies of other studies [26, 42], to provide further evaluation of our330 330

method. These results are available in the Supplementary Material.331 331

Results on Longitudinal MIMIC-CXR. Table 2 presents a comparison of332 332

our model against various baseline methods in terms of Natural Language Gen-333 333

eration (NLG) and Clinical Efficiency (CE) metrics. Our model outperforms334 334

both single-image and longitudinal-image-based methods in all evaluated NLG335 335

and CE metrics. Specifically, in BLEU scores, our model shows improvements336 336

over the prior best method, CvT-212DistilGPT2, with increases of ∆ + 6.57%,337 337

∆+7.07%, ∆+7.94%, ∆+9.34% in BLEU-1, BLEU-2, BLEU-3, and BLEU-4,338 338
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Table 2: Results of NLG metrics (BLEU (BL), METEOR (M), ROUGE-L (RL)) and
CE metrics (Precision, Recall and F1) on the Longitudinal MIMIC-CXR dataset. The
Best and second-best results are shown in bold and underline, respectively. Results
marked with a dagger (†) are cited from published literature Prefilling [59]. Since our
curation of the Longitudinal-MIMIC dataset aligns with the approach in Prefilling [59],
these results are directly comparable to ours.

NLG CE

Method BL-1 BL-2 BL-3 BL-4 M RL Precision Recall F1

Baselines based on single images
AoANet† [14] 0.272 0.168 0.112 0.080 0.115 0.249 - - -
CNN+ Trans† 0.299 0.186 0.124 0.088 0.120 0.263 - - -
Transformer† 0.294 0.178 0.119 0.085 0.123 0.256 - - -
R2Gen† [10] 0.302 0.183 0.122 0.087 0.124 0.259 - - -
R2CMN† [9] 0.305 0.184 0.122 0.085 0.126 0.265 - - -

CvT-212DistilGPT2 [27] 0.365 0.226 0.151 0.107 0.143 0.275 0.367 0.258 0.261

Baselines based on longitudinal images
Prefilling† [59] 0.343 0.210 0.140 0.099 0.137 0.271 - - -

HERGen(Ours) 0.389 0.242 0.163 0.117 0.155 0.282 0.421 0.289 0.295

Table 3: Temporal medical image classification performance on MS-CXR-T. Macro-
accuracy ([%]) are used as the metric. The Best and second-best results are shown in
bold and underline, respectively. Note that Pl.effusion denotes pleural effusion.

Method Pre-train Consolidation Pl. effusion Pneumonia Pneumothorax Edema

Random - 32.3 31.6 30.3 39.0 34.9
ResNet ImageNet 37.5 39.0 48.4 45.3 42.5

BioViL [7] Static 42.9 41.4 47.9 42.8 40.7
BioViL-T [5] Temporal 45.0 46.3 52.0 50.1 52.0

Ours Temporal 56.1 51.2 66.7 54.8 48.1

respectively. Notably, our model achieves an increase of ∆+6.5% on the averaged339 339

NLG metrics compared with the second-best approach CvT-212DistilGPT2. In340 340

terms of CE metrics, our model also outperforms CvT-212DistilGPT2 in all341 341

cases, achieving the improvements of ∆ + 14.7% in precision, ∆ + 12.0% in re-342 342

call, and ∆+13.0% in F1 score, respectively. Notably, our model also significantly343 343

surpasses longitudinal-image-based baseline [59], which also utilizes prior images344 344

and reports for current report generation, underscoring the effectiveness of our345 345

proposed temporal data integration strategy.346 346

4.4 Results of Temporal Image Classification347 347

The temporal image classification performance on MS-CXR-T is shown in Ta-348 348

ble. 3. As the MS-CXR-T benchmark is relatively new (introduced in 01/2023),349 349

we didn’t find more baselines for comparison. We divided the dataset into train-350 350

ing, validation, and test sets with a 70% / 10% / 20% ratio. In the finetun-351 351

ing phrase, we employ our pretrained image encoder and group causal trans-352 352

former (these two modules remain frozen) to extract representations from pairs353 353
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Table 4: Ablation study of different components (“CL" represents the auxiliary con-
trastive alignment module, and “Temporal" denotes the group causal transformer for
capturing longitudinal information). Best and second-best results are shown in bold
and underline, respectively. Here the baseline (without ✓) denotes the trained model
after stage 1. The relative improvements in the average of all NLG metrics compared
with baseline is presented in the “AVG.∆" column.

Dataset CL Temporal BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L AVG.∆

MIMIC-CXR

0.372 0.231 0.155 0.111 0.149 0.280 −
✓ 0.390 0.239 0.161 0.117 0.153 0.280 +3.3%

✓ 0.388 0.240 0.162 0.116 0.153 0.283 +3.4%
✓ ✓ 0.395 0.248 0.169 0.122 0.156 0.285 +5.9%

Lon-MIMIC

0.365 0.225 0.151 0.107 0.143 0.275 −
✓ 0.375 0.232 0.155 0.110 0.146 0.277 +2.3%

✓ 0.380 0.237 0.160 0.115 0.153 0.283 +4.9%
✓ ✓ 0.389 0.242 0.163 0.117 0.155 0.282 +6.5%

of images, and then only train a linear layer to make predictions. It is observed354 354

that HERGen achieves the best performance across 4 diseases and achieves the355 355

second-best performance on edema. Specifically, our model improve the macro-356 356

accuracy than the second best results by ∆+ 11.1%, ∆+ 4.9%, ∆+ 14.7% and357 357

∆+ 3.7% on consolidation, pleural effusion, pneumonia, pneumothorax, respec-358 358

tively. These advancements further underscore the effectiveness of our proposed359 359

group causal transformer in capturing the progression of diseases.360 360

4.5 Qualitative Results361 361

Case Study of Generated Reports. Fig. 5 presents a case study comparing362 362

reports generated by our model with those from CvT-212DistilGPT2 for a given363 363

patient. The comparison shows that reports from our model align more clinical364 364

findings with the ground truth. Moreover, our model correctly generates more365 365

comparative statements, such as “appear stable" or “appear unchanged", sug-366 366

gesting its superiority to capture temporal information in the patient’s medical367 367

history. These findings underscore our model’s proficiency in report generation368 368

by (1) identifying disease-specific features through consistent anatomical struc-369 369

tures in patient-level CXRs and (2) generating time-comparative sentences.370 370

Visualization of Learned Embeddings. In Fig. 6, we display a T-SNE vi-371 371

sualization of image embeddings from a dataset constructed following 5 × 200372 372

MIMIC-CXR dataset proposed in MedCLIP [51]. This dataset comprises 200373 373

images for each of five specific diseases, with each image uniquely representing374 374

one disease. Our model’s embeddings show more distinct clustering compared375 375

to the baseline CvT-212DistilGPT2, especially for diseases like pleural effusion376 376

and cardiomegaly. This highlights the effectiveness of our constraint alignment377 377

objective in improving disease-specific feature extraction.378 378
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as compared to the previous radiograph, 
there is complete resolution of the pre-
existing pleural effusions. unchanged 
moderate cardiomegaly without evidence 
of pulmonary edema. small basal 
parenchymal scars but no evidence of 
recent pneumonia. moderate tortuosity of 
the thoracic aorta. calcified bronchial walls.

pulmonary edema is mild and new since. 
increased opacity at left lung base is either 
atelectasis and/or combination of 
atelectasis and edema. left pleural effusion 
is presumed and small and is also new 
since. heart size is normal. 
cardiomediastinal silhouette is 
unremarkable. mild-to-moderate 
atherosclerotic calcification is present in 
the aortic arch.

portable upright view of the chest 
demonstrates low lung volumes. there is no 
pleural effusion or pneumothorax. heart size 
is top normal. hilar and mediastinal 
silhouettes are unchanged. there is perihilar 
vascular congestion. Interstitial markings 
are prominent, suggest possible mild 
interstitial pulmonary edema. right-sided 
Port-A-Cath is stable position projecting 
over cavoatrial junction.

T

T+420

T+10227

Study Date
(Days)

in comparison with the study of there is little 
overall change. again there is 
hyperexpansion of the lungs with flattening 
of the hemidiaphragms consistent with 
chronic pulmonary disease. cardiac 
silhouette is within normal limits and there is 
no evidence of acute focal pneumonia or 
vascular congestion.

as compared to the previous radiograph 
there is unchanged evidence of mild-to-
moderate pulmonary edema. the edema 
however has not increased in severity since 
the previous examination. the size of the 
cardiac silhouette has slightly increased. 
there is no evidence of pleural effusions. 
normal hilar and mediastinal contours.

as compared to the previous radiograph 
there is no relevant change. mild fluid 
overload and cardiomegaly. tortuosity of the 
thoracic aorta. no newly appeared focal 
parenchymal opacities. no larger pleural 
effusions. no pneumothorax.

as compared to the previous radiograph 
there is no relevant change. low lung 
volumes. moderate cardiomegaly with signs 
of mild-to-moderate pulmonary edema. no 
pleural effusions. no evidence of 
pneumonia. no pneumothorax. the 
observation was made at <unk> am. on and 
at the same time the referring physician. 
was paged for notification.

a port-a-cath terminates in the lower 
superior vena cava. the cardiac mediastinal 
and hilar contours appear stable. there is 
no pleural effusion or pneumothorax. the 
lungs appear clear.

a port-a-cath terminates in the lower 
superior vena cava. the cardiac mediastinal 
and hilar contours appear unchanged. the 
lungs appear clear. there are no pleural 
effusions or pneumothorax. bony structures 
are unremarkable. there has been no 
significant change.,

Ground Truth Report Baseline Generated HERGen (Ours)Chest X-rays

Fig. 5: This case study compares radiology report predictions for a patient by our
model and CvT-212DistilGPT2. Text highlighted in gray indicates words or their syn-
onyms found in both the predicted and ground truth reports. Purple highlights denote
similar matches in the baseline-generated (CvT-212DistilGPT2) reports and ground
truth, while red highlights show similar matches in our model’s reports and ground
truth. From top to bottom, the chest X-rays are chronologically ordered. Here T de-
notes the study date of the first study.

Cardiomegaly
Lung Opacity
Pneumonia
Pleural Effusion
Atelectasis

(a) CvT-212DistilGPT2

Cardiomegaly
Lung Opacity
Pneumonia
Pleural Effusion
Atelectasis

(b) Our approach

Fig. 6: Embedding visualization of MIMIC-CXR images in CvT-212DistilGPT2 and
our model with t-SNE.

4.6 Ablated Analysis of Our Framework379 379

Effect of Auxiliary Contrastive Alignment. We delve into the impacts of in-380 380

corporating our auxiliary contrastive alignment module, as delineated in Table 4.381 381

It is observed that incorporating the contrastive learning objective yields im-382 382

provements in all NLG metrics compared to the baseline for both datasets, sug-383 383

gesting enhanced consistency in report generation. For instance, on the MIMIC-384 384

CXR dataset, we achieve improvements of ∆+ 4.8%, ∆+ 3.5%, ∆+ 3.9%, and385 385

∆ + 5.4% in BLEU-1 through BLEU-4, respectively. Similar enhancements are386 386

observed on the Longitudinal MIMIC-CXR dataset. Additionally, we observed387 387

a notable augmentation of +3.3% in average NLG metrics for the MIMIC-CXR388 388

dataset and a +2.3% improvement for the Longitudinal MIMIC-CXR dataset,389 389

underscoring the value of our contrastive alignment module in report generation.390 390
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Effect of Temporal Aggregation Module. We evaluate the impact of in-391 391

tegrating our temporal aggregation module in Table 4. It is observed that this392 392

module significantly enhances the BLEU scores across the MIMIC-CXR and393 393

Longitudinal MIMIC-CXR datasets. Specifically, on the Longitudinal MIMIC-394 394

CXR dataset, we observed increases of ∆+ 4.11%, ∆+ 5.33%, ∆+ 5.96%, and395 395

∆ + 7.47% on BLEU-1 to BLEU-4 scores, compared to the baseline upon inte-396 396

grating this module. Notably, it achieves +4.9% improvement in the averaged397 397

NLG metrics. When combined with a model trained using contrastive learning,398 398

the module further increases BLEU scores by ∆+ 2.4%, ∆+ 2.1%, ∆+ 1.87%,399 399

and ∆+1.74%. In this case, the improvement on the averaged NLG metrics com-400 400

pared with baseline increases to +6.5%, which marks a significant enhancement401 401

than +2.3% (Row 2). This pattern is consistent across datasets, underscoring402 402

the temporal aggregation module’s effectiveness in leveraging patient histories403 403

for generating more accurate reports.404 404

Effect of Curriculum Learning Strategy. We evaluate the impact of our405 405

curriculum learning strategy on model performance in Table 4. On each dataset,406 406

the row 1, 2 and 4 corresponds to the Stage 1, Stage 2, and Stage 3 of our407 407

curriculum learning strategy, respectively. Row 3 showcases a variant trained408 408

using our temporal approach without the contrastive learning component for409 409

comparison. Our analysis reveals that, across both the MIMIC-CXR and Lon-410 410

gitudinal MIMIC-CXR datasets, the models incorporating contrastive learning411 411

alignment consistently outperform the baseline. Furthermore, our final model,412 412

which integrates both contrastive learning and temporal aggregation module,413 413

shows the best performance across the majority of metrics, highlighting the414 414

combined benefits of these approaches. For a detailed comparison between joint415 415

and curriculum-based training, please refer to the Supplementary Material.416 416

5 Conclusion417 417

In this paper, we present a novel framework to enhance radiology report gen-418 418

eration by utilizing the varying-size patient histories. By integrating a novel419 419

group casual transformer, our model effectively aggregates temporal information420 420

of longitudinal data. Besides, our framework optimize an auxiliary contrastive421 421

alignment module to further align image and textual data, ensuring coherence422 422

between visual and language representations. Moreover, a curriculum learning423 423

strategy is employed to sequentially optimize these modules, thereby progres-424 424

sively improving model performance. Our extensive experiments demonstrate425 425

the model’s capability to generate clinically precise reports and extract mean-426 426

ingful insights from historical data.427 427

Limitations and Future Work. One potential limitation of our method is that428 428

the model’s alignment operates within the embedding space without accounting429 429

for anatomical consistencies in longitudinal studies, which will be explored in430 430

our future work. Additionally, we plan to expand HERGen into a more com-431 431

prehensive representation learning model, thereby broadening its utility across432 432

varied downstream tasks.433 433
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