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ABSTRACT

Large Neighborhood Search (LNS) is a widely used method for solving large-scale
Mixed Integer Linear Programming (MILP) problems. The effectiveness of LNS
crucially depends on the choice of the search neighborhood. However, existing
strategies either rely on expert knowledge or computationally expensive Machine
Learning (ML) approaches, both of which struggle to scale effectively for large
problems. To address this, we propose LLM-LNS, a novel Large Language Model
(LLM)-driven LNS framework for large-scale MILP problems. Our approach in-
troduces a dual-layer self-evolutionary LLM agent to automate neighborhood se-
lection, discovering effective strategies with scant small-scale training data that
generalize well to large-scale MILPs. The inner layer evolves heuristic strate-
gies to ensure convergence, while the outer layer evolves evolutionary prompt
strategies to maintain diversity. Experimental results demonstrate that the pro-
posed dual-layer agent outperforms state-of-the-art agents such as FunSearch and
EOH. Furthermore, the full LLM-LNS framework surpasses manually designed
LNS algorithms like ACP, ML-based LNS methods like CL-LNS, and large-scale
solvers such as Gurobi and SCIP. It also achieves superior performance compared
to advanced ML-based MILP optimization frameworks like GNN&GBDT and
Light-MILPopt, further validating the effectiveness of our approach.

1 INTRODUCTION

Mixed Integer Linear Programming (MILP) is a versatile and widely used mathematical framework
for solving complex optimization problems across various domains, including transportation man-
agement (Klanšek, 2015), bin packing (Fleszar, 2022), and production planning (Adrio et al., 2023).
MILPs are challenging to solve efficiently due to their NP-hard nature (Kim et al., 2021) and the
exponential growth of the search space as problem size increases (Vázquez et al., 2018). To address
these challenges, researchers have developed two primary approaches (Zhang et al., 2023): exact
algorithms, such as branch-and-bound, and heuristic-based approximation methods.

While exact algorithms like branch-and-bound (Boyd & Mattingley, 2007; Morrison et al., 2016)
are effective for small to medium-sized problems, they struggle with the computational demands
of larger instances. This has led to the rise of heuristic methods, particularly Large Neighbor-
hood Search (LNS) (Ahuja et al., 2002; Mara et al., 2022), which iteratively improves solutions by
destroying and repairing parts of the current solution, allowing for exploration of large neighbor-
hoods without full re-optimization (Song et al., 2020; Ye et al., 2023a). However, LNS performance
depends heavily on neighborhood selection, which is often hand-crafted and requires significant
domain expertise. Designing these operators can be labor-intensive and prone to cold-start issues,
where limited prior knowledge is available to guide the search (Zhang et al., 2023).

In recent years, machine learning (ML) techniques, including reinforcement learning (Wu et al.,
2021; Song et al., 2020) and imitation learning (Sonnerat et al., 2021; Nair et al., 2020), have been
applied to automate the design of neighborhood selection strategies. These methods aim to learn
heuristic strategies from training datasets, reducing reliance on expert knowledge and allowing the
algorithms to adapt to new, homogeneous instances. However, ML-based LNS approaches come
with their own challenges. For reinforcement learning, slow convergence is a common issue (Beggs,
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2005), particularly in large-scale MILP problems, due to the vast search space and the need for
extensive exploration before identifying effective strategies. On the other hand, imitation learning
requires large amounts of high-quality, labeled data, which can be computationally expensive to
generate using expert algorithms (Huang et al., 2023b). As a result, both hand-crafted and ML-
based methods struggle to efficiently solve large-scale MILP problems.

The rise of Large Language Models (LLMs) offers a promising solution to these challenges. Un-
like traditional hand-crafted methods, LLMs come pretrained with vast general knowledge, allow-
ing them to reason about complex tasks and learn problem structures with minimal training data,
thus avoiding cold-start issues. Additionally, LLMs can adapt to new problems through interac-
tive reasoning, reducing the need for extensive exploration and addressing the slow convergence of
reinforcement learning. Furthermore, LLMs can dynamically generate heuristic strategies without
relying on large labeled datasets, which significantly reduces the computational overhead typically
associated with imitation learning (Yang et al., 2024; Lange et al., 2024). While LLMs have shown
potential in generating strategies for combinatorial optimization problems(Ye et al., 2024; Elhenawy
et al., 2024), they often lack the problem-specific refinement needed to produce efficient heuristics
without additional guidance (Plaat et al., 2024). Approaches like FunSearch (Romera-Paredes et al.,
2024) and Evolution of Heuristic (EOH) (Liu et al., 2024) combine LLMs with evolutionary algo-
rithms (Simon, 2013), but rely on fixed strategies, limiting solution diversity and leading to poor
convergence due to insufficient directionality. This underscores the need for a more adaptive frame-
work to fully harness LLMs for large-scale MILP problems.

In this paper, we propose LLM-LNS, a novel Large Language Model-driven Large Neighborhood
Search framework designed specifically for solving large-scale MILP problems, which can discover
effective neighborhood selection strategies for LNS with scant small-scale training data that gener-
alize well to large-scale MILPs. Our key innovations are as follows:

• Dual-layer Self-evolutionary LLM Agent: We propose a novel LLM agent with a dual-
layer self-evolutionary mechanism for automatically generating heuristic strategies. The
inner layer evolves both thoughts and code representations of heuristic strategies, ensur-
ing convergence, while the outer layer evolves evolutionary prompt strategies to maintain
diversity, preventing the search process from getting trapped in local optima.

• Differential Memory for Directional Evolution: We introduce differential evolution in
the agent to guide both crossover and variation. By feeding the fitness values of parent
strategies back into the LLM, we leverage its memory to learn how to evolve from less
effective to more effective strategies. This feedback mechanism enables the LLM to act as
an optimizer, identifying promising directions and leading to more efficient improvements.

• Application to Neighborhood Selection in LNS: We apply the proposed dual-layer LLM
agent to the neighborhood selection strategy generation in LNS. By utilizing only a small
amount of training data from small-scale problems, the LLM agent can discover new neigh-
borhood selection strategies that generalize well to large-scale MILP problems.

• Comprehensive Experimental Validation: We validate the effectiveness of our proposed
LLM-LNS at two levels. First, we test its agent’s performance on heuristic generation tasks
of combinatorial optimization problems, demonstrating its superiority over state-of-the-art
methods such as FunSearch (Romera-Paredes et al., 2024) and EOH (Liu et al., 2024).
Second, we evaluate its performance on large-scale MILP problems, where it outperforms
traditional LNS methods (e.g., ACP (Ye et al., 2023a)), ML-based LNS methods (e.g., CL-
LNS (Huang et al., 2023b)), and leading solvers like Gurobi (Gurobi Optimization, LLC,
2023) and SCIP (Maher et al., 2016). Furthermore, our proposed LLM-LNS surpasses
modern ML-based optimization frameworks for large-scale MILP, such as GNN&GBDT
(Ye et al., 2023c) and Light-MILPopt (Ye et al., 2023b). These results confirm the effec-
tiveness of our proposed LLM-LNS in solving large-scale optimization problems.

2 RELATED WORK

2.1 MIXED INTEGER LINEAR PROGRAMMING

Mixed Integer Linear Programming (MILP) problems represent a class of combinatorial optimiza-
tion problems characterized by a linear objective function subject to a set of linear constraints, where
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some or all decision variables are restricted to integer values. An MILP can be defined as follows:

min
x

cTx, subject to Ax ≤ b, l ≤ x ≤ u, xi ∈ Z, i ∈ I, (1)

where x represents the decision variables, with n ∈ Z denoting the dimensionality of the integer
variables and l, u, c ∈ Rn corresponding to the lower bounds, upper bounds, and coefficients of the
decision variables, respectively. The matrix A ∈ Rm×n and the vector b ∈ Rm define the linear
constraints of the problem. The set I ⊆ {1, 2, . . . , n} denotes the indices of variables that are
constrained to integer values. A feasible solution to the MILP problem satisfies all constraints, and
the optimal solution minimizes the objective function value. (Artigues et al., 2015; Pisaruk, 2019)

2.2 LARGE NEIGHBORHOOD SEARCH

Large Neighborhood Search (LNS) is a widely used heuristic for solving MILP problems. It itera-
tively improves solutions by exploring predefined neighborhoods around a current solution. How-
ever, the effectiveness of LNS heavily relies on the neighborhood selection strategy, as poor choices
can lead to stagnation in local optima.

Several approaches have been proposed to address this challenge. One common method is random-
LNS (Song et al., 2020), which randomly partitions integer variables into disjoint subsets and op-
timizes one subset in each iteration while fixing the others. However, random-LNS uses a fixed
neighborhood size and overlooks correlations between decision variables, limiting its performance.
To overcome these drawbacks, the Adaptive Constraint Partitioning (ACP) framework (Ye et al.,
2023a) introduces a dynamic strategy that adjusts the neighborhood size, optimizing all decision
variables associated with randomly selected constraints in each iteration. This ensures that highly
correlated variables are optimized together, improving performance. Similar strategies have been
explored in other works (Huang et al., 2023a; Han et al., 2023), but they still rely on manually
designed heuristics, requiring expert knowledge and lacking adaptability to new problem instances.

To address this limitation, machine learning methods have been applied to automate neighborhood
selection. Reinforcement learning (RL) approaches define reward functions based on solution im-
provements, allowing models to learn promising neighborhoods through interaction with the prob-
lem (Wu et al., 2021; Song et al., 2020; Nair et al., 2020). Imitation learning, on the other hand, uses
large amount of large-scale sampling (Huang et al., 2023b; Zhou et al., 2023) or expert algorithms
(Sonnerat et al., 2021) to guide the selection process. While these techniques reduce reliance on
handcrafted strategies, RL struggles with convergence in large-scale MILP problems, and imitation
learning requires extensive sampling, making it computationally expensive. This highlights the need
for more efficient, automatically designed neighborhood selection strategies.

2.3 LARGE LANGUAGE MODEL FOR HEURISTIC STRATEGY DESIGN

Table 1: Comparison of Features Between Fun-
Search, EOH, and LLM-LNS.

FunSearch EOH LLM-LNS
Heuristic Evolution ✓ ✓ ✓
Thought Evolution × ✓ ✓
Prompt Evolution × × ✓

Directional Evolution × × ✓

The rise of Large Language Models (LLMs)
has opened new possibilities for generating
heuristic strategies to solve combinatorial op-
timization problems (Yang et al., 2024; Lange
et al., 2024). LLMs excel at generating high-
level ideas and reasoning over complex tasks,
but they often lack problem-specific knowl-
edge, limiting their ability to create effective heuristics without additional guidance (Plaat et al.,
2024). To overcome these limitations, recent works have integrated LLMs with evolutionary algo-
rithms (EA) to iteratively refine heuristics.

FunSearch (Romera-Paredes et al., 2024) is a notable attempt that combines LLMs with evolution-
ary frameworks. FunSearch uses LLMs to generate functions, which are then evolved through an
evolutionary search process. This approach has demonstrated success in outperforming hand-crafted
algorithms on specific optimization problems. However, FunSearch is computationally expensive,
often requiring millions of LLM queries to identify effective heuristic functions, which limits its
practicality in many real-world applications. A more recent approach, Evolution of Heuristic (EOH)
(Liu et al., 2024), builds on the strengths of LLMs and evolutionary computation while addressing
some of FunSearch’s limitations. EOH introduces a novel evolutionary paradigm where heuristics,
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Dual-layer Self-evolution LLM Agent

min  c1x1 + ... +  cnxn

s.t. a11x1 + ... + a1n xn ≤ b1

am 1x1 + ... + am nxn ≤ bm

...

Small-scale Training Dataset
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Figure 1: An overview of the proposed LLM-LNS framework. The framework consists of a dual-
layer self-evolutionary LLM agent for solving large-scale MILP problems. In the outer layer, evolu-
tionary prompt strategies are generated and passed to the inner layer, where heuristic strategies are
evolved. A differential memory mechanism uses fitness feedback to refine these strategies across
iterations. The refined strategies are fed into the Adaptive Large Neighborhood Search process,
which iteratively improves solutions with the support of solvers like Gurobi.

represented as natural language ”thoughts,” are translated into executable code by LLMs. These
thoughts and their corresponding code are evolved within an EA framework, enabling the efficient
generation of high-performance heuristics. As shown in Table 1, while FunSearch and EOH have
advanced the integration of LLMs with evolutionary algorithms, they still have limitations. All
methods focus on Heuristic Evolution for generating strategies, but FunSearch evolves only at the
code level and lacks Thought Evolution. Meanwhile, EOH incorporates Thought Evolution but uses
fixed evolutionary strategies, lacking Prompt Evolution to enhance solution diversity. Addition-
ally, both methods lack Directional Evolution, where crossover operations are guided by differential
memory to improve efficiency and adaptability. These limitations reduce their ability to guide the
search effectively, often leading to premature convergence. These challenges highlight the need for
more adaptive frameworks to fully harness LLMs in large-scale optimization tasks.

3 METHOD

In this section, we introduce LLM-LNS, a Large Language Model-driven Large Neighborhood
Search framework designed to solve large-scale MILP problems. As shown in Figure 1, the frame-
work is composed of two main components: a Dual-layer Self-evolutionary LLM Agent and a
Adaptive Large Neighborhood Search process.

3.1 DUAL-LAYER SELF-EVOLUTIONARY LLM AGENT

The Dual-layer Self-evolutionary LLM Agent is the core component of our framework, responsi-
ble for generating and evolving heuristic and prompt strategies. The Dual-layer Self-evolutionary
Structure consists of an Inner Layer that evolves heuristic strategies to accelerate convergence,
and an Outer Layer that evolves evolutionary prompt strategies to enhance diversity in heuristic
generation. Another key innovation is the incorporation of Differential Memory for Directional
Evolution, which accelerates convergence by learning the direction of improvement from less ef-
fective strategy to better ones. Together, these innovations ensure a balance between exploration and
exploitation, significantly improving the efficiency and preventing stagnation in local optima.

3.1.1 DUAL-LAYER SELF-EVOLUTIONARY STRUCTURE

The Dual-layer Self-evolutionary Structure is the core component of the LLM-LNS framework.
It is designed to evolve both evolutionary prompt strategies and heuristic strategies in a synergistic
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Initialization of  Evolutionary Prompt Strategy
• Cross1：Create a completely new algorithm.
• Cross2：Create a new algorithm inspired by the given ones.
• Variation1：Modify the given algorithm.
• Variation2：Change the parameters of the given algorithm.

Initialization of  Heuristic Strategy
• Capacity ratio with penalty
• 𝑠𝑐𝑜𝑟𝑒𝑠[𝑏𝑖𝑛𝑠 > 𝑖𝑡𝑒𝑚] = (𝑏𝑖𝑛𝑠−𝑖𝑡𝑒𝑚)

𝑏𝑖𝑛𝑠
× 1

𝑖𝑛𝑑𝑒𝑥 𝑜𝑓 𝑏𝑖𝑛+0.5

Evolution of  Heuristic Strategy
• Added power and proximity penalties
• 𝑠𝑐𝑜𝑟𝑒𝑠[𝑏𝑖𝑛𝑠 > 𝑖𝑡𝑒𝑚] = (𝑏𝑖𝑛𝑠−𝑖𝑡𝑒𝑚)

𝑏𝑖𝑛𝑠+1𝑒−5
− (𝑏𝑖𝑛𝑠/10)2

𝑚𝑎𝑥(𝑏𝑖𝑛𝑠
10 )2

− (1 − 𝑏𝑖𝑛𝑠−𝑖𝑡𝑒𝑚
𝑚𝑎𝑥(𝑏𝑖𝑛𝑠)

)

Evolution of  Heuristic Strategy
• Added randomness for exploration
• 𝑠𝑐𝑜𝑟𝑒𝑠[𝑏𝑖𝑛𝑠 > 𝑖𝑡𝑒𝑚] = (𝑏𝑖𝑛𝑠−𝑖𝑡𝑒𝑚)

𝑏𝑖𝑛𝑠+1𝑒−5
− (𝑏𝑖𝑛𝑠/10)2

𝑚𝑎𝑥(𝑏𝑖𝑛𝑠
10 )2

−

(1 − 𝑏𝑖𝑛𝑠−𝑖𝑡𝑒𝑚
𝑚𝑎𝑥(𝑏𝑖𝑛𝑠)

) + 𝑟𝑎𝑛𝑑𝑜𝑚𝑛𝑒𝑠𝑠 × 0.1

Evolution of  Heuristic Strategy
• Randomized adjustment for diversity
• 𝑠𝑐𝑜𝑟𝑒𝑠[𝑏𝑖𝑛𝑠 > 𝑖𝑡𝑒𝑚] = (𝑏𝑖𝑛𝑠−𝑖𝑡𝑒𝑚)

𝑏𝑖𝑛𝑠+1𝑒−5
− (𝑏𝑖𝑛𝑠/10)2

𝑚𝑎𝑥(𝑏𝑖𝑛𝑠
10 )2

− (1 − 𝑏𝑖𝑛𝑠−𝑖𝑡𝑒𝑚
𝑚𝑎𝑥(𝑏𝑖𝑛𝑠)

) + random adjustment

Evolution of  Heuristic Strategy
• Hybrid optimization with genetic algorithm + tabu search
• 𝑠𝑐𝑜𝑟𝑒𝑠[𝑏𝑖𝑛𝑠 > 𝑖𝑡𝑒𝑚] = (𝑏𝑖𝑛𝑠−𝑖𝑡𝑒𝑚)

𝑏𝑖𝑛𝑠+1𝑒−5
− ℎ𝑖𝑠𝑡𝑜𝑟𝑦 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 −

(𝑏𝑖𝑛𝑠/15)2

𝑚𝑎𝑥((𝑏𝑖𝑛𝑠/15)2)
+ 𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 − (1 − 𝑏𝑖𝑛𝑠−𝑖𝑡𝑒𝑚

𝑚𝑎𝑥(𝑏𝑖𝑛𝑠)+1𝑒−5
)

Evolution of  Evolutionary Prompt Strategy
• Cross5：Develop a novel heuristic by synthesizing methodologies to reduce the objective function.
• Cross6：Create a heuristic using unique elements and adaptive learning for minimization.
• Variation5：Adjust score function parameters to optimize exploration strategies.
• Variation6：Investigate and redesign heuristics using unconventional techniques for better optimization.

Management of  Evolutionary Prompt Strategy
• Cross1：Create a completely new algorithm.
• Cross3：Design an advanced algorithm with complexity reduction.
• Variation2：Change the parameters of the given algorithm.
• Variation4：Add stochastic elements and adaptive learning.

Evolution of  Evolutionary Prompt Strategy
• Cross3：Design an advanced algorithm with complexity reduction.
• Cross4：Suggest a new heuristic for better efficiency.
• Variation3：Reconfigure core principles for a new heuristic.
• Variation4：Add stochastic elements and adaptive learning.

Evolution of  Heuristic Strategy
• Swarm intelligence + simulated annealing

• 𝑠𝑐𝑜𝑟𝑒𝑠[𝑏𝑖𝑛𝑠 > 𝑖𝑡𝑒𝑚] = (𝑏𝑖𝑛𝑠−𝑖𝑡𝑒𝑚)
𝑏𝑖𝑛𝑠+1𝑒−5

× 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 − (𝑏𝑖𝑛𝑠/12)2

𝑚𝑎𝑥((𝑏𝑖𝑛𝑠/12)2)
−

(1 − 𝑏𝑖𝑛𝑠−𝑖𝑡𝑒𝑚
𝑚𝑎𝑥(𝑏𝑖𝑛𝑠)

) + (𝑔𝑙𝑜𝑏𝑎𝑙 𝑏𝑒𝑠𝑡 − 𝑠𝑐𝑜𝑟𝑒𝑠) × 0.1 + 𝑟𝑎𝑛𝑑𝑜𝑚 𝑎𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡

Figure 2: Evolution of Dual-layer Self-evolutionary LLM Agent for online bin packing. We out-
line the key thoughts and the corresponding code snippets of the best heuristics produced in some
generations during the evolution of heuristic strategies. Additionally, we highlight the evolution of
evolutionary prompt strategies, which dynamically adapt the prompt strategies to guide the LLM in
generating more effective and diverse heuristics. Both strategies contribute to the overall improve-
ment in performance and convergence throughout the evolutionary process.

manner, leveraging LLMs for automated heuristic design and refinement. This dual-layered structure
mimics the heuristic development process of human experts, ensuring a balance between exploration
and exploitation throughout the search process.

Inner Layer: Heuristic Strategy Evolution. The Inner Layer focuses on evolving heuristic strate-
gies, which consist of both natural thought and corresponding code implementations, with an em-
phasis on convergence. Key aspects of Inner Layer, as illustrated in Figure 1 and Figure 2, include:

• Initialization of Heuristic Strategies: The initial set of heuristics is generated by feeding
the structural information from small-scale training problems, along with an initialization
prompt strategy, into the LLM. This produces the first generation of heuristic strategies.
For example, at generation 1, a basic heuristic is initialized with a fitness value of 0.9595,
based on a capacity ratio with penalty calculation, and is expressed both in natural language
thought and executable code.

• Evolution of Heuristic Strategies: In each generation, new heuristic strategies are evolved
by selecting parent strategies from the current heuristic population. As detailed in Ap-
pendix G, strategies with higher fitness values are more likely to be selected as parents.
These parents are then combined with evolutionary strategies, selected from the Outer
Layer’s population of prompt strategies (e.g., crossover or variation prompts), to guide
the LLM in generating new offspring strategies. For instance, at generation 5, randomness
is introduced for exploration, achieving a fitness value of 0.9916. By generation 8, the
evolution process incorporates hybrid optimization techniques, such as genetic algorithms
combined with tabu search, resulting in a fitness value of 0.9934. This iterative process
enables the LLM to continually refine strategies and explore new solution spaces.

• Evaluation and Final Selection: After new heuristic strategies are generated, they are eval-
uated by integrating them into the Adaptive Large Neighborhood Search process, where
each heuristic is applied to solve small-scale instances from the training dataset. The per-
formance of each strategy is measured by its objective function value, which serves as its
fitness score. After multiple iterations of evolution and evaluation, the best-performing
heuristic strategies are identified based on their fitness. By generation 20, advanced tech-
niques like swarm intelligence and simulated annealing are incorporated, and the final best
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strategy—achieving a fitness value of 0.9942—is selected for output. This iterative evalu-
ation ensures that the framework converges to the most effective heuristic.

Outer Layer: Evolutionary Prompt Strategy Evolution. The Outer Layer focuses on evolving
evolutionary prompt strategies, which guide the LLM in generating new heuristic strategies. The
emphasis in this layer is on exploration to maintain diversity and prevent premature convergence
in the heuristic strategy population. The key stages of Outer Layer, as illustrated in Figure 1 and
Figure 2, include:

• Initialization of Prompt Strategies: The initial set of evolutionary prompt strategies is hand-
crafted and designed to perform basic crossover and variation operations, instructing the
LLM on how to combine or modify existing heuristic strategies in the inner layer. For ex-
ample, at generation 1, basic prompt strategies like Cross1 and Cross2 are set, which help
the LLM generate new heuristic strategies by recombining or tweaking existing ones.

• Evolution of Prompt Strategies: As the evolution progresses, more complex prompt strate-
gies are introduced to address stagnation in the heuristic population. Specifically, if the top-
l individuals in the heuristic population remain unchanged for t consecutive generations,
we infer that the evolution may have converged to a local optimum. This triggers the evolu-
tion of new prompt strategies. As shown in Figure 2, signs of stagnation were observed in
both the 10th and 15th generations. In response, new prompt strategies were generated to
overcome the local optimality issue. At generation 10, prompts such as Cross3 and Cross4
were designed to enhance efficiency and reduce algorithmic complexity. By generation
15, even more advanced strategies like Variation5 and Variation6 were introduced, incor-
porating stochastic elements and adaptive learning to increase diversity and explore new
heuristic possibilities. This systematic evolution of prompt strategies helps ensure that the
heuristic population continues to evolve and does not get trapped in local optima.

• Evaluation and Management of Prompt Strategies: To ensure the efficiency and effective-
ness of the prompt strategy population, each prompt strategy is evaluated based on the
performance of the heuristic strategies it generates. Specifically, for each prompt strategy,
the top-k performing heuristic strategies it produces are tracked, and the average fitness
score of these heuristics is used as the fitness score for the prompt strategy itself. This
fitness-based evaluation allows us to manage the prompt population and control its size.
As the number of prompt strategies increases over generations, underperforming strate-
gies are pruned to prevent excessive growth and focus on the most effective strategies. For
example, by generation 18, several underperforming prompt strategies (e.g., the four worst-
performing strategies) are removed, as shown in Figure 2. This pruning process ensures that
only the most effective prompt strategies continue to evolve, maintaining both diversity and
efficiency in the evolutionary process. For parameter details, see Appendix A.

The synergy between the Inner Layer and Outer Layer drives rapid evolution of effective heuris-
tics and novel evolutionary prompt strategies, as shown in Figure 2. Early generations focus on
basic principles, but with the introduction of advanced prompt strategies, such as complexity reduc-
tion and adaptive learning, the system quickly adapts to overcome local optima. Notably, the sharp
performance improvements between generations 5 to 15 demonstrate the framework’s ability to au-
tonomously discover and refine creative strategies, leading to continuous enhancements in heuristic
performance. This dual-layered approach ensures efficient exploration and exploitation, enabling
the LLM-LNS framework to tackle large-scale problems with minimal human intervention.

3.1.2 DIFFERENTIAL MEMORY FOR DIRECTIONAL EVOLUTION

In our Dual-layer Self-evolutionary LLM Agent, both heuristic strategies and evolutionary prompt
strategies evolve through a process that incorporates Differential Memory for Directional Evolution.
This mechanism allows the LLM to leverage the fitness history of strategies, learning from the
differences between higher- and lower-performing strategies to guide the generation of improved
candidates. Differential memory enables the LLM to act as both a generator and an optimizer,
dynamically refining strategies over successive generations.

At each generation t, the LLM is provided with a set of m strategy-thought-fitness tuples:

S(t) = {⟨H(t)
i , thoughti, f(H

(t)
i )⟩}mi=1, (2)
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Algorithm 1 Adaptive Large Neighborhood Search (ALNS)
Require: Initial solution x0, initial neighborhood size k, time limit T , threshold ϵ, iteration limit p, minimum

and maximum neighborhood sizes kmin, kmax, decision variable count n, adjustment rate u% (percentage)
1: Initialize solution x← x0, set time t← 0
2: while t < T do
3: Compute variable scores using LLM agent
4: Select top-k variables to form neighborhood
5: Solve subproblem using solver within neighborhood
6: Update solution x if improved
7: if time spent in neighborhood exceeds limit then
8: k ← max(kmin, k − ⌈u% · n⌉) ▷ Reduce search radius by u% of n
9: else if improvement in objective < ϵ for p consecutive iterations then

10: k ← min(kmax, k + ⌈u% · n⌉) ▷ Expand search radius by u% of n
11: end if
12: Update time t
13: end while
14: return x

where H
(t)
i represents the i-th parent heuristic strategy selected for this generation, thoughti is its

corresponding natural language description, and f(H
(t)
i ) is its fitness score. The size of S(t) is

m, which is a predefined parameter representing the number of parent strategies used in a single
evolutionary operation. These tuples encapsulate both the structural and performance information
of the selected parent strategies, providing the necessary context for generating offspring strategies.

To generate the next generation of strategies H(t+1), the LLM employs a meta-prompt pmeta, which
combines two key components: a directive plearn that instructs the LLM to learn from the differences
between higher- and lower-performing strategies, emphasizing traits that contribute to higher fitness;
and an evolutionary prompt strategy pevo, provided by the Outer Layer, which specifies the goals
and rules for the evolutionary operation, such as crossover, mutation, or hybrid operations. The
generation process can be formalized as:

H
(t+1)
i =M(pmeta∥S(t)), (3)

where M is the LLM model, pmeta = ⟨plearn, pevo⟩ is the meta-prompt, and S(t) represents the
strategy-thought-fitness tuples from the current generation. By integrating these components, the
LLM generates new strategies H(t+1) that are informed by past evolutionary performance and
aligned with the objectives defined by the Outer Layer. This iterative feedback-refinement loop
ensures that the LLM dynamically balances exploration and exploitation. Differential memory accu-
mulates across generations, enabling the LLM to focus on areas of the search space that demonstrate
promise while avoiding stagnation in local optima. The result is an increasingly proficient evolution
process, accelerating convergence toward optimal solutions while maintaining population diversity.

3.2 ADAPTIVE LARGE NEIGHBORHOOD SEARCH

Adaptive Large Neighborhood Search (ALNS) dynamically adjusts neighborhood size and leverages
the Dual-layer Self-evolutionary LLM Agent for variable scoring and selection. At each iteration t,
the LLM agent computes scores s(t)i for decision variables xi based on their potential to improve the
objective value. The top-k variables are selected to form the neighborhood N (t):

N (t) = {xi | rank(s(t)i ) ≤ k}, (4)

whereN (t) is the neighborhood at iteration t, and k is the current neighborhood size. A subproblem
is then solved within N (t), and the solution x is updated if an improvement is found.

The neighborhood size k is adaptively adjusted based on search progress. If the improvement in
the objective value falls below a threshold ϵ for p consecutive iterations, k is expanded to explore
a broader search space k ← min(kmax, k + ⌈u% · n⌉), where u% is the adjustment rate and n is
the total number of decision variables. Conversely, if the time spent solving subproblems within
the neighborhood exceeds a predefined limit, k is reduced to focus on a smaller subset of variables
k ← max(kmin, k − ⌈u% · n⌉).
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Table 2: Online Bin Packing Heuristic Comparison. This table compares the performance of
various bin packing heuristics based on the fraction of excess bins (lower values indicate better
performance) across different Weibull distribution instances.

1k C100 5k C100 10k C100 1k C500 5k C500 10k C500 Avg
First Fit 5.32% 4.40% 4.44% 4.97% 4.27% 4.28% 4.61%
Best Fit 4.87% 4.08% 4.09% 4.50% 3.91% 3.95% 4.23%

FunSearch 3.78% 0.80% 0.33% 6.75% 1.47% 0.74% 2.31%
EOH 4.48% 0.88% 0.83% 4.32% 1.06% 0.97% 2.09%
Ours 3.58% 0.85% 0.41% 3.67% 0.82% 0.42% 1.63%

The key innovation of ALNS lies in the use of the LLM agent to generalize variable selection strate-
gies. The agent is trained on small-scale MILP problems and learns to rank variables based on their
impact on the objective function, enabling it to generalize these strategies to larger, more complex
problems. This transfer of knowledge ensures that neighborhood selection is both adaptive and
intelligent, allowing the method to efficiently navigate the vast search space of large-scale MILPs.

By leveraging the LLM agent’s ability to learn and generalize, ALNS dynamically balances ex-
ploration and exploitation, focusing computational resources on the most promising regions of the
solution space. The pseudocode in Algorithm 1 outlines the overall process, where the adaptive
control of k ensures faster convergence to high-quality solutions while maintaining computational
efficiency.

4 EXPERIMENT

To validate the effectiveness of the proposed LLM-LNS framework, we conduct two sets of experi-
ments. First, we evaluate our proposed Dual-layer Self-evolutionary LLM Agent on heuristic gener-
ation tasks for combinatorial optimization problems, comparing it against methods like FunSearch
(Romera-Paredes et al., 2024) and EOH (Liu et al., 2024). Second, we assess the full LLM-LNS
framework on large-scale MILP problems, where it is compared against traditional LNS methods
(e.g., ACP (Ye et al., 2023a)), ML-based LNS approaches (e.g., CL-LNS (Huang et al., 2023b)), the
SOTA solvers like Gurobi (Gurobi Optimization, LLC, 2023) and SCIP (Maher et al., 2016), and
modern ML optimization frameworks such as GNN&GBDT (Ye et al., 2023c) and Light-MILPopt
(Ye et al., 2023b). More experimental results and details are provided in the Appendices A to D.

4.1 HEURISTIC GENERATION FOR COMBINATORIAL OPTIMIZATION PROBLEMS

In this section, we evaluate the performance of the Dual-layer Self-evolutionary LLM Agent in gen-
erating heuristic strategies for well-known combinatorial optimization problems. We focus on two
widely studied problems: Online Bin Packing (Seiden, 2002) and the Traveling Salesman Prob-
lem (TSP) (Hoffman et al., 2013). Our method is compared against several hand-crafted heuristics,
state-of-the-art machine learning methods, and other automatically designed heuristics.

4.1.1 ONLINE BIN PACKING

The objective of the Online Bin Packing problem is to allocate a collection of items into the fewest
possible bins of fixed capacity. We follow the experimental setup from Romera-Paredes et al. (2024),
using Weibull distribution instances with varying numbers of items (1k to 10k) and bin capacities
(100 and 500). The performance of each method is measured by the fraction of excess bins used,
where lower values indicate better performance. We compare our method against several baselines,
including hand-crafted heuristics First Fit (Tang et al., 2016) and Best Fit (Shor, 1991), which are
widely used in practice, as well as automatically generated heuristics FunSearch (Romera-Paredes
et al., 2024) and EOH (Liu et al., 2024), which represent state-of-the-art approaches.

As shown in Table 2, our method consistently achieves the best performance across different prob-
lem sizes and capacities, with an average excess bin fraction of 1.63%, outperforming both hand-
crafted heuristics and automatically generated methods. In particular, our approach excels on the 10k
items, capacity 500 instance, achieving a fraction of excess bins of 0.42%, outperforming FunSearch
(0.74%) and EOH (0.97%). This result highlights the strong scalability and generalization ability of
our method, making it particularly effective in handling large-scale, high-capacity scenarios.
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Table 3: Traveling Salesman Problems Heuristic Performance Evaluation. This table provides a
comparison of the relative distance to the best-known solutions for different routing heuristics (lower
values indicate better performance) on a subset of TSPLib benchmark instances.

rd100 pr124 bier127 kroA150 u159 kroB200 Avg
NI 19.91% 15.50% 23.21% 18.17% 23.59% 24.10% 20.75%
FI 9.38% 4.43% 8.04% 8.54% 11.15% 7.54% 8.18%

Or-Tools 0.01% 0.55% 0.66% 0.02% 1.75% 2.57% 0.93%
AM 3.41% 3.68% 5.91% 3.78% 7.55% 7.11% 5.24%

POMO 0.01% 0.60% 13.72% 0.70% 0.95% 1.58% 2.93%
LEHD 0.01% 1.11% 4.76% 1.40% 1.13% 0.64% 1.51%
EOH 0.01% 0.00% 0.42% 0.29% -0.01% 0.26% 0.16%
Ours 0.01% 0.00% 0.01% 0.00% -0.01% 0.44% 0.08%

4.1.2 TRAVELING SALESMAN PROBLEM

The Traveling Salesman Problem (TSP) is a classic combinatorial optimization problem where the
goal is to find the shortest route that visits all given locations exactly once. We evaluate our method
on a subset of TSPLib benchmark instances (Reinelt, 1991), with performance measured by the
relative distance to the best-known solutions (lower values indicate better performance). We com-
pare our method against two types of baselines: hand-crafted heuristics and AI-generated heuristics.
The hand-crafted heuristics include Nearest Insertion (NI) and Farthest Insertion (FI) (Rosenkrantz
et al., 1977), two widely used constructive heuristics. We also include Google OR-Tools (Perron
& Furnon), a popular solver, using its default settings and the recommended local search option.
Beyond EOH (Liu et al., 2024), we compare against the Attention Model (AM) (Kool et al., 2018),
POMO (Kwon et al., 2020), and LEHD (Luo et al., 2023), all of which are ML-based methods.

As shown in Table 3, our method achieves the best average performance with a 0.08% gap to the
best-known solutions, outperforming both hand-crafted heuristics and neural network-based meth-
ods. Notably, on the bier127 instance, our method achieves a relative distance of just 0.01% to
the best-known solution, significantly outperforming EOH (0.42%) and other baselines, including
LEHD (4.76%) and AM (5.91%). This substantial improvement highlights the effectiveness of our
approach in solving challenging instances of the TSP.

It is important to note that both the Online Bin Packing and TSP problems use the same GPT-4o-mini
LLM, with identical settings: 20 iterations and a population size of 20 for Online Bin Packing, and
10 for the TSP problem. Despite these identical settings, our method consistently outperforms EOH
in both problems, showcasing the superior efficiency of the dual-layer self-evolutionary mechanism
in exploring the solution space. This mechanism allows our method to dynamically adapt and refine
solutions, resulting in better overall performance with the same computational resources. These
results underscore the robustness and scalability of our approach, offering a promising direction for
solving large-scale combinatorial optimization problems using LLMs.

4.2 PERFORMANCE OF LLM-LNS ON LARGE-SCALE MILP PROBLEMS

Table 4: The size of one real-world case study in
the internet domain and four widely used NP-hard
benchmark MILPs.

Problem Scale Number of
Variables

Number of
Constraints

SC
(Minimize)

SC1 200000 200000
SC2 2000000 2000000

MVC
(Minimize)

MVC1 100000 300000
MVC2 1000000 3000000

MIS
(Maximize)

MIS1 100000 300000
MIS2 1000000 3000000

MIKS
(Maximize)

MIKS1 200000 200000
MIKS2 2000000 2000000

To validate the effectiveness of the proposed
LLM-LNS framework for large-scale MILP
problems, we evaluate its performance on four
widely-used benchmark datasets: Set Covering
(SC) (Caprara et al., 2000), Minimum Vertex
Cover (MVC) (Dinur & Safra, 2005), Maxi-
mum Independent Set (MIS) (Tarjan & Tro-
janowski, 1977), and Mixed Integer Knapsack
Set (MIKS) (Atamtürk, 2003). Initially, LLM-
LNS is trained on smalle-scale problems with
tens of thousands of variables and constraints
and then tested on large-scale instances (Table
4) to assess its scalability and generalization.

We compare LLM-LNS with several state-of-
the-art baselines, including heuristic LNS methods like Random-LNS (Song et al., 2020), Adap-
tive Constraint Propagation (ACP) (Ye et al., 2023a), and the learning-based CL-LNS framework
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Table 5: Comparison of objective values on large-scale MILP instances across different meth-
ods. For each instance, the best-performing objective value is highlighted in bold. The - symbol
indicates that the method was unable to generate samples for any instance within 30,000 seconds,
while * indicates that the GNN&GBDT framework could not solve the MILP problem.

SC1 SC2 MVC1 MVC2 MIS1 MIS2 MIKS1 MIKS2

Random-LNS 16140.6 169417.5 27031.4 276467.5 22892.9 223748.6 36011.0 351964.2
ACP 17672.1 182359.4 26877.2 274013.3 23058.0 226498.2 34190.8 332235.6

CL-LNS - - 31285.0 - 15000.0 - - -
Gurobi 17934.5 320240.4 28151.3 283555.8 21789.0 216591.3 32960.0 329642.4
SCIP 25191.2 385708.4 31275.4 491042.9 18649.9 9104.3 29974.7 168289.9

GNN&GBDT 16728.8 252797.2 27107.9 271777.2 22795.7 227006.4 * *
Light-MILPOPT 16108.1 160015.5 26950.7 269571.5 22966.5 230432.9 36125.5 362265.1
LLM-LNS(Ours) 15802.7 158878.9 26725.3 268033.7 23169.3 231636.9 36479.8 363749.5

(Huang et al., 2023b). Additionally, we include traditional solvers like Gurobi (Gurobi Optimiza-
tion, LLC, 2023) and SCIP (Maher et al., 2016), as well as modern ML-based frameworks such as
GNN&GBDT (Ye et al., 2023c) and Light-MILPopt (Ye et al., 2023b). To ensure a fair comparison,
Gurobi is used as the sub-solver in the neighborhood search step across all methods. For LLM-LNS,
the neighborhood selection strategy is trained over 20 iterations on smaller problems before being
applied to larger instances. Detailed results and discussions are provided in the Appendix D.

The experimental results, summarized in Table 5, show that LLM-LNS consistently outperforms
traditional LNS-based heuristics and learning-based methods. Unlike hand-crafted LNS strategies,
which are typically static and less effective as problem complexity increases, LLM-LNS dynami-
cally adapts through its dual-layer self-evolutionary mechanism, enabling more efficient exploration
of the solution space. Even compared to state-of-the-art learning-based LNS methods like CL-LNS,
LLM-LNS demonstrates superior performance. Although CL-LNS represents one of the most ad-
vanced learning-based approaches, it often fails to complete sampling within an acceptable time for
large-scale instances, and even when results are obtained, the solution quality is significantly lower.
This highlights the challenges faced by existing LNS-based methods when dealing with large and
complex MILP problems, while underscoring the robustness and adaptability of LLM-LNS.

In addition, LLM-LNS shows a clear advantage over traditional solvers like Gurobi and SCIP, as
well as learning-based methods such as GNN&GBDT and Light-MILPopt. While traditional solvers
perform competitively on smaller instances, their performance degrades significantly as the problem
size increases. Similarly, learning-based methods struggle with large-scale MILPs, finding it difficult
to efficiently explore the exponentially growing solution space. In contrast, LLM-LNS consistently
delivers superior results across both small and large-scale problems, offering a scalable and efficient
solution. These findings suggest that LLM-LNS not only bridges the gap between traditional and
learning-based methods, but also opens new avenues for scalable optimization in large-scale MILPs.

Overall, the experimental results demonstrate the effectiveness of our proposed innovations. In the
first set of experiments, we validate the capability of the Dual-layer Self-evolutionary LLM Agent
to autonomously generate competitive heuristic strategies for combinatorial optimization problems,
consistently outperforming state-of-the-art methods such as FunSearch and EOH. This confirms the
agent’s ability to balance exploration and exploitation, as guided by the Differential Memory for
Directional Evolution. In the second set, we apply the LLM-LNS framework to large-scale MILP
problems, where it not only surpasses traditional LNS methods and advanced solvers like Gurobi
and SCIP, but also demonstrates superior scalability compared to modern ML-based frameworks.
These results highlight the success of applying our LLM agent to neighborhood selection in LNS,
showcasing its generalization to complex, large-scale problems with minimal training data.

5 CONCLUSION

In this paper, we propose LLM-LNS, a Large Language Model-driven LNS framework for solving
large-scale MILP problems, utilizing a dual-layer self-evolutionary LLM agent to automate heuristic
strategy generation. Experiments show that LLM-LNS consistently outperforms traditional solvers,
learning-based methods, and state-of-the-art LNS frameworks. Future work will explore new agent
architectures and broader optimization problems, aiming to further enhance the integration of LLMs
with optimization techniques. The code of LLM-LNS will be open-sourced after the paper review.
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APPENDIX

This Appendix contains four sections, each addressing a specific aspect of the experimental setup
and results. Below is a brief overview of each section:

• Parameter Settings (Appendix A): This section describes key experimental parameters,
including the number of top-performing heuristic strategies evaluated, thresholds for stag-
nation detection, and criteria for evolutionary convergence. Parameter values for Bin Pack-
ing (BP), Maximum Vertex Covering (MVC), and Mixed Integer Knapsack Set (MIKS) are
also outlined.

• Evolutionary Process of LLM-LNS (Appendix B): This section explains the co-evolution
of the inner and outer layers in the Dual-layer Self-Evolutionary LLM Agent. It includes
comparisons between the Evolution of Heuristic (EoH) method and the proposed dual-layer
approach for problems like Bin Packing and Traveling Salesman Problem (TSP).

• Convergence Analysis of LLM-LNS (Appendix C): This section analyzes the conver-
gence behavior of the LLM-LNS method compared to EoH. Faster convergence rates,
superior solution quality, and greater stability in problems like Online Bin Packing and
Traveling Salesman Problem are demonstrated through graphs and figures.

• Supplementary Experiments for LLM-LNS on Large-Scale MILP Problems (Ap-
pendix D): This section presents the performance of LLM-LNS on large-scale Mixed Inte-
ger Linear Programming (MILP) problems, evaluated with different subsolvers (e.g., SCIP)
and compared to traditional and learning-based methods. Error bar comparisons highlight
solution consistency and reliability.

• Ablation Study of the Dual-Layer Self-evolutionary LLM Agent (Appendix E): This
section evaluates the contributions of the dual-layer framework, analyzing the roles of
Prompt Evolution (outer layer) and Directional Evolution (inner layer). Results from small-
and large-scale datasets highlight their complementary effects on convergence, diversity,
and performance.

• Additional Validation Experiments (Appendix F): This section presents experiments val-
idating the stability, generalization, and robustness of LLM-LNS, with deeper insights into
its scalability and consistency.

• Population Management Strategy (Appendix G): This section details the population
management strategy in LLM-LNS, including ranking-based selection of parent strategies,
criteria for identifying poorly performing strategies, and methods for maintaining diversity
and quality. Mathematical formalizations illustrate how this mechanism balances explo-
ration and exploitation to improve strategy quality over generations.

• Limitations and Future Directions (Appendix H): This section discusses the limitations
of the proposed framework and outlines potential future directions to enhance its scalability
and applicability.

These appendices provide a comprehensive overview of the experimental setup, evolutionary pro-
cess, convergence analysis, and supplementary experiments, offering a deeper understanding of the
performance and robustness of the LLM-LNS method in solving complex combinatorial optimiza-
tion problems.

A EXPERIMENTAL SETTINGS

In this section, we detail the parameter settings used in our experiments for both the Dual-layer Self-
evolutionary LLM Agent and the Adaptive Large Neighborhood Search (ALNS). We also provide
an overview of the standard MILP problem instances used in this study.

A.1 DUAL-LAYER SELF-EVOLUTIONARY LLM AGENT PARAMETERS

The following key parameters were used for the evolutionary process of the LLM agent:

• u: Represents the number of top-performing heuristic strategies used to evaluate each
prompt strategy. For each prompt strategy, the top-u heuristics it generates are tracked,
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and their average fitness score is used as the fitness score for the prompt strategy. In our
experiments, u is set to half of the population size. Specifically:

– For Bin Packing (BP) and Traveling Salesman Problem (TSP), the population sizes
are 20 and 10, respectively, so u is set to 10 and 5.

– For the four MILP problems—Maximum Vertex Covering (MVC), Set Covering
(SC), Independent Set (IS), and Mixed Integer Knapsack Set (MIKS)—the popu-
lation size is 4, so u is set to 2.

• l: Denotes the number of top individuals in the heuristic population that are monitored for
stagnation. If the top-l individuals remain unchanged for t generations, we infer that the
evolution has potentially converged to a local optimum, triggering the introduction of new
prompt strategies. In all our experiments, l is set to 4.

• t: The number of consecutive generations during which the top-l individuals must remain
unchanged before stagnation is detected. In all our experiments, t is set to 3.

A.2 ADAPTIVE LARGE NEIGHBORHOOD SEARCH (ALNS) PARAMETERS

For ALNS, we use the following parameters:

• Neighborhood size k: Set to half of the decision variable count n. This represents the
number of decision variables selected to form the search neighborhood in each iteration.

• Time limit T : The maximum allowed runtime for solving the problem.

• Threshold ϵ: Represents the minimum improvement in the objective function to continue
exploring the current neighborhood. We set ϵ = 1e-3.

• Iteration limit p: The number of consecutive iterations with improvements below the
threshold ϵ before expanding the neighborhood size. We set p = 3.

• Minimum and maximum neighborhood sizes kmin, kmax: These are set to kmin = 0 and
kmax = n (the total number of decision variables in the problem).

• Adjustment rate u%: Specifies the percentage of decision variables n by which the
neighborhood size is adjusted during expansion or reduction. In our experiments, we set
u% = 10.

A.3 DATASETS FOR HEURISTIC EVOLUTION

To ensure a fair comparison with state-of-the-art methods such as EOH, we adopted the same dataset
configurations as those used in EOH for heuristic evolution. For example, in the online bin pack-
ing problem, the evaluation dataset consists of five sets of instances, each containing 5,000 items
generated from a Weibull distribution. These instances cover a wide range of item counts and con-
tainer capacities, ensuring the diversity and representativeness of the problem settings. Similarly,
for the traveling salesman problem (TSP), we utilized 64 randomly selected instances from TSP100,
which were also used in EOH’s experiments. These instances provide a well-established basis for
evaluating heuristic performance in combinatorial optimization tasks.

For MILP problems, we followed a similar design approach to that used in the online bin packing
problem. Specifically, we employed five small-scale MILP problems, each involving tens of thou-
sands of decision variables and linear constraints. These smaller-scale problems serve as a foun-
dation for heuristic evolution, allowing the method to generalize effectively to larger-scale MILP
problems with hundreds of thousands or even millions of decision variables. This demonstrates
the scalability and practical applicability of our approach when addressing large-scale optimization
challenges.

A.4 EXPERIMENTAL SETTINGS FOR ALGORITHM DESIGN

Our proposed dual-layer agent framework is designed to evolve heuristics for solving combinatorial
optimization problems, specifically targeting Online Bin Packing (BP) and the Travelling Sales-
man Problem (TSP). The dual-layer architecture is responsible for learning and refining heuristic
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strategies for these problems, enabling efficient and scalable solutions. Below, we provide detailed
descriptions of the experimental settings for each problem.

For Online Bin Packing, we adopt the settings described in (Romera-Paredes et al., 2024) and
(Liu et al., 2024) to design heuristics for determining suitable bin allocations for incoming items
(Angelopoulos et al., 2023). The task of the dual-layer agent is to design a scoring function that
assigns items to bins. The inputs to the agent include the size of the item and the remaining capacities
of the bins, while the output is a set of scores for the bins. The item is then assigned to the bin with
the highest score. This process is iterated for each incoming item, allowing the agent to dynamically
adapt its scoring strategy based on the evolving state of the bins.

For the Travelling Salesman Problem (TSP), we use the dual-layer agent to design heuristics for
Guided Local Search (GLS) (Voudouris et al., 2010). GLS introduces perturbations and dynamically
adjusts the objective landscape to help escape local optima, enabling broader exploration of the so-
lution space. A critical task in GLS is updating the distance matrix to guide the local search towards
more promising regions. In this context, the dual-layer agent is tasked with producing heuristics for
updating the distance matrix. The inputs include the current distance matrix, the current route, and
the number of edges, while the output is an updated distance matrix. GLS then applies local search
operators iteratively on the updated landscape to refine the solution. In our experiments, we utilize
two common local search operators: the relocate operator and the 2-opt operator, which are widely
recognized for their effectiveness in TSP optimization (Arnold & Sörensen, 2019).

These settings are aligned with those used in EOH to ensure fair comparisons and reproducibil-
ity. Detailed descriptions of the inputs, outputs, and operators are provided in the appendix of the
manuscript to further clarify our experimental configurations.

We also emphasize that no seed heuristics, expert-written code, or prior knowledge were manually
introduced during the experiments. All heuristic strategies were initialized automatically by the
large language model (LLM), ensuring fairness in the comparisons.

A.5 MILP PROBLEM OVERVIEW

We use a set of standard problem instances based on four canonical MILP problems: Maximum
Independent Set (MIS), Minimum Vertex Covering (MVC), Set Covering (SC), and Mixed Integer
Knapsack Set (MIKS). Below are the formal definitions of these problems.

Maximum Independent Set problem (MIS): The Maximum Independent Set problem has applica-
tions in network design, where one might need to select the largest subset of mutually non-interacting
entities, such as devices in a wireless network to avoid interference. Another common application
is in social network analysis, where independent sets can represent groups of users who do not have
direct connections, useful for targeting non-overlapping communities.

Consider an undirected graph G = (V, E), where a subset of nodes S ⊆ V is called an independent
set if no edge e ∈ E exists between any pair of nodes in S. The MIS problem seeks to find an
independent set of maximum cardinality. The binary decision variable xv indicates whether node
v ∈ V is part of the independent set (xv = 1) or not (xv = 0). The problem can be formulated as:

max
∑
v∈V

xv

s.t. xu + xv ≤ 1, ∀(u, v) ∈ E ,
xv ∈ {0, 1}, ∀v ∈ V.

(5)

Minimum Vertex Covering problem (MVC): The Minimum Vertex Covering problem is widely
used in resource allocation, where one needs to ensure that every interaction (edge) between pairs
of objects (nodes) is covered by a resource. For example, in network security, this problem can be
used to efficiently place security agents or sensors such that all communication links are monitored.

Given an undirected graph G = (V, E), a subset of nodes S ⊆ V is called a covering set if for any
edge e ∈ E , at least one of its endpoints is included in S. The MVC problem aims to find a covering
set of minimum cardinality. The binary decision variable xv indicates whether node v ∈ V is part
of the covering set (xv = 1) or not (xv = 0). The problem is formulated as:
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min
∑
v∈V

xv

s.t. xu + xv ≥ 1, ∀(u, v) ∈ E ,
xv ∈ {0, 1}, ∀v ∈ V.

(6)

Set Covering problem (SC): The Set Covering problem is fundamental in facility location, where
one must select the minimum number of locations (subsets) to serve all customers (elements of the
universal set). It is also used in airline crew scheduling, where the goal is to assign the minimum
number of crews to cover all flights.

Given a finite universal set U = {1, 2, . . . , n} and a collection of m subsets S1, . . . , Sm of U ,
each subset Si is associated with a cost ci. The SC problem involves selecting a combination of
these subsets such that every element in U is covered by at least one of the selected subsets, while
minimizing the total cost. The binary decision variable xi indicates whether subset Si is selected
(xi = 1) or not (xi = 0). The problem is formulated as:

min

m∑
i=1

cixi

s.t.
m∑
i=1

xi · 1{j∈Si} ≥ 1, ∀j ∈ U ,

xi ∈ {0, 1}, ∀i ∈ {1, . . . ,m}.

(7)

Mixed Integer Knapsack Set problem (MIKS): The Mixed Integer Knapsack Set problem is com-
monly used in logistics, resource allocation, and portfolio selection problems. It models situations
where some resources can be allocated fractionally while others must be fully included or excluded.
For example, in supply chain management, some goods can be shipped partially, while others must
be shipped as a whole.

The MIKS problem is a generalization of the knapsack problem that involves both continuous and
binary decision variables. Given N sets and M items, each item must be covered by at least one
of the sets. The objective is to minimize the total cost of the selected sets, where some sets can
be partially selected. Let xi represent the decision variable for set i, where xi = 1 indicates full
selection, and 0 ≤ xi ≤ 1 allows partial selection. The problem is formulated as:

min

N∑
i=1

cixi

s.t.
∑

i:j∈Si

xi ≥ 1, ∀j ∈ {1, 2, . . . ,M},

0 ≤ xi ≤ 1, ∀i ∈ {1, 2, . . . , N},
xi ∈ {0, 1} or [0, 1], ∀i ∈ {1, 2, . . . , N}.

(8)

B EVOLUTIONARY PROCESS OF LLM-LNS

B.1 EVOLUTIONARY PROCESS OVERVIEW

In this appendix, we provide a detailed breakdown of the experimental results and the evolution of
heuristic strategies generated by our proposed Dual-layer Self-Evolutionary LLM Agent. The fol-
lowing sections offer a comprehensive analysis of how the inner and outer layers of the LLM agent
collaborate to generate and refine heuristic strategies across various combinatorial optimization
problems, including Online Bin Packing (bp online), the Traveling Salesman Problem (TSP),
and large-scale MILP instances such as Maximum Vertex Covering (MVC), Set Covering (SC),
Independent Set (IS), and Mixed Integer Knapsack Set (MIKS).
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• Inner and Outer Layer Prompt Initialization and Evolution: As shown in Sec. B.2,
our approach leverages a dual-layer architecture, where the inner layer evolves heuristic
strategies by modifying solution components, while the outer layer evolves the prompt
structure guiding the inner layer, balancing exploration and exploitation. The inner layer
prompts iteratively generate heuristics by scoring decision variables based on their contri-
butions to the objective function and constraints, with randomness included to avoid local
optima. This enables the LLM to reason about the problem structure and generate high-
quality strategies, even without extensive domain expertise. The outer layer maintains
diversity by evolving prompt structures to prevent premature convergence on suboptimal
solutions. Both layers adapt based on past performance, allowing the LLM to refine its
strategy generation over time.

• Heuristic Improvement Through Dual-layer Self-evolutionary LLM Agent: As shown
in Sec. B.3, we demonstrates the progression of heuristic strategies, starting from initial
random strategies and gradually evolving into more effective ones through the dual-layer
self-evolutionary process. The initial strategies are simple and focus on ranking decision
variables based on their contributions to the objective function and constraints. Over time,
the LLM agent introduces additional complexity, such as incorporating randomness and
penalizing larger deviations from the current solution, improving the robustness of the gen-
erated heuristics. The progression of the population is guided by the outer layer, which
adjusts the structure and focus of prompts to encourage exploration and avoid premature
convergence. The inner layer then refines specific solution components in response to the
prompts, iteratively improving the performance of the heuristic strategies. As seen from the
evolution of objective scores, the dual-layer system enables the generation of increasingly
effective heuristics, balancing exploration with exploitation to achieve superior results in
various problem instances.

• Heuristic Strategies for Bin Packing Online: EoH vs. Dual-Layer Self-Evolution LLM
Agent: As shown in Sec. B.4, both the Evolution of Heuristic (EoH) method and our
Dual-layer Self-Evolution LLM Agent utilize LLM-based evolutionary processes to gen-
erate heuristic strategies for the Bin Packing Online problem. The strategy generated by
EoH approach, while leveraging LLM to evolve heuristics, focuses primarily on a hybrid
scoring system that combines utilization ratios, dynamic adjustments, and an exponentially
decaying factor. This method is effective but tends to rely on a more static set of features
and parameters, which limits its adaptability across diverse problem instances. In con-
trast, our Dual-layer Self-Evolution LLM Agent incorporates a more dynamic and adaptive
strategy. By combining nonlinear capacity scaling, relative size assessment, and historical
penalties for overutilized bins, our approach allows for greater flexibility and adaptabil-
ity. Specifically, the generated heuristics dynamically adjust based on remaining capacity,
item size, and previous bin usage, thereby balancing local search with global optimiza-
tion. This adaptability enables our agent to discover and refine more efficient strategies
that minimize the number of bins used. The results clearly demonstrate that while both
methods use LLM-based evolution, our dual-layer approach consistently outperforms the
EoH method in terms of solution quality and computational efficiency. The dual-layer sys-
tem’s ability to evolve both the heuristic strategies and the prompt structures ensures that it
can fine-tune solutions more effectively, leading to superior bin utilization and fewer bins
required overall. This highlights the strength of our approach in generating more robust
and context-aware heuristics.

• Heuristic Strategies for Traveling Salesman Problem (TSP): EoH vs. Dual-Layer Self-
Evolution LLM Agent: Similar to the Bin Packing Online problem, both the Evolution of
Heuristic (EoH) method and our Dual-layer Self-Evolution LLM Agent use LLM-based
evolutionary processes to generate heuristic strategies for the Traveling Salesman Problem
(TSP). As shown in Sec. B.5, the strategy generated by EoH method employs a random-
ized approach that adjusts the edge distance matrix by increasing the distances of a random
proportion of edges, while rewarding a smaller subset of unused edges. This method en-
courages exploration but tends to apply uniform adjustments without fully accounting for
the global structure of the solution. In contrast, strategy generated by our Dual-layer Self-
Evolution LLM Agent introduces a more sophisticated edge distance adjustment mech-
anism. It dynamically explores alternative routes by incorporating an inverse frequency
factor, which penalizes frequently used edges and rewards less frequently used ones. This
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adaptive mechanism gradually resets excessively amplified distances, promoting diversi-
fication and improving the exploration of the solution space. Furthermore, it balances
exploitation by focusing on refining the most promising routes based on past tours, lead-
ing to faster convergence towards a global optimum. The results clearly demonstrate that
while both methods are effective in exploring new routes, the dual-layer approach consis-
tently outperforms the EoH method in terms of solution quality and convergence speed.
By incorporating a more nuanced edge adjustment process and dynamically adapting to
the problem context, the Dual-layer Self-Evolution LLM Agent achieves superior results
in minimizing the total distance, making it a more robust and efficient solution for the TSP.

• Evolutionary Path of the Dual-Layer Self-Evolution LLM Agent: As illustrated in Sec.
B.6, we trace the evolutionary process of the LLM agent in solving Maximum Vertex Cover
(MVC) problem, detailing how heuristic strategies evolve step by step through the inner
and outer layers, gradually converging to optimized solutions. Initially, the agent gener-
ates simple heuristics that focus on ranking decision variables based on their impact on
the objective function and constraint violation, incorporating randomness to encourage
exploration. These early strategies serve as a foundation for further refinement. As the
process evolves, the outer layer refines the prompt instructions, guiding the inner layer to
develop more sophisticated heuristics. The LLM begins to incorporate additional factors,
such as the absolute difference from the initial solution and a more nuanced treatment of
constraints. This results in improved exploration of the solution space, as well as better
handling of both the objective function and constraints. In the later stages, the agent in-
tegrates more advanced techniques, such as hybrid methods combining genetic algorithms
with local search, to enhance convergence speed and solution quality. The final heuristics
represent a co-evolutionary approach that balances exploration and exploitation, leading
to significantly optimized solutions. The evolution of prompts, from the initial simplistic
forms to highly specialized instructions, demonstrates the power of the dual-layer architec-
ture in improving both the heuristic strategies and the problem-solving process itself.

• Evolutionary Result of the Dual-Layer Self-Evolution LLM Agent: Finally, we present
the results achieved by the LLM agent after the completion of the entire evolutionary pro-
cess across three challenging combinatorial optimization problems: Set Covering (SC),
Maximum Independent Set (MIS), and Mixed Integer Knapsack Set (MIKS). As detailed
in Sec. B.7, the final heuristics generated by the Dual-layer Self-Evolution LLM Agent
are compared with those produced by traditional methods and state-of-the-art approaches,
demonstrating significant improvements in solution quality and computational efficiency.
For the Set Covering problem (SC), the LLM agent’s final heuristic achieves a superior
balance between minimizing the number of selected sets and satisfying the constraints. By
dynamically adjusting penalties and incorporating random exploration, the agent efficiently
navigates the solution space, outperforming traditional methods in both the objective score
and constraint satisfaction. In the Maximum Independent Set (MIS) problem, the LLM
agent leverages simulated annealing principles combined with adaptive scoring of decision
variables. This approach not only ensures thorough exploration but also accelerates conver-
gence towards high-quality solutions. The agent’s ability to balance objective contributions
with constraint violations leads to a considerable reduction in the total error, as reflected in
the final objective score. Lastly, for the Mixed Integer Knapsack Set (MIKS) problem, the
LLM agent adopts a hybrid strategy that integrates genetic algorithms and simulated an-
nealing. This allows for a more diversified search process, strategically selecting decision
variables based on their contributions to the objective function and constraint interactions.
The agent’s solution demonstrates a significant improvement over existing methods, par-
ticularly in how it dynamically adapts to varying problem constraints while maintaining
computational efficiency.

In summary, the proposed Dual-layer Self-Evolutionary LLM Agent effectively generates and re-
fines heuristic strategies for diverse combinatorial optimization problems. Leveraging the com-
plementary roles of its inner and outer layers, it balances exploration and exploitation to discover
high-quality, context-aware strategies. Its adaptability in evolving both problem-solving heuristics
and guiding prompts ensures superior solution quality and computational efficiency. From online
bin packing to large-scale MILP problems, the agent consistently outperforms traditional and state-
of-the-art methods, demonstrating robustness, scalability, and evolutionary refinement.
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B.2 INNER AND OUTER LAYER PROMPT INITIALIZATION AND EVOLUTION

Prompt for Generating Initial Heuristic Strategies
Given an initial feasible solution and a current solution to a Mixed-Integer Linear Programming (MILP) problem, with vari-
ables’ lower bound, upper bound and coefficient in objective function. We want to improve the current solution using Large
Neighborhood Search (LNS).

The task can be solved step-by-step by starting from the current solution and iteratively selecting a subset of decision variables
to relax and re-optimize. In each step, most decision variables are fixed to their values in the current solution, and only a small
subset is allowed to change. You need to score all the decision variables based on the information I give you, and I will choose
the decision variables with high scores as neighborhood selection. To avoid getting stuck in local optima, the choice of the sub-
set can incorporate a degree of randomness.

First, describe your new algorithm and main steps in one sentence. The description must be inside a brace. Next, imple-
ment it in Python as a function named select neighborhood. This function should accept 5 input(s): ’initial solution’, ’cur-
rent solution’, ’lower bound’, ’upper bound’, ’objective coefficient’. The function should return 1 output(s): ’neighbor score’.
’initial solution’, ’current solution’, ’lower bound’, ’upper bound’ and ’objective coefficient’ are numpy arrays. ’neighbor score’
is also a numpy array that you need to create manually. The i-th element of the arrays corresponds to the i-th decision vari-
able. All are Numpy arrays. I don’t give you ’neighbor score’ so that you need to create it manually. The length of the ’neigh-
bor score’ array is the same as the length of the other arrays.

Do not give additional explanations.

(Cross) Initial Prompt for Heuristic Strategies Evolution
Given an initial feasible solution and a current solution to a Mixed-
Integer Linear Programming (MILP) problem, with variables’
lower bound, upper bound and coefficient in objective function.
We want to improve the current solution using Large Neighborhood
Search (LNS).

The task can be solved step-by-step by starting from the current so-
lution and iteratively selecting a subset of decision variables to relax
and re-optimize. In each step, most decision variables are fixed to
their values in the current solution, and only a small subset is al-
lowed to change. You need to score all the decision variables based
on the information I give you, and I will choose the decision vari-
ables with high scores as neighborhood selection. To avoid getting
stuck in local optima, the choice of the subset can incorporate a de-
gree of randomness.

I have 5 existing algorithm’s thought, objective function value with
their codes as follows: No.1 algorithm’s thought, objective function
value, and the corresponding code are: ...
No.2 algorithm’s thought, objective function value, and the corre-
sponding code are: ...
...
No.5 algorithm’s thought, objective function value, and the corre-
sponding code are: ...

Please help me create a new algorithm that has a totally different
form from the given ones.

First, describe your new algorithm and main steps in one sen-
tence. The description must be inside a brace. Next, implement
it in Python as a function named select neighborhood. This func-
tion should accept 5 input(s): ’initial solution’, ’current solution’,
’lower bound’, ’upper bound’, ’objective coefficient’. The func-
tion should return 1 output(s): ’neighbor score’. ’initial solution’,
’current solution’, ’lower bound’, ’upper bound’ and ’objec-
tive coefficient’ are numpy arrays. ’neighbor score’ is also a numpy
array that you need to create manually. The i-th element of the ar-
rays corresponds to the i-th decision variable. All are Numpy arrays.
I don’t give you ’neighbor score’ so that you need to create it man-
ually. The length of the ’neighbor score’ array is the same as the
length of the other arrays.

Do not give additional explanations.

(Cross) Initial Prompt Strategies

1. Please help me create a new algorithm that
has a totally different form from the given
ones.

2. Please help me create a new algorithm that
has a totally different form from the given
ones but can be motivated from them.

(Cross) Prompt for Prompt Strategies Evo-
lution
We are working on solving a minimization
problem. Our objective is to leverage the capa-
bilities of the Language Model (LLM) to gen-
erate heuristic algorithms that can efficiently
tackle this problem. We have already devel-
oped a set of initial prompts and observed the
corresponding outputs. However, to improve
the effectiveness of these algorithms, we need
your assistance in carefully analyzing the ex-
isting prompts and their results. Based on this
analysis, we ask you to generate new prompts
that will help us achieve better outcomes in
solving the minimization problem.

I have 5 existing prompts with objective func-
tion value as follows:
No.1 prompt’s tasks assigned to LLM, and
objective function value are: ...
No.2 prompt’s tasks assigned to LLM, and
objective function value are: ...
...
No.5 prompt’s tasks assigned to LLM, and
objective function value are: ...

Please help me create a new prompt that has a
totally different form from the given ones but
can be motivated from them.

Please describe your new prompt and main
steps in one sentence. Do not give additional
explanations.
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B.3 HEURISTIC IMPROVEMENT THROUGH DUAL-LAYER SELF-EVOLUTIONARY LLM
AGENT

Heuristic 1 (Obj Score: 5375.52145)
Rank decision variables based on their penalty contribution and the dif-
ference from current solution, incorporating randomness in scoring.

import numpy as np
def select_neighborhood(n, m, k, site, value,

constraint, initial_solution,
current_solution, objective_coefficient):

neighbor_score = np.zeros(n)
variable_difference = np.zeros(n)
for i in range(m):

lhs = sum(value[i][j] * current_solution[
site[i][j]] for j in range(k[i]))

penalty = max(0, lhs - constraint[i])
for j in range(k[i]):

var_index = site[i][j]
difference = current_solution[

var_index] - initial_solution[
var_index]

neighbor_score[var_index] += penalty *
difference

neighbor_score += objective_coefficient * np.
random.rand(n)

return neighbor_score

Heuristic 2 (Obj Score: 5383.05876)
Rank decision variables based on their objective contribution and impact
on current solution deviation, with randomness included in the scoring
process.

import numpy as np
def select_neighborhood(n, m, k, site, value,

constraint, initial_solution,
current_solution, objective_coefficient):

neighbor_score = np.zeros(n)
variable_contribution = np.zeros(n)
for i in range(m):

lhs = sum(value[i][j] * current_solution[
site[i][j]] for j in range(k[i]))

deviation = lhs - constraint[i]
for j in range(k[i]):

var_index = site[i][j]
contribution = value[i][j] * (

initial_solution[var_index] -
current_solution[var_index])

neighbor_score[var_index] +=
contribution

neighbor_score += objective_coefficient + np.
random.rand(n)

return neighbor_score

Heuristic 3 (Obj Score: 5384.8486)
This modified algorithm ranks decision variables based on their contri-
bution to the total current solution’s objective function value and their
degree of constraint satisfaction.

import numpy as np
def select_neighborhood(n, m, k, site, value,

constraint, initial_solution,
current_solution, objective_coefficient):

neighbor_score = np.zeros(n)
for i in range(m):

lhs = sum(value[i][j] * current_solution[
site[i][j]] for j in range(k[i]))

for j in range(k[i]):
if lhs > constraint[i]:

neighbor_score[site[i][j]] +=
objective_coefficient[site[i
][j]] * (lhs - constraint[i])

else:
neighbor_score[site[i][j]] +=

objective_coefficient[site[i
][j]] * (constraint[i] - lhs)

neighbor_score += np.random.rand(n) * 0.1
return neighbor_score

Heuristic 4 (Obj Score: 5384.95417)
Rank decision variables by their contribution to the objective function
and difference from initial values, while also weighing their frequency of
use in the constraints.

import numpy as np
def select_neighborhood(n, m, k, site, value,

constraint, initial_solution,
current_solution, objective_coefficient):

score = np.zeros(n)
frequency = np.zeros(n)
for i in range(m):

lhs = sum(value[i][j] * current_solution[
site[i][j]] for j in range(k[i]))

deviation = lhs - constraint[i]
for j in range(k[i]):

var_index = site[i][j]
contribution = value[i][j] * np.abs(

initial_solution[var_index] -
current_solution[var_index])

score[var_index] += contribution
frequency[var_index] += 1

neighbor_score = score / (frequency + 1e-5) +
objective_coefficient + np.random.rand(n)

return neighbor_score

Prompt Designed by LLM
Develop an algorithm that combines the strengths of existing heuristics
while introducing random perturbations to enhance exploration and mini-
mize the objective function more effectively.

Heuristic (Obj Score: 5374.19865)
Rank decision variables based on their contribution to the objective function and incorporate the absolute difference from the initial solution while
adding a degree of randomness to the scores.

import numpy as np

def select_neighborhood(n, m, k, site, value, constraint, initial_solution, current_solution,
objective_coefficient):

neighbor_score = np.zeros(n)
for i in range(m):

lhs = sum(value[i][j] * current_solution[site[i][j]] for j in range(k[i]))
for j in range(k[i]):

var_index = site[i][j]
difference = np.abs(current_solution[var_index] - initial_solution[var_index])
neighbor_score[var_index] += (constraint[i] - lhs) * difference

neighbor_score += objective_coefficient * np.random.rand(n)
return neighbor_score
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B.4 HEURISTIC STRATEGIES FOR BIN PACKING ONLINE: EOH VS. DUAL-LAYER
SELF-EVOLUTION LLM AGENT

Heuristic Designed by EoH

Description
The heuristic incorporates a weighted average of the utilization ratio, dynamic adjustment, and an ex-
ponentially decaying factor, with different parameter settings to minimize the number of used bins.

Code

import numpy as np
def heuristic(item, bins):

diff = bins-item # remaining capacity
exp = np.exp(diff) # exponent term
sqrt = np.sqrt(diff) # square root term
ulti = 1-diff/bins # utilization term
comb = ulti * sqrt # combination of utilization and square root
adjust = np.where(diff > (item * 3), comb + 0.8, comb + 0.3)

# hybrid adjustment term to penalize large bins
hybrid_exp = bins / ((exp + 0.7) *exp)

# hybrid score based on exponent term
scores = hybrid_exp + adjust

# sum of hybrid score and adjustment
return scores

Heuristic Designed by Dual-layer Self-evolution LLM Agent

Description
The new algorithm employs a hybrid optimization strategy that combines nonlinear penalties for histor-
ical usage, adaptive capacity scaling, and a relative size assessment, facilitating a balance between local
and global search for optimal bin assignment.

Code

import numpy as np
def score(item, bins):

feasible_bins = bins[bins > item]
scores = np.zeros_like(bins)
if len(feasible_bins) == 0:

return scores
# Nonlinear capacity scaling that enhances the desire for larger

spaces
remaining_capacity = feasible_bins - item
capacity_scaling = np.log1p(remaining_capacity) * (

remaining_capacity / np.max(remaining_capacity))
# Relative size assessment: quadratic term comparing item size with

bin capacities
relative_size_effect = (item ** 2 / feasible_bins) * 50 # Scale to

moderate impact
# Nonlinear penalty based on historical usage counts to deter

overutilization
historical_count = np.arange(len(feasible_bins)) + 1 # Simulating

historical usage
penalty_factor = np.power(1.5, historical_count) # Exponential

penalty for higher usage
# Combining scores: enhanced capacity scaling, moderated size

assessment, and historical penalties
scores[bins > item] = capacity_scaling - relative_size_effect -

penalty_factor
return scores
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B.5 HEURISTIC STRATEGIES FOR TRAVELING SALESMAN PROBLEM: EOH VS.
DUAL-LAYER SELF-EVOLUTION LLM AGENT

Heuristic Designed by EoH

Description
This algorithm uses a randomized approach to update the edge distance matrix by randomly selecting
a proportion of edges to increase their distances while uniformly rewarding a smaller proportion of
unused edges to encourage exploration.

Code
import numpy as np
def update_edge_distance(edge_distance, local_opt_tour, edge_n_used):

N = edge_distance.shape[0]
updated_edge_distance = edge_distance.copy()
# Parameters for randomization
increase_factor = 2.0
decrease_factor = 0.9
random_selection_ratio = 0.3 # percentage of edges to randomly adjust
# Identify all edges used in the local optimal tour
used_edges = set()
for i in range(len(local_opt_tour)):

start = local_opt_tour[i]
end = local_opt_tour[(i + 1) % len(local_opt_tour)]
used_edges.add((min(start, end), max(start, end)))

# Randomly select a proportion of edges to increase distance
all_edges = [(i, j) for i in range(N) for j in range(N) if i != j]
np.random.shuffle(all_edges)
num_edges_to_increase = int(len(all_edges) * random_selection_ratio)
for edge in all_edges[:num_edges_to_increase]:

start, end = edge
# If the edge is used in the local optimal tour, apply a higher increase
if (min(start, end), max(start, end)) in used_edges:

updated_edge_distance[start, end] *= increase_factor
updated_edge_distance[end, start] *= increase_factor

else:
updated_edge_distance[start, end] *= decrease_factor
updated_edge_distance[end, start] *= decrease_factor

return updated_edge_distance

Heuristic Designed by Dual-layer Self-evolution LLM Agent

Description
The new algorithm refines the edge distance adjustment mechanism by incorporating an acceptance
heuristic that dynamically explores alternative routes while gradually resetting excessively amplified
distances, thus promoting diversification and improved convergence towards a global optimum.

Code
import numpy as np
def update_edge_distance(edge_distance, local_opt_tour, edge_n_used):

# Create a copy of the edge distance matrix for updates
updated_edge_distance = np.copy(edge_distance)
# Extract the number of nodes
num_nodes = edge_distance.shape[0]
# Calculate the inverse frequency factor for each edge
inverse_frequency_factor = np.max(edge_n_used) - edge_n_used + 1
# Update the edge distance based on the local optimal tour
for i in range(len(local_opt_tour)):

# Get the current and next node in the local optimal tour
current_node = local_opt_tour[i]
next_node = local_opt_tour[(i + 1) % len(local_opt_tour)]
# Apply the inverse frequency factor to decrease the edge weight
updated_edge_distance[current_node, next_node] *= inverse_frequency_factor[

current_node, next_node]
updated_edge_distance[next_node, current_node] *= inverse_frequency_factor[

next_node, current_node]
return updated_edge_distance
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B.6 EVOLUTIONARY PATH OF THE DUAL-LAYER SELF-EVOLUTION LLM AGENT

Heuristic (Obj Score: 5400.48176)
The algorithm ranks decision variables based on their impact on the objective function and how
they relate to the violated constraints, incorporating a degree of randomness.

Code

import numpy as np
def select_neighborhood(n, m, k, site, value, constraint,

initial_solution, current_solution, objective_coefficient):
neighbor_score = np.zeros(n)
violated_constraints = 0
for i in range(m):

lhs = sum(value[i][j] * current_solution[site[i][j]] for
j in range(k[i]))

if lhs > constraint[i]:
violated_constraints += 1
for j in range(k[i]):

neighbor_score[site[i][j]] +=
objective_coefficient[site[i][j]]

if violated_constraints > 0:
neighbor_score /= violated_constraints

randomness = np.random.rand(n) * 0.1
neighbor_score += randomness
return neighbor_score

Initial Prompts

• (Cross) Please help me create a new
algorithm that has a totally different
form from the given ones.

• (Cross) Please help me create a new
algorithm that has a totally different
form from the given ones but can be
motivated from them.

• (Variation) Please assist me in creating
a new algorithm that has a different
form but can be a modified version of
the algorithm provided.

• (Variation) Please identify the main
algorithm parameters and assist me in
creating a new algorithm that has a
different parameter settings of the score
function provided.

Heuristic (Obj Score: 5374.19865)
Rank decision variables based on their contribution to the objective function and incorporate
the absolute difference from the initial solution while adding a degree of randomness to the
scores.

Code

import numpy as np
def select_neighborhood(n, m, k, site, value, constraint,

initial_solution, current_solution, objective_coefficient):
neighbor_score = np.zeros(n)
for i in range(m):

lhs = sum(value[i][j] * current_solution[site[i][j]] for
j in range(k[i]))

for j in range(k[i]):
var_index = site[i][j]
difference = np.abs(current_solution[var_index] -

initial_solution[var_index])
neighbor_score[var_index] += (constraint[i] - lhs) *

difference
neighbor_score += objective_coefficient * np.random.rand(n)
return neighbor_score

Current Prompts

• (Cross) Develop a modified heuristic
algorithm that utilizes a hybrid
approach, combining elements of
simulated annealing and genetic
algorithms, to optimize the given
minimization problem.

• (Cross) Design a modified heuristic
algorithm for the minimization problem
by incorporating elements of simulated
annealing with a unique cooling
schedule.

• (Variation) Please identify the main
algorithm parameters and assist me in
creating a new algorithm that has a
different parameter settings of the score
function provided.

• (Variation) Develop an algorithm that
combines the strengths of existing
heuristics while introducing random
perturbations to enhance exploration
and minimize the objective function
more effectively.

Heuristic (Obj Score: 5373.34904)
Develop a co-evolutionary heuristic approach that integrates genetic algorithms with local
search techniques to enhance convergence speed and minimize the objective function for the
specified problem.

Code

import numpy as np
def select_neighborhood(n, m, k, site, value, constraint,

initial_solution, current_solution, objective_coefficient):
neighbor_score = np.zeros(n)
for i in range(m):

lhs = sum(value[i][j] * current_solution[site[i][j]] for
j in range(k[i]))

for j in range(k[i]):
var_index = site[i][j]
difference = np.abs(current_solution[var_index] -

initial_solution[var_index])
neighbor_score[var_index] += (constraint[i] - lhs) *

difference
random_adjustment = np.random.rand(n)
adaptive_mutation_rate = np.clip(np.abs(objective_coefficient

), 0.1, 1.0)
neighbor_score += adaptive_mutation_rate * random_adjustment
return neighbor_score

Final Prompts

• (Cross) Develop a hybrid heuristic
algorithm for the minimization problem
that combines genetic algorithms with
tabu search to enhance local search
capabilities while maintaining diversity
in the solution population.

• (Cross) Develop a co-evolutionary
heuristic approach that integrates
genetic algorithms with local search
techniques to enhance convergence
speed and minimize the objective
function for the specified problem.

• (Variation) Design a novel optimization
strategy that integrates genetic
algorithms with dynamic programming
principles to enhance the search for
optimal solutions, focusing on adaptive
mutation rates to effectively minimize
the objective function value.

• (Variation) Design a novel optimization
framework that integrates particle
swarm optimization with genetic
algorithms, focusing on adaptive
mutation strategies to enhance
convergence speed and minimize the
objective function value.
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B.7 EVOLUTIONARY RESULT OF THE DUAL-LAYER SELF-EVOLUTION LLM AGENT

B.7.1 EVOLUTIONARY RESULT OF SET COVERING PROBLEM

Heuristic (Obj Score: 3339.39339)
This algorithm computes scores based on the penalty incurred by each variable when deviating from the current solution and evaluates the impact on con-
straint satisfaction.

Code

import numpy as np
def select_neighborhood(n, m, k, site, value, constraint, initial_solution, current_solution,

objective_coefficient):
neighbor_score = np.zeros(n)
for i in range(m):

lhs_value = sum(value[i][j] * current_solution[site[i][j]] for j in range(k[i]))
for j in range(k[i]):

variable_index = site[i][j]
if lhs_value >= constraint[i]:

penalty = lhs_value - constraint[i]
contribution = penalty * value[i][j]
neighbor_score[variable_index] += contribution

else:
contribution = value[i][j]
neighbor_score[variable_index] -= contribution

costs = np.abs(current_solution - initial_solution) * (objective_coefficient + 1e-5)
with np.errstate(divide=’ignore’, invalid=’ignore’):

neighbor_score = np.divide(neighbor_score, costs, where=costs != 0)
neighbor_score -= np.min(neighbor_score)
neighbor_score /= np.max(neighbor_score) if np.max(neighbor_score) != 0 else 1
rand_factor = np.random.rand(n) * 0.1
neighbor_score += rand_factor
return neighbor_score

Final Prompts

• (Cross) Please help me create a new algorithm that has a totally different form from the given ones.

• (Cross) Please help me create a new algorithm that has a totally different form from the given ones but can be motivated from them.

• (Variation) Please assist me in creating a new algorithm that has a different form but can be a modified version of the algorithm provided.

• (Variation) Please identify the main algorithm parameters and assist me in creating a new algorithm that has a different parameter settings of the score
function provided.

B.7.2 EVOLUTIONARY RESULT OF MAXIMUM INDEPENDENT SET PROBLEM

Heuristic (Obj Score: -4634.0636)
This new heuristic approach combines the principles of simulated annealing with the adaptive scoring of decision variables based on their contributions to
violated constraints while incorporating randomness to enhance exploration of the solution space.

Code

import numpy as np
def select_neighborhood(n, m, k, site, value, constraint, initial_solution, current_solution,

objective_coefficient):
neighbor_score = np.zeros(n)
current_objective_value = np.dot(current_solution, objective_coefficient)
variable_contributions = np.zeros(n)
for i in range(m):

lhs_value = sum(value[i][j] * current_solution[site[i][j]] for j in range(k[i]))
if lhs_value > constraint[i]:

for j in range(k[i]):
var_index = site[i][j]
variable_contributions[var_index] += (value[i][j] * (current_solution[var_index] == 1))

for index in range(n):
improvement = objective_coefficient[index] - variable_contributions[index]
neighbor_score[index] = improvement + (current_solution[index] * 0.5)

temperature = np.random.uniform(0.1, 1.0)
randomness = np.random.uniform(-temperature, temperature, size=n)
neighbor_score += randomness
return neighbor_score

Final Prompts

• (Cross) Develop a novel hybrid algorithm that combines local search and simulated annealing techniques to explore the solution space and minimize the
objective function more effectively.

• (Cross) Design a novel optimization algorithm inspired by the existing methods, focusing on adaptive parameter tuning to enhance convergence toward
better solutions.

• (Variation) Design a novel heuristic approach inspired by the principles of simulated annealing to optimize the following problem parameters.

• (Variation) Please identify the main algorithm parameters and assist me in creating a new algorithm that has a different parameter settings of the score
function provided.
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B.7.3 EVOLUTIONARY RESULT OF MIXED INTEGER KNAPSACK SET PROBLEM

Heuristic (Obj Score: -3612.99096)
This novel algorithm enhances diversity in the solution search process by strategically selecting decision variables based on both their objective contribu-
tions and constraint interactions, while incorporating a degree of random exploration.

Code

import numpy as np
def select_neighborhood(n, m, k, site, value, constraint, initial_solution, current_solution,

objective_coefficient):
neighbor_score = np.zeros(n)
contribution_scores = objective_coefficient * current_solution
neighbor_score += contribution_scores
for i in range(m):

lhs_value = sum(value[i][j] * current_solution[site[i][j]] for j in range(k[i]))
if lhs_value > constraint[i]:

for j in range(k[i]):
var_index = site[i][j]
penalty = (lhs_value - constraint[i]) / max(1, np.sum(value[i]))
neighbor_score[var_index] -= penalty * value[i][j] * np.random.uniform(0.8, 1.2)

local_search_factor = (initial_solution - current_solution) ** 2
neighbor_score += local_search_factor
randomness = np.random.rand(n) * 0.1
neighbor_score += randomness
if np.max(neighbor_score) > 0:

neighbor_score /= np.max(neighbor_score)
return neighbor_score

Final Prompts

• (Cross) Design a hybrid heuristic algorithm that combines elements of genetic algorithms and simulated annealing to explore the solution space
efficiently.

• (Cross) Develop a multi-phase heuristic optimization strategy that integrates particle swarm optimization with tabu search to dynamically adapt search
parameters and enhance convergence rates.

• (Variation) Develop an algorithm that incorporates a novel optimization strategy, diverging from previous approaches, to enhance the objective function’s
outcome by exploring alternative parameter tuning techniques.

• (Variation) Please identify the main algorithm parameters and assist me in creating a new algorithm that has a different parameter settings of the score
function provided.

C CONVERGENCE ANALYSIS OF LLM-LNS

C.1 EVOLUTIONARY PROGRESS IN COMBINATORIAL OPTIMISATION PROBLEM

Across both two combinatorial optimization problems Online Bin Packing and Traveling Salesman
Problem, LLM-LNS consistently shows superior convergence and final solution quality compared
to EOH.

In the Online Bin Packing problem shown in Figure 3, LLM-LNS shows better convergence behavior
from the early stages. As the generations progress, LLM-LNS steadily improves and consistently
outperforms EOH. The reduced variance in later generations highlights the stability of the LLM-LNS
approach, which efficiently balances exploration and exploitation. Its dual-layer structure allows it to
thoroughly explore the solution space, avoiding premature convergence and reaching a higher overall
objective score. In contrast, EOH exhibits larger fluctuations and fails to achieve the same level
of performance, indicating its limitations in maintaining robust progress during the evolutionary
process.

In the Traveling Salesman Problem shown in Figure 4, although LLM-LNS starts with a less fa-
vorable initial population compared to EOH, it quickly demonstrates its advantage. Initially, EOH
performs better, but it stagnates after the first 8 generations, showing little improvement afterward.
Meanwhile, LLM-LNS continues to refine its solutions and steadily decreases the objective score.
This indicates that the dual-layer structure of LLM-LNS effectively prevents it from getting trapped
in local optima, maintaining a high level of exploration even in later generations. By the end of the
evolutionary process, LLM-LNS surpasses EOH, achieving better overall results.

In both problems, LLM-LNS’s ability to maintain diversity early in the process, combined with its
strong convergence in later stages, gives it a clear advantage over EOH. The dual-layer evolution-
ary strategy ensures that LLM-LNS avoids stagnation, allowing for continuous improvement and
ultimately leading to superior performance in solving combinatorial optimization problems.
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Figure 3: Evolutionary Progress of Heuristic
Strategies in Online Bin Packing
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Figure 4: Evolutionary Progress of Heuristic
Strategies in Traveling Salesman Problem
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Figure 5: Convergence of Training and Testing Scores in 100-Generation of Online Bin Packing
Problem.

C.2 CONVERGENCE ANALYSIS OF GENERATIONS

In the Online Bin Packing Problem, we conducted 100 generations of iterative training using the
proposed dual-layer strategy. Figure 5 shows the convergence trends for both the training and testing
scores over these 100 generations. The results provide interesting insights into the behavior of our
model during the evolutionary process, particularly in terms of how the training and testing losses
evolve differently.

The training loss demonstrates a clear and consistent downward trend throughout the generations.
Initially, the training score starts relatively high, but quickly drops within the first few generations.
This rapid initial improvement indicates that the evolutionary algorithm is highly effective at opti-
mizing the objective function within the training set. As the generations progress, the training score
continues to decrease, eventually converging to a very low value. This steady decline suggests that
the model is successfully adapting to the problem, continually refining its population and reducing
the training objective. The absence of significant fluctuations in later generations implies that the
model has reached a stable state, effectively minimizing the training loss with little variance.

On the other hand, the testing loss follows a somewhat different pattern. Initially, we observe a
sharp decline in the testing score, which mirrors the behavior of the training score. However, after
this initial drop, the testing score does not continue to improve as steadily as the training score.
Instead, it stabilizes around a certain value and begins to exhibit small fluctuations. This behavior
suggests that while the model is able to generalize to a degree, it encounters more variability in
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Table 6: Comparison of objective values on large-scale MILP instances across different methods
using SCIP as optimizer. For each instance, the best-performing objective value is highlighted in
bold. The - symbol indicates that the method was unable to generate samples for any instance
within 30,000 seconds, while * indicates that the GNN&GBDT framework could not solve the
MILP problem.

SC1 SC2 MVC1 MVC2 MIS1 MIS2 MIKS1 MIKS2

Random-LNS 16164.2 171655.6 27049.6 277255.3 22892.9 222076.8 691.7 6870.1
ACP 17743.4 192791.2 27432.9 281862.4 23058.0 216008.8 29879.2 7913.5

CL-LNS - - 31285.0 - 15000.0 - - -
Gurobi 17934.5 320240.4 28151.3 283555.8 21789.0 216591.3 32960.0 329642.4
SCIP 25191.2 385708.4 31275.4 491042.9 18649.9 9104.3 29974.7 168289.9

GNN&GBDT 16728.8 261174.0 27107.9 271777.2 22795.7 227006.4 * *
Light-MILPOPT 16147.2 166756.0 26956.8 269771.3 22963.6 230278.1 36125.5 357483.8
LLM-LNS(Ours) 15950.2 161732.8 26763.4 268825.5 23137.19 230682.8 36147.7 350468.7

the testing data compared to the training data. These fluctuations could be attributed to the inherent
complexity or diversity of the unseen test instances, which the model has not been directly optimized
for.

This phenomenon is reminiscent of the behavior observed during neural network training, where the
training loss continues to decrease as the model becomes more specialized in fitting the training data,
while the testing loss reaches a plateau and may exhibit some fluctuations. In this case, the testing
loss reflects the model’s ability to generalize beyond the training set. The fact that the testing score
does not continue to decrease beyond a certain point suggests that the model may have reached its
limit in terms of generalization, possibly due to overfitting to the training data. However, the steady
fluctuations in the testing score indicate that the model remains adaptable and does not suffer from
severe overfitting, as there is no significant increase in the testing loss.

Overall, the divergence between the training and testing scores in later generations highlights the
trade-off between optimization and generalization. While the dual-layer evolutionary strategy is
highly effective at optimizing the training set, it must also balance the need for generalization to
unseen data. The oscillation of the testing score around a stable value suggests that the model is
reasonably robust but may benefit from additional techniques to further enhance its generalization
performance, such as regularization or early stopping strategies in future iterations.

In summary, the convergence analysis of the 100-generation experiment reveals that while the train-
ing loss continues to decrease, the testing loss stabilizes with slight fluctuations. This behavior
is indicative of a model that has successfully optimized for the training data while maintaining a
reasonable level of generalization, akin to patterns observed in neural network training processes.

D SUPPLEMENTARY EXPERIMENTS FOR LLM-LNS ON LARGE-SCALE
MILP PROBLEMS

D.1 PERFORMANCE OF LLM-LNS USING SCIP AS THE SUBSOLVER

In this supplementary set of experiments, we further evaluate the performance of LLM-LNS by in-
corporating SCIP as the subsolver for large-scale MILP problems. The results, summarized in Table
6, provide a comprehensive comparison across various methods using SCIP, offering deeper insights
into the robustness and adaptability of LLM-LNS when faced with different solver strategies.

As seen in the results, LLM-LNS continues to demonstrate superior performance across most in-
stances, consistently outperforming traditional LNS-based methods, learning-based frameworks
such as GNN&GBDT, and even advanced solvers like Gurobi and SCIP. The highlighted bold values
indicate that LLM-LNS achieves the best objective values in the majority of cases, reinforcing its
scalability and effectiveness in large-scale MILP problems.

However, an interesting observation arises in the MIKS instances, where Light-MILPopt outper-
forms LLM-LNS. This can be attributed to the unique challenges posed by MIKS in large-scale
settings. Specifically, MIKS requires significantly more resources for neighborhood searches as
the problem size increases, compared to smaller-scale instances. SCIP, as an optimizer, employs a
different strategy for solving MIKS, which likely influences the performance of LLM-LNS when
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Table 7: Comparison of standard deviation values on large-scale MILP instances across different
methods using Gurobi as optimizer.

SC1 SC2 MVC1 MVC2 MIS1 MIS2 MIKS1 MIKS2

Random-LNS 37.5 258.1 88.4 243.0 72.1 243.0 98.2 584.0
ACP 38.4 1039.3 71.6 403.5 60.3 928.8 118.2 649.2

CL-LNS - - 617.7 - 277.5 - - -
Gurobi 28.8 143.4 77.2 287.3 48.8 147.5 69.0 225.7
SCIP 13823.6 298211.7 107.3 262.0 57.5 85.8 73.2 242313.7

GNN&GBDT 360.1 3800.4 93.8 950.4 119.3 4738.8 * *
Light-MILPOPT 1.0 145.7 79.4 209.4 52.1 133.1 41.7 272.5
LLM-LNS(Ours) 17.7 144.2 79.7 198.1 55.2 147.6 70.2 170.4

Table 8: Comparison of standard deviation values on large-scale MILP instances across different
methods using SCIP as optimizer.

SC1 SC2 MVC1 MVC2 MIS1 MIS2 MIKS1 MIKS2

Random-LNS 18.8 250.3 79.0 234.8 72.1 401.7 18.1 36.2
ACP 30.8 6338.3 77.2 217.6 60.3 946.4 1829.7 943.8

CL-LNS - - 617.7 - 277.5 - - -
Gurobi 28.8 143.4 77.2 287.3 48.8 147.5 69.0 225.7
SCIP 13823.6 298211.7 107.3 262.0 57.5 85.8 73.2 242313.7

GNN&GBDT 51.4 5587.6 91.4 474.0 80.0 660.4 * *
Light-MILPOPT 37.7 693.4 77.3 216.9 51.6 151.7 80.0 1045.8
LLM-LNS(Ours) 20.4 169.5 82.6 188.7 54.3 75.9 68.7 1197.5

scaling to larger instances. In smaller-scale problems, LLM-LNS may have learned more aggressive
strategies that are effective in those scenarios, but these strategies may lead to timeout issues in larger
instances due to the increased computational complexity and extended iteration times required for
SCIP. As a result, the overall improvement in performance is limited in these larger MIKS problems.

Despite these challenges, LLM-LNS still exhibits competitive performance in MIKS, managing to
outperform many other methods, including Gurobi and traditional LNS strategies. The occasional
time-out or reduced efficiency in MIKS does not overshadow the fact that LLM-LNS remains a
robust and scalable solution across a wide range of large-scale MILP problems.

In conclusion, these supplementary experiments highlight the adaptability and robustness of LLM-
LNS when using different subsolvers, including SCIP. Although challenges remain in specific prob-
lem instances like MIKS, LLM-LNS consistently delivers superior performance across most prob-
lem types, demonstrating its ability to generalize across solvers and problem scales. The results rein-
force the notion that LLM-LNS effectively bridges the gap between traditional solvers and learning-
based methods, offering a scalable solution for large-scale combinatorial optimization problems.

D.2 COMPARISON OF STANDARD DEVIATION VALUES

The comparison of standard deviation (SD) values across different methods using both Gurobi and
SCIP as sub-optimizers reveals several key insights into the stability of various approaches when
solving large-scale MILP problems. Standard deviation reflects the consistency of the solutions;
lower values indicate that the method is more stable and produces less variation in different runs.

As shown in Table 7, for the experiments using Gurobi, LLM-LNS consistently demonstrates low
standard deviation values across most instances, indicating that it not only achieves superior objec-
tive values but does so with high stability. For example, in SC1, MVC2, and MIKS2, LLM-LNS
has SD values of 17.7, 198.1, and 170.4, respectively, which are comparable to or lower than other
methods. Light-MILPopt also shows excellent stability in SC1 and MIKS1, with SD values of 1.0
and 41.7, respectively, although its performance fluctuates more in other instances. In contrast,
Random-LNS and ACP exhibit higher variability, especially in SC2 and MIKS2, where ACP’s SD
reaches as high as 1039.3 and 649.2, respectively, suggesting a lack of robustness in these instances.
Gurobi itself also shows moderate consistency, while methods like CL-LNS fail to generate results
for certain instances, indicating poor scalability for large problems.

As shown in Table 8, when SCIP is used as the optimizer, the trends remain somewhat similar. LLM-
LNS continues to show stable performance, particularly in SC1 and MVC2, with SD values of 20.4
and 188.7, respectively. However, SCIP itself exhibits extremely high variability in some instances,
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Table 9: Comparison of error bar on large-scale MILP instances across different methods using
Gurobi as optimizer.

SC1 SC2 MVC1 MVC2 MIS1 MIS2 MIKS1 MIKS2

Random-LNS 65.4 318.3 142.1 350.8 104.4 333.6 158.9 808.8
ACP 56.8 1787.2 120.6 574.8 83.6 1233.0 173.7 742.7

CL-LNS - - 892.6 - 406.3 - - -
Gurobi 39.7 252.7 119.6 349.0 64.7 183.1 103.8 319.7
SCIP 25238.2 533457.2 165.2 402.1 96.9 103.6 94.6 433463.8

GNN&GBDT 511.3 5504.8 148.7 1522.6 160.1 7887.9 * *
Light-MILPOPT 1.4 206.4 121.6 289.8 78.8 216.6 63.3 420.1
LLM-LNS(Ours) 27.9 187.9 125.4 289.8 82.2 199.3 111.7 259.2

Table 10: Comparison of error bar on large-scale MILP instances across different methods using
SCIP as optimizer.

SC1 SC2 MVC1 MVC2 MIS1 MIS2 MIKS1 MIKS2

Random-LNS 33.2 362.1 123.3 368.2 104.4 531.3 26.1 51.5
ACP 46.1 10845.3 106.0 324.1 83.6 1371.4 3253.2 1055.6

CL-LNS - - 892.6 - 406.3 - - -
Gurobi 39.7 252.7 119.6 349.0 64.7 183.1 103.8 319.7
SCIP 25238.2 533457.2 165.2 402.1 96.9 103.6 94.6 433463.8

GNN&GBDT 72.6 7349.2 147.2 678.8 100.4 1076.6 * *
Light-MILPOPT 66.6 1223.3 118.5 305.6 79.1 239.4 124.2 1473.9
LLM-LNS(Ours) 31.7 231.2 131.9 266.7 68.9 94.7 105.9 1868.3

particularly in SC2 and MIKS2, with SD values exceeding 298,000 and 242,000, respectively, which
suggests that SCIP struggles with certain large-scale MILPs. This instability in SCIP could be due to
its aggressive strategies or solver configurations being less suited to these specific problem instances.
Light-MILPopt again demonstrates relatively stable performance in most instances, although its SD
increases significantly in some cases, such as MIKS2. GNN&GBDT and ACP also show consid-
erable fluctuations, with ACP having an SD of 6338.3 in SC2, further highlighting its instability in
large-scale settings.

In summary, LLM-LNS not only consistently outperforms other methods in terms of objective values
but also maintains strong stability across a wide range of instances, particularly when compared to
methods like Random-LNS, ACP, and SCIP. This robustness makes LLM-LNS a strong candidate
for solving large-scale MILP problems effectively and consistently.

D.3 COMPARISON OF ERROR BAR

The error bar comparison across different methods using Gurobi and SCIP as optimizers provides
insights into the variability and confidence in solutions across large-scale MILP instances. Error
bars quantify the uncertainty or inconsistency in the results, with smaller values indicating more
reliable and consistent performance.

As shown in Table 9, for methods using Gurobi, LLM-LNS again demonstrates strong reliability
with relatively small error bars across most instances. For example, in SC1, MVC2, and MIKS2,
LLM-LNS has error bars of 27.9, 289.8, and 259.2, respectively. These values are noticeably smaller
than those for methods like Random-LNS and ACP, which exhibit much larger error bars, reflecting
greater instability. Light-MILPopt also shows excellent performance with particularly low error bars
in SC1 (1.4) and MIKS1 (63.3), but its error increases significantly in some other instances. Notably,
SCIP exhibits extremely large error bars in several instances, such as SC2 and MIKS2, where the
error bars exceed 533,000 and 433,000, respectively, indicating significant inconsistency in its per-
formance on these large-scale problems. GNN&GBDT also shows high error bars, suggesting that
its performance is less reliable across different runs.

As shown in Table 10, when using SCIP as the optimizer, LLM-LNS continues to demonstrate
relatively low error bars, particularly in SC1, MVC2, and MIKS1, where the values are 31.7, 266.7,
and 105.9, respectively. These results are significantly more stable compared to methods like ACP
and GNN&GBDT, which show very high error bars in instances like SC2 (error bar of 10845.3 for
ACP) and MIKS2. SCIP itself again shows extremely high error bars for instances such as SC2

and MIKS2, further highlighting its instability in handling large-scale problems. Light-MILPopt
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Figure 6: Time-objective value graphs of medium-scale problems using Gurobi: SC1, MVC1, IS1,
and MIKS1.
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Figure 7: Time-objective value graphs of large-scale problems using Gurobi: SC2, MVC2, IS2, and
MIKS2.
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Figure 8: Time-objective value graphs of medium-scale problems using SCIP: SC1, MVC1, IS1,
and MIKS1.
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Figure 9: Time-objective value graphs of large-scale problems using SCIP: SC2, MVC2, IS2, and
MIKS2.

performs well in some instances but also shows considerable variation in others, with error bars as
high as 1473.9 in MIKS2.

Overall, LLM-LNS consistently demonstrates lower error bars across both optimizers, Gurobi and
SCIP, indicating that it provides more reliable and consistent solutions for large-scale MILP prob-
lems. This makes it a strong candidate for scenarios where both solution quality and stability are
critical.

D.4 CONVERGENCE ANALYSIS

In this section, we analyze the convergence performance of our proposed approach, our proposed
LLM-LNS, in comparison to several baseline methods for solving large-scale MILP problems, in-
cluding Random-LNS, ACP, Gurobi, GNN&GBDT, and Light-MILPOPT. The experimental results
are shown in Figures 6 through 9, which include instances of four different problem types: Set
Covering (SC), Maximum Vertex Covering (MVC), Independent Set (IS), and Mixed Integer Knap-
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sack Set (MIKS). We evaluate both medium-scale and large-scale instances using two solvers as
sub-optimizer, Gurobi and SCIP.

The analysis of the convergence curves reveals several important observations:

• Faster Initial Convergence: For nearly all problem instances, the LLM-LNS approach
demonstrates a significantly faster initial convergence compared to the baseline methods.
The objective value drops sharply within the first few time steps, indicating that our method
can quickly identify high-quality solutions. In contrast, methods like Random-LNS and
ACP exhibit slower initial convergence, requiring more time to achieve similar reductions
in the objective value.

• Superior Final Objective Value: Across both medium- and large-scale problem instances,
our proposed LLM-LNS consistently achieves lower final objective values compared to the
other methods. This is particularly evident in the large-scale instances (e.g., SC2, MVC2,
IS2, and MIKS2), where the superiority of our method becomes more pronounced. While
methods such as Random-LNS and ACP plateau early, often with suboptimal solutions,
our proposed LLM-LNS continues to improve the solution even after other methods have
stagnated.

• Stable Convergence Behavior: The convergence curves of our proposed LLM-LNS ex-
hibit smooth and gradual decreases in the objective value, indicating stable optimiza-
tion behavior. In contrast, some of the baseline methods, especially Random-LNS and
GNN&GBDT, show more erratic convergence patterns, characterized by large and sudden
jumps in the objective value. This suggests that our method is more robust and avoids the
instability that can arise in heuristic-based search strategies.

• Scalability: The performance gap between our proposed LLM-LNS and the baseline meth-
ods becomes even more pronounced in large-scale problem instances. For example, in the
large-scale MIKS2 and SC2 instances, our proposed LLM-LNS outperforms all other meth-
ods by a significant margin, converging to a much lower objective value within a shorter
time frame. This demonstrates the scalability of our method, as it remains effective even
as the problem size increases, whereas the performance of other methods, such as Light-
MILPOPT and ACP, degrades considerably.

• Comparison with Exact Solvers: When compared to the exact solver Gurobi, our pro-
posed LLM-LNS shows comparable or even superior performance, particularly in terms
of convergence speed. While Gurobi tends to find solutions that improve gradually over
time, our proposed LLM-LNS reaches competitive solutions much faster, which is crucial
in time-constrained scenarios. This highlights the practical advantage of our method in
scenarios where computational resources or time are limited.

In summary, the experimental results demonstrate that LLM-LNS has clear advantages in terms of
convergence speed, final solution quality, and robustness compared to both heuristic-based and exact
optimization methods. Our approach is particularly well-suited for large-scale MILP problems,
where it consistently outperforms the baseline methods by a significant margin.

D.5 BASELINE COMPARISONS WITH ADDITIONAL LNS METHODS

To evaluate the effectiveness of the proposed LLM-LNS framework, we conducted comprehensive
comparisons with several LNS methods that utilize different heuristic scoring functions. Specif-
ically, we incorporated Least-Integral (Berthold, 2006), Most-Integral (Nair et al., 2020), and
RINS (Danna et al., 2005), which are classical scoring functions commonly used in LNS frame-
works, alongside the state-of-the-art methods ACP (Ye et al., 2023a) and classic method Random-
LNS (Song et al., 2020).

The results, summarized in Table 11, demonstrate that our proposed LLM-LNS consistently outper-
forms all baseline methods across a variety of MILP tasks, including Set Covering (SC), Maximum
Vertex Cover (MVC), Maximum Independent Set (MIS), and Mixed Integer Knapsack Set (MIKS).
This advantage highlights the superior ability of LLM-LNS to balance exploration diversity and
solution convergence.
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Table 11: Performance comparison of LLM-LNS with additional LNS methods on MILP tasks.
Results are reported as objective values (lower is better).

Method SC1 SC2 MVC1 MVC2 MIS1 MIS2 MIKS1 MIKS2

Random-LNS 16140.6 169417.5 27031.4 276467.5 22892.9 223748.6 36011.0 351964.2
ACP 17672.1 182359.4 26877.2 274013.3 23058.0 226498.2 34190.8 332235.6
Least-Integral 22825.3 228188.0 29818.0 306567.1 20106.9 195782.2 27196.9 241663.4
Most-Integral 50818.2 519685.5 35340.5 327742.4 14584.4 157686.5 31235.3 314621.6
RINS 26116.2 261176.3 26851.3 306215.6 23069.7 201178.1 30049.1 299953.4
LLM-LNS (Ours) 15802.7 158878.9 26725.3 268033.7 23169.3 231636.9 36479.8 363749.5

From the results in Table 11, several key observations can be made. Among the classical LNS
methods, RINS generally achieves better results compared to Least-Integral and Most-Integral, as
it leverages neighborhood-based improvements combined with partial solutions. However, these
methods still fall significantly behind ACP, Random-LNS, and our proposed LLM-LNS, particularly
on larger problem instances such as SC2, MVC2, and MIKS2. For example, on the SC2 problem,
RINS achieves an objective value of 261176.3, compared to 158878.9 for LLM-LNS, highlighting
the limitations of traditional scoring functions in handling large-scale MILP problems.

ACP and Random-LNS perform much better than the classical scoring-based methods due to their
adaptiveness and ability to leverage heuristic diversity. However, even these state-of-the-art base-
lines are consistently outperformed by LLM-LNS across all tasks. For instance:

• On the SC1 problem, LLM-LNS achieves an objective value of 15802.7, compared to
16140.6 for Random-LNS and 17672.1 for ACP.

• On the MIS2 problem, LLM-LNS achieves 231636.9, compared to 223748.6 for Random-
LNS and 226498.2 for ACP.

The clear performance advantage of LLM-LNS can be attributed to its dual-layer architecture, which
combines prompt evolution and heuristic strategy optimization to balance search diversity and con-
vergence. The outer layer generates diverse prompts that broaden the search space, avoiding prema-
ture convergence to suboptimal solutions. Meanwhile, the inner layer refines heuristic strategies and
accelerates convergence by leveraging the evolved prompts. This interaction ensures that LLM-LNS
adapts effectively to different problem scales and complexities.

Moreover, the results highlight the scalability of LLM-LNS. While ACP and Random-LNS demon-
strate reasonable performance on smaller tasks, their effectiveness diminishes as the problem size
increases. In contrast, LLM-LNS maintains its performance advantage across both small-scale (e.g.,
SC1) and large-scale (e.g., SC2) tasks, showcasing its robustness and adaptability. This scalability
is directly enabled by the dynamic feedback loop between the two layers, ensuring continuous re-
finement of both the search space (via prompt evolution) and the solution strategies (via heuristic
evolution).

In summary, the experimental results validate the effectiveness of LLM-LNS over both classical
and state-of-the-art LNS baselines. Its dual-layer mechanism provides superior generalization and
adaptability, making it a powerful framework for solving diverse and large-scale MILP problems.

E ABLATION STUDY OF THE DUAL-LAYER SELF-EVOLUTIONARY LLM
AGENT

This section presents the results of the ablation study conducted to analyze the contributions of
the dual-layer framework components: Prompt Evolution (outer layer) and Directional Evolution
(inner layer). The study evaluates the effects of removing or isolating each component on the overall
performance of the framework. Specifically, we compare the following variations:

• Base (EOH): The baseline Evolution of Heuristic (EOH) method without any modifica-
tions.

• Base + Dual Layer: The EOH method with the dual-layer structure (Prompt Evolution
in the outer layer).
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Table 12: Ablation study results on various datasets. The table compares the baseline (EOH), the
addition of the dual-layer structure (Prompt Evolution, outer layer), the addition of the differential
evolution mechanism (Directional Evolution, inner layer), and the complete method (Ours). The
best results for each dataset are highlighted in bold.

1k C100 5k C100 10k C100 1k C500 5k C500 10k C500
Base (EOH) 4.48% 0.88% 0.83% 4.32% 1.06% 0.97%
Base + Dual Layer 3.78% 0.93% 0.40% 3.91% 0.92% 0.39%
Base + Differential 2.64% 0.94% 0.69% 2.54% 0.94% 0.70%
Ours 3.58% 0.85% 0.41% 3.67% 0.82% 0.42%

• Base + Differential: The EOH method with the Directional Evolution mechanism (inner
layer).

• Ours: The complete dual-layer framework incorporating both Prompt Evolution and Di-
rectional Evolution.

We evaluate these variations on datasets of different scales to observe their impact on both small-
scale and large-scale problems. The datasets include 1k C100, 5k C100, 10k C100, 1k C500,
5k C500, and 10k C500, representing combinatorial optimization instances of varying sizes. The
results are summarized in Table 12.

Key Observations:

• Impact of Prompt Evolution: Adding the dual-layer structure (Base + Dual Layer) sig-
nificantly improves performance on large-scale problems, as the outer layer enhances the
diversity of the search process through prompt optimization. This is particularly evident in
the 10k C500 dataset, where the error rate decreases from 0.97% (Base) to 0.39%.

• Impact of Directional Evolution: Incorporating the differential evolution mechanism
(Base + Differential) improves performance on small-scale problems by accelerating con-
vergence through more effective crossover and mutation strategies. For example, on the
1k C100 dataset, the error rate decreases from 4.48% (Base) to 2.64%.

• Synergy of Both Components: The complete dual-layer framework (Ours) achieves the
most balanced improvements across datasets, particularly for larger-scale problems. How-
ever, on small-scale datasets like 1k C100, the additional exploration introduced by Prompt
Evolution can slightly increase the error rate compared to Base + Differential (from 2.64%
to 3.58%).

These results validate the complementary roles of Prompt Evolution and Directional Evolution in
enhancing both diversity and convergence, demonstrating the effectiveness of the dual-layer frame-
work for solving combinatorial optimization problems of varying scales.

F ADDITIONAL VALIDATION EXPERIMENTS

F.1 STABILITY EVALUATION OF MULTIPLE RUNS

To evaluate the stability and consistency of our proposed method, we conducted repeated experi-
ments on the Bin Packing task. Specifically, we ran three independent trials for both EoH and our
method, and the results are summarized in Table 13.

In our proposed method, the seed heuristic strategies are not hand-crafted. Instead, they are auto-
matically generated by the large language model , which introduces some degree of randomness
between runs. Despite this randomness, our method consistently outperforms EoH in both effective-
ness and stability. For example, on the 1k C100, 10k C100, and 10k C500 test sets, the variance in
our results is small, and the average performance is consistently better than EoH.

These results demonstrate that our dual-layer framework, combined with the differential evolution
mechanism, effectively enhances both consistency and generalization. Moreover, the smaller vari-
ance in our method’s results highlights its robustness against the randomness introduced by the seed
generation process.
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Table 13: Stability evaluation of multiple runs on Bin Packing tasks. Results are reported as error
rates (%).

Method 1k C100 5k C100 10k C100 1k C500 5k C500 10k C500 Avg
EOH Run 1 4.48% 0.88% 0.83% 4.32% 1.06% 0.97% 2.09%
EOH Run 2 7.56% 3.33% 2.62% 7.22% 3.19% 2.50% 4.07%
EOH Run 3 4.18% 3.24% 3.35% 3.79% 3.12% 3.21% 3.48%
EOH Avg 5.41% 2.48% 2.27% 5.11% 2.46% 2.23% 3.33%
Ours Run 1 3.58% 0.85% 0.41% 3.67% 0.82% 0.42% 1.63%
Ours Run 2 2.69% 0.86% 0.54% 2.54% 0.87% 0.52% 1.34%
Ours Run 3 2.64% 0.94% 0.69% 2.54% 0.94% 0.70% 1.41%
Ours Avg 2.97%↑ 0.88%↑ 0.55%↑ 2.92%↑ 0.88%↑ 0.55%↑ 1.46%↑

Table 14: Impact of population size on Bin Packing tasks. Results are reported as error rates (%).
Method 1k C100 5k C100 10k C100 1k C500 5k C500 10k C500 Avg
EOH (20) 4.48% 0.88% 0.83% 4.32% 1.06% 0.97% 2.09%
Ours (4) 3.23% 0.80% 0.43% 3.96% 1.27% 0.89% 1.76%↑
Ours (20) 3.58% 0.85% 0.41% 3.67% 0.82% 0.42% 1.63%↑

F.2 IMPACT OF POPULATION SIZE ON EXPERIMENTAL OUTCOMES

To further analyze the impact of population size on experimental outcomes, we conducted additional
experiments on the Bin Packing task, testing our method with a reduced population size of 4. The
results are summarized in Table 14.

As shown in the table, although the average performance slightly decreases with a smaller population
size, our method still outperforms EoH (population size 20). For example, the average error of our
method with a population size of 4 is 1.76%, which is better than EoH’s 2.09%. This demonstrates
that our dual-layer framework and differential evolution mechanism exhibit significant robustness
and effectiveness, maintaining superior performance even with smaller populations.

F.3 PERFORMANCE COMPARISON WITH EOH ON LNS TASKS

In this subsection, we present a comparison between the proposed LLM-LNS framework and ex-
isting method EoH, on large-scale combinatorial optimization tasks. While EoH focus on dis-
covering strategies for combinatorial optimization problems, our LLM-LNS framework is specif-
ically designed to address the challenges of large-scale MILP problems through its dual-layer self-
evolutionary mechanism.

We evaluated the methods on the Set Covering (SC) problem, a minimization task, using two large-
scale datasets:

• SC1: Instances with 200,000 decision variables and constraints.
• SC2: Instances with 2,000,000 decision variables and constraints.

EOH-LNS was selected as the primary baseline for comparison because it generally outperforms
FunSearch on combinatorial optimization tasks, as reported in prior literature. This ensures a fair and
representative evaluation of our framework. The experimental results are summarized in Tables 15
and 16, where LLM-LNS consistently outperforms EOH-LNS across all test instances. Specifically:

• On the SC1 dataset (200,000 variables and constraints), LLM-LNS achieves an average
improvement of 1.67% over EOH-LNS.

• On the SC2 dataset (2,000,000 variables and constraints), the improvement is more pro-
nounced, reaching 9.20% on average.

These results demonstrate the superior capability of LLM-LNS in solving large-scale optimization
tasks, particularly in terms of solution quality. The improvements can be attributed to the dual-layer
architecture, which effectively balances search diversity and solution convergence.

The results demonstrate that LLM-LNS consistently outperforms EOH-LNS, particularly on large-
scale instances. This improvement is enabled by the dual-layer self-evolutionary mechanism, which
dynamically balances exploration and exploitation:
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Table 15: Performance comparison on the SC1 dataset (200,000 variables and constraints). Results
are reported as objective values (lower is better).

Method Instance1 Instance2 Instance3 Instance4 Avg
EOH-LNS 16114.27 16073.72 16046.83 16074.26 16070.15
LLM-LNS (Ours) 15830.61↑ 15801.19↑ 15800.17↑ 15800.17↑ 15802.68↑

Table 16: Performance comparison on the SC2 dataset (2,000,000 variables and constraints). Results
are reported as objective values (lower is better).

Method Instance1 Instance2 Instance3 Instance4 Avg
EOH-LNS 175358.59 174339.78 174782.76 174026.33 174978.20
LLM-LNS (Ours) 158901.57↑ 158953.57↑ 158712.64↑ 158759.90↑ 158831.42↑

• The outer layer generates diverse prompts to broaden search space coverage, preventing
premature convergence to suboptimal solutions.

• The inner layer refines heuristic strategies and accelerates convergence by leveraging the
evolved prompts, ensuring high-quality solutions.

This collaborative interaction between the two layers forms a dynamic feedback loop, enabling
continuous learning and adaptation. While EOH-LNS demonstrates strong performance on small-
scale combinatorial optimization tasks, its inability to balance exploration and convergence limits its
scalability to larger and more complex problems, as evidenced by the significant performance gap
on SC2.

F.4 COMPREHENSIVE EVALUATION ON TSPLIB INSTANCES

We evaluated our method on all 87 instances from the TSPLib benchmark to comprehensively assess
its performance. As shown in Table 17, our method achieves better results than the EOH baseline
on 43 instances, matches EOH on 39 instances, and performs slightly worse on only 5 instances.
This demonstrates that our method is not only robust but also generalizes effectively across diverse
TSP instances of varying sizes and complexities. On average, the gap from the best-known solutions
is reduced from 6.93% for EOH to 6.25% for our method, representing an overall improvement of
approximately 10%. These results highlight the superiority of our approach in minimizing the gap
to optimality across a wide range of benchmark instances.

The improvements are particularly evident on larger and more challenging instances. For example,
on fl1400, our method reduces the gap from 7.66% (EOH) to 2.28%, showcasing its scalability and
effectiveness in handling complex optimization problems. Similarly, on the pcb1173 instance, the
gap decreases from 5.07% (EOH) to 2.91%, validating the ability of our method to outperform EOH
on instances with higher complexity. Even on medium-sized instances such as pr439, our method
demonstrates significant improvements, reducing the gap from 2.80

In addition to these improvements, we also observe instances where both methods achieve compa-
rable performance. For example, on smaller problems such as eil51, ulysses16, and kroD100, both
EOH and our method report identical gaps, demonstrating that our method maintains competitive
performance even on instances where EOH performs optimally. Furthermore, the results highlight
the consistency of our approach across various instance scales, from small to large.

There are only a few exceptions where EOH slightly outperforms our method. For example, on
ch130, EOH achieves a gap of 0.01%, whereas our method reports 0.70%. However, these cases
are rare, occurring in only 5 instances out of 87, and do not substantially impact the overall trend of
improvement demonstrated by our method.

Overall, our method exhibits strong generalization across the TSPLib benchmark and consistently
achieves lower average gaps compared to EOH. The significant improvements on larger and more
complex instances further underscore the scalability and effectiveness of our dual-layer architecture.
By balancing exploration and exploitation, our method demonstrates its capability to address the
challenges posed by diverse and large-scale optimization problems, making it a reliable alternative
to state-of-the-art methods such as EOH.
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Table 17: Performance comparison between EOH and our method on TSPLib instances. Results are
reported as the gap from the best-known solutions (%). Bold values indicate the better performance,
with red for EOH and blue for ours. Green indicates identical performance.

Instance EOH Gap Ours Gap Instance EOH Gap Ours Gap Instance EOH Gap Ours Gap
pr439 2.80% 1.97% pla7397 4.28% 4.28% gr96 0.00% 0.00%
rd100 0.01% 0.01% rl5934 4.25% 4.25% pcb442 1.15% 0.96%
u2319 2.34% 2.34% gil262 0.59% 0.48% pcb3038 4.13% 4.13%
lin105 0.03% 0.03% fl417 0.80% 0.77% tsp225 1.39% 0.00%
fl1400 7.66% 2.28% nrw1379 3.82% 2.99% d2103 1.88% 1.88%
kroA150 0.00% 0.00% pcb1173 5.07% 2.91% d198 0.40% 0.29%
fl1577 5.03% 5.03% gr666 2.17% 0.00% ch130 0.01% 0.70%
kroB100 0.00% 0.00% u1060 4.04% 1.54% berlin52 0.03% 0.03%
eil51 0.67% 0.67% rl1304 6.52% 2.40% u2152 4.60% 4.60%
ulysses16 0.00% 0.00% u724 2.85% 1.13% kroD100 0.00% 0.00%
linhp318 3.22% 2.77% pr299 0.61% 0.11% rd400 2.23% 0.82%
gr202 0.54% 0.00% vm1084 3.64% 1.74% rat575 3.11% 1.88%
d1655 5.79% 5.79% ch150 0.37% 0.04% pr107 0.00% 0.00%
kroB200 0.23% 0.44% a280 2.06% 0.34% d1291 6.53% 2.54%
gr229 1.15% 0.00% pr264 0.00% 0.00% pr76 0.00% 0.00%
d493 2.82% 1.27% dsj1000 4.28% 1.06% pr136 0.09% 0.00%
rat195 0.99% 1.37% att532 220.07% 215.43% kroA100 0.02% 0.02%
ali535 0.67% 0.00% ulysses22 0.00% 0.00% kroB150 0.08% 0.01%
bier127 0.26% 0.01% kroC100 0.01% 0.01% eil76 1.53% 1.18%
pr124 0.00% 0.00% rl1323 4.35% 1.93% p654 0.75% 0.05%
gr431 1.93% 0.00% rl1889 4.08% 4.08% d657 2.85% 1.02%
eil101 2.59% 2.08% fnl4461 4.63% 4.63% pr2392 4.19% 4.19%
rat783 4.48% 2.18% ts225 0.00% 0.00% u1432 4.84% 3.02%
u1817 4.62% 4.62% lin318 1.46% 1.09% rl5915 3.96% 3.96%
att48 215.43% 215.43% st70 0.31% 0.31% rat99 0.68% 0.68%
fl3795 4.38% 4.38% burma14 0.00% 0.00% u159 0.00% 0.00%
kroA200 0.25% 0.62% u574 2.85% 1.38% pr1002 3.27% 1.16%
pr152 0.00% 0.19% gr137 0.11% 0.00% pr226 0.10% 0.06%
vm1748 4.33% 4.33% pr144 0.00% 0.00% kroE100 0.00% 0.00%

Table 18: Comparison of ALNS (adaptive) and non-adaptive LNS as the backbone algorithm in our
framework. Results are reported as objective values (lower is better).

Method SC1 SC2 MVC1 MVC2 MIS1 MIS2 MIKS1 MIKS2

Without Adaptive 15957.0 160510.8 26850.3 269701.8 23073.2 230497.4 36330.8 362496.3
LLM-LNS (Ours) 15802.7 158878.9 26725.3 268033.7 23169.3 231636.9 36479.8 363749.5

F.5 IMPACT OF THE BACKBONE ALGORITHM ON PERFORMANCE

This section addresses whether the proposed method is sensitive to the choice of the backbone al-
gorithm. Our study focuses on solving large-scale MILP problems, where heuristic methods play a
critical role due to the complexity of the problem space. Among these methods, LNS has demon-
strated significant advantages in scalability and efficiency, especially for large-scale problems. In
this context, we selected ALNS (Adaptive Large Neighborhood Search) as the backbone of our
framework. ALNS, as a variant of LNS, dynamically adjusts neighborhood sizes to balance ex-
ploration and exploitation, making it more effective than non-adaptive LNS methods, which often
struggle with local optima in large-scale problems.

To validate this choice, we conducted experiments replacing ALNS with non-adaptive LNS in our
framework. The results, summarized in Table 18, show that ALNS consistently outperforms non-
adaptive LNS across all tested MILP instances. For example, on the SC1 problem, the objective
value achieved by ALNS is 15802.7, compared to 15957.0 for non-adaptive LNS. Similarly, on the
MVC2 problem, ALNS achieves an objective value of 268033.7, whereas non-adaptive LNS reports
269701.8. These results highlight the critical role of adaptive mechanisms in ALNS for leveraging
the full potential of our framework.

F.6 ROBUSTNESS OF LLM-LNS WITH DIFFERENT LLMS

We conducted experiments to evaluate the robustness of the LLM-LNS framework across various
large language models, including GPT-4o, GPT-4o-mini, DeepSeek, Gemini-1.5-Pro, and Llama-
3.1-70B. These experiments were performed on the 10k C500 dataset, and the results are summa-
rized in Table 19.
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Table 19: Performance comparison of LLM-LNS using different LLMs on the 10k C500 dataset.
Results are reported as the gap from the best-known solutions (%). Lower values indicate better
performance.

LLM Model Run1 Run2 Run3 Avg.
gpt-4o-mini 0.42% 0.52% 0.70% 0.55%
gpt-4o 0.33% 0.58% 0.39% 0.43%
deepseek 0.83% 0.52% 0.38% 0.58%
gemini-1.5-pro 0.63% 1.91% 0.53% 1.02%
llama-3.1-70B 2.87% 3.98% 0.88% 2.58%

The results demonstrate that the dual-layer structure of LLM-LNS adapts effectively to different
LLMs, achieving reasonable performance across all tested models. GPT-4o consistently achieved
the best results, showing the lowest average gap of 0.43%, followed by GPT-4o-mini (0.55%) and
DeepSeek (0.58%). Gemini-1.5-Pro and Llama-3.1-70B exhibited relatively weaker performance,
with average gaps of 1.02% and 2.58%, respectively. These variations are likely due to differences
in model architecture and pretraining quality. Nonetheless, the framework demonstrated strong
general robustness, with all models performing adequately within the LLM-LNS structure.

These findings underscore the necessity of combining LLMs with a structured optimization frame-
work to fully leverage their potential.

F.7 COMPARISON WITH REEVO

We conducted additional experiments to compare our proposed method with ReEvo (Ye et al., 2024),
a contemporary hyper-heuristic framework that combines reflection mechanisms and evolutionary
search. Both methods were evaluated on the Bin Packing problem using the lightweight language
model GPT-4o-mini, with the number of iterations fixed at 20 and the population size set to 20.

In the experiments, ReEvo exhibited poor stability when using GPT-4o-mini. Out of 138 attempts,
only 3 runs successfully completed all 20 iterations, while the remaining runs were prematurely ter-
minated due to invalid offspring generated during certain generations. Upon analysis, we identified
severe hallucination issues in ReEvo. Although its reflection mechanism was effective in capturing
evolutionary directions, any errors in reflection led to a rapid decline in the quality of subsequent off-
spring. For example, ReEvo frequently attempted to call nonexistent libraries or use invalid function
parameters, resulting in invalid heuristic algorithms and the termination of the evolutionary process.

To ensure a meaningful comparison, we selected the 3 successful ReEvo runs and compared their
performance with our method. Under the default setting, ReEvo utilized an expert seed algorithm
to initialize its population. However, after 20 iterations, the best-performing algorithm in ReEvo
remained its initial expert seed algorithm, failing to generate superior heuristic strategies. Further-
more, when the expert seed algorithm was removed, ReEvo’s solution quality deteriorated further,
with its average performance on the Bin Packing problem falling significantly behind our method.

The experimental results are shown in Table 20. Our method demonstrates substantial advantages
under the same settings. In terms of solution quality, our approach consistently outperformed ReEvo
across all test instances of the Bin Packing problem, with even greater advantages in scenarios
without expert seed algorithms. Additionally, our method exhibited significant stability advantages,
consistently completing 20 iterations and generating high-quality heuristic strategies without being
affected by the hallucination issues observed in ReEvo. The collaborative optimization between the
agents in our dual-layer architecture effectively balances search diversity and efficiency, delivering
superior performance and higher stability.

In conclusion, our method not only outperforms ReEvo in terms of experimental results but also
demonstrates significant advantages in stability and robustness. This innovative approach of com-
bining a dual-layer intelligent agent architecture with large language models opens up a new avenue
for the application of LNS in large-scale optimization problems and surpasses existing state-of-the-
art methods, including ReEvo.
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Table 20: Performance comparison between ReEvo and our proposed method on the Bin Packing
problem. Average percentages represent the error rates.

1k C100 5k C100 10k C100 1k C500 5k C500 10k C500 Avg

ReEvo Run1 3.78% 0.80% 0.33% 6.75% 1.47% 0.74% 2.31%
ReEvo Run2 3.78% 0.80% 0.33% 6.75% 1.47% 0.74% 2.31%
ReEvo Run3 3.78% 0.80% 0.33% 6.75% 1.47% 0.74% 2.31%
ReEvo Avg 3.78% 0.80% 0.33% 6.75% 1.47% 0.74% 2.31%
ReEvo-no-expert Run 1 4.87% 4.08% 4.09% 4.50% 3.91% 3.95% 4.23%
ReEvo-no-expert Run 2 4.87% 4.08% 4.11% 4.50% 3.90% 3.97% 4.24%
ReEvo-no-expert Run 3 4.87% 4.08% 4.09% 4.50% 3.91% 3.95% 4.23%
ReEvo-no-expert Avg 4.87% 4.08% 4.10% 4.50% 3.91% 3.96% 4.24%
Ours Run1 3.58% 0.85% 0.41% 3.67% 0.82% 0.42% 1.63%
Ours Run2 2.69% 0.86% 0.54% 2.54% 0.87% 0.52% 1.34%
Ours Run3 2.64% 0.94% 0.69% 2.54% 0.94% 0.70% 1.41%
Ours Avg 2.97%↑ 0.88%↑ 0.55%↑ 2.92%↑ 0.88%↑ 0.55%↑ 1.46%↑

Table 21: Performance comparison between EoH and our proposed method on the 10k C500 dataset
using different LLMs. Average percentages represent the error rates.

10k C500 Run1 Run2 Run3 Avg.

gpt-4o-mini (EOH) 0.97% 2.50% 3.21% 2.23%
gpt-4o-mini (Ours) 0.42% 0.52% 0.70% 0.55%↑
gpt-4o (EOH) 0.50% 0.41% 0.58% 0.50%
gpt-4o (Ours) 0.33% 0.58% 0.39% 0.43%↑
deepseek (EOH) 0.32% 3.06% 1.92% 1.77%
deepseek (Ours) 0.83% 0.52% 0.38% 0.58%↑

F.8 PERFORMANCE COMPARISON WITH EOH USING DIFFERENT LLMS

To evaluate the adaptability and effectiveness of our proposed method across different language
models, we conducted experiments comparing our framework with EoH on the 10k C500 dataset
using three LLMs: GPT-4o-mini, GPT-4o, and DeepSeek. EoH was chosen as the baseline based on
existing literature, which suggests it generally outperforms FunSearch on combinatorial optimiza-
tion tasks.

The results of the experiments are summarized in Table 21. Our method consistently outperformed
EoH across all tested LLMs. Notably, our approach demonstrated significant advantages when using
GPT-4o-mini and DeepSeek. For instance, with GPT-4o-mini, our framework achieved an average
performance of 0.55%, which is approximately four times better than EoH’s 2.23%. Similarly, un-
der DeepSeek, our method achieved an average performance of 0.58%, significantly outperforming
EoH’s 1.77%.

One particularly interesting observation is the poor convergence of EoH under DeepSeek. In both
Run2 and Run3, EoH’s fitness function values during evolution were much lower than those achieved
by our framework. This highlights the limitations of EoH’s framework in adapting to certain LLMs,
where errors in evolution can significantly impact its performance. In contrast, our dual-layer archi-
tecture, combined with differential evolution, demonstrates robust and stable performance across all
tested LLMs.

These findings underscore the superiority of our approach in leveraging the capabilities of different
LLMs for combinatorial optimization tasks. The dual-layer structure not only enhances adaptability
but also ensures consistent performance, addressing the convergence and stability issues observed in
EoH. We believe these results further validate the effectiveness and scalability of our method across
diverse settings.

F.9 COMPARISON WITH STANDALONE LLMS

To further validate the effectiveness of our framework, we conducted a comparative experiment
against standalone LLMs. Specifically, we replaced all crossover and mutation operations in our
framework with instances where the problem information was directly input into a standalone GPT-
4o-mini model, which independently generated new strategies and evaluated them. Both approaches
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Table 22: Performance comparison between standalone LLMs and our proposed framework on the
Bin Packing problem. Average percentages represent the error rates.

1k C100 5k C100 10k C100 1k C500 5k C500 10k C500 Avg

Sample Run1 5.32% 4.40% 4.44% 4.97% 4.27% 4.28% 4.61%
Sample Run2 7.51% 2.30% 1.74% 9.47% 4.58% 3.99% 4.93%
Sample Run3 5.32% 4.40% 4.44% 4.97% 4.27% 4.28% 4.61%
Sample Avg 6.05% 3.70% 3.54% 6.47% 4.37% 4.18% 4.72%
Ours Run1 3.58% 0.85% 0.41% 3.67% 0.82% 0.42% 1.63%
Ours Run2 2.69% 0.86% 0.54% 2.54% 0.87% 0.52% 1.34%
Ours Run3 2.64% 0.94% 0.69% 2.54% 0.94% 0.70% 1.41%
Ours Avg 2.97%↑ 0.88%↑ 0.55%↑ 2.92%↑ 0.88%↑ 0.55%↑ 1.46%↑

were tested on the Bin Packing problem across 20 iterations, with the same total number of strategies
generated in each case.

The results, summarized in Table 22, demonstrate that our framework significantly outperforms the
standalone LLM approach across all test instances. On average, our framework achieves an error
rate of 1.46%, which is approximately 69% lower than the standalone LLM’s average error rate of
4.72%. This improvement is primarily due to the dynamic interaction between the outer and inner
layers in our framework, which balances exploration and exploitation, ensuring the generation of
diverse and high-quality strategies. In contrast, the standalone LLM approach frequently generated
redundant or identical strategies, thereby limiting its ability to effectively explore the solution space.

Additionally, we observed that the standalone LLM approach struggled to maintain diversity as the
number of iterations increased, resulting in many duplicate strategies and a subsequent decline in
optimization performance. In contrast, our framework, through evolutionary operations such as
crossover and mutation, maintains diversity within the population, enabling it to achieve superior
optimization outcomes with the same number of generated strategies.

These findings confirm that our framework not only improves decision-variable ranking and op-
timization compared to standalone LLMs but also addresses key limitations such as diversity and
redundancy. By integrating evolutionary mechanisms into the LLM-based framework, our approach
ensures more efficient use of computational resources and delivers superior performance across var-
ious problem instances.

G POPULATION MANAGEMENT STRATEGY

To ensure the effectiveness and diversity of strategies within the LLM-LNS framework, we employ a
population management strategy that balances exploration and exploitation during each generation.
This strategy governs the selection of parent strategies for evolutionary operations (e.g., crossover
and mutation) and the replacement of poorly performing strategies to maintain a high-quality popu-
lation.

G.1 SELECTION OF EVOLUTIONARY STRATEGIES

At each generation, the framework uses a probabilistic sampling mechanism to select m parent
strategies from the population for crossover and mutation. The probability of selecting a strategy
is determined by its fitness value, which reflects its performance in achieving the optimization ob-
jective. Specifically, let the population contain n strategies with fitness values ranked in descending
order as f1, f2, . . . , fn. The probability of selecting the i-th strategy is given by:

Pi =
1

i+ 1 + n
, i = 1, 2, . . . , n, (9)

where i represents the rank of the strategy (starting from 0), and n is the population size. This
ranking-based probability distribution ensures that higher-fitness strategies are more likely to be
selected while preserving some randomness to allow lower-fitness strategies to participate. Such
randomness enhances exploration by preventing premature convergence to local optima.
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Using this probability distribution, we sample m parent strategies for evolutionary operations. These
operations generate new candidate strategies, which are evaluated and integrated into the population
based on their fitness values.

G.2 MANAGEMENT OF POORLY PERFORMING STRATEGIES

After each generation, the population is updated to maintain a fixed size while ensuring diversity
and quality. Let the current population be P = {s1, s2, . . . , sn}, where each strategy si has a fitness
value f(si). The goal is to construct a new population P ′ such that:

• P ′ contains at most size strategies, where size is a predefined parameter,

• Strategies with duplicate fitness values are removed,

• The highest-fitness strategies are retained.

The population update process is as follows: 1. Remove strategies with invalid or undefined fitness
values. 2. Eliminate duplicate strategies by retaining only one instance of strategies with the same
fitness value. 3. Rank the remaining strategies by fitness value in descending order and select the
top size strategies to form the new population P ′.

This management process ensures that the population remains diverse while focusing on high-quality
strategies, avoiding redundancy and inefficiency. By preserving the highest-fitness strategies and
introducing new candidates through evolutionary operations, the framework achieves a balance be-
tween exploration and exploitation.

G.3 FITNESS EVALUATION

The fitness value of a strategy is determined by its optimization performance on a set of small-scale
training problems. Specifically, the fitness value f(si) for a strategy si is calculated as the average
objective value achieved across multiple problem instances:

f(si) =
1

|I|
∑
j∈I

Obj(si, Ij), (10)

where I is the set of training problem instances, and Obj(si, Ij) represents the objective value
achieved by strategy si on instance Ij . This evaluation method ensures that strategies are assessed
based on consistent and robust performance metrics.

G.4 SUMMARY

The population management strategy in the LLM-LNS framework combines fitness-based selection,
diversity preservation, and rigorous fitness evaluation. By maintaining a high-quality and diverse
population, the framework progressively improves the quality of strategies across generations. This
strategy, together with the LLM’s ability to generalize and optimize, enables the LLM-LNS frame-
work to efficiently navigate large and complex search spaces, balancing exploration and exploitation
to achieve superior optimization performance.

H LIMITATIONS AND FUTURE DIRECTIONS

While the proposed dual-layer self-evolutionary framework has demonstrated strong performance in
solving large-scale MILP problems, we acknowledge several limitations that warrant further explo-
ration and improvement. Below, we discuss these limitations in detail and outline potential future
directions.

First, although the framework exhibits good generalization ability on MILP and certain combina-
torial optimization problems, it is currently tailored to specific optimization scenarios. The design
primarily focuses on MILP and does not directly extend to other types of optimization tasks, such as
nonlinear optimization or dynamic optimization problems. Developing a more general agent struc-
ture that can adapt to a wider range of optimization algorithms and tasks remains an open challenge.
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Future work could explore more modular and flexible designs to enhance the adaptability of the
framework for solving diverse and complex optimization problems.

Second, the current method leverages the generative capabilities of large language models (LLMs)
and evolutionary mechanisms for heuristic strategy design. However, it does not fully incorporate
domain knowledge or classical optimization expertise into the framework. In practical optimization
tasks, domain-specific knowledge and traditional optimization techniques (e.g., heuristic rules or
mathematical programming methods) often play a critical role. A key direction for future research
is to explore how to effectively integrate the generalization capabilities of LLMs with optimization
domain knowledge to create more efficient and robust algorithms. Such integration could not only
improve computational efficiency but also reduce the resource overhead for solving ultra-large-scale
problems.

Finally, computational resource constraints remain a practical challenge for solving large-scale prob-
lems. While the proposed framework demonstrates good scalability, solving ultra-large-scale in-
stances still requires significant computational time and hardware resources, which may limit its
applicability in resource-constrained environments. Future research could focus on optimizing the
computational complexity of the algorithm or designing more efficient resource allocation strategies
to address these challenges.
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