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ABSTRACT

When can we say that two neural systems are the same? The answer to this ques-
tion is goal-dependent, and it is often addressed through correlative methods such
as Representational Similarity Analysis (RSA) and Centered Kernel Alignment
(CKA). We find ourselves chiefly interested in the relationship between representa-
tions and behavior, asking ourselves how we can isolate specific functional aspects
of representational similarity to relate our measures to behavior—avoiding cause
vs. correlation pitfalls in the process. In this work, we introduce Model Alignment
Search (MAS), a method for causally exploring distributed representational simi-
larity as it relates to behavior. The method learns invertible linear transformations
that find an aligned subspace between two distributed networks’ representations
where functional information can be isolated and manipulated. We first show that
the method can be used to transfer values of specific causal variables—such as
the number of items in a counting task—between networks with different training
seeds and different architectures. We then explore open questions in number cogni-
tion by comparing different types of numeric representations in models trained on
structurally different tasks, we explore differences between MAS and preexisting
functional similarity methods, and lastly, we introduce a counterfactual latent aux-
iliary loss that helps shape functionally relevant alignments even in cases where
we do not have causal access to one of the two models for training.

1 INTRODUCTION

An important question for understanding both Artificial and Biological Neural Networks (ANNs
and BNNs) is knowing what it means for one distributed system to model or represent another
(Sucholutsky et al., 2023). Establishing isomorphisms between different distributed systems can be
useful for simplifying their complexity and for understanding otherwise opaque inner mechanisms.
We cannot yet measure from every individual neuron in most BNNs; even if we could, as is the case
in ANNs, it is still difficult to find satisfying ways of understanding the neural behavior. Finding
simplified models that exhibit the causal relationships of more complex distributed systems can
make complex systems more interpretable and communicable, potentially leading to useful insights
(Cao & Yamins, 2021; 2024; Richards et al., 2019). Furthermore, there are a number of open
questions about how representations differ or converge across architectures, tasks, and modalities
(Huh et al., 2024; Sucholutsky et al., 2023; Wang et al., 2024; Li et al., 2024; Hosseini et al., 2024;
Zhang et al., 2024; Grant et al., 2024). Researchers often use correlational methods to measure the
similarity of different neural representations. We can see examples of this in works that perform
direct correlational analyses between individual ANN activations and BNN firing rates (Yamins &
DiCarlo, 2016; Maheswaranathan et al., 2019; Khosla & Williams, 2023; Williams et al., 2022),
and in works that use Representational Similarity Analysis (RSA)—or Centered Kernel Alignment
(CKA) (Kornblith et al., 2019; Williams, 2024)—finding 2nd order isomorphisms between model
and system (Kriegeskorte et al., 2008). We also see examples of this in linear decoding techniques,
where linear decodability can be used as a metric for understanding the type of information encoded
in distributed representations (Chen et al., 2020; Radford et al., 2021; Grill et al., 2020; Caron et al.,
2021; Haxby et al., 2001; Haxby, 2013). A question remains, however, how to causally associate
these similarity metrics with behavioral outcomes. Can we develop methods to understand functional
representational alignment (Geiger et al., 2024; Cloos et al., 2024; Schaeffer et al., 2024)?
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Figure 1: (a) Diagram of MAS showing all four possible intervention directions on the latent vectors
(rectangles) of a Multi-Object Model1 and an Arithmetic Model2. Each rectangle is a latent vector
produced from the input token. The values of the intervened causal variables—Count for the Multi-
Object and Rem Ops for the Arithmetic models—are replaced by the values of the causal variables
from the source latents, h(i)

src. The value of the variable before the intervention is displayed on the
left side of the arrows underneath the target latents h(

trgi). The value after the intervention is shown
on the right. The dotted Substitution arrows each correspond to a single causal intervention. The
models make predictions using the intervened vector following the intervention. (b) A theoretic
causal intervention that transfers the Count information from Model1’s latent representation, h(1)

src,
into Model2’s h(2)

trg. The superscripts (1) and (2) refer to the originating model. The hidden state

vectors, h(1)
src and h

(2)
trg, are rotated into an aligned vector space using learned matrices Q1 and Q2.

In the aligned vectors, z(1)src and z
(2)
trg, the Count information lies along a disentangled component

where it can be manipulated while preserving all other information. After the transfer, the rotated,
intervened vector, z(2,v)trg , is returned to Model2’s hidden state space, using Q−1

2 . Model2 can then
use the intervened vector to continue making predictions.

Some works have made progress toward understanding causal/functional representation similarity
by transforming intermediate representations from one system into a usable form for another model.
We see examples in works like Sexton & Love (2022) where they attempt to use transformed neural
recordings in a trained computational model, and in model stitching, where a linear mapping is learned
from intermediate representations in one ANN to another for the purpose of measuring similarity or
improving one of the two models (Lähner et al., 2023; Moschella et al., 2023; Bansal et al., 2021;
Lenc & Vedaldi, 2015). To build upon these works, we ask: 1) what do these causal mappings tell
us about the underlying representations of the two systems? Are behaviorally successful mappings
both necessary and sufficient for claims of functional similarity? 2) How do we compare models with
disparate behavioral outputs, and how can we isolate the similarity of specific functional information
in the representations? And 3) How do we achieve causal relevance in systems that we do not have
causal access—as is often the case in ANN to BNN comparisons?

In this work, we introduce Model Alignment Search (MAS) to measure functional similarity between
distributed networks. MAS can be thought of as a multi-model extension of Distributed Alignment
Search (DAS) (Geiger et al., 2021; 2023), a technique used to align ANNs to symbolic algorithms
(or directed acyclic graphs). MAS learns a rotation matrix for each model with the goal of finding
an aligned representational subspace where information can be causally interchanged between the
models and within each individual model. These intervened representations are then returned back
to their original neural space where they can be used to produce behavior that can be compared to
expected behavior.

We first validate MAS by comparing it to similarity measurements produced by RSA in multiple
architectural and task variants. We then show how to use MAS even when one or both of the
models use anti-Markovian states (Grant et al., 2024). We then show that MAS can reveal the
representational similarity and dissimilarity in representations of number in models trained on
structurally different tasks. We then show that MAS can be more restrictive than previous causal
methods, like direct linear mappings (model stitching), and we provide a theoretical model to better
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understand desired restrictions. Lastly, we provide relevance to ANN-BNN comparisons by showing
that we can introduce an auxiliary loss objective to recover causal relevance for causally inaccessible
models. This loss function uses counterfactual latent vectors—latent vectors that match the desired
representational makeup of the intervened vectors assuming a successful causal intervention—as
training targets for the intervened vectors of the causally inaccessible model, thus constraining
the alignment to be functionally relevant for the inaccessible system. We refer to this variant as
Counterfactual latent MAS (CMAS).

The contributions of this work are as follows.

1. We introduce and validate MAS by comparing and contrasting to RSA.

2. We use MAS to causally explore representations of numbers across structurally different
tasks.

3. We explore how MAS can improve upon previous causal similarity methods.

4. We introduce a counterfactual latent auxiliary loss objective that can be used to find causally
relevant alignments in cases where one of the two models is causally inaccessible (making
the technique relevant for comparisons between ANNs and BNNs).

2 METHODS

In this work, we build upon the work of (Grant et al., 2024) to examine the causal similarity of
distributed representations within models trained on next token prediction, numeric tasks. Each model
is trained to > 99.99% accuracy on both training and validation data held before being analyzed and
interpreted.

2.1 NUMERIC EQUIVALENCE TASKS

The goal of the numeric equivalance tasks is to reproduce a quantity of tokens that is initially observed
at the start of the task. Each sequence consists of two phases: the demonstration (demo) and response
phases. Each sequence has an associated object quantity that is uniformly sampled from 1 to 20.
The ordering of the demo phase consists of a Beginning of sequence token, denoted B, a number
of Demonstration (D) tokens equal in quantity to the object quantity, and a Trigger (T) token. The
response phase then consists of the object quantity of Response (R) tokens and ends with the End of
sequence (E) token. During the model training, we include all token types in the autoregressive, cross
entropy loss, even though the number of D tokens and location of the T token is unpredictable from
the sequence. A trial is considered correct when the model produces the appropriate number of R
tokens followed by an E token during the response phase. We present two task variants:

Multi-Object Task: there are 3 possible demo token types {Da, Db, Dc} that are uniformly sampled
at each D in the sequence. There is a single response token type, R. As an example of an
object quantity of 2, the sequence could be: ”B Dc Da T R R E”

Same-Object Task: there is a single token type, C, that is used as both the demo token type and the
response token type. An example of a object quantity of 2 would be: ”B C C T C C E”.

We make a change to the Multi-Object Task when training the transformer models to prevent them
from learning a solution that relies on reading out positional information (Grant et al., 2024). In
this task variant, each token in the demo phase has a 0.2 probability of being sampled as a unique
”void” token type, V, that is irrelevant to the completion of the numeric equivalence task. An example
sequence with an object count of 2 could be: ”B V D V V D T R R E”. All evaluations use the
original Multi-Object Task.

2.2 ARITHMETIC TASK

We include an arithmetic task consisting of addition/subtraction operations, interlaced with the
intermediate, cumulative value following each operation. An example sequence is as follows: ”B 3
Op 4 + 3 = 7 , + 11 = 18 , - 5 = 13 E”, where the numeral between B and Op indicates the number of
operations in the sequence and the numeral following Op is a sampled starting value. The number of
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operations is uniformly sampled from 1-10. The starting value is uniformly sampled from 0-20. All
numeric values are restricted to 0-20. The arithmetic operations are uniformly sampled from {+,−}
when the cumulative value is in the range 1-19. Otherwise, the operation is selected to ensure the
cumulative value stays in the range 0-20. The possible operands are uniformly sampled from the set
that will restrict the subsequent cumulative value to the range 0-20. The sequence then displays the
cumulative value after the ”=”. The ”,” token indicates that there are more operations in the sequence.
The sequence ends with the E token after the originally indicated number of operations. We use a
base 21 token system so that all values correspond to a single token.

2.3 MODEL ARCHITECTURES

Each model in this work is autoregressively trained to perform only one of the tasks through next-
token prediction (NTP). We train 2 model seeds for each task variant. We consider Gated Recurrent
Units (GRUs) (Cho et al., 2014), Long-Short Term Memory recurrent networks (LSTMs) (Hochreiter
& Schmidhuber, 1997), and two layer Transformers based on the Roformer architecture (Vaswani
et al., 2017; Touvron et al., 2023; Su et al., 2023). The GRUs and Transformers use a dimensionality
of 40, whereas the LSTM uses 20 dimensions for each the h and c vectors. We leave the details of
GRU and LSTM cells to the referenced papers. The GRU and LSTM based models in this paper
follow the structure:

ht+1 = f(ht, xt) (1)
x̂t+1 = g(ht+1) (2)

Where ht is the hidden state vector at step t, xt is the input token at step t, f is the recurrent function
(either a GRU or LSTM cell), and g is a two layer (two matrix) feed-forward network (FFN) used to
make a prediction, x̂t+1, of the token at step t+ 1 from the updated hidden state ht+1.

The transformer architecture uses Rotary Positional Encodings (RoPE) (Su et al., 2023) and GELU
nonlinearities (Hendrycks & Gimpel, 2023). Transformers use a history of input tokens, Xt =
[x1, x2, ..., xt], at each time step, t, to make a prediction: x̂t+1 = f(Xt), where f is now the
transformer architecture. We show results from 2 layer, single attention head transformers. We refer
readers to Figure 6 for more details. See more training details in Appendix A.1.

2.4 MODEL ALIGNMENT SEARCH (MAS)

2.4.1 MAS FORMULATION

MAS can be thought of as a multi-model extension of DAS Geiger et al. (2021; 2023), where both
methods attempt to find a representational subspace for a given model that aligns with a Symbolic
Algorithm (SA) (or directed acyclic graph), and MAS further measures the degree to which two
models’ SA aligned subspaces align with each other. MAS and DAS are interpretability methods
that operate on NNs with frozen weights. In our experiments, we first train the models to > 99%
behavioral accuracy before freezing their weights. We note, however, that MAS can be used to align
models with one another that are not fully trained. Refer to Figure 1 for a visual overview.

DAS tests the assumption that the hidden state, h(i) ∈ Rdi , for a single modeli can be written as an
orthogonal rotation h(i) = Qiz

(i), where Qi ∈ Rdi×di is a learned orthonormal matrix, z(i) ∈ Rdi

consists of contiguous subspaces that encode high-level variables from SAs, and di is the size of the
hidden state.

z(i) =

cvar1
cvar2
...

cvarn

 (3)

Where each cvark ∈ Rdvark is a column vector of length dvark satisfying the relation
∑n

k=1 dvark = di.
The benefit of this alignment is that it allows us understand modeli’s neural activity in terms of
interpretable variables by allowing us to isolate and causally manipulate the value of each variable,
vark within the NN’s latent representations. MAS builds on DAS by measuring the degree to which
model1 and model2 share the same cvark for a given vark. With this formulation, we can freely isolate
and manipulate cvark encoded in h(i) using a causal intervention:

h(i)
v = Qi((1−Di,vark)Q

−1
i h

(i)
trg +Dj,varkQ

−1
j h(j)

src) (4)
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Where i and j can take on either model index in the set of all models considered, Qi is a scaled
orthogonal rotation matrix for modeli, Di,vark ∈ Rdi×di is a diagonal, binary matrix with dvark

non-zero elements used to isolate the dimensions corresponding to cvark , h(j)
src is the source vector

from which the subspace is harvested, h(i)
trg is the target vector into which activity is substituted,

and h
(i)
v is the resulting intervened vector that then replaces h(i)

trg in the target modeli’s processing,
allowing the model to make causally intervened predictions. In this work, we train Qi as the product
siUi where si is a learned scalar and Ui is an orthonormal matrix.

As an example, we can picture an SA where we assume that all behaviorally relevant information
can be encoded in a single variable, cfull, and all extraneous, irrelevant information is encoded in

a subspace cextra. In this case, z(i) =
[
cfull
c
(i)
extra

]
, and we can freely isolate and intervene upon cfull

using Equation 4 once we have learned each Qi for each given Di,full.

2.4.2 MAS TRAINING

MAS relies on the notion of counterfactual behavior to create intervention data to train and evaluate
each Qi. For a given SA, we know what the SA’s behavior will be after performing a causal
intervention on one of its variables. The counterfactual behavior of the SA is the resulting behavior
of the SA after changing a specific variable while keeping all other variables unchanged. This
counterfactual behavior can be used as a training signal for Qi using a standard Next-Token Prediction
(NTP) autoregressive loss. It is possible for Qi to equivalently learn any permutation of the subspaces
in zi, thus we can restrict our trainings to values of the diagonal matrices Di,vark that have contiguous,
non-zero entries. It is then possible to treat dvark as a hyperparameter in independent trainings,
selecting the Qi-Di,vark pair with the best results. Unless otherwise stated, we use values of dvar equal
to 10, and we perform our causal interventions on individual time steps in the token sequences. We
run the target modeli up an independently sampled timestep t on the target sequence, using its latent
representation at that point as the target vector, h(i)

t,trg . We do the same on the source modelj to obtain

the source vector, h(j)
u,src, at timestep u from a separate source sequence. We then construct h(i)

t,v using

Equation 4, and continue modeli’s predictions starting from time t, using h
(i)
t,v in place of h(i)

t,trg . We
perform batch gradient descent on Q1 and Q2 using the loss as follows for a single counterfactual
sequence, k, of length Sk using i as the target model index and pθi(xs) as the probability generated
by modeli for the counterfactual token label at step s:

L(k)
i (Qi, Qj) = − 1

Sk

Sk∑
s=t

log pθi
(
x(k)
s | x(k)

<s , h
(k),(i)
t,v

)
(5)

Ltot =

2∑
i=1

2∑
j=1

1

N

N∑
k=1

L(k)
i (Qi, Qj) (6)

Where N is the number of samples in the batch.

For the LSTM architecture, we perform MAS on a concatenation of the h and c recurrent state
vectors (Hochreiter & Schmidhuber, 1997). In the GRUs, we operate on the recurrent hidden state. In
the transformers, we operate on the residual stream following the first transformer layer (referred
to as the Layer 1 Hidden States in Supplementary Figure 6) or the input embedding layer. We
use 10000 intervention samples for training and 1000 samples for validation and testing. For all
data, we uniformly sample trial object quantities, and unless otherwise stated, we uniformly sample
intervention time points, t and u, from sequence positions containing demo tokens or response
tokens (excluding BOS, trigger, and EOS tokens). We orthogonalize the rotation matrix using
PyTorch’s orthogonal parameterization with default settings. We train Q with a batch size of 512
until convergence, selecting the checkpoint with the best validation performance for analysis. We use
a learning rate of 0.003 and an Adam optimizer.

MAS Evaluation: Once the Q1 and Q2 training loss has converged, we can evaluate the quality of
the alignment using the accuracy of each model’s predictions on counterfactual outputs from held out
intervention data. We consider a trial correct when all deterministic tokens are predicted correctly
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using the argmax over logits. We report the proportion of trials correct for the worst performing
causal intervention pairing, (i, j), as the Interchange Intervention Accuracy (IIA).

2.4.3 MAS VARIANTS

Unidirectional MAS (UniMAS): In some settings we wish to examine models for which we have
neural recordings but no causal access to the model (as is often the case in BNNs). We introduce
a MAS variant called UniMAS that uses the activations from both models as source activations,
but only uses model1 as the target model during MAS trainings. Concretely, UniMAS changes
Equation 6 to the following during trainings:

LUniMAS =

2∑
j=1

1

N

N∑
k=1

L(k)
1 (Q1, Qj) (7)

As a baseline, we include Linear Maps which are trainings that exclusively use model 2 as the source
model and model 1 as the target model, LLinMaps =

1
N

∑N
k=1 L

(k)
1 (Q1, Q2).

Counterfactual latent MAS (CMAS): We will show that the UniMAS trainings fail to learn an Q2

with strong IIA in the inaccessible model. To address this, we introduce an auxiliary loss function
to the UniMAS trainings. The auxiliary objective relies on Counterfactual Latent (CL) vectors. We
define CL vectors as latent vectors that encode the causal variables that we would expect to exist
in the intervened vector, h(i)

trg,t from Equation 4, after a successful causal intervention. We obtain
these CL vectors from a neural representation dataset possessing situations and behaviors that are
consistent with the information we wish to be encoded after the causal intervention. For example,
if we have an SA with variables varY , varW , and varextra, and following a causal intervention we
expect h(2)

t,v to have a value of y for variable varY and w for variable varW , then the CL vector can

be obtained from a pre-recorded representation h
(i)
CL where Q−1

i h
(i)
CL has the same expected variable

values: varY = y and varW = w. The auxiliary loss X (k) for a single sample k is composed of an
L2 loss and a cosine loss using CL vectors as the ground truth:

X (k)
L2 =

1

2
||h(k),(2)

t,v − h
(k),(2)
CL ||22 (8)

X (k)
cos = −1

2

h
(k),(2)
t,v · h(k),(2)

CL

||h(k),(2)
t,v ||2 ||h(k),(2)

CL ||2
(9)

where h
(2)
t,v is the intervened target vector for the causally incaccessible model, and k denotes the

index of the sample within the batch. The total CMAS training loss is a weighted sum of the UniMAS
autoregressive loss from Equation 7, and the auxiliary loss. LCMAS = λ(XL2 + Xcos) + (1 −
λ)LUniMAS where λ is a hyperparameter.

As a baseline we include Latent Fit trainings which learn a single orthogonal matrix Q that maps
h
(k),(1)
u,src to h

(k),(2)
CL minimizing only the XL2 and/or Xcos. We select XL2 and/or Xcos based on the

best validation IIA.

2.5 SYMBOLIC ALGORITHM VARIABLES

The choice of the counterfactual behavior defines what SA variable(s) we can align the neural activity
to using MAS. The simplest option is to align all behaviorally relevant information by simply using
the exact behavior of the source model as the counterfactual behavior. This is similar to model
stitching in previous works such as Bansal et al. (2021); Lenc & Vedaldi (2015); Sexton & Love
(2022). In these cases of complete information transfer, MAS still differs from previous works in
that it performs the interventions in multiple causal directions using Q1 and Q2, and MAS isolates
a functional subspace of the neural activity rather than using the entire latent space. MAS also has
the ability to find alignments for specific types of information by conditioning the counterfactual
sequences specific causal variables (i.e. the count of the sequence in the numeric equivalence tasks).

In all numeric equivalence tasks, we prevent interventions on representations resulting from the BOS,
T, and EOS tokens. In the arithmetic task, we only perform interventions on representations after the
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”,” token. We perform MAS using each of the following causal variables, where the corresponding
task is denoted in parentheses:

1. Full (Arithmetic/Num Equivalence): Refers to cases in which we transfer all causally
relevant information between models (not all activations).

2. Count (Num Equivalence): The difference between the number of observed demo tokens
and the number of response tokens in the sequence. Example: the following sequences have
a Count of 2 at the last token: ”B D D” ; ”B D D D T R”

3. Last Value (Num Equivalence): The value of the input token with respect to changing
the Count of the sequence. We assign the values as D=1, R=-1, and all other tokens are 0.
Example: if we change the Last Value of a single D token from 1 to -1, the counterfactual
sequence should be ”B D D D T R E”. Example: in a partial sequence ”B D D T R”,
changing the R token from -1 to 1 results in: ”B D D T R R R R E”.

4. Cumu Val (Arithmetic): The cumulative value of the arithmetic sequence in the Arithmetic
task. Example: if we substitute in a value of 3 at the ”,” token in the sequence ”B 2 Op 3 + 5
= 8 ,” the counterfactual sequence could be ”B 2 Op 3 + 5 = 8 , + 2 = 5 E” where the ”+”
and ”2” are provided by the task.

5. Rem Ops (Arithmetic): The remaining number of operations in the arithmetic sequence.
Example: we substitute in a value of 1 at the ”,” token in the sequence ”B 3 Op 3 + 5 = 8 ,”,
the counterfactual sequence could be ”B 3 Op 3 + 5 = 8 , + 1 = 9 E” where the ”+” and ”1”
are provided.

2.6 ADDITIONAL METHODS

Representational Similarity Analysis (RSA): For a given model layer, we run the model on a
batch of sequences consisting of 15 sequences from each object quantity 1-20. We then sample
1000 representational vectors uniformly from all time points excluding padding and end of sequence
tokens. We construct a Representational Dissimilarity Matrix (RDM) as 1 minus the cosine similarity
matrix over each pair-wise comparison of the representations (resulting in an RDM of dimensions
1000× 1000). We create an RDM for two models and compare the RDMs using Spearman’s rank
correlation on the lower triangle of each matrix (Virtanen et al., 2020). We perform the RDM
sampling 10 times and report the average over all 10 correlations.
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Figure 2: A performance comparison of MAS and RSA. The Model1 architecture is consistent
horizontally across panel rows. The Model2 architecture is consistent vertically along the columns.
All models are trained on the Multi-Object task. The bar colors correspond to different activation
layers, and, in the case of MAS, the colors further distinguish which causal variables the analysis was
conditioned upon. RDM Cor. is the value associated with an RSA whereas IIA is the intervention
accuracy.
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3 RESULTS/DISCUSSION

3.1 MAS

We first turn our attention to the MAS IIA in Figure 2. The figure shows analyses where Model1 is
consistent horizontally across each row and Model2 is displayed vertically along each column. We
exclude comparisons of each model seed with itself. We see the MAS results conditioned on three
different variables: Full, Count, and Last Value (see Section 2.5). The IIA shows the proportion of
trials with successful counterfactual behavior after the causal interventions. A trial is considered
successful if all deterministic counterfactual tokens are predicted correctly. For the Full and Count
variables, causal interventions are performed on the hidden state vector after the recurrent processing
in recurrent models and on the hidden states following the first transformer layer in transformers.
Causal interventions conditioned on the Last Value variable are performed on the input embedding
layer in all architectures.

We see from Figure 2 and Appendix 7 that MAS is successful at performing the Full variable
interventions between different recurrent model seeds. This is consistent with the findings of previous
work on direct linear mappings between networks (Lenc & Vedaldi, 2015; Bansal et al., 2021; Lähner
et al., 2023; Sexton & Love, 2022; Sucholutsky et al., 2023). Furthermore, MAS is successful at
transferring the Count between the Multi-Object GRUs that have previously been shown to have an
interchangeable Count variable using DAS (Grant et al., 2024). This success is qualified by MAS’
inability to transfer the Count when one of the two models is a Same-Object GRU (Figure 4), which
is also expected from DAS. MAS on the hidden states of the transformers is largely unsuccessful
with a value of 0.087, whereas MAS on the embeddings is successful with a value of 0.961. This is
consistent with previous work that has shown the transformers solve the numeric equivalence tasks
without encoding a Markovian cumulative state. Instead, they rely on re-solving the task at each step
in the sequence (Grant et al., 2024; Behrens et al., 2024). See Figure 7 for DAS results.

3.2 MAS VS RSA

RSA is a second order correlational method that examines the similarity between sample correlation
matrices constructed from two models’ representations (see Appendix A.3 for details). We provide
comparisons between models differing only by seed to establish an upper limit on MAS and RSA
values. We also provide GRU-LSTM comparisons to establish value changes resulting from archi-
tectural differences. Turning to Figure 2 and Appendix 7, we highlight that RSA provides a lower
value than MAS on the embedding layers and a larger value than MAS on the the hidden states of
the transformers. In the case of the hidden states in the Transformer-Transformer comparison (the
lower rightmost panel), we see an RSA value of 0.78 and a CKA value of 0.96 in the appendix. The
values in this comparison are difficult to interpret, as we might expect higher values due to similarities
in architecture and training, but we also know from causal experiments that there is little causal
transferrability between the transformers’ representations. We note that questions on how to interpret
RSA values have been addressed in previous works (Kriegeskorte et al., 2008; Sucholutsky et al.,
2023; Dujmović et al., 2022).

3.3 ARITHMETIC

We include a MAS analysis between Arithmetic GRUs and GRUs trained on the Numeric Equivalence
tasks (see Figure 3). The leftmost panel shows that we can successfully align the Cumu Val, and the
Rem Ops variables between and within the Arithmetic GRUs. The middle panel shows that MAS can
successfully align the Count with the Rem Ops variables between GRUs trained on the Multi-Object
and Arithmetic tasks respectively. These results are qualified by the lower IIA alignment between the
Count and the Cumu Val variables. We see that when we perform MAS only on Cumu Val values that
are shared with possible the Rem Ops values (Low CumuVal), the results are much higher but still do
not match the results from Rem Ops. These findings are consistent with the hypothesis that these
GRUs are using different types of numeric representations for arithmetic than incremental counting.
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(a) (b) (c)

Figure 3: (a) MAS between GRUs trained on the Arithmetic task showing transferrability of the
different types of information. (b) MAS used to compare the Count variable in the the Multi-Object
GRUs to the Rem Ops and Cumu Val variables in the Arithmetic GRUs. Cumu Val results from MAS
performed on all possible Cumu Val values. Low CumuVal results from a separate MAS analysis
restricted to Cumu Val values in the range of the Rem Ops variable. High CumuVal results show
a MAS analysis conditioned on values beyond the Rem Ops range. (c) Example trajectories of a
theoretical model that provides a possible explanation for why Linear Map results can be inflated
relative to MAS. See Section 3.4 for more details.

3.4 DIRECT LINEAR MAPPINGS

Turning to Figure 4, we compare the IIA of MAS to direct linear mappings (denoted Linear Map).
The Linear Map trainings are equivalent to MAS trained in a single causal direction with the IIA
reported from only that trained causal direction. We see that the Count variable can be successfully
transferred between the Same-Object GRUs when using direct linear mappings. This is in contrast
to MAS and the results of DAS from previous work (Grant et al., 2024). We introduce a theoretical
model in Figure 3 as a possible explanation.

Turning to Figure 3, we see three components of a theoretical models’ state vector and their corre-
sponding values at different points along 3 different trajectories. Each trajectory begins at the 0,0,0
coordinate. Each dark blue arrow represents an increment in the number of demo tokens, allowing
the total number of demo tokens to be represented as the magnitude of the z-component. The number
of response tokens is encoded along the y-axis, and the red curve represents the model’s decision
boundary for outputting the E token. For a single trajectory, this model effectively counts up along
the z-axis, then counts along the y-axis, and finishes when it has reached the non-linear decision
boundary. Along the x-axis, we show a vector component that does not affect the model’s functional
solution to the task, but still encodes relevant information. In this model, it is possible to linearly
decode the Count using the difference between twice the magnitude of the z-component and the
magnitude of the x-component. More precisely, Count = 2z − x. It is possible to then map this
information to the equivalent of the z-axis in a similar target model while discarding its y-component.

Linear Map MAS0.0

0.5

1.0

GR
U 

(S
am

eO
bj

)
IIA

GRU (SameObj)

Count
Full Swap

Linear Map MAS

GRU (MultiObj)

Figure 4: Performance comparison of MAS and direct linear mappings (Linear Map) between the
Same-Object GRUs and between the Same-Object and Multi-Object GRUs. The Count information
can be successfully transferred to and from Same-Object GRUs when using Linear Map but not in
MAS.
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This target model could then continue counting demo tokens or begin counting response tokens
depending on its phase. It is important to note that this substitution is likely only possible if the
mapping can push all conflicting causally relevant information into the null space of the target model;
remnants of the z or y components could interfere with the counterfactual behavior. This effect is
only a potential explanation for why the IIA observed in MAS is lower. Namely, the within model
MAS interventions could prevent solutions that ”throw away” residual information. We do not make
efforts to prove that this theoretical model accounts for the results we see in Figure 4, it only serves
as a potential explanation for the results.

3.5 CMAS

We can see from Figure 5 the results of CMAS compared to MAS, UniMAS, and Latent Fits. It is
important to note that the Latent Fit, UniMAS, and CMAS variants do not include the autoregressive
counterfactual training signal in causal directions 1 → 2 and 2 → 2. MAS provides a theoretic
upper bound on the possible IIA for CMAS. UniMAS provides a lower bound on the possible CMAS
performance. We also note that the UniMAS results demonstrate that the causally relevant R−1

2 is
not automatically learned. Lastly, Latent Fit—which trains a rotation matrix to map latent vectors
from Model1 to latent vectors of Model2 without any causal behavioral training—provides a baseline
of existing methods. We see that CMAS recovers much of the possible performance of MAS whereas
the Latent Fit performs near the lower bound. This demonstrates the potential of CMAS to recover
causally relevant intervention rotation matrices even when we do not have causal access to one of the
models in the comparison.

1->2 2->2
Causal Direction

0.0

0.5

1.0

GR
U 

(M
ul

tiO
bj

)
IIA

GRU (MultiObj)

CMAS
Latent Fit
MAS
UniMAS

Figure 5: The IIAs in the causally untrained directions for CMAS on the Multi-Object GRU models
on the Full variable. The x labels denote the intervention directions where ”1” and ”2” denote
the model index and the arrow points from the source to the target model. Latent Fit variants fit
a transformation to the latent vectors in one direction without including causal behavior training.
UniMAS and MAS show a lower and upper bound on CMAS performance. The 2 − > 2 Latent Fit
direction is trivial.

4 LIMITATIONS/FUTURE DIRECTIONS

We highlight that our results demonstrate the possibility to learn alignments that are functionally
relevant in only one causal direction. Although MAS does not guarantee isolation and alignment of
only functionally relevant information, it is more restrictive than existing methods while allowing for
the desired alignment of functional information. Future MAS explorations can narrow the focus on
functional information by finding the minimum transferrable subspace.

Despite CMAS’s successes, we are aware of the difficulty of evaluating the causal relevance of the
interventions without causal access to the inaccessible model. We note, however, that CMAS still
may provide value in biological settings as the method can potentially remove the need for BNN
counterfactual behavioral training data by using a brute-force approach of multiple independent
CMAS trainings that can then be evaluated for causal relevance.
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5 CONCLUSION

This work has introduced a new technique for causally measuring the functional similarity of
representations in two neural systems. We showed the potential need to compliment commonly used
correlational methods with MAS, and we showed how MAS improves upon previous causal similarity
methods. We also showed that MAS can be used to address questions of representational similarity
across diverse task structures, and we introduced CMAS as a promising direction for learning causal
interventions in cases where we do not have causal access to one of the two models. This work has
been confined to ANNs, but we look forward to future explorations in biological neural settings.
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Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Daniel Guo, Mohammad Gheshlaghi
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Figure 6: Figure and caption taken from Grant et al. (2024). Diagram of the transformer architecture
used in this work. White rectangles represent activation vectors, arrows represent functional opera-
tions. All causal interventions were performed on either the Hidden State activations from Layer 1 or
the Embeddings layer. All normalizations are Layer Norms (Ba et al., 2016).

A.1 MODEL DETAILS

All artificial neural network models were implemented and trained using PyTorch (Paszke et al., 2019)
on Nvidia Titan X GPUs. Unless otherwise stated, all models used an embedding and hidden state size
of 48 dimensions. To make the token predictions, each model used a two layer multi-layer perceptron
(MLP) with GELU nonlinearities, with a hidden layer size of 4 times the hidden state dimensionality
with 50% dropout on the hidden layer. The GRU and LSTM model variants each consisted of a single
recurrent cell followed by the output MLP. Unless otherwise stated, the transformer architecture
consisted of two layers using Rotary positional encodings (Su et al., 2023). Each model variant used
the same learning rate scheduler, which consisted of the original transformer (Vaswani et al., 2017)
scheduling of warmup followed by decay. We used 100 warmup steps, a maximum learning rate of
0.001 , a minimum of 1e-7, and a decay rate of 0.5. We used a batch size of 128, which caused each
epoch to consist of 8 gradient update steps.

A.2 MAS (AND ASSOCIATED VARIANTS) TRAINING DETAILS

For each rotation matrix training, we use 10000 intervention samples and 1000 samples for validation
and testing. We uniformly sampled corresponding indices upon which to perform interventions,
excluding the B, T, and E tokens in the numeric equivalence tasks from possible intervention sample
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Figure 7: A performance comparison of MAS against RSA. The rows of panels show Model 1
whereas the columns represent the Model 2 in the context of the MAS diagram Figure 1. The different
colors represent different activation layers within the models, and, in the case of MAS, the colors
further distinguish which causal variables the analysis was conditioned upon.
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Figure 8: The IIAs in the causally untrained directions for CMAS on the Multi-Object GRU models
on the Count variable. The x labels denote the intervention directions where the numbers 1 and 2
denote the model index and the arrow points from the source to the target model. UniMAS and MAS
show a lower and upper bound on CMAS performance.

indices. In the Arithmetic task, we used the comma token for Rem Ops and Cumu Val interventions.
When intervening upon a state in the demo phase in the numeric equivalence tasks, we uniformly
sample 0-3 steps to continue the demo phase before changing the phase by inserting the trigger token.
We orthongonalize the matrices, Qi, using PyTorch’s orthogonal parametrization with default settings.
PyTorch creates the orthogonal matrix as the exponential of a skew symmetric matrix. We train the
rotation matrices for 1000 epochs, with a batch size of 512 used for each model index pairing. We
only perform experiments considering two models. Each gradient step uses the average gradient
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over batches of all 4 i, j pairings. We select the checkpoint with the best validation performance for
analysis. We use a learning rate of 0.003 and an Adam optimizer.

A.3 RSA DETAILS

We performed RSA on a subsample of a dataset of 15 sampled sequences for each object quantity
ranging from 1-20 on the task that each model was trained on for each model. We first ran the
models on their respective datasets to collect the latent representations. We sampled 1000 of these
latent vectors as the sample representations in a matrix Mk ∈ RN×dk where k refers to the model
index, N is the number of latent vectors (N = 1000 in our analyses), dk is the dimensionality of a
single latent vector for model k. We then calculated the sample cosine distance matrices (1-cosine
similarity) for each model resulting in matrices Ck ∈ RN×N . Lastly we calculated the Spearman’s
Rank Correlation Coefficient between the lower triangles of the matrices C1 and C2 as the RSA
value using python’s SciPy package (Zar, 2005; Kriegeskorte et al., 2008; Virtanen et al., 2020). We
resampled the 1000 vectors 10 times and recalculated the RSA score 10 times and report the average
over these scores.

A.4 CKA DETAILS

We performed CKA on a subsample of a dataset of 15 sampled sequences for each object quantity
ranging from 1-20 on the task that each model was trained on for each model. We first ran the models
on their respective datasets to collect the latent representations. We sampled 1000 of these latent
vectors as the sample representations in a matrix Mk ∈ RN×dk where k refers to the model index, N
is the number of latent vectors (N = 1000 in our analyses), dk is the dimensionality of a single latent
vector for model k. We then normalized the vectors along the sample dimension by subtracting the
mean and dividing by the standard deviation (using dk means and dk standard deviations calculated
over 1000 samples). Using these samples we calculated the kernel matrices using cosine similarity to
create matrices Ck ∈ RN×N . Using these matrices, we computed the Hilbert-Schmidt Independence
Criterion (HSIC) where I ∈ RN×N is the identity and J ∈ RN×N is a matrix of values all equal to
1:

H = I − 1

N
J (10)

HSIC(C1, C2) =
trace(C1HC2H)

(N − 1)2
(11)

and lastly we computed CKA as the following:

CKA =
HSIC(C1, C2)√

HSIC(C1, C1)HSIC(C2, C2)
(12)

(Kornblith et al., 2019). We resampled the 1000 vectors 10 times and recalculated the CKA score 10
times and report the average over these scores.

17


	Introduction
	Methods
	Numeric Equivalence Tasks
	Arithmetic Task
	Model Architectures
	Model Alignment Search (MAS)
	MAS Formulation
	MAS Training
	Mas Variants

	Symbolic Algorithm Variables
	Additional Methods

	Results/Discussion
	MAS
	MAS vs RSA
	Arithmetic
	Direct Linear Mappings
	CMAS

	Limitations/Future Directions
	Conclusion
	Acknowledgments

	Appendix
	Model Details
	MAS (and Associated Variants) Training Details
	RSA Details
	CKA Details


