
Under review as submission to TMLR

Understanding LLM Embeddings for Regression

Anonymous authors
Paper under double-blind review

Abstract

With the rise of large language models (LLMs) for flexibly processing information as strings,
a natural application is regression, specifically by preprocessing string representations into
LLM embeddings as downstream features for metric prediction. In this paper, we provide one
of the first comprehensive investigations into embedding-based regression and demonstrate
that LLM embeddings as features can be better for high-dimensional regression tasks than
using traditional feature engineering. This regression performance can be explained in part
due to LLM embeddings over numeric data inherently preserving Lipschitz continuity over
the feature space. Furthermore, we quantify the contribution of different model effects, most
notably model size and language understanding, which we find surprisingly do not always
improve regression performance.

1 Introduction and Related Work

Regression is a fundamental statistical tool used to model the relationship between a metric and a selected set
of features, playing a crucial role in various fields, enabling predictions, forecasting, and the understanding of
underlying relationships within data. Traditional regression techniques often rely on handcrafted features or
domain-specific knowledge to represent input data. However, the advent of Large Language Models (LLMs)
and their ability to instead process semantic representations of text has raised the question of whether
regression can instead be performed over free-form text.

5D

30

45

60

Y 
Va

lu
e

5D

15

30

45

60

Y 
Va

lu
e

50D

350

400

450

500

Y 
Va

lu
e

50D

360

400

440

480

Y 
Va

lu
e

100D

750

800

850

900

950

Y 
Va

lu
e

100D

720

780

840

900

Y 
Va

lu
e

Input Space

Embedding Space

Figure 1: Rugged surface of a 5D Sphere function when
inputs are represented as Gemini embeddings of dimension
6K+, post-processed by t-SNE into 2D space.

Previous works have predominantly examined the
topic of LLM-based regression through decoding, i.e.
generating floating point predictions using token-
based sampling. For example, (Song et al., 2024)
examines the case when the model is fully acces-
sible and fine-tunable against data, while (Vacare-
anu et al., 2024) study the ability of service-based
closed-source LLMs such as GPT-4 using in-context
learning.

One understudied case however is the use of service-
based LLM embeddings - fixed vector representa-
tions derived from pre-trained (but frozen) language
models, which are ubiquitously offered among most
LLM services (OpenAI, 2023; Google, 2024; An-
thropic, 2024). Although they are used frequently
in recent applications such as retrieval (Karpukhin
et al., 2020), semantic similarity (Li et al., 2020),
and a variety of other downstream language tasks
(Liu et al., 2020), there has been very little funda-
mental research around their use in regression, outside of specific applications such as Bayesian Optimization
(Nguyen et al., 2024; Kristiadi et al., 2024).

In contrast to decoding-based regression techniques, embedding-based regression allows the possibility of
cheap data-driven training using inexpensive and customizable post-embedding layers such as multi-layer

1



Under review as submission to TMLR

perceptrons (MLPs). However, as shown in Figure 1, when the domain of a simple function is expressed
using high-dimensional embeddings, unexpected characteristics and irregularities can arise, prompting the
need for a thorough analysis. Furthermore, LLMs by default are not explicitly trained for embedding-based
regression, rather purely for token generation, and thus it is worth analyzing the emergent behaviors of LLMs
when applied to embedding-based regression.

This paper investigates the behavior of these LLM embeddings when used as features for traditional regression
tasks. Most notably, our findings are:

• LLM embeddings are dimensionally robust, i.e. regression performance can remain strong even over
high-dimensional data, whereas traditional representations significantly suffer.

• Over numeric formats, LLM embeddings preserve Lipschitz-continuity and smoothness over feature
space, which naturally enables regression when using a downstream MLP head.

• Factors which directly impact language understanding (e.g. size, pre-training, and input formatting)
have more nuanced effects for regression and do not always provide significantly better outcomes.

2 Problem and Methodology

A regression task T = (f,X ,D) consists of an underlying scalar-valued function f : X → R over an input
space X . Provided are offline training data Dtrain = {(x1, y1), ..., (xT , yT )} collected from querying f and an
analogous test set Dtest for evaluation. Given access to training data Dtrain, the goal is to obtain accurate
predictions over test points (x, y) ∈ Dtest, usually measured by an aggregate performance measure, e.g. mean
squared error or Kendall-Tau ranking scores.

Required by nearly all learnable regression methods are features, which we assume come from an embedder
ϕ : X → Rd which takes an input x and returns a fixed-dimensional feature representation, of dimension
d. Here, we use the terms "features" and "embedding" interchangeably, since traditional methods typically
use a canonical, manually defined feature engineering method for tabular data, in which continuous values
are normalized and categorical selections are one-hot encoded. This feature vector ϕ(x) is then sent to a
downstream predictor, e.g. MLP or random forest, which is trained using a loss function such as mean
squared error.

Language models also provide a canonical definition of embedding, which typically consists of, in order:

1. Tokenizing a string representation x into L tokens.
2. Obtaining a "soft prompt" RL×v via vocabulary look-up.
3. Applying a forward pass of a Transformer to obtain an output RL×f .
4. Pooling down to a fixed dimension vector in Rd.

Afterwards, one may also attach an MLP predictor head and apply an analogous training procedure as in the
traditional case. Thus we can see that the only difference becomes the input representation ϕ, i.e. whether
we used a traditional ϕtrad or LLM-based ϕLLM.

While it is straightforward to assume that the whole process outlined for LLMs should constitute the defini-
tion of a language model embedding ϕLLM, it is not obvious how much each of these steps may contribute to
the final regression result. For instance, one could simply skip applying a forward pass in step (3) and pool
the soft prompt directly, or use a randomly initialized model as opposed to a pretrained one. We extensively
study this case in Section 3.3.

2.1 Modeling

To minimize confounding factors and maintain fairness during comparisons, we use the exact same MLP
prediction head (2 hidden layers, ReLU activation), loss (mean squared error), and y-normalization scheme
(shifting by empirical mean and dividing by empirical deviation), regardless of using ϕLLM and ϕtrad. Note
however, that the embedding dimensions of the two representations may be different, and so we distinguish
them using notation dllm and dtrad respectively, where typically dllm ≫ dtrad. Specific embedding sizes can
be found in Appendix B.2.

2



Under review as submission to TMLR

To demonstrate consistent results over different families of language models, we benchmark over both the
T5 (Raffel et al., 2020) and Gemini 1.0 (Google, 2024) families, which use different architectures (encoder-
decoder and decoder-only), different vocabulary sizes (32K and 256K), and embedding dimensions (See
Appendix B.2) respectively. However, to remain consistent with the definition of embedding, we follow
previous literature (Li et al., 2020; Reimers & Gurevych, 2019) and use average-pooling as the canonical
method of aggregating Transformer outputs, and thus the embedding dimension dllm is equivalent to the the
output feature dimension f following a forward pass.

Similar to previous work (Song et al., 2024; Nguyen et al., 2024), for string representations of x from
any regression task, by default we use a key-value JSON format with consistent ordering of keys, i.e.
{param1:value1,param2:value2,...}, with specific examples shown in Appendix C.

2.2 Regression Tasks

For regression tasks, we first use synthetic, closed-form objective functions in order to produce controlled
studies in which we may query any x from the input space. Our synthetic functions are defined from the
standard Black-Box Optimization Benchmarking (BBOB) suite (Elhara et al., 2019). To avoid confounding
terminology between embedding "dimension" d and the intrinsic "dimension" of an objective f , we denote the
latter as "degree-of-freedom" (DOF), and thus f(·) is dependent on input coordinates x(1), . . . , x(DOF), each
of which is between [−5, 5]. This provides a comprehensive variety of both convex and non-convex objective
landscapes to regress upon.

We further use real-world regression tasks representative of those encountered in the wild and in industry
settings by benchmarking over offline objective evaluations over production systems, collected from hyper-
parameter tuning records. These consist of four families, with each family containing at least 50 individual
yet similar regression tasks with varying amounts of data. The families are:

• AutoML (Google Cloud, 2023): Automated Machine Learning service for Tensorflow Extended
(Google, 2023) pipelines (e.g. batch size, activation, layer counts) over tabular or text data.

• Init2Winit (Dahl et al., 2023): Learning rate scheduling parameters influencing common image
classification tasks (e.g. ResNets on CIFAR-10 and ImageNet).

• XLA (Phothilimthana et al., 2021): Tuning for the Accelerated Linear Algebra (XLA) compiler
which affects LLM serving latencies.

• L2DA (Yazdanbakhsh et al., 2021): "Learning to Design Accelerators", for improving accelerators
such as TPUs and corresponding computer architectures to improve hardware performance.

In the real world regression tasks, each parameter may be continuous or categorical, and we define the
DOF of such a task by its number of parameters. Note that for synthetic objectives, where all inputs are
continuous, dtrad = DOF. However, for real-world tasks with categorical parameters, dtrad > DOF due to
additional one-hot encodings.

For obtaining data, we may either sample (x, y) pairs (in the case of synthetic objectives where x are
uniformly sampled from X ), or use the given offline data (in the case of real-world tasks, where they were
actual evaluations from an optimization trajectory), using a standard 8-1-1 train-validation-test split.

Due to the inherent differing of metric scales across tasks, it would be inappropriate to aggregate results based
on scale-dependent metrics such as mean squared error (MSE). Furthermore, we found that the selection of
the regression metric (e.g. Kendall-Tau, Pearson, mean squared error, mean absolute error) did not matter
for comparisons, as they all strongly correlated with each other. Thus, by default we report the Kendall-Tau
ranking correlation, which is always within [0, 1] and can also be aggregated across different tasks.

3 Experimental Results

3.1 High Dimensional Regression

We begin by demonstrating cases in which LLM embeddings better represent inputs over high degree-
of-freedom spaces than traditional representations. In Figure 2, we show that for a subset of functions,

3



Under review as submission to TMLR

LLM embeddings possess surprising robustness, retaining the same performance for varying DOFs whereas
traditional baselines such as XGBoost and MLPs significantly falter over higher DOFs.

25 50 75 100

0.0

0.3

0.6

0.9

Sphere

25 50 75 100

0.0

0.3

0.6

0.9
RosenbrockRotated

25 50 75 100
0.00

0.25

0.50

0.75
Lunacek

25 50 75 100

0.0

0.3

0.6

0.9

NegativeSphere

25 50 75 100

0.0

0.4

0.8

SharpRidge

25 50 75 100
0.00

0.25

0.50

0.75

Gallagher101Me

25 50 75 100
0.00

0.25

0.50

0.75

Gallagher21Me

25 50 75 100

0.25

0.50

0.75

GriewankRosenbrock

25 50 75 100

0.2

0.4

0.6

SchaffersF7

25 50 75 100

0.2

0.4

0.6

SchaffersF7IllConditioned

25 50 75 100

0.25

0.50

0.75

Rastrigin

25 50 75 100

0.0

0.3

0.6

0.9

StepEllipsoidal

XGBoost MLP Gemini Pro T5-XXL
Degrees of Freedom (DOF)

Ke
nd

al
l-T

au
 C

or
re

la
tio

n

Figure 2: Higher (↑) is better. Degrees of freedom (DOF) vs Kendall-Tau correlation for various BBOB functions.
Results are averaged over 12 runs for each regression method. Each task’s data consists of 500 (x, y) evaluations
sampled uniformly across the input space, using a 8-1-1 split for train-validation-test.

This result is not universal however, as we show in Appendix A.1, this pattern does not apply for a few
selected functions, but nonetheless it occurs in the majority of the BBOB functions. We further corroborate
this observation over real-world tasks in Table 1. We see that in general, regressions on LLM embeddings
outperform traditional methods more often for tasks with higher DOFs (AutoML and XLA).

Task Name Avg. DOF T5-Small % T5-XXL % Gemini Nano % Gemini Pro %
Init2Winit 4 6.7 8.0 11.3 19.0
L2DA 10 2.7 12.0 9.3 10.7
AutoML 29 30.7 41.3 29.3 36.0
XLA 35 17.2 29.3 18.9 24.1

Table 1: Percentage of tasks in which ϕLLM outperforms ϕtrad across various real world regression tasks. Results
reported for 75 tasks per family, except for XLA, which only contains 58 tasks. Full results in Appendix A.2.

3.2 LLM Embedding Smoothness

Particularly due to the discrete nature of tokenization, it is non-obvious whether LLM embeddings possess
a notion of continuity in embedding space. For example, assuming character-wise tokenization, 1.234 is not
so numerically distant from 1.567, but is token-wise distant, as the majority of the tokens (234 and 567)
are not shared.

4



Under review as submission to TMLR

The notion of continuity and smoothness is crucial for neural network generalization (Kalimeris et al., 2019;
Neyshabur et al., 2018), robustness (Weng et al., 2018), vulnerability to adversarial examples (Goodfellow
et al., 2015), and more. We can characterize smoothness in the regression case by the Lipschitz-continuity
induced by a representation ϕ in its latent space Rd.

Intuitively, similar inputs should lead to similar objective values, which can be quantified inversely by the
Lipschitz factor L(x, x′) = ∥f(x)− f(x′)∥ / ∥ϕ(x)− ϕ(x′)∥ with respect to a representation ϕ and ∥·∥ norm.
We emphasize to the reader that the input space X does not actually have an explicit notion of distance
on its own. Instead, traditionally it has always been assumed that the distance was defined canonically by
Euclidean distance over the traditional embedding method, i.e. ∥ϕtrad(x)− ϕtrad(x′)∥2 as demonstrated by
common use of Euclidean-based radial basis and Matern kernels (Genton, 2002) during regression modeling.
However, as seen from the results previously, it may be the case that ϕtrad is suboptimal for some regression
tasks.

0 80 160 240 3200

20

40

60

80

Sphere, DOF=100

0.0 0.5 1.0 1.5 2.0
1e6

0

20

40

60

80

RosenbrockRotated, DOF=100

0 400 800 12000

20

40

60

80
Lunacek, DOF=100

0 2 4 6 8
1e5

0

25

50

75

100
Schwefel, DOF=100

0 100 200 300 4000

20

40

60

80

LinearSlope, DOF=100

0.0 0.5 1.0 1.5 2.0
1e7

0

25

50

75

100

Discus, DOF=100

Normalized Lipschitz Factor

Co
un

t

T5-XXL Embedding Raw Input

Figure 3: Left-skewness (←) is better. NLFDs induced by ϕLLM (T5-XXL) and ϕtrad. Top: Cases where ϕLLM
outperforms ϕtrad for regression. Bottom: Vice-versa where ϕtrad outperforms ϕLLM.

In order to analyze the continuity of an embedding ϕ with respect to offline data D, we define a Normalized
Lipschitz Factor Distribution (NLFD) as follows:

1. Normalize each embedding vector ϕ(x) coordinate-wise to have zero mean and unit variance across
the dataset D.

2. For each x ∈ D, choose x′ ∈ D such that ϕ(x′) is the nearest ℓ2 neighbor of ϕ(x), and compute the
Lipschitz factor L(x, x′).

3. To assume an average embedding norm of 1 for different embedding dimensions d, we downscale all
Lipschitz factors by

√
d.

We see that there is a high inverse relationship between the skewedness of the NLFD and regression perfor-
mance. Specifically, in Figure 3, when ϕLLM outperforms ϕtrad for regression, ϕLLM’s distribution of Lipschitz
factors also tends to skew relatively more to zero than ϕtrad, and vice-versa.

To formally quantify comparisons between NLFDs from ϕLLM and ϕtrad, for a fixed regression task, we may
thus compute the Z-score using the difference of the two distributions:

Z = µϕtrad − µϕLLM√
σ2

ϕtrad
+ σ2

ϕLLM

(1)

5



Under review as submission to TMLR

0.15 0.00 0.15

0.3

0.0

0.3

0.6

T5-Small, DOF=100
 K: 0.64, S: 0.83, P: 0.77

0.1 0.0 0.1 0.2
0.3

0.0

0.3

0.6

T5-Large, DOF=100
 K: 0.71, S: 0.88, P: 0.79

0.15 0.00 0.15 0.30
0.3

0.0

0.3

0.6

T5-XL, DOF=100
 K: 0.79, S: 0.92, P: 0.86

0.0 0.1 0.2 0.3
0.3

0.0

0.3

0.6

T5-XXL, DOF=100
 K: 0.75, S: 0.91, P: 0.83

0.2 0.0 0.2 0.4
0.75

0.50

0.25

0.00

Gemini Pro, DOF=10
 K: 0.58, S: 0.79, P: 0.77

0.15 0.00 0.15 0.30

0.3

0.0

0.3

Gemini Pro, DOF=25
 K: 0.54, S: 0.67, P: 0.73

0.30 0.15 0.00 0.15 0.30

0.4

0.0

0.4

0.8

Gemini Pro, DOF=50
 K: 0.65, S: 0.78, P: 0.82

0.30 0.15 0.00 0.15

0.4

0.0

0.4

0.8

Gemini Pro, DOF=100
 K: 0.75, S: 0.93, P: 0.88

NLFD Gap (Z-Score)

Re
gr

es
sio

n 
Pe

rfo
rm

an
ce

 G
ap

 (K
en

da
ll)

Figure 4: Relationship between gaps in NLFD (via Z-score) and regression performance for all 23 BBOB functions.
Relationship is quantified using (K, S, P), which respectively are Kendall-Tau, Spearman and Pearson correlations.
Top: We vary model size within the T5 model family. Bottom: We vary the objective’s DOF for Gemini Pro.

where µϕ and σϕ are respectively mean and standard deviations of the NLFD of a representation ϕ. We
may then observe the relationship between gaps in representation smoothness vs. regression performance. In
Figure 4 with extended results in Appendix A.3, we see that for a given BBOB regression task, the Z-score
(i.e. gap in embedding smoothness) is highly correlated with the gap in regression performance, regardless
of the model used (T5 or Gemini) or the DOF of the underlying objective f .

20 10 0 10 20
t-SNE Dimension 1

20

10

0

10

20

t-S
NE

 D
im

en
sio

n 
2

Gemini Nano
Reference Point

15

30

45

Di
st

an
ce

 Fr
om

 R
ef

er
en

ce
 P

oi
nt

10 0 10 20
t-SNE Dimension 1

20

15

10

5

0

5

10

15

20

t-S
NE

 D
im

en
sio

n 
2

Gemini Pro

Reference Point

15

30

45

Di
st

an
ce

 Fr
om

 R
ef

er
en

ce
 P

oi
nt

Figure 5: t-SNE for Gemini (Nano and Pro) embeddings of points sampled around a DOF=100 reference point.
Traditional ℓ2 distance is overlayed in color.

We further visualize whether ϕLLM is distance aware, i.e. whether ϕLLM(x) are ϕLLM(x′) are close in
embedding space if ϕtrad(x) and ϕtrad(x′) are close. As mentioned before however, there is no ground truth
notion of "closeness" - nonetheless, we use ϕtrad as a point of comparison. Since it is inappropriate to simply
sample x’s uniformly in a high DOF space, as then average distances concentrate around

√
DOF, we instead

take a reference point and sample points from ℓ2-balls of increasing distance from the reference.

In Figure 5, we see that distances over the LLM embedding space are correlated with the traditional measure
of distance, but may be non-linearly warped, which benefits LLM-based regression in certain cases as seen
in Section 3.1.

6



Under review as submission to TMLR

3.3 Model Effects

In this subsection, we comprehensively investigate the impact of many common LLM factors on regression
performance.

Are Larger Models Always Better? Within the research community, the prevailing assumption is that
there exists a direct correlation between language model size and performance improvement. However, with
the rise of leaderboards such as LMSYS (LMS, 2023), smaller models have been shown to outperform larger
competitors, due to differences in their "recipe", such as training data quality, pre-training and post-training
techniques, and architecture.

108 109 1010

Model Parameters

0.2

0.3

0.4

0.5
T5 Scaling

Nano Pro Ultra
Model Tier

0.25

0.30

0.35

0.40

0.45

0.50

Gemini Scaling

Ke
nd

al
l-T

au
 C

or
re

la
tio

n

AutoML
Init2Winit
XLA
L2DA

Figure 6: Higher (↑) is better. Model size vs regression performance on hyperparameter tuning tasks across T5 and
Gemini model families. Median performance is plotted, along with 40-60 percentiles as error bars.

In Figure 6, we see that over various real world regression tasks, T5 models exhibit a clear trend of improved
performance when increasing model size, when training methodology is fixed. In contrast, model tiers
within the Gemini family exhibit substantial variance, and larger model sizes do not consistently translate
to superior results. We hypothesize this is due to differences in Gemini "recipes", as e.g. different model
tiers may have used different pre-training datasets, architecture tweaks, and post-training configurations,
whereas all T5 model sizes have only been pre-trained on the C4 web crawl corpus.

Does Language Understanding Actually Help? Recent works (Li et al., 2020; Devlin et al., 2019) have
claimed that logit-based embeddings mostly measure the semantic similarity between string inputs, and thus
it is unconfirmed whether they may be beneficial for numeric regression tasks.

AutoML Init2Winit XLA Accelerator Design
Task

0.12

0.18

0.24

0.30

0.36

0.42

0.48

Ke
nd

al
l-T

au
 C

or
re

la
tio

n

Real-World Tasks (Pre-trained vs Random Init)

T5-Small T5-Large T5-XL T5-XXL T5-* Random

AutoML Init2Winit XLA L2DA
Task

0.12

0.18

0.24

0.30

0.36

0.42

0.48

Ke
nd

al
l-T

au
 C

or
re

la
tio

n

Real-World Tasks (Full Model vs Vocab Table)

T5-Small T5-Large T5-XL T5-XXL T5-* Vocab

Figure 7: Kendall-Tau regression comparisons when comparing to random initialization (left) and vocabulary em-
beddings (right). Each bar is averaged across 75 tasks per family.

To resolve this, using the T5 family, we compare against using (1) a randomly initialized model for the
forward pass, and (2) representing our features via vocabulary embeddings without applying a forward pass.

7



Under review as submission to TMLR

In Figure 7, we see that the default mode of applying a forward pass of a pre-trained model performs the best,
as expected. However, it is worth noting that in some tasks such as AutoML and L2DA, the improvement
is surprisingly quite minimal, suggesting that applying forward passes by pretrained models does not always
help for regression.

AutoML Init2Winit XLA L2DA
Task

0.04

0.00

0.04

0.08

0.12

0.16

K-T
 C

or
r. 

Di
ffe

re
nc

e

Real-World Tasks (Feature Names vs Omitted)
T5-Small
T5-Large
T5-XL
T5-XXL

Figure 8: Difference in Kendall correlation when using full
dictionary containing feature names, or only values.

We further ablate differences in string represen-
tation, i.e. whether by default to show feature
names as {param1:value1, param2:value2,...}
or omit them, only showing [value1,value2,...].
In Figure 8, for the majority of tasks, omitting
feature names does not significantly affect perfor-
mance, although specific tasks such as XLA do
benefit from feature names. This is surprising, as
presumably feature names in XLA tasks such as
auto_cross_replica_sharding are not as common
as names such as batch_size or learning_rate
found in both AutoML and Init2winit.

The results of Figures 7 and 8 combined lead to addi-
tionally surprising conclusions, such as language-to-
numeric transfer. For instance, inputs x from Init2Winit tasks only possess numeric values, and as expected,
removing feature names does not significantly change regression results. Yet applying forward passes by
pre-trained T5 models still benefits regression, despite the fact that T5’s pre-training data contains mostly
web-corpus data which is unlikely to contain significant amounts of scientific or numeric information (Dodge
et al., 2021).

More Training Data Reduces Baseline Gaps: Intuitively, as more samples are available in a task, the
difference in inductive biases between regression methods should matter less, since predictions will be more
influenced by training data. We verify this in Figure 9, where we see that for tasks with low numbers of
(x, y) points, there is more variability in performance between using ϕLLM and ϕtrad, but additional training
points decreases these differences.

200 400 600 800 1000
0.4

0.3

0.2

0.1

0.0

0.1

0.2

0.3

AutoML

200 400 600 800 1000 1200 1400

0.3

0.2

0.1

0.0

0.1

0.2

XLA

Number of Training Points

(T
5-

XX
L 

- M
LP

) K
en

da
ll-T

au
 C

or
re

la
tio

n

StdDev Mean

Figure 9: Performance gap between an MLP baseline and regression over T5-XXL embeddings for individual trials
within the AutoML and XLA task settings. Higher (↑) is better for LLM embeddings. Error bars are plotted for
{0.5, 1.0, 2.0} of the standard deviation.

4 Discussion: Limitations and Extensions

In this work, our emphasis was to provide more in-depth understanding of LLM embeddings with respect
to regression. While we found many different cases in which they outperform traditional representations,

8



Under review as submission to TMLR

we cannot broadly claim that LLM embeddings should always be used in serious applications of regression.
Below, we list some limitations of our work and more potential areas of exploration.

Different Modalities and Inputs: Further investigation is needed to understand how LLM embeddings
perform with non-tabular data, including combinatorial objects such as graphs, trees, and other complex
structures, but also diverse modalities such as images, videos, and audio data.

Prompt Formatting: While we investigated the effects of parameter names for tabular string representa-
tions, we did not investigate the effects of different numeric representations. Since LLMs are predominantly
pre-trained over human-written text, our x formats also follows, e.g. 1234.5 is serialized directly into 1234.5.
However, these numbers may also be represented using scientific notation (e.g. 1.23e3) or even customized
variants, e.g. [1 10e2 2 10e1 3 10e0 4 10e-1 ] as in (Nogueira et al., 2021). We suspect that the fun-
damental conclusions would remain similar, although the specific numeric results may change.

Different LLM Services: Our work focuses on "depth" of understanding rather than "breadth" of results,
although we did find many similar conclusions for both the T5 and Gemini model families, which are quite
different in architecture, pre-training data, and post-training. While it remains to be empirically verified,
we hypothesize similar conclusions may occur with other model families, such as GPT-4 (OpenAI, 2023),
Claude (Anthropic, 2024), and LLaMA (Touvron et al., 2023), especially as they share fundamentally similar
approaches with Gemini.

Different Embedding Definitions: As mentioned in the main body, our pooling-based definition of LLM
"embedding" follows previous literature for consistency, and is one of the simplest methods to obtain a fixed
dimensional feature vector. However, other definitions have been proposed, such as only collecting the <CLS>
token’s logits for bidirectional cases (Reimers & Gurevych, 2019) or collecting intermediate outputs (Chen
et al., 2022). Such additional methods are worth studying in the future for understanding their effects on
regression.

In-Context Learning (ICL): An alternative prompting method, particularly natural for decoder-based
architectures, would be to place all previous evaluations in the context as "shots" and obtain only the logits
from a query x. However, this can severely limit the amount of training data allowed, as the context window
still has a finite maximum length. In this paper, we primarily focused on the zero-shot case where the context
window only contains the query, which allows the downstream MLP to train over unbounded amounts of
data.

Computational Costs: Compared to traditional regression techniques which can even be run on CPUs,
LLM inference almost always requires accelerator usage, making them more expensive if needed in serious
regression tasks. Remote procedure calls to service-based LLMs such as Gemini also adds an additional
layer of latency. However, compute costs for inference are orders of magnitude cheaper than for training,
and typically only require a few GPUs or TPUs, making embedding-based regression still very feasible for
most academic labs or industries.

Smoothness Computations: One limitation is that our smoothness analysis is only feasible when one
has online access to f(·) as in the case of BBOB functions but not offline real world data, since one needs
to obtain arbitrarily close (x, x′) pairs to understand local behaviors within the feature space. Our analysis
however, may be extendable to any space X (e.g. combinatorial) which admits a distance metric.

5 Conclusion

We thoroughly investigated multiple important aspects around the use of LLM embeddings for traditional
regression. We found that LLM embeddings can be quite performant for input spaces with high degrees of
freedom, and proposed the Lipschitz factor distribution to understand the embedding-to-objective landscape
and its relationship to regression performance. We further investigated the nuanced conditions for which
better language understanding does improve LLM-based regression.

9



Under review as submission to TMLR

References
LMSYS: Large model systems organization, 2023. URL https://lmsys.org/.

Anthropic. The claude 3 model family: Opus, sonnet, haiku. 2024.

Sishuo Chen, Xiaohan Bi, Rundong Gao, and Xu Sun. Holistic sentence embeddings for better out-of-
distribution detection. In Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang (eds.), Findings of the
Association for Computational Linguistics: EMNLP 2022, pp. 6676–6686, Abu Dhabi, United Arab Emi-
rates, December 2022. Association for Computational Linguistics.

George E. Dahl, Frank Schneider, Zachary Nado, Naman Agarwal, Chandramouli Shama Sastry, Philipp
Hennig, Sourabh Medapati, Runa Eschenhagen, Priya Kasimbeg, Daniel Suo, Juhan Bae, Justin Gilmer,
Abel L. Peirson, Bilal Khan, Rohan Anil, Mike Rabbat, Shankar Krishnan, Daniel Snider, Ehsan Amid,
Kongtao Chen, Chris J. Maddison, Rakshith Vasudev, Michal Badura, Ankush Garg, and Peter Mattson.
Benchmarking neural network training algorithms. CoRR, abs/2306.07179, 2023.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of deep bidi-
rectional transformers for language understanding. In Jill Burstein, Christy Doran, and Thamar Solorio
(eds.), Proceedings of the 2019 Conference of the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June
2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics,
2019. doi: 10.18653/V1/N19-1423.

Jesse Dodge, Maarten Sap, Ana Marasovic, William Agnew, Gabriel Ilharco, Dirk Groeneveld, Margaret
Mitchell, and Matt Gardner. Documenting large webtext corpora: A case study on the colossal clean
crawled corpus. In Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and Scott Wen-tau Yih (eds.),
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, EMNLP 2021,
Virtual Event / Punta Cana, Dominican Republic, 7-11 November, 2021, pp. 1286–1305. Association for
Computational Linguistics, 2021.

Ouassim Elhara, Konstantinos Varelas, Duc Nguyen, Tea Tusar, Dimo Brockhoff, Nikolaus Hansen, and
Anne Auger. Coco: the large scale black-box optimization benchmarking (bbob-largescale) test suite.
arXiv preprint arXiv:1903.06396, 2019.

Marc G. Genton. Classes of kernels for machine learning: a statistics perspective. J. Mach. Learn. Res., 2:
299–312, March 2002. ISSN 1532-4435.

Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial examples.
In Yoshua Bengio and Yann LeCun (eds.), 3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015.

Google. Tfx: A tensorflow-based production-scale machine learning platform. https://www.tensorflow.
org/tfx, 2023. Accessed: November 1, 2024.

Google. Gemini: A family of highly capable multimodal models, 2024.

Google Cloud. Vertex ai automl. https://cloud.google.com/vertex-ai/docs/start/automl-intro,
2023. Accessed: November 1, 2024.

Dimitris Kalimeris, Gal Kaplun, Preetum Nakkiran, Benjamin L. Edelman, Tristan Yang, Boaz Barak,
and Haofeng Zhang. SGD on neural networks learns functions of increasing complexity. In Hanna M.
Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett
(eds.), Advances in Neural Information Processing Systems 32: Annual Conference on Neural Information
Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, pp. 3491–3501,
2019.

10

https://lmsys.org/
https://www.tensorflow.org/tfx
https://www.tensorflow.org/tfx
https://cloud.google.com/vertex-ai/docs/start/automl-intro


Under review as submission to TMLR

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick S. H. Lewis, Ledell Wu, Sergey Edunov, Danqi
Chen, and Wen-tau Yih. Dense passage retrieval for open-domain question answering. In Bonnie Webber,
Trevor Cohn, Yulan He, and Yang Liu (eds.), Proceedings of the 2020 Conference on Empirical Methods in
Natural Language Processing, EMNLP 2020, Online, November 16-20, 2020, pp. 6769–6781. Association
for Computational Linguistics, 2020.

Agustinus Kristiadi, Felix Strieth-Kalthoff, Marta Skreta, Pascal Poupart, Alán Aspuru-Guzik, and Geoff
Pleiss. A sober look at llms for material discovery: Are they actually good for bayesian optimization over
molecules? In Forty-first International Conference on Machine Learning, ICML 2024, Vienna, Austria,
July 21-27, 2024. OpenReview.net, 2024.

Bohan Li, Hao Zhou, Junxian He, Mingxuan Wang, Yiming Yang, and Lei Li. On the sentence embeddings
from pre-trained language models. In Bonnie Webber, Trevor Cohn, Yulan He, and Yang Liu (eds.),
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, EMNLP 2020,
Online, November 16-20, 2020, pp. 9119–9130. Association for Computational Linguistics, 2020.

Qi Liu, Matt J. Kusner, and Phil Blunsom. A survey on contextual embeddings. CoRR, abs/2003.07278,
2020.

Behnam Neyshabur, Srinadh Bhojanapalli, and Nathan Srebro. A pac-bayesian approach to spectrally-
normalized margin bounds for neural networks. In 6th International Conference on Learning Represen-
tations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings.
OpenReview.net, 2018.

Tung Nguyen, Qiuyi Zhang, Bangding Yang, Chansoo Lee, Jorg Bornschein, Yingjie Miao, Sagi Perel, Yutian
Chen, and Xingyou Song. Predicting from strings: Language model embeddings for bayesian optimization,
2024.

Rodrigo Frassetto Nogueira, Zhiying Jiang, and Jimmy Lin. Investigating the limitations of the transformers
with simple arithmetic tasks. CoRR, abs/2102.13019, 2021.

OpenAI. GPT-4 technical report. CoRR, abs/2303.08774, 2023.

Phitchaya Mangpo Phothilimthana, Amit Sabne, Nikhil Sarda, Karthik Srinivasa Murthy, Yanqi Zhou,
Christof Angermueller, Mike Burrows, Sudip Roy, Ketan Mandke, Rezsa Farahani, Yu Emma Wang,
Berkin Ilbeyi, Blake A. Hechtman, Bjarke Roune, Shen Wang, Yuanzhong Xu, and Samuel J. Kaufman.
A flexible approach to autotuning multi-pass machine learning compilers. In Jaejin Lee and Albert Cohen
(eds.), 30th International Conference on Parallel Architectures and Compilation Techniques, PACT 2021,
Atlanta, GA, USA, September 26-29, 2021, pp. 1–16. IEEE, 2021.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-text transformer.
J. Mach. Learn. Res., 21:140:1–140:67, 2020.

Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-networks. In
Kentaro Inui, Jing Jiang, Vincent Ng, and Xiaojun Wan (eds.), Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural
Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 3980–3990.
Association for Computational Linguistics, 2019.

Xingyou Song, Oscar Li, Chansoo Lee, Bangding Yang, Daiyi Peng, Sagi Perel, and Yutian Chen. Omnipred:
Language models as universal regressors. CoRR, abs/2402.14547, 2024.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurélien Rodriguez, Armand Joulin,
Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation language models. CoRR,
abs/2302.13971, 2023.

11



Under review as submission to TMLR

Robert Vacareanu, Vlad-Andrei Negru, Vasile Suciu, and Mihai Surdeanu. From words to numbers:
Your large language model is secretly A capable regressor when given in-context examples. CoRR,
abs/2404.07544, 2024.

Tsui-Wei Weng, Huan Zhang, Pin-Yu Chen, Jinfeng Yi, Dong Su, Yupeng Gao, Cho-Jui Hsieh, and Luca
Daniel. Evaluating the robustness of neural networks: An extreme value theory approach. In 6th Inter-
national Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May
3, 2018, Conference Track Proceedings. OpenReview.net, 2018.

Amir Yazdanbakhsh, Christof Angermüller, Berkin Akin, Yanqi Zhou, Albin Jones, Milad Hashemi, Kevin
Swersky, Satrajit Chatterjee, Ravi Narayanaswami, and James Laudon. Apollo: Transferable architecture
exploration. CoRR, abs/2102.01723, 2021.

12



Under review as submission to TMLR

Appendix

A Extended Experiments

A.1 High Dimensional Regression

For full transparency, In Figure 10, we display BBOB functions where LLM-based regression was not con-
sistently dimensionally robust against MLP and XGBoost baselines. Note that even in these cases, we still
see certain cases where a language model outperforms at least one of the baselines, e.g. in the Discus and
DifferentPowers functions, Gemini and T5 outperform MLP but not XGBoost.

25 50 75 100

0.0

0.3

0.6

0.9

DifferentPowers

25 50 75 100
0.0

0.3

0.6

0.9

Ellipsoidal

25 50 75 100

0.4

0.6

0.8

1.0
LinearSlope

25 50 75 100
0.0

0.3

0.6

0.9

Discus

25 50 75 100

0.25

0.50

0.75

BentCigar

25 50 75 100
0.0

0.3

0.6

0.9

BuecheRastrigin

25 50 75 100

0.25

0.50

0.75

1.00 AttractiveSector

25 50 75 100
0.0

0.3

0.6

0.9

Schwefel

25 50 75 100

0.0

0.2

0.4

0.6
Weierstrass

25 50 75 100

0.1

0.0

0.1

Katsuura

25 50 75 100

0.0

0.3

0.6

0.9

NegativeMinDifference

XGBoost MLP Gemini Pro T5-XXL
Degrees of Freedom (DOF)

Ke
nd

al
l-T

au
 C

or
re

la
tio

n

Figure 10: Following Figure 2 in the main body, we present BBOB functions in which LLM embeddings did
not completely outperform traditional baselines.

13



Under review as submission to TMLR

A.2 Real World Results

Despite Table 1 of the main body showing that there were numerous cases where LLM embeddings out-
perform traditional ones, we remind the reader in Table 11 that on average, LLM embeddings still slightly
underperform.

AutoTFX Init2Winit XLA L2DA
Task

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ke
nd

al
l-T

au
 C

or
re

la
tio

n

Full Real World Regression Results

XGBoost
MLP
Gemini Nano
Gemini Pro
Gemini Ultra

T5-Small
T5-Large
T5-XL
T5-XXL

Figure 11: Full Results over real world tasks. Displayed is the mean Kendall-Tau Correlation over all tasks
within each family.

A.3 Performance Correlations

Following Figure 4, in Table 2, we see that the relationship between the smoothness induced by the embedding
and the performance in regression is consistent throughout.

Model DOF=5 DOF=10 DOF=25 DOF=50 DOF=100
Gemini Nano 0.81 0.81 0.70 0.75 0.86
Gemini Pro 0.78 0.77 0.72 0.82 0.88
T5-Small 0.75 0.76 0.79 0.79 0.76
T5-Large 0.78 0.73 0.79 0.85 0.79
T5-XL 0.82 0.60 0.80 0.86 0.85
T5-XXL 0.72 0.76 0.82 0.83 0.83

Table 2: Full set of data for Pearson correlation ρ between Kendall’s regression performance and gap in NLFD
between input and embedding space for regression on all 23 BBOB functions, over DOF=[5, 10, 25, 50, 100].

14



Under review as submission to TMLR

B Exact Modeling Details

B.1 Hyperparameters Used

The full list of hyperparameters and training details for MLP-based regression (using traditional and language
model features):

• Regression Head: MLP with 2 ReLU hidden layers of dimension 256.
• y-Normalization: We compute the empirical mean µ and standard deviation σ over all y-values in

the task’s training data, and apply y ← (y − µ)/σ as a preprocessing step.
• Optimizer: AdamW with sweeped learning rates across {1e-4, 5e-4, 1e-3, 5e-3, 1e-2} and weight

decay across {0, 1e-1, 1}.
• Loss: Mean Squared Error.
• Maximum Epochs: 300, with early stopping enabled.

For XGBoost, we additionally grid-searched over the following parameters for each task:

• “min_child_weight": [1, 5, 10]
• “learning_rate": [0.001, 0.01, 0.1]
• “gamma": [0.0, 0.3, 0.5]
• “subsample": [0.6, 0.8, 1.0]
• “colsample_bytree": [0.6, 0.8, 1.0]
• “max_depth": [3, 5, 7]

B.2 Embedding Sizes

Table 3 displays the embedding dllm for each model used in our experiments. As mentioned in the main text,
note that dllm is significantly larger than dtrad.

T5 Model dllm
Small 512
Large 1024
XL 2048

XXL 4096

Gemini Model dllm
Nano 1536
Pro 6144

Ultra 14336

Table 3: Embedding dimensions dllm for T5 and Gemini model families.

15



Under review as submission to TMLR

C Example String Representations

Table 4 contains example string representations of x for different regression task families.

Task Family Example Representations
BBOB x0:0.32, x1:-4.21, x2:3.12, x3:1.56

AutoML batch_size:128, ml_feature_selection_threshold:0.05, model_type:’DNN_ESTIMATOR’,
activation_fn:’selu’, batch_norm:’False’, bucketization_strategy:’mdl’,
dropout:0.071, hidden_units:359

Init2Winit lr_hparams.base_lr:0.0696, opt_hparams.0.hps.one_minus_b1:0.2823,
opt_hparams.0.hps.one_minus_b2:0.0432, opt_hparams.1.hps.weight_decay:0.0023

XLA auto_cross_replica_sharding:’False’, rematerialization_percent_shared_memory_limit:97,
spmd_threshold_for_windowed_einsum_mib:100000, ...

L2DA input_activation_memory_depth:11.0, instruction_memory_depth:15.0,
io_bandwidth_gbps:4.321, narrow_memory_capacity_bytes:21.0, ...

Table 4: Example x representations from each of the regression task families. ‘. . . ’ denotes that there are
actually more parameters, but we omit them due to page limits.

16


	Introduction and Related Work
	Problem and Methodology
	Modeling
	Regression Tasks

	Experimental Results
	High Dimensional Regression
	LLM Embedding Smoothness
	Model Effects

	Discussion: Limitations and Extensions
	Conclusion
	Extended Experiments
	High Dimensional Regression
	Real World Results
	Performance Correlations

	Exact Modeling Details
	Hyperparameters Used
	Embedding Sizes

	Example String Representations

