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Abstract

A number of methods have been developed for network representation learning – ranging
from classical methods based on the graph spectra to recent random walk based methods and
from deep learning based methods to matrix factorization based methods. Each new study
inevitably seeks to establish the relative superiority of the proposed method over others.
The lack of a standard assessment protocol and benchmark suite often leave practitioners
wondering if a new idea represents a significant scientific advance. In this work, we articulate
a clear and pressing need to systematically and rigorously benchmark such methods. Our
overall assessment – a result of a careful benchmarking of 13 methods for unsupervised
network representation learning on 16 datasets (several with different characteristics) - is
that many recently proposed improvements are somewhat of an illusion. Specifically, we find
that several recent improvements are marginal at best and that aspects of many of these
datasets often render such small differences insignificant, especially when viewed from a
rigorous statistical lens. A more detailed analysis of our results identify several new insights:
first, we find that classical methods, often dismissed or not considered by recent efforts, can
compete on certain types of datasets if they are tuned appropriately; second, we find that
from a qualitative standpoint, a couple of recent methods based on matrix factorization
offer a small but not always consistent advantage over alternative methods; third, no single
method completely outperforms other embedding methods on both node classification and
link prediction tasks. Finally, we also present several drill-down analysis that reveals settings
under which certain algorithms perform well (e.g., the role of neighborhood context and
dataset properties that impact performance). An important outcome of this study is the
benchmark and evaluation protocol, which practitioners may find useful for future research
in this area.

1 Introduction

Graphs are effective in multiple disparate domains to model, query, and mine relational data. Examples
abound, ranging from the use of nearest neighbor graphs in machine learning (Bhattacharyya & Kalita,
2013; Nickel et al., 2016) and database systems (Eppstein et al., 1997; Zhao & Saligrama, 2009) to the
analysis of biological networks (Benson et al., 2016; Yue et al., 2019) and from social network analysis (Gu
et al., 2017; Zhang et al., 2017) to the analysis of transportation networks (Cetinkaya et al., 2015). Graph
or network representation learning seeks to realize a vector representation of each node in the graph (or the
graph as a whole) for use in downstream applications such as graph-based recommendation systems (Ying
et al., 2018; Wang et al., 2018), learning molecular fingerprints for drug discovery and cheminformatics
(Duvenaud et al., 2015; Lusci et al., 2013), knowledge graphs (Wang et al., 2014; Zhang et al., 2019),
anomaly detection (Zhao & Saligrama, 2009; Liang et al., 2018b) and entity resolution (Cohen & Richman,
2002; Getoor & Machanavajjhala, 2012). Fundamental to such applications is the use of classification or
predictive methodology based on the underlying representation.

Given the potential applications, a plethora of new network representation learning methods have been
proposed recently (See Cai et al. (2018); Hamilton et al. (2017b) for a comprehensive survey). Given the
number of such methods, it is difficult for a practitioner to determine or understand which of these methods
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they should consider adopting for a particular task on a particular dataset. The lack of a standard assessment
methodology, makes it difficult to also understand if newer methods truly reflect a scientific advance or if it
is simply an illusion of progress (Hand, 2006). Developing a good assessment methodology is both important
and daunting.

Lack of a Standard Evaluation Protocol: First, the efficacy among embedding methods is often eval-
uated based on downstream machine learning tasks such as node classification and link prediction. There
is no standard evaluation protocol involving a common set of datasets to evaluate the performance on such
tasks, which can lead to inconsistent and inconclusive reporting of results. For example, logistic regression
is commonly used to evaluate node embeddings’ quality for classification, but grid-search over logistic re-
gression parameters is rarely conducted or reported. In our experiments on Blogcatalog, we find that with
a train-test split of 50:50 the Laplacian Eigenmaps method (Belkin & Niyogi, 2003) without Grid-Search
achieves a Macro-f1 score of 3.9% (similar to what was reported in (Goyal & Ferrara, 2018; Grover &
Leskovec, 2016)). However, by tuning the hyper-parameters, we find that the Laplacian Eigenmaps method
achieves a Macro-F1 of 29.2% (also reported elsewhere (Tang & Liu, 2011)). Similar examples hold for
other tasks (e.g. link prediction).

Careful Tuning Of Comparative Methods: Second, a new method almost always compares its perfor-
mance against other methods on a subset of tasks and datasets previously evaluated. In many cases, while
great care is taken to tune the new method (via careful hyper-parameter tuning) – the same care is often not
taken when evaluating baselines. For example, the parameters of Deepwalk, such as the number of walks,
walk length, and window size are often set to default or fixed values (Grover & Leskovec, 2016; Cao et al.,
2015; Qiu et al., 2018; Tang et al., 2015; Tsitsulin et al., 2018; Wang et al., 2016a; Kipf & Welling, 2016), and
grid search is rarely reported over those Deepwalk parameters (Tang & Liu, 2011). Additionally, reported
results are rarely averaged over multiple shuffles to ameliorate bias effects1. In short, a lack of consistency
in evaluation inhibits our understanding of the scientific advances in this arena.

Evaluation on Task-Specific Baselines: Third, for many tasks such as node classification and link
prediction, there is a rich pre-existing literature (Bhagat et al., 2011; Lü & Zhou, 2011) focused on such
tasks (that do not explicitly rely on node embedding methodology as a preprocessing step). Few, if any,
of the prior art in network representation learning consider such baselines – often, such methods compare
performance on downstream machine learning tasks against other graph embedding methods.

Contributions: To summarize, there is a clear and pressing need for a comprehensive and careful bench-
marking of such methods, which is the focus of this study. We perform an experimental study of 13 promising
network embeddings methods on 16 diverse datasets to address the aforementioned issues in the network
embedding literature. The selected embedding methods are unsupervised techniques (many of which have
been widely cited) to generate the node embeddings of a graph. Our goal is to perform a uniform, principled
comparison of these methods on various datasets and across the two most commonly evaluated tasks – link
prediction and node classification.

1. Our most important observation is that progress in this area is somewhat of an illusion, especially
since the advent of DeepWalk (Perozzi et al., 2014), when viewed from a rigorous statistical lens.
On the node classification task, not a single method surveyed offers a statistically significant ad-
vantage over DeepWalk. We find that a couple of methods offer a slight but statistically significant
improvement for the link prediction task. In contrast, none of the other methods surveyed offers an
advantage over DeepWalk.

2. The task-specific baselines we create are simple and efficient. On the link prediction task, these
baselines are competitive with many recent methods (outperformed only by MNMF (Wang et al.,
2017) and WYS (Abu-El-Haija et al., 2018)). The task-specific baseline for node classification is
competitive on certain types of datasets (datasets with few labels). Other recent methods perform
worse on both the tasks than these baselines on a few datasets, suggesting that future researchers
on these tasks should consider these task-specific baselines.

1This is our observation based on the evaluation scripts publically shared by multiple authors.
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3. We present several drill-down analyses that reveal settings under which specific algorithms perform
well (e.g., the role of neighborhood context on performance; dataset characteristics that influence
performance). We also examine two common ways in which link prediction strategies are evaluated
(explicitly through a classifier, or implicitly through vector dot-product ranking). We find that the
former is always preferred.

4. An important outcome of this study is the benchmark and evaluation protocol, which practitioners
may find useful for future research in this area.

2 Notation & Problem Definition

We denote the input graph as G = (V,E) where V and E denote the set of nodes and edges of the graph,
G. The notations used in this work are listed in Table 1. In this study, we consider both directed as well as
undirected graphs along with weighted as well as unweighted graphs. We evaluate the embedding methods
on non-attributed, homogeneous graphs.

Symbol Description
A,D, I Adjacency, Degree and Identity Matrix
vi, w, T Node, Window size, Context window
Φ(u), ψ(u) Node and Context embedding of node u
U, V Node and context embedding matrix
lu, Nu, |Nu| Label, neighbor and number of neighbors of node u
1 Indicator function
vol(G) Sum of weights of all edges
b, λ Number of negative samples
S Graph Similarity matrix
σ(x) Sigmoid function
H Binary community membership matrix
C Latent representations of communities
B Modularity matrix
P D−1A
L Laplacian L = D −A
L1st, L2nd Loss functions to preserve first-order and second-order proximities
GCN Graph Convolutional Network
X Node features
q Attention parameter vector
E[D; q] Expectation of the random walk matrix
NS Negative Sampling Distribution.

Table 1: The notations table.

Network Embedding: Given a Graph, G = (V,E) and an embedding dimension, d where d ≪ |V |, the
goal of a network embedding method is to learn a d-dimensional representation of each vertex (V ) of the
graph, G such that similarity between vertices in graph space approximates to closeness between them in
d-dimensional space.

3 Network Embedding methods

The methods considered in our study are shown in Table 2. These represent a broad spectrum of classic,
popular and recent methods. Due to space limitation, we only present the objective functions of the methods.
The notations present in the objective function are defined in Table 1. Interested readers are encouraged to
refer to (Belkin & Niyogi, 2003; Perozzi et al., 2014; Grover & Leskovec, 2016; Cao et al., 2015; Qiu et al.,
2018; Wang et al., 2017; Ou et al., 2016; Tang et al., 2015; Tsitsulin et al., 2018; Wang et al., 2016a; Kipf
& Welling, 2016; Abu-El-Haija et al., 2018; Hamilton et al., 2017a) for the details about the embedding
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Method Objective function Reproducibility Notes
Manifold-based method

Laplacian Eigemaps
minimize

U
trace(UTLU)

subject to UTDU = I
On the datasets with >1M nodes, Laplacian
Eigenmaps did not scale for embedding dimen-
sion 128, 256.

(Belkin & Niyogi, 2003)
Random walk based methods

DeepWalk minimizeΦ − logPr({vi−w, · · · , vi+w}\vi | Φ(vi)) Walk length = [5, 20, 40], Number of walks
= [20, 40, 80], Window size = [2, 4, 10]. In
the case of directed graphs, we treat directed
graphs as undirected for DeepWalk for im-
proved performance.

(Perozzi et al., 2014)
Node2Vec minimizeΦ − logPr({vi−w, · · · , vi+w}\vi | Φ(vi)) Walk length = [5, 20, 40], Number of walks

= 80. Window Size = 10, p and q = [0.25, 1,
2, 4]. In the case of directed graphs, we treat
directed graphs as undirected for Node2Vec
for improved performance.

(Grover & Leskovec, 2016)
Matrix factorization based methods

GraRep
Lk(u, v) =Ak

u,v · log σ(Φ(u) · Φ(v))

+ λ

|V |
∑

v′∈V,v′ ̸=v

Ak
u,v′ · log σ(−Φ(u) · Φ(v′)) k from 1 to 6. On the datasets with >2M

edges, due to scalability issue, we searched for
k from 1 to 2 and Embedding dimension =
[64, 128].

(Cao et al., 2015)
NetMF log

(
vol(G)

(
1
T

∑T
r=1

(
D−1A

)r
)
D−1

)
− log b T = [1, 10], Negative samples λ = [1, 2, 3],

Rank H for large context window = [128, 256,
512]

(Qiu et al., 2018)

MNMF
O = min

U,V C,H≥0
∥S − V UT ∥2 + α ∗ ∥H − UCT ∥2

F

− βtr(HTBH) + ζ∥HHT − I∥2
F

α = [0.1, 1.0, 10.0], β = [0.1, 1.0, 10.0]

(Wang et al., 2017)
HOPE (Ou et al., 2016) min ∥S − Us(U t)T ∥2

2 The decay parameter β = 0.5/α. α is set to
the spectral radius of the graph. We use the
weighted Katz as the similarity measure.

Edge reconstruction based method

LINE (Tang et al., 2015)

minimize
∑

(u,v)∈E

Au,v log σ(Φ(u).Φ(v))

+
∑

(u,v)∈E

Au,v log
exp(Φ(u).ψ(v))∑

v′∈V,v′ ̸=v exp(Φ(u).ψ(v′))

Number of samples = 10 billion. In the case of
directed graphs, as suggested by the authors
of LINE, we evaluate only second-order prox-
imity.

Node similarity based method
Verse

∑
v∈V KL(simG(v, .)∥simE(v, .)) PageRank damping factor α = [0.7, 0.85, 0.9],

Negative samples = [3, 10].
(Tsitsulin et al., 2018)

Deep neural network based methods
SDNE Ljoint = αL1st + L2nd + νLreg α = [1e-05, 0.2], Penalty coefficient β = [5, 10]

(Wang et al., 2016a)
VAG Â = σ(ZZT ); Z = GCN(X,A) Hidden layers size = [128, 256]

(Kipf & Welling, 2016)

Watch Your Step
min
R,S,q

β∥q∥2
2 − ∥E[D; q] ◦ log(σ(U ∗ V T ))

− 1[A = 0] ◦ log(1 − σ(U ∗ V T ))∥1
Number of Hops = 5

(Abu-El-Haija et al., 2018)
Unsupervised-GraphSage −log(σ(ϕ(u)Tϕ(v)) − λ.Ew ∼ NS log(σ(−ϕ(u)Tϕ(w)) Walk length = [5, 20, 40], Number of walks =

[20, 40, 80]
(Unsup_GS) (Hamilton et al., 2017a)

Table 2: The embedding methods evaluated in our study. See Table 1 for objective function notation key.
The following code bases were in Python: Laplacian Eigenmaps, DeepWalk, GraRep, NetMF, MNMF,
HOPE, SDNE, VAG, WYS and Unsupervised GraphSage. The following code bases were in C or C++:
Node2Vec, Verse, LINE. All are widely used code bases typically from the original authors. For methods
that lever a learning rate parameter, we varied across following rates [ 0.1, 0.5, 1.0]. For methods that lever
epochs parameter, we varied across following number of epoch values [ 50, 100].
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methods. In the experimental comparison of embedding methods, it becomes critical to reproduce the
experimental results. To facilitate reproducibility we note the grid search parameters for each method and
provide the source code of our evaluation scripts at https://github.com/NRL-Benchmark/NRL_Benchmark.

A common parameter for all the embedding methods is the embedding dimension. In this study, we vary
the embedding dimensions as [64, 128, 256] and report the best result for the downstream task. On datasets
with <300 nodes, we limit the embedding dimensions to 64 and 128. The method-specific parameter values
for grid-search are shared in the Table 2. Additionally, we analyzed the popular Deep Graph Infomax (DGI)
model for the task of node embedding. We observed that DGI is ill-suited for the task of node embedding
in the absence of node features. More details and results for DGI is available in the Section A.1.

4 Related Work & Feedback

Related Work: Network representational learning has attracted a lot of attention in the past few years.
Recent surveys (Cai et al., 2018; Hamilton et al., 2017b; Zhang et al., 2018a) attempt to categorize or
taxonomize these efforts along various axes but they do not offer an empirical analysis of the embedding
methods. Slightly prior to our study, we were aware of one other excellent empirical study of network
embedding methods (Goyal & Ferrara, 2018). However, there are significant differences between this effort
and ours. First, our systematic study encompasses over 375,000 individual experiments, on a larger set of
embedding methods, including several more recent ideas and on many more datasets (16 vs 7) than the
previous study. Specifically, we evaluate 13 embedding methods + 2 efficient heuristics on 16 datasets.
Second, we carefully tune all hyperparameters of each method as well as the logistic classifier (and include
this information in our reproducibility notes). As a concrete example of where such careful tuning can make
a difference consider that on Blogcatalog with a train-test split of 50:50, Goyal et al. (Goyal & Ferrara,
2018), achieve a Macro-f1 score of 3.9% while with tuning the hyper-parameters of logistic regression we
achieve a Macro-f1 score of 29.2%. Third, our analysis reveals several important insights on the role of
context, the role of different link prediction evaluation strategies (dot product vs classifier), the impact of
non-linear classifiers, and many others. All of these provide useful insights for end-users as well as guidance
for future research and evaluation in network representational learning and downstream applications. Fourth,
we also provide a comparison against simple but effective task-specific baseline heuristics which will serve
as useful strawman methods for future work. Finally and perhaps most distinctively, we carefully analyze
comparative performance through a careful grid search and rigorous statistical lens, pointing out that many
recent advances are perhaps somewhat of an illusion – this is not a conclusion drawn from the previous effort.

Subsequent to our initial work, we also learned of another effort by Khosla et al. (Khosla et al., 2019),
who conducted an empirical bake-off of unsupervised network embedding methods and found that no single
method always outperformed other methods – a consistent message with both our work and that of Goyal
et al. (Goyal & Ferrara, 2018). The differences between our work and this work can be similarly outlined as
above (comparative scale of experiments on a wider range of methods and datasets, detailed hyper-parameter
tuning and comparison with task-specific heuristics). Again and perhaps most distinctively, the authors do
not analyze comparative performance through a rigorous statistical lens or attempt to examine if recent
research represents a true advance or an illusion of progress. Both sets of authors also do not: i) study the
impact of linear vs non-linear classifier on node classification task; ii) the difference between dot-product
and classifier for link prediction task; and iii) the impact of embedding dimension/embedding normalization
on both node classification and link prediction tasks.

Community Feedback: After our initial work, we socialized and sought feedback within the database,
data science and machine learning communities. We received several useful feedback on this work as follows.

• It was suggested that we should include an unsupervised variant of Deep Graph Infomax (Velickovic
et al., 2019) in our study. We performed this analysis – see Appendix A.1.

• It was suggested that we should compare with some Graph Neural Network methods (Kipf & Welling,
2017). We note that Graph Neural Networks typically fall under the "semi-supervised learning"
paradigm. However, we do perform experiments on unsupervised variants of Graph Convolutional
Network proposed by Kipf & Welling (2016) and Velickovic et al. (2019).
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• Finally we received several suggestions for additional experiments (see main results and appendix),
evaluation on new datasets (e.g. Reddit), and positioning that has helped shape both the analysis
and eventual presentation of results.

5 Datasets

Table 3 describes empirical properties of the datasets in our study. The datasets support both standard
multi-class classification (each node is associated a single class label from among multiple class labels) as
well as multi-label classification (a node can be associated with multiple class labels). Directed as well
as undirected datasets are considered in order to evaluate the embedding methods on the link-prediction
task efficiently. Further, datasets with and without edge weights are also included. The datasets exhibit
varying levels of homogeneity where homogeneity of a node (say u) is computed using the Jaccard function
as : HG(u) =

∑
i∈Nu

(Jaccard(lu, li))/|Nu|, where Nu represents the neighborhood set of u. Note this
formulation naturally handles both multi-class2 and multi-label datasets. The homogeneity value of a dataset
is represented by the average homogeneity value of nodes in the dataset. Note that for the publicly available
YouTube dataset (Zafarani & Liu, 2009), we have node classes for only 2.7% nodes; hence we do not report
its homogeneity score in Table 3. For each dataset we also report its clustering coefficient - a commonly used
measure of local density(Newman, 2010). We also report sparsity for each dataset, defined as fraction of
actual edges over number of maximum possible edges. The datasets span various domains: Web (WebKB),
Medical (PPI), Natural Language (Wikipedia), Social (Blogcatalog, Flickr, YouTube, Epinions), Citation
(DBLP, CoCit, and Pubmed), Digital (p2p-Gnutella) and Voting (Wiki-vote). The datasets Wiki-vote, p2p-
Gnutella, and Epinions do not contain node labels. Hence, on those datasets, we evaluate the embeddings
methods only on the link prediction task.

We next present the list of datasets and their prior use in evaluating unsupervised network representation
learning methods: WebKB datasets (Wang et al., 2017; Mitra et al., 2020; Li et al., 2018; Jin et al., 2018;
Adhikari et al., 2018; Al-Sayouri et al., 2020; Wang et al., 2016b), PPI (Grover & Leskovec, 2016; Qiu et al.,
2018; Abu-El-Haija et al., 2018; Alsentzer et al., 2020; Mitra et al., 2020; Epasto & Perozzi, 2019), Wikipedia
(Grover & Leskovec, 2016; Qiu et al., 2018; Tang et al., 2015; Al-Sayouri et al., 2020; Mitra et al., 2020;
Cavallari et al., 2017), Blogcatalog (Perozzi et al., 2014; Grover & Leskovec, 2016; Cao et al., 2015; Qiu
et al., 2018; Tang et al., 2015; Tsitsulin et al., 2018; Wang et al., 2016a; Mitra et al., 2020; Qiu et al., 2018;
Cavallari et al., 2017; Li et al., 2017), DBLP (Tsitsulin et al., 2018; Cao et al., 2015; Mitra et al., 2020;
Cavallari et al., 2017; Li et al., 2017), Microsoft (Tsitsulin et al., 2018; Mitra et al., 2020; Wang et al., 2020;
Spitz et al., 2018), Wiki-Vote (Abu-El-Haija et al., 2018; Agrawal et al., 2013; Heidari et al., 2015; Epasto
& Perozzi, 2019; Sun et al., 2019), Pubmed (Kipf & Welling, 2016; Velickovic et al., 2019; Mitra et al., 2020;
Wang et al., 2020), Flickr (Perozzi et al., 2014; Grover & Leskovec, 2016; Qiu et al., 2018; Tang et al.,
2015; Wang et al., 2016a; Li et al., 2018; Cavallari et al., 2017; Li et al., 2017), P2P-Gnutella (Tu et al.,
2019b; Kim et al., 2018; Zhao et al., 2013; Moon et al., 2020), Epinions (Richardson et al., 2003; Agrawal
et al., 2013; Epasto & Perozzi, 2019; Li et al., 2017), Reddit (Hamilton et al., 2017a; Chiang et al., 2019;
Zhang et al., 2020; Liu et al., 2020; Velickovic et al., 2019), and YouTube (Perozzi et al., 2014; Tang et al.,
2015; Tsitsulin et al., 2018; Wang et al., 2016a). While each dataset has been evaluated on several methods,
there is not a single dataset common to all these efforts - making it difficult to compare different network
embedding methods meaningfully.

6 Experimental setup

In this section, we elaborate on the experimental setup for link prediction and node classification tasks
employed to evaluate the quality of embeddings generated by different methods. Additionally, we also
present two heuristics based baselines for both the tasks and define the metrics used for comparing the
embedding methods.

2For the multi-class setting this is equivalent to HG(u) =
∑

i∈Nu
1(lu == li)/|Nu| used elsewhere (Ma et al., 2021).
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Dataset #N #E #L (C/L) D W CC HG SP
WebKB (Texas) (Craven et al., 1998) 186 464 4 C F T 0.195 0.405 2.70E-02
WebKB (Cornell) (Craven et al., 1998) 195 478 5 C F T 0.157 0.436 2.53E-02
WebKB (Washington) (Craven et al., 1998) 230 596 5 C F T 0.197 0.470 2.26E-02
WebKB (Wisconsin) (Craven et al., 1998) 265 724 5 C F T 0.208 0.437 2.07E-02
PPI (Breitkreutz et al., 2007) 3,890 38,739 50 L F F 0.242 0.109 5.12E-03
Wikipedia (Mahoney, 2011) 4,777 92,517 40 L F T 0.569 0.116 8.11E-03
Blogcatalog (Zafarani & Liu, 2009) 10,312 333,983 39 L F F 0.463 0.145 6.28E-03
DBLP (Co-Author) (Tang et al., 2008) 18,721 122,245 3 C F T 0.833 0.453 6.98E-04
CoCit (Microsoft) (Tsitsulin et al., 2018) 44,034 195,361 15 C F F 0.142 0.423 2.02E-04
Wiki-Vote (Leskovec et al., 2010) 7,115 103,689 - - T F 0.141 - 4.10E-03
Pubmed (Namata et al., 2012) 19,717 44,338 3 C T F 0.060 0.792 2.28E-04
p2p-Gnutella (Ripeanu & Foster, 2002) 62,586 147,892 - - T F 0.005 - 7.55E-05
Flickr (Zafarani & Liu, 2009) 80,513 5,899,882 195 L F F 0.165 0.146 1.82E-03
Epinions (Richardson et al., 2003) 75,879 508,837 - - T F 0.137 - 1.77E-04
YouTube (Zafarani & Liu, 2009) 1,134,890 2,987,624 47 C F F 0.081 - 4.64E-06
Reddit (Hamilton et al., 2017a) 231,443 11,606,919 41 C F F 0.169 0.818 4.33E-04

Table 3: Dataset Properties. Notations: Nodes(N), Edges(E), Labels (L), Multi-Class (C)/ Multi-Label (L),
Directed (D) and Weighted (W). Clustering coefficient (CC), Homogeneity (HG), and Sparsity (SP)

6.1 Link Prediction

Prediction of ties is an essential task in multiple domains where the relational information is costlier to obtain
such as drug-target interactions (Crichton et al., 2018), protein-protein interactions (Airoldi et al., 2006),
or when the environment is partially observable. “Link prediction, ... consists of inferring the existence
of new relationships or still unknown interactions between pairs of entities based on their properties and
the currently observed links" (Martínez et al., 2016) In this work, we focus on the prediction of unknown
interactions (links) between two nodes. The problem of predicting a tie/link between two nodes i and j is
often evaluated in one of two ways. The first is to treat the problem as a binary classification problem. The
second is to use the dot product on the embedding space as a scoring function to evaluate the tie’s strength.

The edge features for binary classification consists of node embeddings of nodes i and j, where two node
embeddings are aggregated with a binary function. In our study, we experimented with three binary functions
on node embeddings: Concatenation, Hadamard and L2 distance. Node2vec (Grover & Leskovec, 2016)
also levered the binary functions Hadamard, and L2 distance. We use Logistic Regression (LR) as our
base classifier for the task of link prediction. The parameters of the logistic regression are tuned using a
grid search with 5-fold cross-validation. We evaluate the link prediction performance with metrics: Area
Under the Receiver Operating Characteristics (AUROC). An alternative evaluation strategy is to predict
the presence of link (i, j) based on the dot product value of node embeddings of nodes i and j. We study
the impact of both the evaluation strategies in Section 7.1.

Construction of the train and test sets: The method of construction of train and test sets for link
prediction task is crucial for comparing embedding methods. The train and test split consists of 80% and
20% of the edges, respectively, and are constructed in the following order:

1. Self-loops are removed.
2. We randomly select 20% of all edges as positive test edges and add them in the test set.
3. Positive test edges are removed from the graph. We find the largest weakly connected component

formed with the non-removed edges. The edges of the connected component form positive train
edges.

4. We sample negative edges from the largest weakly connected component (C) and add the sampled
negative edges to both the training and test sets where a negative edge is defined as (i, j) ̸∈ C. The
number of negative edges is equal to the number of positive edges in both training and test sets.

5. For directed graphs, we form “directed negative test edges” which satisfy the following constraint:
(j, i) ̸∈ C but (i, j) ∈ C where C refers to edges in the largest weakly connected component. We
add the directed negative test edges (j, i) edges to our test set. The number of “directed negative
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test edges” is a parameter and in our experiments we set it to 10% of negative test edges in the test
set.

6. Nodes present in the test set, but not present in the training set, are deleted from the test set. For
learning the binary classifier, all the edges in the training set are considered positive train edges.
We sample an equal number of negative train edges from the training set. Edges from the training
set as positive train edges and add an equal number of negative train edges

In the case of large datasets (>5M edges), we reduce our training set. We consider 10% of both randomly
selected positive and negative train edges for learning the binary classifier. The learned model is evaluated
on the test set. The above steps are repeated for 5 train:test splits of 80:20, and we report the average
AUROC across 5 splits.

6.2 Node classification

In the network embedding literature, node classification is the most popular way of comparing the quality
of embeddings generated by different embedding methods. The generated node embeddings are treated
as node features, and node labels are considered as ground truth. The classification tasks performed in
our experiments are either multi-label or multi-class classification. The details on the classification task
performed on each dataset are provided in Table 3. We select Logistic Regression as our classifier. We split
the dataset with 50:50 train-test splits. In the case of large datasets (Flickr and YouTube), we split the
dataset with 5:95 train-test splits based on labeled nodes. The learned model is evaluated on the test set,
and we report the results averaged over 10 shuffles of train-test sets.

We noted that most of the efforts in the literature do not tune the hyper-parameters of Logistic Regression.
Default hyper-parameters are not always the best hyper-parameters for Logistic Regression. For instance,
with the LR classifier’s default hyper-parameters, the Macro-f1 performance of Laplacian eigenmaps on the
Blogcatalog dataset is 3.9% for the train-test split of 50:50. However, tuning the hyper-parameters results
in significant improvement of the Macro-f1 score to 29.2%. In our experiments, we perform five-fold cross-
validation with the following parameters of logistic regression: “inverse of regularization strength" C=[0.001,
0.01, 0.1, 1, 10, 100] and “norm used in the penalization"=[‘L1’ and ‘L2’]. We lever the logistic regression
implementation provided by scikit-learn (Pedregosa et al., 2011). We also explored Bayesian optimization
for identifying the best Logistic Regression or EigenPro parameters with the help of auto-sklearn (Feurer
et al., 2020). However, even given a time budget of two days, the auto-sklearn results were rarely able
to even match (never beat) the results computed with the grid-search suggesting that our grid search was
comprehensive.

The choice of a “linear” classifier to evaluate the quality of embeddings is not a hard constraint in the node
classification task. In this work, we also test the idea of leveraging a “non-linear” classifier for the node
classification task and compare its performance to that of a linear classifier. We use the EigenPro (Ma &
Belkin, 2017) classifier as our non-linear classifier. EigenPro (Ma & Belkin, 2017) provides a significant
performance boost over the state-of-the-art kernel methods with faster convergence rates on large datasets.
In our experiments, we see up to 15% improvement in Micro-f1 scores with non-linear classifiers compared
to the linear classifier. (See Section 7.2 for details).

6.3 Task-Specific Baselines

Next, we present new baselines for both link prediction and node classification tasks. The purpose of defining
such a baseline is to assess the difficulty of different tasks on a different dataset and compare the performance
of sophisticated network embedding methods over simple heuristics.

6.3.1 Link Prediction Heuristic

In the link prediction literature, there exist multiple similarity-based metrics (Lü & Zhou, 2011), which
can predict a score for link formation between two nodes. Examples of such metrics include Jaccard Index
(Jaccard, 1901; Wang et al., 2007), Adamic Adar (Adamic & Adar, 2003). These similarity-based metrics
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(a) Smaller datasets: All methods complete execution.

(b) Larger datasets: Not all methods complete execution.

Figure 1: Link Prediction performance measured with AUROC. The AUROC score is multiplied by 100
for better readability. Not all methods are scalable on the datasets shown in Figure 1b.

often base their predictions on the neighborhood overlap between the nodes. We combine the similarity-based
metrics to form a curated feature vector of each edge (Sinha et al., 2018). The binary classifier in the link
prediction task is then trained on these generated edge features. Our selected similarity-based metrics are
Common Neighbors (CN), Adamic Adar (AA) (Adamic & Adar, 2003), Jaccard Index (JA) (Jaccard, 1901),
Resource Allocation Index (RA) (Zhou et al., 2009) and Preferential Attachment Index (PA) (Barabási &
Albert, 1999). The similarity-based metrics CN, JA, and PA, capture first-order proximity between nodes,
while the metrics AA and RA capture second-order proximity between nodes. We found this heuristic-based
model to be highly competitive when compared to the embedding methods on multiple datasets.

6.3.2 Node Classification Heuristic

Nodes in the graph can be characterized (represented) by their properties. We combine the node properties
to form a feature vector (embedding) of a node. The classifier in the node classification task is then trained
on this node embedding. The node properties capture information such as nodes’ neighborhood, influence on
other nodes and their structural properties. We select following node properties: Degree, PageRank (Page
et al., 1999), Clustering Coefficient, Hub and Authority scores (Kleinberg, 1999), Average Neighbors’ Degree,
and Eccentricity (Newman, 2010). We treat the graph as undirected while computing the node properties.

9



Under review as submission to TMLR

Unsup_GS

WYS

VAG

MNMF

HOPE

GraRep

NetMF

SDNE

LINE

VERSE

Node2Vec

LapEig

Heuristics

−0.25 0.00 0.25
AUROC score difference

E
m

be
dd

in
g 

m
et

ho
ds

Figure 2: Illusion of Progress I: Link Prediction: Box-plot represents the distribution of differences between
AUROC of the embedding method and AUROC of Deepwalk.
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Figure 3: Illusion of Progress I: Link Prediction (dot product). Box-plot represents the distribution of dif-
ferences between AUROC of the embedding method and AUROC of Deepwalk.

As each node property’s magnitude varies with another, we perform column-wise normalization with Ro-
bustScaler available from Scikit-learn. We show in the experiments Section 7.2 that the node classification
heuristics baseline is competitive with several recent embedding methods on datasets with few (up to five)
labels.

7 Experimental Results

This section reports the performance of network embedding methods on link prediction and node classification
tasks. We tune both the parameters of embedding methods and classifiers’ parameters in link prediction and
node classification tasks. Whenever possible, we rely on the authors’ code implementation of the embedding
method. All methods that do not finish for large datasets are executed on a modern machine with 500 GB
RAM and 28 cores. All the evaluation scripts are executed in the same virtual python environment.
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Figure 4: Default vs Tuned Parameters: Link Prediction. Box-plot represents the distribution of differences
between AUROC of the embedding method with default parameters vs tuned parameters.

7.1 Link Prediction

The link prediction performance of 13 embedding methods measured in terms of AUROC on 15 datasets
is shown in Figure 1. The Overall (or aggregate) performance of an embedding method on all the datasets
is also shown at the end of the horizontal bar of each method in Figure 1. We represent Overall score as
the sum of scores (AUROC) of the method on all the datasets. As mentioned in Section 3, we tune the
hyper-parameters of each embedding method and report the best average AUROC scores across 5 train:test
splits. We perform the link prediction task with both normalized and unnormalized embeddings and report
the best performance. We make the following observations:

A. Illusion of Progress : We begin by noting that the current emphasis and interest in network represen-
tation learning can partially be attributed to the Deepwalk’s Perozzi et al. (2014) simplicity. In this analysis,
we seek to understand if more recent advances offer a real advancement (or if it is an illusion) over Deepwalk
on the link prediction task. The distribution of these differences with respect to each embedding method
versus Deepwalk is shown as box-plot in Figure 2. A positive difference implies that the embedding method’s
performance is better than Deepwalk in terms of AUROC. The improvement over Deepwalk is statistically
significant by paired t-test only for MNMF and WYS (marginal) with a significance level of 0.05. We observe
that except for MNMF and WYS the performance of Deepwalk is comparable or superior to the others. We
also observe that the median of the box-plot for link prediction heuristic is also close to that of Deepwalk.
WYS provides marginally better link prediction performance over Deepwalk and the heuristic-based model
on the smaller datasets. MNMF is the only method that seems to offer a small but consistent advancement
over the state-of-the-art suggesting it is the only counterexample to the assertion that recent advances are
largely an illusion at least as it relates to the downstream task of link prediction. Similar to the results
shown in Figure 2 with classifier, we observe that with dot-product too, the improvement over Deepwalk is
statistically significant by paired t-test for only MNMF and WYS with a significance level of 0.05.

B. Effectiveness of Link Prediction Heuristic: The heuristic baseline – described in section 6.3.1 – is
very effective while being simple to compute and efficient (not shown as this study focuses entirely on quality).
On the largest dataset YouTube, the heuristic achieves an AUROC of 96.2%, close to the best performing
Verse model with an AUROC of 97.6%. When compared to the most competitive baseline MNMF, the link
prediction heuristic outperforms MNMF on Wikipedia and Blogcatalog datasets. We also observe that the
task-specific baseline’s performance is competitive against several other methods on the directed datasets
despite using undirected similarity-based metrics. The core components of the link prediction heuristic
capture important first- and second-order local topological proximity information which are essential for link
prediction and may help explain its impressive performance.
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Figure 5: The box-plot represents distribution of the differences between AUROC score with dot product
and AUROC score with classifier on all the datasets.
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Figure 6: The box-plot represents the distribution of the differences between AUROC score with node +
context embeddings and AUROC score with only node embeddings on directed datasets.
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Figure 7: The box-plot represents the distribution of the standard error of AUROC scores computed for
each method on each dataset across five splits.
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C. Effectiveness of MNMF for Link Prediction: We observe that MNMF achieves the highest overall
link prediction performance in terms of best average AUROC. We also observe that MNMF does not always
outperform other methods on all the datasets. For instance, on the Wiki-Vote and Pubmed dataset, WYS
achieves the best average AUROC scores while on the Microsoft dataset, GraRep achieves the best average
AUROC score. Note that MNMF did not scale for the datasets with ≥ 5M edges on a modern machine
with 500 GB RAM and 28 cores. However, the scalability issue of non-negative matrix factorization based
methods can be addressed by adopting recent ideas Moon et al. (2019); Liang et al. (2018a) (outside the scope
of this study). We note that community structure is an important topological property of the network and
can play a significant role in predicting links within a network. MNMF by construction, explicitly imposes
a higher level of constraint on the node representation, and tries to ensure that the vector representation of
nodes within a community are more similar than nodes across different communities. This may explain its
improved performance over peer methods on the link prediction task.

D. Impact of Evaluation Strategy: As described in section 6.1, the presence of a link between two
nodes can be predicted with either the Logistic Regression classifier (treating the embeddings as features)
or the dot product between the node embeddings. The latter is the widely used approach in the literature
Ou et al. (2016); Kipf & Welling (2016); Abu-El-Haija et al. (2018); Wang et al. (2016a); Goyal & Ferrara
(2018). Here, we compare both the evaluation strategies’ performance on each embedding method across all
datasets using the average AUROC scores’ differences. The results are presented as box-plot in Figure 5. A
positive difference implies that the classifier’s performance is better than the dot product score in terms of
AUROC. The paired t-test suggests the positive difference is statistically significant for all methods, except
for Verse, VAG and WYS, with a significance level of 0.05. For Verse and WYS, both strategies resulted in
near-identical performance (almost no change). In summary, we find that using a classifier over dot product
provides significant predictive performance gain on the link prediction task and probably should be the
evaluation strategy of choice moving forward for this task. Note that, irrespective of the evaluation strategy
(classifier or dot-product), we observe that only two methods (MNMF and WYS) outperform Deepwalk in a
statistical significant manner. Result for link prediction task with dot product is not shown here due paucity
of space.

E. Impact of context embeddings: We study context embeddings’ impact on directed datasets for the
link prediction task. We consider only those embedding methods which generate both node and context
embeddings for this study. We compare the impact of using node + context embeddings over using only
node embeddings with the help of differences in AUROC scores. The "+" symbol refers to the concatenation
operation. The results are detailed in Figure 6. A positive difference implies that node + context embed-
dings’ performance is better than just node embeddings in terms of AUROC. The difference is statistically
significant (paired t-test) with a significance level 0.05 for LINE and WYS for which using context infor-
mation helps. In contrast, for GraRep and MNMF, it hurts the performance. Context also appears to help
HOPE, but it is not statistically significant. We see that levering node + context embeddings improve the
link prediction performance of LINE, HOPE, and WYS. For MNMF, context embeddings do not improve
the link prediction performance because, in MNMF, the community information – crucial for link prediction
– is already incorporated in the node embeddings. In the case of GraRep, we find that the node embeddings
encapsulate high-order information and, hence, levering context does not help improve the performance.

F. Stability and Robustness: For link prediction, we thus far report the average AUROC score of
an embedding method over 5 splits of a selected dataset. The computed average AUROC standard error
corresponds to a measure of the robustness (or stability) of that embedding method on the selected dataset
– larger values of standard error corresponds to a large variance in AUROC scores across 5 splits. In Figure
7, we report the distribution of average AUROC standard error of each embedding method over all datasets.
We observe that most of the methods’ median of box-plots is close to zero, suggesting that all methods are
reasonably stable with MNMF and DeepWalk seemingly being the most robust across different splits and
datasets.

G. Dataset specific analysis: There is a strong negative correlation between the sparsity of the dataset
and the average link prediction performance across methods on said dataset (Pearson correlation (-0.82)).
Clustering coefficient plays a secondary factor on aggregate link prediction performance – methods achieve
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Figure 8: The node classification performance measured with Micro-f1 on train-test split of 50:50 with
Logistic Regression. For each method, the number at the end of bar represent the summation of the Micro-
f1 values across the datasets. The Micro-f1 score is multiplied by 100 for better readability.

Figure 9: The node classification performance measured with Micro-f1 on train-test split of 50:50 with non-
linear classifier. The Micro-f1 score is multiplied by 100 for better readability.

poor link prediction performance on low clustering coefficient datasets such as p2p-Gnutella and Pubmed
(an exception is MNMF which is explained by the fact that it explicitly accounts for community structure).
On the other hand, on datasets with high CC (e.g. DBLP) all methods perform well (above 90%).

Next, we analyze the performance of embedding method HOPE on directed datasets. HOPE learns node
embeddings by preserving asymmetric transitivity and hence is expected to perform well on link prediction
tasks for the directed datasets. We observe that the HOPE method achieves competitive performance on
two directed datasets (Wiki-vote and Epinions). However, HOPE achieves relatively low link prediction
performance on other two directed datasets (Pubmed and P2P-Gnutella) with low clustering coefficient
suggesting preserving asymmetric transitivity might not be “sufficient" for better link prediction performance
on directed datasets with low clustering coefficient.

H. Default vs Tuned Parameters: In Figure 4, we show the impact of tuning the parameters of network
embedding method on the link prediction performance. A positive difference implies the tuned parameters
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Figure 10: Illusion of Progress II: Node Classification: The Box-plot represents the distribution of differences
between Micro-f1 of the embedding method and Deepwalk.
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Figure 11: Node Classification on Directed Dataset (PubMed) with/without concatenation of Node embed-
dings and Context Embeddings (128 dimensions).

result in better performance than default parameters. Not surprisingly we see that for most methods tuning
its parameters results in improved performance (the exceptions being NetMF and LINE for which default
parameters work very well). The tuning of parameters for methods such as SDNE, MNMF, VAG, and
WYS lead to a significant boost in the average AUROC score. This analysis underscores the importance
of parametric tuning on downstream performance which is often ignored by authors when comparing with
strawman methods and is not considered even in some recent benchmarking studies Khosla et al. (2019).

7.2 Node Classification

The node classification performance of 13 embedding methods measured in terms of Micro-f1 scores on 15
datasets with train-test split of 50:50 is reported in Figure 8 and Figure 9. We tune the hyper-parameters
of each embedding method – mentioned in Section 2 – and report the best Micro-f1 score. We perform the
node classification with both normalized and unnormalized embeddings and report the best performance.
We make the following observations.

A. Illusion of Progress II: Here we compare and contrast the performance of recent algorithms for
network representation learning with Deepwalk on the node classification task in Figure 10. A positive
difference here implies that the embedding method’s performance is better than Deepwalk in Micro-f1. The
improvement over Deepwalk is statistically significant (paired t-test) for none of the methods at significance

15



Under review as submission to TMLR

Unsup_GS

WYS

VAG

MNMF

HOPE

GraRep

NetMF

SDNE

LINE

VERSE

Node2Vec

DeepWalk

LapEig

Heuristics

−0.05 0.00 0.05 0.10 0.15
Micro−f1 difference

E
m

be
dd

in
g 

m
et

ho
ds

Figure 12: Box-plot represents the distribution of differences between Micro-f1 of the non-linear classifier
and Micro-f1 of linear classifier on all the datasets.

level 0.05. Somewhat startlingly, we observe that not a single method offers a consistent, statistically
significant improvement over Deepwalk on this task. The closest one to being significant is NetMF, with a
p-value of 0.07.

B. Analysis of the methods for node classification: Although not better than Deepwalk (w.r.t statis-
tical significance), NetMF achieves the highest overall performance for node classification with both linear
and non-linear classifiers. LINE, DeepWalk, and Node2Vec are also competitive baselines for the task of
node classification as their overall performance is closest to that of NetMF. The performance of GraRep on
datasets with more labels is comparable with other methods (except on the Flickr dataset). The results for
GraRep on the Flickr dataset are with an embedding dimensionality of 64 as increasing the dimensionality
to 128 and 256 resulted in an Out-Of-Memory error on a modern machine with 500GB RAM and 28 cores.
Note that the methods NetMF, MNMF, SDNE, VAG, and WYS did not finish execution on YouTube and
Reddit. While scalability is currently outside our study’s scope, the scalability of such methods is under
active development (we refer the interested reader elsewhere Qiu et al. (2019); Liang et al. (2018a)).

C. Laplacian Eigenmaps Performance: We observe that Laplacian Eigenmaps achieves competitive
Micro-f1 scores on several datasets. For instance, on the Blogcatalog dataset with 39 labels, Laplacian
Eigenmaps achieves the best Micro-f1 score of 42.1% while on the Pubmed dataset, it outperforms all other
embedding methods. With a non-linear classifier, Laplacian Eigenmaps achieves the second-best performance
on the PPI dataset with 23.8% Micro-f1. The observed results for Laplacian Eigenmaps on evaluated datasets
are better than those reported elsewhere Goyal & Ferrara (2018); Grover & Leskovec (2016) for both node
classification and link prediction tasks. This improvement is due in part to the careful hyperparameter
tuning of parameters of the corresponding classifier.

D. Context embeddings can improve performance: We find that levering both node and context
embeddings of Skip-gram based models results in significant improvement (up to 25%) for most of the
methods (see Figure 11). On the Pubmed dataset, we observe that the node classification performance of
embedding methods, LINE (2nd order), HOPE, and WYS, is significantly lower than those of other methods.
We found that the Pubmed dataset consists of around 80% sink nodes. As a result, when the Skip-gram
based embedding methods generate node embeddings, the sink nodes appear most times as “context" nodes
and rarely appear as “source" nodes. Hence, the node embeddings of sink nodes are of lower quality.

E. Impact of non-linear classifier: We study the impact of using a non-linear classifier (as opposed
to a linear classifier) on node classification performance. The results are shown with a box plot in Figure
12. The box plot represents the distribution of differences of Micro-f1 scores computed with the non-linear
(EigenPro Ma & Belkin (2017)) and linear classifiers (Logistic Regression). A positive difference implies that
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(a) Linear classifier : Logistic Regression
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(b) Nonlinear classifier : EigenPro

Figure 13: Classifer Robustness: Box-plot represents the distribution of differences between Micro-f1 achieved
with normalized embedding and Micro-f1 achieved with unnormalized embedding on all the datasets.

the non-linear classifier results are better than that of the linear classifier. For Verse, we see a 15% absolute
increase when using a non-linear classifier on the PubMed dataset. The positive difference is statistically
significant (with paired t-test) for methods DeepWalk, Verse, SDNE, GraRep, MNMF, and Unsupervised
GraphSage with significance level 0.05. It is worth pointing out that this gain is less evident on the smaller
datasets while on the larger datasets (more training data), the benefits of using a non-linear classifier are
much clearer.

F. Classifier Robustness: We also note that the non-linear classifier appears to be more stable to the
impact of normalization (of the embedding), as shown in Figure 13. A positive difference implies the
normalization of embeddings improves performance.

G. Dataset specific analysis First, we observe that on datasets with fewer classes (up to five), the node
classification heuristic is competitive - its performance is better than several other embedding methods such
as Laplacian Eigenmaps, Node2vec, Verse, GraRep, VAG, WYS and Unsupervised GraphSage. However, as
the number of classes in the datasets increases, we observe that the relative performance of the heuristic
decreases drastically. The reduction in overall performance reflects that the node features that currently
make up the baseline lack the discriminative power to classify multiple labels. Second, We observe that
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Figure 14: Default vs Tuned: Node Classification: The Box-plot represents the distribution of differences
between Micro-f1 of the embedding method with default parameters vs tuned parameters.

network embedding methods generally achieve poor node classification performance – reflected with low
absolute values of Micro-f1 scores – on datasets with low homophily (see PPI and Flickr). On the contrary,
on datasets with high homophily (Reddit and Pubmed), the network embedding methods achieve better
node classification performance (with Micro-f1 scores above >80%). The Pearson correlation coefficient
between average node classification performance on a dataset and its homogeneity is 0.86. Third, for multi-
label datasets, clustering coefficient plays an important role along with homophily for overall high node
classification performance (for example while both Wikipedia and PPI exhibit low homophily - Wikipedia has
much higher clustering coefficient suggesting that local density plays a role in improved overall performance).

H. Default vs Tuned Parameters: In Figure 14 we again examine the impact of tuning parameters on
node classification performance. Not surprisingly we once again observe that tuning the method’s parameters
results in a better Micro-f1 score for most methods (exceptions here are HOPE and GraRep). Tuning the
parameters results in a huge gain in the Micro-f1 score of Laplacian Eigenmaps, VERSE, SDNE, NetMF,
MNMF, VAG, WYS, and Unsupervised GraphSage. We reiterate the points we made in Section 7.1.H.

8 Discussion & Concluding Remarks

To conclude, among the methods we analyzed, we found that matrix factorization based approaches offer a
small advantage over other methods on both link prediction and node classification. However, for the link
prediction task, outside of MNMF and WYS, no other method offers a statistically significant improvement
over DeepWalk on either task. Regarding task-specific baselines, the link prediction heuristic is simple,
efficient to compute, and offers competitive performance, while the node-classification heuristic is effective
only on datasets with fewer labels. Moving forward, this study suggests that the field of graph representation
learning needs a renewed bearing and that careful benchmarking is essential for understanding true scientific
advances. Said benchmarking should include more algorithms (existing and new ideas), non-trivial heuristics
and methods for end-to-end tasks, as well as more evaluation datasets – ideally examined through a statistical
lens, on a common platform (our study relies on authors’ original code in various programming environments
- in part because we wished to be true to the original implementations).

Usability of our Study: Network embedding methods has seen applications in multiple domains including
drug-disease association prediction (Zhang et al., 2018b), drug–drug interaction prediction (Zhu et al., 2013),
protein function prediction (Leiserson et al., 2017), for relation extraction in natural language processing(Jat
et al., 2018), neural machine translation (Bastings et al., 2017), for outlier analysis (Zhao & Saligrama, 2009;
Liang et al., 2018b), and entity resolution (Cohen & Richman, 2002; Getoor & Machanavajjhala, 2012).
Our benchmarking study examines the performance of a range of methods on datasets drawn from many
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of these application domains. Moreover our study provides useful insights to researchers with respect to
which baseline methods and hyper-parameter settings to consider in these domains for downstream machine
learning tasks such as link prediction and node classification.

Future directions: Scaling several of these methods is also a useful direction to pursue as this could open up
benchmarking on larger more meaningful and practical datasets and end applications (Qiu et al., 2019; Liang
et al., 2018a). Finally, we believe that the experimental data (375K runs) from this study can also serve as
useful training data for improving auto-hyper-parameter tuning techniques (Tu et al., 2019a). In our initial
analysis, we find that such techniques rarely match the best performance revealed by our comprehensive grid
search for each method on each dataset.
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A Appendix

A.1 Deep Graph Infomax

Deep Graph Infomax (DGI) Velickovic et al. (2019) is a recent and highly popular unsupervised node rep-
resentation learning approach that has achieved excellent performance for graphs with node attributes. We
received useful community feedback after our initial release – a repeated ask was to examine the effectiveness
DGI to learn node embeddings in our study setting. Herein, we include our analysis for the same.

DGI uses an InfoMax based objective that aims to maximize the mutual information between a node’s input
features based patch-level representation and its corresponding graph-level representation. This enforces the
message passing based patch encoder to prefer similarity information shared across patches. For learning
node embeddings in non-attributed graphs, we modified the author’s implementation of DGI to include a
differentiable embedding layer that contains embedding for all the nodes in a graph. These node embeddings
are fed to the DGI network as input node features. These node embeddings are updated to facilitate the
InfoMax objective. The InfoMax objective provides only a coarse structural signal to learn node embeddings,
i.e., the similarity of local patch level representation to that graph level representation and no additional
information. Unlike other node embedding methods, which provide finer edge level signal or node-level
embedding and neighbor/neighborhood similarity, DGI only provides a coarse structural signal. Our results
suggest this coarse signal is insufficient to learn rich positional encodings as can be seen from the results
in Figure 15 and Figure 16. From Figure 15, we observe that on the link prediction task, the Deepwalk
method outperforms DGI. On datasets such as P2P, Microsoft, DBLP, and Wiki-vote DGI has an AUROC
score of less than 0.60. From Figure 16, we observe that on multiple datasets – PPI, Blogcatalog, Pubmed,
and Microsoft – DGI methods’ micro-f1 score is also significantly lower than Deepwalk method for the node
classification task.

A.2 Additional experiments and analysis

In our study, in addition to Micro-F1 scores, we have computed Macro-F1 scores for all experimental settings
(trends are similar to the reported results for Micro-F1). For node classification, we varied train: test
splits from 10:90 to 90:10 (the trends are similar to what we have reported for the 50:50 split - in that no
method outperforms DeepWalk with a significance level of 0.05). We also studied the impact of embedding
normalization on the link prediction task (the impact of normalization was negligible with the logistic
classifier, unlike what we observed for the node classification task). Additionally, we analyzed the impact of
embedding dimension on both the tasks. We also study the impact of binary function on the link prediction
task. These additional results and analysis will be available in a technical report.
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Figure 15: Comparison of DGI with Deepwalk on link prediction.

Figure 16: Comparison of DGI with Deepwalk on node classification with linear classifier.
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