
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

THE OVERCOOKED GENERALISATION CHALLENGE

Anonymous authors
Paper under double-blind review

ABSTRACT

We introduce the Overcooked Generalisation Challenge (OGC) – the first bench-
mark to study reinforcement learning agents’ zero-shot cooperation abilities when
faced with novel partners and levels in the Overcooked-AI environment. This
perspective starkly contrasts a large body of previous work that has evaluated
cooperating agents only on the same level or with the same partner, thus fail-
ing to capture generalisation abilities essential for real-world human-AI coopera-
tion. Our challenge interfaces with state-of-the-art dual curriculum design (DCD)
methods to generate auto-curricula for training general agents in Overcooked. It is
the first open-source cooperative multi-agent environment specially designed for
DCD methods and, consequently, the first evaluated with state-of-the-art methods.
It is fully GPU-accelerated, built on the DCD benchmark suite minimax, and
freely available under an open-source license: http://anonymised.edu.
We show that state-of-the-art DCD algorithms fail to produce useful policies on
this novel challenge, even if combined with recent network architectures specifi-
cally designed for scalability and generalisability. As such, the OGC pushes the
boundaries of real-world human-AI cooperation by enabling research on the im-
pact of generalisation on cooperating agents.

1 INTRODUCTION

Developing computational agents capable of collaborating with humans has emerged as a key chal-
lenge in artificial intelligence (AI) research (Stone et al., 2010; Dafoe et al., 2020) and promises to
vastly expand human abilities (O’neill et al., 2020). Recent years have seen considerable advances
in understanding human cooperative behaviour (Rand & Nowak, 2013; Vizmathy et al., 2024), com-
putational modelling of cooperation (Nikolaidis & Shah, 2013; Sadigh et al., 2016; Ding et al.,
2024),as well as in developing computational methods for human-AI cooperation (Hu et al., 2020;
Strouse et al., 2021). In parallel, several benchmarks (Samvelyan et al., 2019; Bard et al., 2020) were
proposed to foster the development and evaluation of these methods. Most notably, Overcooked-AI
(Carroll et al., 2019) has established itself as a widely used benchmark for evaluating (zero-shot)
human-AI coordination (Strouse et al., 2021; Zhao et al., 2023; Yu et al., 2023).

Figure 1: Coordina-
tion challenges in the
Overcooked-AI Coordi-
nation Ring layout.

Despite the advances they have enabled, all of these benchmarks are lim-
ited in that they only allow to assess reinforcement learning (RL) agents’
cooperative abilities in-distribution. That is, they either only allow to
evaluate agents in the same environment in which they were trained (Hu
et al., 2020; Carroll et al., 2019) or with the same partner agent they
were trained with (Foerster et al., 2018; Lowe et al., 2017; Strouse et al.,
2021). In Overcooked-AI, for instance, existing zero-shot coordination
(ZSC) methods are trained once per layout at considerable cost (Car-
roll et al., 2019; Yang et al., 2022; Zhao et al., 2023; Yu et al., 2023),
and these layouts only feature a limited number of possible cooperation
strategies (see Figure 1). However, real collaborative settings require co-
ordination with novel partners in unknown environments. For example,
consider a medical robot assisting doctors in hospitals. Such a robot will
be deployed in unique and unknown hospitals and surgical rooms where
they need to adapt to different medical staff and their preferences.

To address this limitation, we introduce the Overcooked Generalisation
Challenge (OGC) – the first zero-shot cooperation benchmark that chal-
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lenges agents to cooperate in novel layouts and with unknown partner agents. While previous open-
source benchmarks studied opponents combined with map generalisation, no dedicated open-source
benchmarks exist for studying cooperation partners combined with map generalisation. Cooperative
settings differ from competitive ones in their game-theoretic background and thus require separate
algorithms and benchmarks (Lerer & Peysakhovich, 2019). Neural MMO (Suarez et al., 2021;
2023) comes closest to our setting as it mixes cooperation and competition but crucially does not
provide a purely cooperative setting which is specially designed for human-AI coordination – un-
like Overcooked-AI. To train and evaluate agents on our benchmark, we make use of unsupervised
environment design (UED) (Dennis et al., 2020) to generate suitable training levels, provide hand-
designed testing levels, and asses zero-shot cooperation on these by providing populations of diverse
testing agents. As such, our work is the first to combine UED techniques with a multi-agent RL zero-
shot cooperation task and thus bridges the gap between two previously unrelated research areas; it
studies the impact of generalisation on human-AI coordination and the ability of UED algorithms to
design optimal auto-curricula for cooperating agents. We benchmark several UED algorithms and
network architectures on our challenge and find that they struggle to perform well. Only PAIRED
(Dennis et al., 2020), together with a policy that incorporates a soft Mixture-of-Experts (SoftMoE)
module (Obando-Ceron et al., 2024), has some limited success at generalising to the testing lev-
els and outperforms competitive baselines, including robust PLR (Jiang et al., 2021b;a) and AC-
CEL (Parker-Holder et al., 2022). Overall, our findings call for developing methods that combine
zero-shot coordination and DCD techniques in a single ZSC-DCD framework, and our benchmark
provides the environment to do so. Taken together, our contribution is three-fold:

1. We introduce the Overcooked Generalisation Challenge – a novel benchmark challenge in which
agents are asked to cooperate with novel partners in previously unseen layouts.

2. We provide OvercookedUED – an open-source environment that can be used with state-of-the-art
DCD algorithms and that is integrated into minimax (Jiang et al., 2023), taking full advantage
of the hardware acceleration provided by JAX.

3. We benchmark our environment by training agents with common DCD algorithms (Dennis et al.,
2020; Jiang et al., 2021a; Parker-Holder et al., 2022) and show that current DCD algorithms
struggle with the challenge even if we employ recent network architectures (Smith et al., 2023;
Obando-Ceron et al., 2024). Furthermore, we assess zero-shot cooperation performance with a
population of diverse partners to link zero-shot cooperation and generalisation. We show that as
policies become more generally capable, they achieve better zero-shot cooperation.

2 RESEARCH CHALLENGES

The OGC poses several new challenges for zero-shot human-AI cooperation that go beyond existing
benchmarks and that are essential for further advances in the development of cooperating RL agents:

Generalisation The OGC challenges the generalisation capabilities of methods and agents by
having them engage in a double generalisation challenge: adjusting to both novel partners and lev-
els. Existing cooperative open-source benchmarks require typically only one form of generalisation,
see for instance (Lowe et al., 2017; Foerster et al., 2018; Carroll et al., 2019; Hu et al., 2020).

Environment Design Our environment challenges UED algorithms in generating and designing
layouts with many interacting components and agents. This is in contrast to existing environments
that only require UED algorithms to design simple mazes, 2D walker terrains, or race tracks
consisting of fewer elements (Dennis et al., 2020; Jiang et al., 2021a; Parker-Holder et al., 2022;
Rutherford et al., 2024a). We show that methods struggle to design layouts similar to the ones
humans designed. Current methods specifically fail to design layouts requiring handing over
items over a countertop or featuring deliberately designed circuits. Our benchmark challenges
further research to develop UED methods that design more realistic collaboration environments for
curriculum learning, possibly along the lines of Bruce et al. (2024).

Combining Environment and Partner Generalisation Coordinating with novel partners and
generalising to novel levels were often treated as separate research areas. As such population-based
methods for zero-shot coordination do not apply to the challenge since training levels are generated
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Table 1: Overview of benchmarks for unsupervised environment design and procedurally generated
environments. Closed-source benchmarks are marked in gray – these cannot be evaluated on by the
research community.

Name Multi-
agent

Zero-
shot

coop.

GPU
accel-
erated

Open
Source

Partial
obs.

Img.
obs.

XLand (Team et al., 2021; Bauer et al., 2023) ✓ ✓ - ✓ ? ✓
LaserTag (Samvelyan et al., 2023) ✓ - - - ✓ ✓
MultiCarRacing (Samvelyan et al., 2023) ✓ - - - ✓ ✓

CoinRun (Cobbe et al., 2019) - - - ✓ ✓ ✓
ProcGen (Cobbe et al., 2020) - - - ✓ ✓ ✓
2D Mazes (Cobbe et al., 2019; Dennis et al., 2020) - - - ✓ ✓ ✓
CarRacing (Jiang et al., 2021a) - - - ✓ ✓ ✓
Bipedal Walker (Wang et al., 2019) - - - ✓ ✓ -
AMaze (Jiang et al., 2023) - - ✓ ✓ ✓ ✓
XLand-MiniGrid (Nikulin et al., 2023) - - ✓ ✓ ✓ ✓
Craftax (Matthews et al., 2024) - ✓ ✓ ✓ - ✓
JaxNav (Rutherford et al., 2024a) ✓ - ✓ ✓ ✓ -

OvercookedUED (ours) ✓ ✓ ✓ ✓ ✓ ✓

on the fly. Thus, training a best response against a diverse population on each layout is infeasible.
There is currently no algorithm to train a population of diverse agents over a distribution of levels.
Our benchmark encourages these branches to merge both lines of research and develop UED-ZSC
methods, i.e. methods that learn both at the same time.

3 RELATED WORK

3.1 GENERALISATION IN REINFORCEMENT LEARNING

A large number of works have shown that RL agents fail to generalise to new environments,
see (Zhang et al., 2018a; Cobbe et al., 2019), and have triggered research on the generalisation
capabilities of RL agents (Nichol et al., 2018; Cobbe et al., 2019; 2020). Early results revealed that
RL agents can memorise large numbers of levels during training (Zhang et al., 2018b; Cobbe et al.,
2019) and that they must experience sufficiently diverse training data to generalise well (Cobbe
et al., 2020). One established approach to generate diverse training data is to use domain ran-
domisation (Jakobi, 1997, DR). Still, DR has been shown to produce many uninformative samples
(Khirodkar et al., 2018), which can lead to the agent’s inability to generalise (Dennis et al., 2020).

3.2 UNSUPERVISED ENVIRONMENT DESIGN

Intending to address this challenge, later works on generalisation focused on unsupervised environ-
ment design (Dennis et al., 2020, UED). UED aims to improve domain randomisation by generat-
ing auto-curricula that include training levels of increasing complexity to facilitate continued agent
learning (Graves et al., 2017). It does so by adapting the free parameters of an under-specified en-
vironment to the agent’s capabilities. Most popular UED methods fall into the category of Dual
Curriculum Design (Jiang et al., 2021a, DCD) that combine 1) an agent, 2) a level generator, and
3) a curator that picks which levels to train on. Popular methods include Prioritised Level Re-
play (PLR) (Jiang et al., 2021b), robust PLR⊥ (Jiang et al., 2021a), MAESTRO (Samvelyan et al.,
2023), ReMiDi (Beukman et al., 2024), PAIRED (Dennis et al., 2020), ACCEL (Parker-Holder et al.,
2022), and Replay-Enhanced (RE)PAIRED (Jiang et al., 2021a). While the development of these
DCD methods has been steady, they have mostly been explored in simple environments, see Table 1.

Single-agent UED Environments Early work on generalisation mainly focused on single-agent
environments (Zhang et al., 2018b; Farebrother et al., 2018; Cobbe et al., 2019) and these are also

3
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popular in UED research. Among these, prior work has studied mazes (Dennis et al., 2020; Jiang
et al., 2021a; Parker-Holder et al., 2022; Jiang et al., 2023; Li et al., 2023a; Beukman et al., 2024),
bipedal walkers (Wang et al., 2019; 2020; Parker-Holder et al., 2022) or car racing environments
(Jiang et al., 2021a). One likely reason for their popularity as benchmarks for DCD is that new
levels are easy to generate, and agents are usually fast to train. However, they are limited to a single
agent, with limited options to interact with the environment and other agents, and thus bear little
resemblance to real-world problems.

Multi-agent UED Environments Compared to single-agent environments, multi-agent envi-
ronments are inherently more complex because the agents interact with each other, as well as
with the physical environment. Multi-agent environments are still rarely used in UED research.
Most prominent is Deepmind’s XLand (Team et al., 2021; Bauer et al., 2023), a closed-source
multi-task universe for generating single- and multi-agent tasks and environments. While XLand
features cooperative tasks, it is not available to researchers for studying cooperative multi-agent
UED algorithms. While an open-source variant was recently published (Nikulin et al., 2023), it
only supports a single agent. Arguably closest is Neural MMO (Suarez et al., 2021; 2023), which
is a massively multi-task and multi-agent environment that mixes cooperation and competition to
replicate massively multiplayer online games. We instead are interested in assessing and identifying
cooperation performance in specially designed human-AI cooperation challenges for which the
maissvely multi-task and multi-agent cooperation-competition setting of Neural MMO is unsuitable.
Additionally, classic Overcooked already benefits from a rich history of human-AI cooperation
research. Finally, while JaxNav (Rutherford et al., 2024a) features multi-agent path-finding no
interaction between agents is required and the environment is not focused on human-AI cooperation.
Other open-source environments are competitive, i.e. LaserTag (Lanctot et al., 2017; Samvelyan
et al., 2023) and MultiCarRacing (Schwarting et al., 2021; Samvelyan et al., 2023), and thus not
applicable to our setting. Opposed to all of these, our work contributes to and analyses the first
open-source cooperative multi-agent UED environment.

3.3 HUMAN-AI COOPERATION IN OVERCOOKED-AI

Overcooked-AI (Carroll et al., 2019) has become one of the most important benchmarks for
human-AI cooperation. The environment is fully cooperative and has two agents cook and deliver
soups to earn a joint reward. Overcooked-AI was, for example, used in research on zero-shot
cooperation (Strouse et al., 2021; Zhao et al., 2023; Yu et al., 2023; Li et al., 2023b; Yan et al.,
2023, ZSC), language model-based cooperative agents (Liu et al., 2024; Tan et al., 2024), human
modelling in cooperation (Yang et al., 2022). Zero-shot cooperation refers to cooperating with a
partner not encountered during training. It is an important proxy to ensure the ability of an agent to
coordinate with humans at test time, given that human data is often unavailable and agents thus must
be able to coordinate effectively without previous training. It is commonly studied in Overcooked.

Related to our work is the work of Fontaine et al. (2021) in which the authors used procedurally
generated Overcooked layouts to evaluate the impact of different layouts on human-robot inter-
action using planning algorithms. However, while they use procedural content generation in the
Overcooked context their research does not focus on cross-layout generalisation – a major theme in
our work. Our work is thus the first to explore the impact of cross-level generalisation for zero-shot
cooperation and is the first to provide the necessary tools for this.

4 PRELIMINARIES

The cooperative multi-agent UED setting can be formalised as a decentralised under-specified par-
tially observable Markov decision process (Dec-UPOMDP) with shared rewards. A Dec-UPOMDP
is defined as M = ⟨N , A,Ω,Θ,SM, T M, OM,RM, γ⟩ in which N is the set of agents with
cardinality n, Ω is a set of observations, and SM is the set of true states in the environment. Partial
observations oi ∈ Ω are obtained by agent i ∈ N using the observation function O : S × N → Ω.
Following Jiang et al. (2021a), a level Mθ is defined as a fully-specified environment given some
parameters θ ∈ Θ. In it, agents each pick an action ai ∈ A simultaneously to produce a joint action
aaa = (a1, . . . , an) and observe a shared immediate reward R(s,aaa). Then, the environment transi-
tions to the next state according to a transition function T : S ×A1 × ...×An ×Θ → ∆(S) where

4
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Figure 2: Overview of the Overcooked Generalisation Challenge (OGC) and how it is typically
used in a Dual Curriculum Design (DCD) algorithm. The OGC supports teacher-based methods like
PAIRED (Dennis et al., 2020) via unsupervised environment design (UED) and edit-based methods
like ACCEL (Parker-Holder et al., 2022) via mutator functions of existing layouts.

∆(S) refers to the space of distributions over S. γ ∈ [0, 1) specifies the discount factor. Agents
learn a policy π. The joint policy πππ together with the discounted return Rt =

∑∞
i=0 γ

irt+1 induce
a joint action value function Qπππ = Est+1:∞,aaat+1:∞ [Rt|st, aaat]. The definition of the Dec-UPOMDP
extends a Dec-POMDP (Oliehoek & Amato, 2016; Wu et al., 2021) with the free parameters of the
environment Θ, analogously to previous works (Dennis et al., 2020; Jiang et al., 2021a; Samvelyan
et al., 2023). Our definition differs from (Samvelyan et al., 2023) in terms of the shared rewards
and general-sum nature. Within our Dec-UPOMDP, we perform UED to train a policy over a distri-
bution of fully specified environments that enable optimal learning. This is facilitated by obtaining
an environment policy Λ (Dennis et al., 2020) that specifies a sequence of environment parameters
ΘT for the given policy that is to be trained. How Λ is obtained depends on the DCD method.
For example, in OvercookedUED, Θ represents the possible positions of walls, pots, serving spots,
agent starting locations, and onion and bowl piles which is adjusted by Λ throughout training.

5 THE OVERCOOKED GENERALISATION CHALLENGE

An overview of the Overcooked Generalisation Challenge is shown in Figure 2. The OGC extends
previous work by evaluating the cooperative abilities out-of-distribution. That is, in contrast to
existing UED environments, the OGC focuses on the cooperation of multiple agents in a complex,
cooperative task across different levels. More specifically, two different agents are tasked with
cooking a soup together in the five original layouts of Overcooked-AI (see Figure 3), but without
having encountered them and their partner during training. Since the original five layouts have been
designed to test and explore different kinds of cooperation, they form suitable out-of-distribution
test levels. To train an agent capable of generalisation, we generate a curriculum of possibly endless
diverse training layouts via procedural content generation. The OGC is more closely aligned
with real-world human-AI collaboration as it does not limit evaluation to one specific physical
environment or partner. To generate a curriculum of layouts, we use DCD methods. Specifically,
methods in which an environment designer interacts with the challenge by designing layouts
either from scratch through interacting with OvercookedUED – a novel environment for creating
Overcooked levels – by alternating existing layouts through the Overcooked mutator or by letting
the OGC generate random layouts. At every step of the curriculum, this designer must account for
agents’ cooperation ability when trying to generate layouts that are at the forefront of their abilities.

5.1 COMPONENTS OF THE CHALLENGE

While OGC refers to the challenge as a whole, it comprises several components that enable its
integration with DCD algorithms (see Figure 2). At the heart of it, it features an Overcooked
environment capable of running different levels fast and in parallel in which agents learn to
cooperate. It features OvercookedUED that provide methods, interfaces and a teacher environment

5
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Plate Pile Onion Pile Agents Serving Location Pot Location

Figure 3: We study the five layouts proposed by Carroll et al. (2019). From left to right: Cramped
Room, Asymmetric Advantages, Coordination Ring, Forced Coordination, and Counter Circuit.

to design novel layouts as well as an Overcooked Mutator that alters existing layouts, specifically
designed to be used with ACCEL.

Overcooked-AI OGC builds on the Overcooked-AI environment. We adapted the version
provided by the JaxMARL project (Rutherford et al., 2024b), keeping features consistent with the
original implementation. This includes action and observation spaces, i.e. the set of actions is
{left, right, up, down, interact, stay} and observations are encoded as a stack of 26
h×w boolean masks encoding the positions of elements in the environment. In this representation,
the first mask encodes the position of the first agent, the second mask the one of the second agent
etc. Since agents now learn to play on many different layouts all at once, we adjust the environment
to be capable of parallelising across differently shaped levels via padding. I.e., during rollouts,
layouts are padded to a maximum size, and all objects in these layouts are one-hot encoded based
on their position in equally sized masks. While this facilitates fast parallel rollouts that can be
just-in-time compiled, it requires the introduction of a maximum height h and width w that need to
be picked as a hyperparameter before training.

OvercookedUED OvercookedUED features the interfaces necessary to design new layouts. For
algorithms that make use of a teacher agent to create layouts (PAIRED, etc.), OvercookedUED
provides a teacher environment (see Figure 2). This environment allows a teacher policy to take
design steps to parameterise the underspecified MDP. At every timestep t of the generation process
the teacher observes the unfinished layout and picks an action from a space that consists of the total
number of cells in the h × w grid. This cell then becomes filled with the next items to be placed.
Objects are placed sequentially and in a deterministic order, starting from walls, agents one and two,
goal, onion, pot and bowl positions. An episode in the teacher MDP lasts until all items are placed.
In case of a conflict, elements are placed randomly on free cells. The teacher is parameterised by
its own neural network. As in previous work (Jiang et al., 2023), OvercookedUED does not check
whether a layout is solvable and leaves the task of designing and/or identifying suitable training
layouts to the DCD method.

For algorithms that do not specify a teacher, such as PLR, OvercookedUED generates random lay-
outs. These random layouts feature one or two piles of onions, bowls, pots and serving locations,
and two agents.

Finally, some DCD algorithms, such as ACCEL, require alternating existing layouts by mutating
them. OvercookedUED supports layout mutation through five basic operations: (1) converting a
random wall to a free space and vice versa, (2) moving goals, (3) pots, (4) plate piles, and (5) onion
piles. Given a layout, our mutator randomly samples n operations and applies them. All versions
allow the number of walls placed to be configured and the environment always places a border wall.

Implementation The OGC is implemented in Jax (Bradbury et al., 2018) and integrated into
minimax (Jiang et al., 2023). As such, it can be tested with all available DCD algorithms present
in minimax. To achieve this we extend minimax with runners, replay buffers etc. that are
compatible with multiple agents. Building on an established library eliminates sources of error and
presents users of the challenge with a familiar experience. We present the steps-per-seconds (SPS)
on our setup given varying degrees of parallelism in Table 2 and compare it to the GPU-accelerated
maze environment minimax includes AMaze. Given sufficiently large numbers of parallel
environments, OGC can be run at hundreds of thousands of SPS. While less than AMaze, the OGC
is a more fully-featured environment in which multiple agents take steps and interact.

6
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Figure 4: Sample levels generated by the different methods after 15, 000 (Middle) and 30, 000 (End)
epochs. Even after considerable training, none of the methods can guarantee the generation of
solvable layouts (Middle-row leftmost and rightmost).

5.2 EVALUATION

Table 2: Average steps-per-second for different numbers of
parallel environments measured by taking 1,000 steps with
randomly sampled actions.

# Parallel Envs 1 32 256 1024

AMaze 264 8, 141 67, 282 264, 142
OvercookedUED 151 4, 921 40, 011 156, 696

We evaluate agents by their per-
formance on out-of-distribution
Overcooked-AI layouts to asses gen-
eralisation performance in self-play
and in cross-play. In cross-play,
a fictitious co-play (Strouse et al.,
2021, FCP) and maximum entropy-
based population based training
(Zhao et al., 2023, MEP) population
of a total 24 agents each is used to
asses zero-shot cooperation. Both
populations are trained with equal settings and include a low, medium and high-skilled checkpoint
of each run extracted at 10, 50 and 100 % achieved return respectively. The population entropy
coefficient α is 0.01 for MEP. In this work we define zero-shot coordination as the task of
cooperating with a partner previously not encountered during training and view it in contrast to
ad-hoc teamwork (Stone et al., 2010) since in our setting there is no time to update a fixed policy
after training (Hu et al., 2020). As zero-shot cooperation with a diverse population has become a
proxy for assessing the abilities of an agent to coordinate with humans. Our benchmark includes
the necessary tools to perform this evaluation. In our analysis, we report results using the mean
episode reward and mean layout solved rate, similar to previous work (Jiang et al., 2023). A layout
is considered solved if an agent pair delivers more than one soup which differentiates goal-directed
from random behaviour. We present these metrics in the self- and cross-play settings. Additionally,
we investigate what kinds of levels agents perform poorly in and why in a final error-analysis.

6 ANALYSING & BENCHMARKING THE CHALLENGE

We benchmark the challenge with several DCD algorithms and network architectures. We aim to
set a performance baseline for future works and show what evaluations this benchmark enables. To
this end, we first show that generalising to novel layouts in Overcooked is difficult, and then we
move on to the additional challenge of zero-shot cooperation.

All baselines are trained using MAPPO, which is known to work well in cooperative settings (Yu
et al., 2022) using centralised training and decentralised execution (Foerster et al., 2016). As for
DCD algorithms, we compare the performance of DR, PLR⊥,∥, Pop. PAIRED and ACCEL∥. We
chose these methods as they have better theoretical guarantees (PLR⊥ vs PLR), better runtime per-
formance (ACCEL∥ and PLR∥), or because we found them to perform better empirically (Pop.
PAIRED vs PAIRED). We excluded POET (Wang et al., 2019) in this analysis as it outputs special-
ists rather than generalists, which we require (Parker-Holder et al., 2022). Additionally, we excluded
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Table 3: Mean episode reward for the different methods averaged over the respective testing layouts.
The best result is shown in bold. We report aggregate statistics over three random seeds. We include
Oracles which were trained on the five testing layouts directly to establish a empirical maximum.

Method CNN-LSTM SoftMoE-LSTM CNN-S5

DR 0.46± 0.16 5.22± 7.19 0.00± 0.00
PLR⊥,∥ 0.17± 0.06 0.91± 0.71 0.12± 0.15
Pop. PAIRED 0.19± 0.09 13.34± 5.70 0.24± 0.19
ACCEL∥ 0.20± 0.14 0.67± 0.60 0.28± 0.26

Oracle 189.49± 12.96 217.02± 39.18 155.01± 12.82

MAESTRO as it is based on prioritised fictitious self-play (Heinrich et al., 2015; Vinyals et al., 2019)
that is not easily adaptable to the cooperative setting (Strouse et al., 2021). As in (Jiang et al., 2023),
if not stated otherwise, we train in 32 parallel environments and stop after 30, 000 outer training
loops, amounting to just under 400 million steps in the environment. Hyperparameters were picked
after a grid search over reasonable values, and all parameters are provided in Appendix A.4. Our de-
fault neural network architecture consists of a convolutional encoder with a recurrent neural network
with an LSTM (Hochreiter & Schmidhuber, 1997). It is picked for its good performance in previous
work (Yu et al., 2023) (see Appendix A.5 for details). In addition to our default network architecture,
we explore the use of SoftMoE (Obando-Ceron et al., 2024), which have recently been identified
for their potential for enabling scaling and generalisation, and S5 layers (Smith et al., 2023) due to
the strong results of structured state-space models (Gu et al., 2022) in meta reinforcement learning
(Lu et al., 2023). SoftMoE modules replace the penultimate layer after the feature extractor and S5
layers the LSTM in all experiments. We hypothesise that these provide better generalisation perfor-
mance. Using these parameters, we verified that agents also overfit to their level in Overcooked by
evaluating agents trained on a single layout on all layouts (cf. Appendix A.6.1). Additionally, we
verified that all architectures can be fitted to the testing layouts when trained on them directly. We
will refer to these as Oracles and use them to establish the maximum performance possible. Lastly,
for all runs we display training curves on seen and the five unseen evaluation levels in Appendix
A.7.1.

Layout Generalisation Performance Simply generalising to the testing layouts in the OGC is
already challenging for all methods without having to coordinate with novel partners, as presented
in Table 3. Compared to commonly used single-agent Maze environments (such as AMaze,
compare (Jiang et al., 2023)), all DCD methods struggle to obtain good results. This is most
evident when compared with oracle policies (bottom row). PAIRED outperforms all other models
significantly 0.01 < p < 0.05 using a one-sided paired t-test. This is also shown in the mean
solved rate where it reaches 14.6 ± 7.7%, while all other models have a solved rate of mostly 0%
(cf. Appendix A.6.2). While this model performs better on average, layouts differ greatly in their
difficulty. Our best-performing model reaches modest performance in Asymmetric Advantages
and Cramped Room while mostly failing in the others, with no other model achieving noteworthy
results. Recall that the environment features more moving parts that must be placed correctly to
facilitate learning. This makes it hard for approaches like DR to find optimal placements by pure
chance, as reflected in the results. The full results are in the Appendix A.6.3.

Zero-Shot Cooperation Performance Ultimately, we want the OGC to connect map generalisa-
tion and zero-shot coordination. To that end, we train and then use a FCP and MEP population (see
Appendix A.6.4 for details) to establish how general cooperative agents can coordinate with diverse
policies. We present preliminary results in Figure 5 together with two other baselines: stay which is
a partner that never moves and random which samples random actions. As performance on out-of-
distribution levels rises, agents become more competent at zero-shot cooperation. PAIRED always
outperforms baselines (cf. Appendix A.6.5). However, even PAIRED policies often perform only
slightly better than random baselines, which signifies the challenges of our benchmark. This is also
evidenced by the kinds of levels these methods generate (Figure 4), as they tend to pivot towards gen-
erating open spaces that ease cooperation but are notably different from evaluation layouts. Overall,
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Figure 5: Zero-shot coordination results of the SoftMoE-LSTM policy paired with an FCP popula-
tion trained on the respective layout. We report the mean episode reward and standard error.

84.4 79.4 71.0 56.8
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Figure 7: Sample levels that our models perform best (top) and worst (bottom) in.The number of
visits to each grid cell is shown as a heatmap overlay, while the mean return is stated below each
layout. The layouts the model performs worst in tend to feature narrow elements or large distances
between items.

cooperation performance is mostly carried by the expert FCP and MEP agents (compare Tables 13
and 14), mostly since our agents struggle to perform on the evaluation layouts in the first place.

Figure 6: An illustration of
the circular evaluation levels;
we move the kitchen around
the sides and vary the size.

Error Analysis We perform two final experiments to investi-
gate the poor performance of our baselines and to eliminate trivial
sources of errors. First, we hypothesise that the top-down observa-
tions in OGC are hard to generalise from since they are not invariant
to mirroring or rotations (Ye et al., 2020). To test this we evaluate
agents on 24 hand-designed circular evaluation levels with different
kinds of symmetry, as shown in Figure 6. We find that agents tend
to perform similarly across these layouts as the standard deviation
is at most 1.1, and therefore reject this hypothesis (more details in
Appendix A.7). Second, we investigate the kinds of levels our best-
performing model does well vs poorly in from a pool of randomly
generated evaluation levels in Figure 7. The figure summarises the
cooperation behaviour of the agents by showing which cells are vis-
ited most frequently to give an impression of their motion patterns.
While on many layouts our model reaches good self-play perfor-
mance (up to a maximum mean reward of 84.4; top row), it typically

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

delivers few to no soups in layouts it performs worst in. These levels tend to be narrow/convoluted
and/or feature big distances between objects. Notice that the training levels in which our model
performs well in are similar to Asymmetric Advantages and Cramped Room, while the worst lev-
els are similar to the other 3 evaluation levels. In conclusion, current DCD methods struggle with
generating training layouts of the correct complexity, i.e. ones that are similarly hard to evaluation
ones.

Discussion Previous work (Jiang et al., 2021a) has found that PLR⊥ tends to outperform the
other here-tested algorithms in navigation-based tasks. Our more challenging environment suggests
that this might not always be the case. In our preliminary analysis, PAIRED outperformed other
DCD methods. Compared to mazes, car racing, or walker environments with fewer moving pieces,
Overcooked layouts are more complex to design, requiring the designer to place multiple objects
in relation to each other and the agents. Methods that employ a random generator therefore
struggle in such a big design space. This thus requires a capable generator and suggests that
simple navigation-based environments used to benchmark DCD in UED algorithms do not allow
full performance evaluation. As such, OvercookedUED can be an important part of evaluating
DCD algorithms. We envision that general Overcooked agents should be evaluated in scenarios
that are difficult for self-play agents using our benchmark. These include zero-shot cooperation
with strongly-biased agents (Yu et al., 2023) in Coordination Ring (see Section 1) and Asymmetric
Advantages as described in (Ruhdorfer, 2023) and for which we provide the tools.

7 LIMITATIONS

Despite its many advantages, our challenge has two limitations. First, we artificially restricted the
maximum size of the layouts to allow the environment to be both fully observable as in Carroll
et al. (2019) and parseable by CNN-based feature encoders. Future work should focus on more
natural representations of the whole scene, e.g. using graphs or item embeddings. While we
included a partial observation that could theoretically be computed independently of size, similar
to the vector-based observation used for behaviour cloning agents in (Carroll et al., 2019), batching
across layouts in OvercookedUED still requires the layouts to be scaled to the same height and
width. Second, while our challenge allows us to study zero-shot coordination via generalising
across layouts, reasoning about other agents (Rabinowitz et al., 2018; Gandhi et al., 2021; Bara
et al., 2023; Bortoletto et al., 2024b;a) might be equally important to achieve zero-shot cooperation
capabilities on unknown layouts. This is plausible given that humans can reason about the mental
states of other agents via Theory of Mind (Premack & Woodruff, 1978), as well as the physical
configuration of the space in which they operate. Future work could thus explore reasoning about
other agents in previously unexplored environments.

8 CONCLUSION

We have presented the Overcooked Generalisation Challenge (OGC) – a generalisation challenge
focusing on (zero-shot) cooperation in MARL in out-of-distribution test levels. Our challenge is the
first open-source cooperative multi-agent UED environment and is significantly more challenging
than previous environments commonly used in UED and DCD research. In addition to using
the challenge in UED research, we have shown how the OGC can be used in future research on
human-AI collaboration as a zero-shot cooperation benchmark for general agents. That is, our
challenge establishes a link between generalisation and zero-shot coordination. Our work is the
first to provide the research community with the tools to train and evaluate agents capable of
coordinating in previously unknown physical spaces and with novel partners.
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(eds.), Advances in Neural Information Processing Systems, volume 32. Curran Asso-
ciates, Inc., 2019. URL https://proceedings.neurips.cc/paper/2019/file/
f5b1b89d98b7286673128a5fb112cb9a-Paper.pdf.

Karl Cobbe, Oleg Klimov, Chris Hesse, Taehoon Kim, and John Schulman. Quantifying gener-
alization in reinforcement learning. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.),
Proceedings of the 36th International Conference on Machine Learning, volume 97 of Proceed-
ings of Machine Learning Research, pp. 1282–1289. PMLR, 09–15 Jun 2019. URL https:
//proceedings.mlr.press/v97/cobbe19a.html.

Karl Cobbe, Christopher Hesse, Jacob Hilton, and John Schulman. Leveraging procedural genera-
tion to benchmark reinforcement learning. In Proceedings of the 37th International Conference
on Machine Learning, ICML’20. JMLR.org, 2020.

11

https://www.sciencedirect.com/science/article/pii/S0004370219300116
https://www.sciencedirect.com/science/article/pii/S0004370219300116
https://proceedings.mlr.press/v202/bauer23a.html
https://doi.org/10.48550/arXiv.2402.12284
https://doi.org/10.48550/arXiv.2402.12284
https://ojs.aaai.org/index.php/AAAI/article/view/27800
https://ojs.aaai.org/index.php/AAAI/article/view/27800
http://github.com/google/jax
http://github.com/google/jax
https://arxiv.org/abs/2402.15391
https://proceedings.neurips.cc/paper/2019/file/f5b1b89d98b7286673128a5fb112cb9a-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/f5b1b89d98b7286673128a5fb112cb9a-Paper.pdf
https://proceedings.mlr.press/v97/cobbe19a.html
https://proceedings.mlr.press/v97/cobbe19a.html


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Allan Dafoe, Edward Hughes, Yoram Bachrach, Tantum Collins, Kevin R. McKee, Joel Z. Leibo,
Kate Larson, and Thore Graepel. Open Problems in Cooperative AI, December 2020. URL
http://arxiv.org/abs/2012.08630.

Michael Dennis, Natasha Jaques, Eugene Vinitsky, Alexandre Bayen, Stuart Russell, Andrew Critch,
and Sergey Levine. Emergent complexity and zero-shot transfer via unsupervised environment
design. In Proceedings of the 34th International Conference on Neural Information Processing
Systems, NIPS’20, Red Hook, NY, USA, 2020. Curran Associates Inc. ISBN 9781713829546.

Lin Ding, Yong Tang, Tao Wang, Tianle Xie, Peihao Huang, and Bingsan Yang. A Cooperative
Decision-Making Approach Based on a Soar Cognitive Architecture for Multi-Unmanned Ve-
hicles. Drones, 8(4):155, April 2024. ISSN 2504-446X. doi: 10.3390/drones8040155. URL
https://www.mdpi.com/2504-446X/8/4/155.

Jesse Farebrother, Marlos C. Machado, and Michael H. Bowling. Generalization and regulariza-
tion in dqn. ArXiv, abs/1810.00123, 2018. URL https://api.semanticscholar.org/
CorpusID:52904113.

Jakob Foerster, Ioannis Alexandros Assael, Nando de Freitas, and Shimon Whiteson. Learning to
communicate with deep multi-agent reinforcement learning. In D. Lee, M. Sugiyama, U. Luxburg,
I. Guyon, and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 29.
Curran Associates, Inc., 2016. URL https://proceedings.neurips.cc/paper_
files/paper/2016/file/c7635bfd99248a2cdef8249ef7bfbef4-Paper.pdf.

Jakob N. Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli, and Shimon White-
son. Counterfactual multi-agent policy gradients. In Proceedings of the Thirty-Second AAAI
Conference on Artificial Intelligence and Thirtieth Innovative Applications of Artificial Intelli-
gence Conference and Eighth AAAI Symposium on Educational Advances in Artificial Intelli-
gence, AAAI’18/IAAI’18/EAAI’18. AAAI Press, 2018. ISBN 978-1-57735-800-8.

Matthew Fontaine, Ya-Chuan Hsu, Yulun Zhang, Bryon Tjanaka, and Stefanos Nikolaidis. On the
Importance of Environments in Human-Robot Coordination. In Proceedings of Robotics: Science
and Systems, Virtual, July 2021. doi: 10.15607/RSS.2021.XVII.038.

Kunihiko Fukushima. Cognitron: A self-organizing multilayered neural network. Biological Cy-
bernetics, 20:121–136, 1975. URL https://api.semanticscholar.org/CorpusID:
28586460.

Kanishk Gandhi, Gala Stojnic, Brenden M. Lake, and Moira Dillon. Baby intuitions benchmark
(BIB): Discerning the goals, preferences, and actions of others. In Thirty-Fifth Conference on
Neural Information Processing Systems, 2021. URL https://arxiv.org/abs/2102.
11938.

Alex Graves, Marc G. Bellemare, Jacob Menick, Rémi Munos, and Koray Kavukcuoglu. Automated
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Jaderberg, Alexander Sasha Vezhnevets, Rémi Leblond, Tobias Pohlen, Valentin Dalibard, David
Budden, Yury Sulsky, James Molloy, Tom Le Paine, Caglar Gulcehre, Ziyun Wang, Tobias Pfaff,
Yuhuai Wu, Roman Ring, Dani Yogatama, Dario Wünsch, Katrina McKinney, Oliver Smith, Tom
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A.1 ACCESSIBILITY OF THE BENCHMARK

We make our challenge available under the Apache License 2.0 via a code repository: https:
//anonymised.edu. Our environment is built on top of the existing minimax project (accessi-
ble under Apache License 2.0 via https://github.com/facebookresearch/minimax)
and is thus accessible to researchers who are already familiar with the project. minimax is exten-
sively documented, fast, and supports multi-device training. For all details, including a full descrip-
tion of the advantages of minimax, we kindly refer the reader to the accompanying publication
(Jiang et al., 2023). Our Overcooked adaption is extended from the one in JaxMARL also acces-
sible under Apache License 2.0 via https://github.com/FLAIROx/JaxMARL. Our code
includes extensive documentation and examples of how it may be used. Additionally, our code is
written in a modular fashion and other multi-agent environments can be integrated with the runners
thanks to the careful design of the original project.

A.2 BROADER IMPACTS

While our work is largely foundational and concerned with providing the research community with
the appropriate tools for the training and evaluation of agents in game-like environments, special
caution is always imperative should this research be applied to human-AI collaboration. Even though
our goal is to improve collaboration, safeguards should be applied to make sure that humans are
always safe from harm. Especially so in real-world applications where accidents could potentially
result in bodily harm. Since our work is still far removed from any real-world application, we do
not expect that our work in its present form carries the risk of materialising these harms. Some form
of unsupervised environment design in collaborative environments might be part of future systems
and we therefore acknowledge these risks. This work of course also carries the potential to improve
human-AI collaboration and we make an important contribution to advancing the field with potential
impacts in all kinds of human-machine interaction.

A.3 INFRASTRUCTURE & TOOLS

We ran our experiments on a server running Ubuntu 22.04, equipped with NVIDIA Tesla V100-
SXM2 GPUs with 32GB of memory and Intel Xeon Platinum 8260 CPUs. All training runs are exe-
cuted on a single GPU only. We trained our models using Jax (Bradbury et al., 2018) and Flax (Heek
et al., 2023) with 1, 2 and 3 as random seed for training DCD methods and 1 to 8 as random seeds
for the populations. Training the DCD methods usually finishes in under 24 hours, only SoftMoE
and PAIRED-based methods take longer. SoftMoE-based policies often take an extra 50% wall-
clock time to train. Noticeable is also that our S5 implementation is the fastest, usually needing
30% less time. Both are compared to the default architectures’ training time. In the longest case,
the combination of a SoftMoE-LSTM policy trained with PAIRED takes about 80 hours to complete
training. Our benchmark should be runnable on any system that features a single CUDA-compatible
GPU. Although in our experience our experiments will require 32GB VRAM to run.

A.4 HYPERPARAMETERS

We overview all hyperparameters for training in Table 4 and provide details on the hyperparameter
search used in Table 5. This search was conducted on smaller single layout runs to determine
reasonable values as complete runs would have been computationally infeasible. Furthermore we
show the hyperparameters for each DCD method separately: DR hyperparameters in Table 6, PLR
hyperparameters in Table 7, ACCEL hyperparameters in Table 8, and PAIRED hyperparameters in
Table 9. DR hyperparameters govern how Overcooked levels are generated randomly and apply to
all other processes in which a random level is sampled, for instance, in PLR, in which case the same
hyperparameters apply.

A.5 NEURAL NETWORK ARCHITECTURES

This work employs an actor-critic architecture using a separate actor and critic in which the critic is
centralised for training via MAPPO (Yu et al., 2022). For the actor, the observations are of shape
h × w × 26, while for the centralised critic, we concatenate the observations along the last axis to
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Table 4: Hyperparamters of the learning process.

Description Value

Optimizer Adam (Kingma & Ba, 2015)
Adam β1 0.9
Adam β2 0.999
Adam ϵ 1 · 10−5

Learning Rate η 3 · 10−4

Learning Rate Annealing -
Max Grad Norm 0.5

Discount Rate γ 0.999
GAE λ 0.98
Entropy Coefficient 0.01
Value Loss Coefficient 0.5
# PPO Epochs 8
# PPO Minibatches 4
# PPO Steps 400
PPO Value Loss Clipped
PPO Value Loss Clip Value 0.2
Reward Shaping Yes (linearly decreased over training)

Table 5: Values used for a grid search over hyperparameters governing the learning process. Finally
used values appear in bold.

Description Value

Learning Rate η [1 · 10−4, 3 · 10−4, 5 · 10−4, 1 · 10−3]

Entropy Coefficient [0.01 0.1]
# PPO Steps [256, 400]
# Hidden Layers [2, 3, 4]
Reward Shaping Annealing Steps [0, 2500000, 5000000, until end]

form a centralised observation, i.e. the centralised observation has shape h×w×52 following prior
work (Yu et al., 2023).

All our networks feature a convolutional encoder fc. This encoder always features three 2D convo-
lutions of 32, 64 and 32 channels with kernel size 3 × 3 each and pads the input with zeros. Our
default activation function is ReLU (Fukushima, 1975; Nair & Hinton, 2010) which we apply after
every convolutional block. We feed the output of fc to a feed-forward neural network fe with three
layers with 64 neurons, ReLU and LayerNorm (Ba et al., 2016) applied each. fe takes the flattened
representation produced by fc and produces an embedding e ∈ Rb×t×64 that we feed into a recur-
rent neural network (either LSTM (Hochreiter & Schmidhuber, 1997) or S5 (Smith et al., 2023))
to aggregate information along the temporal axis. We use this resulting embedding et ∈ Rb×64 to
produce action logits l ∈ Rb×6 to parameterise a categorical distribution in the actor-network or
directly produce a value v ∈ Rb×1 in the critic network using a final projection layer. This archi-
tecture is inspired by previous work on Overcooked-AI, specifically (Yu et al., 2023), see Figure 8
for an overview. We also test the use of a S5 layer (Smith et al., 2023) in which case we use 2 S5
blocks, 2 S5 layers, use LayerNorm before the SSM block and the activation function described in
the original work, i.e. a(x) = GELU(x)⊙ σ(W ∗ GELU(x)).

In the case of the SoftMoE architecture, we follow the same approach as in (Obando-Ceron et al.,
2024) and replace the penultimate layer with a SoftMoE layer. As in their work we use the PerConv
tokenisation technique, i.e. given input x ∈ Nh×w×26 we take the output y ∈ Rh×w×32 of fc and
construct h×w tokens with dimension d = 32 that we then feed into the SoftMoE layer. We always
use 32 slots and 4 experts for this layer, see (Obando-Ceron et al., 2024) for details on this layer. The
resulting embedding is then passed into the two remaining linear layers before being also passed to
RNN and used to produce an action or value, equivalent to the description above, compare Figure 9.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Table 6: DR hyperparameters.

Description Value

n walls to place Sampled uniformly between 0 – 15
n onion piles to place Sampled uniformly between 1 – 2
n plate piles to place Sampled uniformly between 1 – 2
n pots to place Sampled uniformly between 1 – 2
n goals to place Sampled uniformly between 1 – 2

Table 7: PLR specific hyperparameters in addition to the DR hyperparameters.

Description Value

UED Score MaxMC (Jiang et al., 2021a)
PLR replay probability ρ 0.5
PLR buffer size 4, 000
PLR staleness coefficient 0.3
PLR temperature 0.1
PLR score ranks Yes
PLR minimum fill ratio 0.5
PLR⊥ Yes
PLR∥ Yes
PLR force unique level Yes

Lastly, we describe our networks in terms of parameter count in Table 10.

A.6 ADDITIONAL ANALYSIS

A.6.1 EVIDENCE OF OVERFITTING IN OVERCOOKED AGENTS

To verify that agents indeed overfit their training layout in Overcooked we present Table 11 in
which we experiment with our weakest performing policy architecture, the CNN-LSTM. This is to
be expected but verifying is nonetheless important.

A.6.2 PERFORMANCE ACROSS LEVELS

To accompany the overall performance measured by reward in the main paper in Table 3 we also
measure the mean solved rate on display it in Table 12.

A.6.3 PERFORMANCE ON INDIVIDUAL LEVELS

We list the performance of every individual method on every single layout in Table 13. Most notable
is that some layouts are harder to learn than others. Our agents especially seem to struggle with
layouts requiring more complex forms of interaction, i.e. Coordination Ring, Counter Circuit and
Forced Coordination. Forced Coordination especially seems difficult to solve as no run achieves
noticeable performance on it. This might be due to the specific features of the layout, i.e. agents
have access to several objects and need to hand them over the counter to produce any result.

A.6.4 POPULATION TRAINING DETAILS

To both verify that our implementation is correct and to give an intuition into the performance of
the members of the population, we present the training curves over all 8 seeds of training an FCP
population in Figure 10. MEP was trained with exactly the same architecture and with the same
amount of experience per agent. As in prior work (Zhao et al., 2023) we set the population entropy
coefficient during training to α = 0.01.
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Table 8: ACCEL hyperparameters in addition to the DR hyperparameters.

Description Value

UED Score MaxMC (Jiang et al., 2021a)
PLR replay probability ρ 0.8
PLR buffer size 4, 000
PLR staleness coefficient 0.3
PLR temperature 0.1
PLR score ranks Yes
PLR minimum fill ratio 0.5
PLR⊥ Yes
PLR∥ Yes
PLR force unique level Yes
ACCEL Mutation Overcooked Mutator
ACCEL n mutations 20
ACCEL subsample size 4

Table 9: PAIRED hyperparameters. All PPO hyperparameters are the same between the student and
the teacher. The minimax implementation follows to original one in (Dennis et al., 2020) and we
stick to it too.

Description Value

n students 2
UED Score Relative regret (Dennis et al., 2020)
UED first wall sets budget Yes
UED noise dim 50
PAIRED Creator OvercookedUED

A.6.5 DETAILED RESULTS WITH POPULATIONS

We present detailed zero-shot cooperation results per layout in Tables 14 and 15. As indicated
through the averaged performance discussed in the main text, we also find that PAIRED performs
best on four of the five individual layouts in terms of zero-shot cooperation.

A.7 ERROR ANALYSIS NUMBERS

We hypothesise that agents may fail to generalise since observations are hard to generalise from.
To test this we design testing layouts that rotate and mirror features of the environment to look for
systemic failures, i.e. cases in which an agent does well in one environment but not its mirrored ver-
sion. While methods generally differed in how well they performed along the same line as previous
analysis suggests, the low standard deviations show that any given method performs similarly well
on each of the 24 layouts, see Table 16.

A.7.1 TRAINING CURVES AND EVALUATION

In Figures 11, 12 and 13 we show the returns of our agent during training in both seen training levels
as well as the five unseen evaluation levels. The results for the SoftMoE architecture are displayed
in Figure 11, the results for the S5 one in Figure 12 and the results for the CNN-LSTM one in
Figure 13. Interestingly, while (SoftMoE) PAIRED performs the best in our evaluations it does not
reach the highest training returns, instead it achieves the highest training return while keeping the
generalisation gap small.

A.8 VALIDATING THE IMPLEMENTATION

As an open-source benchmark, we emphasise a correct implementation of the benchmark, including
all the baselines. We do so in two important ways. Firstly, we base our implementation on the
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Figure 8: Basic architecture featuring a convolutional encoder and an RNN.
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Figure 9: Soft MoE architecture featuring a convolutional encoder, the mixture of experts layer and
an RNN.

implementation of the minimax benchmark (Jiang et al., 2023), making sure that we use publicly
available code for all unsupervised environment design algorithms. Secondly, we test the implemen-
tation and adaption of the Overcooked-AI environment by fixing the generated training layouts to a
single layout during training. This allows us to train on the 5 classic Overcooked layouts using our
implementation. Our implementation is capable of solving these layouts, see Figure 10. We do this
in part to argue for the fact that our benchmark is hard to solve and this is not a function of poorly
configured or wrongly implemented algorithms.
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Figure 10: Runs used for the FCP evaluation populations with random seeds 1 – 8 for the OGC with
bands reporting standard error σ/

√
n. Layouts were padded to a total size of 6 x 9 to be compatible

with the policies trained via DCD.
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Figure 11: Returns in training and evaluation levels over the duration of training for our SoftMoE
architecture.
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Figure 12: Returns in training and evaluation levels over the duration of training for our S5 archi-
tecture.
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Figure 13: Returns in training and evaluation levels over the duration of training for our CNN-
LSTM architecture.
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Table 10: Number of trainable parameters in each model.

CNN-LSTM SoftMoE-LSTM CNN-S5

Parameter Count 197,254 316,102 193,670

Table 11: Comparing the layout a CNN-LSTM policy was trained on versus on which it was being
evaluated. The policies heavily overfit the training layout. All policies we tested exhibit this prop-
erty.

Asymm Cramped Counter Forced Coord

Asymm 343.4 0.0 0.0 0.0 0.0
Cramped 1.6 185.6 0.0 0.0 0.0
Counter 0.0 0.0 128.0 0.0 0.0
Forced 0.0 0.2 0.0 141.2 0.0
Coord 0.0 0.0 0.0 0.0 144.6

Table 12: Mean episode solved rate for the different methods averaged over the respective testing
layouts. The best result is shown in bold. We report aggregate statistics over three random seeds.
As a baseline we include an Oracle version for all architectures which was trained on the five testing
layouts directly

Method CNN-LSTM SoftMoE-LSTM CNN-S5

DR 0.02± 0.0% 6.31± 10.1% 0.00± 0.0%
PLR⊥,∥ 0.00± 0.0% 0.33± 0.3% 0.00± 0.0%
Pop. PAIRED 0.00± 0.0% 14.62± 7.6% 0.00± 0.0%
ACCEL∥ 0.00± 0.0% 0.08± 0.1% 0.00± 0.0%

Oracle 95.40± 7.5% 99.67± 0.6% 97.53± 4.1%
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Table 13: Performance on all evaluation layouts. We show the mean episode reward R and the mean
episode solved rate SR. The overall best result per layout is presented in bold excluding oracle
results.

Layout Method CNN-LSTM SoftMoE-LSTM CNN-S5

R SR R SR R SR

Cramped

DR 1.70 0.0% 1.54 0.2% 0.00 0.0%
PLR⊥,∥ 1.12 0.0% 5.02 2.1% 0.14 0.0%
Pop. PAIRED 1.44 0.0% 37.02 57.7 % 0.50 0.0%
ACCEL∥ 0.92 0.0% 0.60 0.0% 0.60 0.0%
Oracle 241.27 96.7% 245.54 100.0% 189.47 99.7%

Coord

DR 0.00 0.0% 0.00 0.0% 0.00 0.0%
PLR⊥,∥ 0.00 0.0% 0.00 0.0% 0.00 0.0%
Pop. PAIRED 0.00 0.0% 16.78 14.6% 0.00 0.0%
ACCEL∥ 0.00 0.0% 0.04 0.0% 0.02 0.0%
Oracle 197.8 100.0% 204.53 100.0% 119.33 99.0%

Forced

DR 0.00 0.0% 0.02 0.0% 0.00 0.0%
PLR⊥,∥ 0.00 0.0% 0.02 0.0% 0.02 0.0%
Pop. PAIRED 0.00 0.0% 0.00 0.0% 0.00 0.0%
ACCEL∥ 0.00 0.0% 0.00 0.0% 0.00 0.0%
Oracle 196.8 100.0% 204.53 100.0% 133.47 94.7%

Asymm

DR 0.58 0.1% 8.64 4.4% 0.00 0.0%
PLR⊥,∥ 0.08 0.0% 0.10 0.0% 0.08 0.0%
Pop. PAIRED 0.28 0.0% 15.64 14.2% 0.08 0.0%
ACCEL∥ 0.14 0.0% 0.04 0.0% 0.02 0.0%
Oracle 220.4 100.0% 277.8 98.4% 247.87 99.7%

Counter

DR 0.00 0.0% 0.00 0.0% 0.00 0.0%
PLR⊥,∥ 0.00 0.0% 0.00 0.0% 0.00 0.0%
Pop. PAIRED 0.00 0.0% 1.38 0.0% 0.00 0.0%
ACCEL∥ 0.00 0.0% 0.00 0.0% 0.00 0.0%
Oracle 91.2 77.3% 152.73 100.0% 84.93 94.7%
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Table 14: Zero-shot results using SoftMoE-LSTM policies playing with an FCP and MEP popula-
tion of experts trained on the respective layout exclusively. We report the mean episode reward and
standard deviation. The best result per layout is put in bold.

Method Asymm Counter Cramped Forced Coord

FCP

Random 7.43± 12.19 8.89± 4.65 66.02± 38.28 1.95± 1.92 20.49± 7.82
Stay 5.32± 12.07 0.38± 1.11 20.67± 33.05 0.00± 0.00 0.95± 2.73
Oracle 126.44± 27.13 22.63± 7.82 120.9± 10.86 22.08± 12.89 59.64± 22.17

DR 18.18± 1.69 6.86± 5.27 65.05± 5.15 1.09± 0.21 17.88± 10.27
PLR⊥,∥ 7.64± 0.89 5.60± 1.29 60.35± 6.89 1.76± 0.86 21.90± 1.26
Pop. PAIRED 24.51± 3.44 11.11± 1.67 81.92± 6.33 1.59± 0.57 29.72± 4.72
ACCEL∥ 8.60± 0.98 10.23± 0.85 65.46± 4.62 1.81± 1.25 19.19± 1.93

MEP

Random 8.0± 9.12 22.46± 13.34 58.33± 34.83 2.55± 2.76 31.85± 19.69
Stay 4.86± 7.21 5.2± 10.85 31.55± 47.13 0.0± 0.0 1.53± 3.61
Oracle 135.07± 30.27 39.33± 13.53 138.07± 10.0 56.1± 25.41 67.86± 10.89

DR 19.32± 0.39 18.04± 5.75 62.77± 7.22 1.69± 0.67 30.35± 4.42
PLR⊥,∥ 7.53± 0.92 21.23± 1.91 57.2± 4.4 2.45± 1.23 2.45± 1.23
Pop. PAIRED 24.33± 2.27 23.72± 4.0 82.23± 9.38 2.96± 1.56 37.1± 6.28
ACCEL∥ 9.3± 0.71 18.33± 1.96 56.72± 4.15 2.21± 1.57 28.52± 1.55

Table 15: Zero-shot results using SoftMoE-LSTM policies playing with an FCP and MEP popu-
lation of experts trained on the respective layout exclusively. We report the mean solved rate and
standard deviation. The best result per layout is put in bold.

Method Asymm Counter Cramped Forced Coord

Random 8.52± 17.52% 5.00± 6.70% 69.43± 38.45% 0.00± 0.00% 30.89± 3.83%
Stay 6.81± 18.04% 0.02± 0.14% 21.75± 33.71% 0.00± 0.00% 0.14± 0.74%
Oracle 69.67± 16.39% 27.39± 19.02% 31.30± 20.97% 92.02± 1.19% 96.96± 2.23%

DR 24.19± 4.60% 4.56± 5.32% 72.11± 6.29% 0.01± 0.01% 23.76± 18.85%
PLR⊥,∥ 8.84± 1.31% 2.04± 0.95% 68.14± 1.21% 0.11± 0.12% 30.89± 3.83%
Pop. PAIRED 32.48± 4.00% 7.91± 1.38% 85.54± 6.08% 0.09± 0.07% 48.31± 11.08%
ACCEL∥ 9.58± 1.12% 6.79± 0.91% 69.01± 2.03% 0.06± 0.06% 24.13± 6.01%

MEP

Random 9.25± 2.02% 36.04± 4.38% 67.75± 5.48% 0.00± 0.00% 54.9± 5.55%
Stay 4.91± 1.46% 5.85± 2.71% 29.56± 5.92% 0.00± 0.00% 1.02± 0.51%
Oracle 91.02± 1.12% 52.60± 11.37% 96.86± 2.27% 56.16± 21.85% 75.23± 0.91%

DR 26.34± 3.55% 27.41± 10.31% 70.78± 4.23% 0.05± 0.07% 50.07± 6.67%
PLR⊥,∥ 8.24± 1.28% 33.76± 4.89% 65.38± 4.55% 0.28± 0.41% 50.97± 4.01%
Pop. PAIRED 32.79± 1.81% 36.48± 8.14% 80.60± 6.74% 0.38± 0.51% 55.23± 8.42%
ACCEL∥ 10.10± 0.11% 25.94± 4.31% 66.52± 3.34% 0.18± 0.16% 48.80± 2.21%

Method SoftMoE-LSTM CNN-S5 CNN-LSTM

DR 11.91± 0.8 0.00± 0.0 1.96± 0.3
PLR⊥,∥ 4.39± 0.4 0.49± 0.2 0.65± 0.2
Pop. PAIRED 36.83± 1.1 0.58± 0.2 0.59± 0.1
ACCEL∥ 2.91± 0.4 1.69± 0.3 0.78± 0.2

Table 16: Performance on mirrored and rotated levels, illustrated in Figure 6.
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