
Under review as submission to TMLR

Optimal Embedding Guided Negative Sample Generation for
Knowledge Graph Link Prediction

Anonymous authors
Paper under double-blind review

Abstract

Knowledge graph embedding (KGE) models encode the structural information of knowledge
graphs to predicting new links. Effective training of these models requires distinguishing be-
tween positive and negative samples with high precision. Although prior research has shown
that improving the quality of negative samples can significantly enhance model accuracy,
identifying high-quality negative samples remains a challenging problem. This paper theoreti-
cally investigates the condition under which negative samples lead to optimal KG embedding
and identifies a sufficient condition for an effective negative sample distribution. Based on
this theoretical foundation, we propose Embedding MUtation (EMU), a novel framework
that generates negative samples satisfying this condition, in contrast to conventional methods
that focus on identifying challenging negative samples within the training data. Importantly,
the simplicity of EMU ensures seamless integration with existing KGE models and negative
sampling methods. To evaluate its efficacy, we conducted comprehensive experiments across
multiple datasets. The results consistently demonstrate significant improvements in link
prediction performance across various KGE models and negative sampling methods. Notably,
EMU enables performance improvements comparable to those achieved by models with
embedding dimension five times larger. An implementation of the method and experiments
are available at https://anonymous.4open.science/r/EMU-KG-6E58.

1 Introduction

Knowledge Graphs (KGs) are graph databases, consisting of a collection of facts about real-world entities
that are represented in the form of (head, relation, tail)-triplets. With their logical structure reflecting human
knowledge, KGs have proven themselves to be a crucial component of many intelligent systems that tackle
complex tasks, such as question answering (Huang et al., 2019), recommender systems (Guo et al., 2022),
information extraction (Gashteovski et al., 2020), machine reading (Weissenborn et al., 2018), and natural
language processing, such as language modeling (Yang & Mitchell, 2017; Logan et al., 2019), entity linking
(Radhakrishnan et al., 2018), and question answering (Saxena et al., 2022). Popular KGs such as Freebase
(Bollacker et al., 2008), YAGO (Suchanek et al., 2007), and WordNet (Miller, 1995) have been instrumental
in driving advancements in both academic research and industrial applications.

One of the major challenges that KGs face is their incompleteness; there may be numerous factually correct
relations between entities in the graph that are not covered. To address this issue, the task of link prediction
has emerged as a fundamental research topic, aimed at filling in the missing links between entities in the
graph. Among the various approaches to predicting these missing links, Knowledge Graph Embedding (KGE)
methods have proven to be particularly effective. KGE methods encode entities and relations information
into a low-dimensional embedding vector space, thus enabling link prediction using neural networks (Bordes
et al., 2013; Yang et al., 2015; Trouillon et al., 2016; Sun et al., 2019; Zhang et al., 2020; Abboud et al., 2020;
Zhu et al., 2021; Tran & Takasu, 2022).

Various methods have been developed to improve the accuracy of KGE predictions. For instance, Ruffinelli
et al. (2020) showed that using contrastive learning improves the model’s prediction accuracy, irrespective of
the embedding models used. However, to effectively train a model with contrastive learning, it is essential to

1

https://anonymous.4open.science/r/EMU-KG-6E58

Under review as submission to TMLR

prepare hard-negative samples that are sufficiently challenging for the model to avoid penalizing true triplets.
Although there has been a significant amount of research into effective negative sampling methods (Bordes
et al., 2013; Sun et al., 2019; Zhang et al., 2019; Ahrabian et al., 2020; Zhang et al., 2021; Lin et al., 2023;
Yao et al., 2023), finding a powerful yet efficient negative sampling method remains an open problem in the
research community.

In this paper, we conduct a theoretical investigation into the conditions under which negative samples
contribute to optimal embedding in knowledge graph embedding (KGE) models and identify a sufficient
condition that the negative sample distribution must satisfy. Building on this theoretical insight, we propose
Embedding MUtation (EMU), a novel approach for the generation of negative samples tailored to the
KGE link prediction task. Unlike conventional methods that focus on identifying informative negative
samples within the training dataset, EMU generates challenging negative samples for training triples by
mutating their embedding vectors with components extracted from the target positive embedding vector. By
manipulating the components of embedding vectors, EMU efficiently generates negative samples that satisfy
the condition for optimal embedding in KGE link prediction tasks. The simplicity of EMU facilitates seamless
integration with existing KGE models and any negative sampling strategies. Through extensive experiments
across various models and datasets, we demonstrate that EMU consistently delivers substantial performance
improvements, highlighting its potential as a robust tool for link prediction. Notably, our experiments reveal
that EMU enables models to achieve comparable performance to those with embedding dimensions five times
larger, thereby reducing computational complexity.

In summary, our contributions are as follows:

• We theoretically derive and identify a condition for the negative sample distribution that leads to
optimal KGE for link prediction tasks.

• We introduce EMU, a novel negative sample generation method that satisfies the identified condition.
EMU is compatible with existing KGE models and negative sampling methods, achieving performance
comparable to models with significantly larger embedding dimensions.

• We perform comprehensive experiments to validate EMU, demonstrating consistent performance
improvements across diverse KGE models, datasets, and negative sampling strategies.

2 Background and Notation

Background Link prediction is a task that consists of finding new links among entities in a graph by
leveraging existing entities and relations. Given a triple (head, relation, tail), one of the elements is omitted
(e.g., (head, relation, ?)), and the model is required to predict the missing element to form a new valid triple 1.
KGE models have demonstrated their effectiveness for this task by learning to represent the knowledge graph
structure in a vector space. During training, KGE methods rely on negative sampling techniques because
KGs only contain information about positive links. Negative sampling plays a critical role in embedding
learning by proposing samples that represent node pairs known not to be connected, contrasting with positive
samples, which represent connected node pairs. By incorporating negative samples, KGE models improve
their ability to distinguish between positive and negative links, enhancing their predictive performance in link
prediction tasks. Various techniques have been proposed to propose high-quality negative samples. One of
the most widely used methods is Uniform Sampling (Bordes et al., 2013), which corrupts positive triples by
replacing either the head or the tail entity with a uniformly sampled alternative from the knowledge graph.
However, this approach has notable limitations, as it often produces uninformative samples, leading to limited
performance gains due to the potential risk treating unknown positive samples in the KGs as negatives. To
address these shortcomings, alternative negative sampling methods have been developed to propose more
challenging, or "hard," negative samples, e.g., (Ahrabian et al., 2020).

1If either "head" or "tail" is omitted, the task is referred to as "entity prediction"; When the "relation" is omitted, it is denoted
as "relation prediction". While this paper mainly discusses the "tail" prediction scenario for simplicity, the proposed method is
applicable to other cases as well.

2

Under review as submission to TMLR

Notation We define a triplet as: x = (h, r, t) where (h, r, t) denote (head, relation, and tail). These
triplets often consists of discrete concepts, such as (‘Joe Biden’, ‘president of’, ‘USA’), or (‘Tokyo’, ‘capital
of’, ‘Japan’). To facilitate processing by machine learning models, they are usually mapped onto a continuous,
low-dimensional latent space z ∈ Rd, where d is the dimensionality of the latent space. The mapping is carried
out using an embedding function G. For instance, to embedding of the head entity is given by zh = G(h|θh),
where θh is the weight parameters of the embedding model. The feasibility of a triplet is then evaluated using
a scoring function S(z) = s, where z = (zh, zr, zt) is the latent representation of the input triple and s is the
computed score. The scoring function S varies across methods; For example, TransE (Bordes et al., 2013)
uses the Euclidean distance, while DistMult (Yang et al., 2015) uses the dot-product.

Training involves minimizing a contrastive loss function that leverages the score of the positive sample s+

from the true triplet and the scores of negative samples {s0, s1, ...}−, which are produced by corrupting the
true triplet:

L(s+, {s0, s1, ...}−) (1)

The loss function is designed to increase the score of the true triple while decreasing the score of negative
samples. Depending on the specific method, this optimization can involve minimizing or maximizing distances
(as in TransE) or optimizing similarities (as in DistMult).

3 Optimal Embedding for KGE and EMU

In this section, we illustrate how the negative samples generated by EMU lead to near-optimal embedding for
KGE link prediction problems. First, we introduce the principle of negative sampling for graph representation
learning proposed by (Yang et al., 2020), and extend it to the KGE link prediction problems. Next, we
provide a comprehensive description of EMU. Finally, we demonstrate that EMU generates negative samples
that distribute isotropically around positive samples, which leads to the condition for the principle of negative
sampling for KGE link prediction problems.

3.1 Optimal Embedding for KGE Representation Learning

Drawing upon the theoretical framework proposed by (Yang et al., 2020), referred to as Y20 henceforth,
we posit that the target node v and the positive node u, each characterized by their respective embedding
vectors, u, v, are derived from the positive sample distribution: pd(u|v). An objective function for embedding
is:

J (v) = Ev∼pd(v)[Eu∼pd(u|v) log σ(u · v) + k Eu′∼pn(u′|v) log σ(−u′ · v)], (2)

where pn(u|v) is the negative sample distribution and σ(·) the sigmoid function, and k is a numerical constant;
and its corresponding empirical risk for node v is:

J
(v)
T = 1

T

T∑
i=1

log σ(ui · v) + 1
T

kT∑
i=1

log σ(−u′
i · v), (3)

where {u1, · · · , uT } are sampled from pd(u|v) and {u′
1, · · · , u′

k} are sampled from pn(u|v). We set θ =
[u0 · v, . . . , uN−1 · v] as the parameters to be optimized, where {u0, · · · , uN−1} are all the N nodes in the
graph.

Under the assumption, Y20 derived the following equation, as an empirical realization of the covariance
measure proved in Y20:

E[||(θT − θ∗)u||2] = 1
T

(
1

pd(u|v) − 1 + 1
kpn(u|v) − 1

k

)
. (4)

Here, θT and θ∗ are the respective optimal parameters for J
(v)
T and J (v). Based on this theoretical finding,

Y20 proposed a principle of negative sampling which enables the optimal J
(v)
T to converge to the optimal

3

Under review as submission to TMLR

-1.0

2.0

-1.0

2.0

2.0

1.5

2.0

1.5

-1.0

1.5

-1.0

1.5

True Negative
Hard

negative

Mutation

x1

x2

x2

x1

λEMU +(1 - λEMU)

Figure 1: EMU generates a new negative samples with embedding mutation. The figure illustrates a typical
example that generate hard negative tails.

J (v) for graph representation learning. We extend the idea to KG link prediction, assuming a KGE model
"DistMult" (Yang et al., 2015) which calculate the scoring function as: sDistMult ≡

∑
(zh ⊙ zr ⊙ zt) where ⊙

is the element-wise multiplication. The extension is given as:
Theorem 3.1. Assuming DistMult model, an empirical realization of the covariance measure can be given as,

E[||(θT − θ∗)zt ||2] = 1
T

(
1

pd(zt|vhr) − 1 + 1
kpn(zt|vhr) − 1

k

)
. (5)

where vhr = zh ⊙ zr and zh, zr, zt are the head, relation, and tail embedding vectors, respectively.

Proof. Equation 5 can be derived by substituting zt and zh ⊙ zr for u, v in the proof provided in Y20.

3.2 EMU: Embedding MUtation

EMU is inspired from the gene ‘mutation’ technique utilized in evolutionary algorithms. In this study, we
propose a new non-linear mixing approach that replaces a certain amount of the embedding vector components
in the negative sample with the corresponding parts of the true positive vector components. This technique
is a simple yet effective means of enhancing the difficulty of negative samples by increasing their similarity to
the true positive. Figure 1 provides a two-dimensional visualization of this phenomena.

The formal definition of the EMU technique is presented as follows:

z̃EMU = λEMU ⊙ z+ + (1 − λEMU) ⊙ z−, (6)

where λEMU ∈ Rd is the EMU mixing vector that controls the number of embedding vector components
to be mutations, which is denoted as nP. λEMU is a binary-valued vector whose components are generated
through a random sampling process that selects either zero or unity, with the probability of (1 − nP/d, nP/d).
2 The symbol ⊙ denotes element-wise multiplication, and z+ and z− correspond to the positive and negative
vectors to be mutated, respectively.

For the application of knowledge-base link prediction, we utilize Equation 6 to create the EMU negative tail
sample by substituting zt = (zt,+, {zt

0, zt
1, · · · }−). We employ the generated samples as the EMU negative

samples.
2More concretely, the component of the vector λEMU ∈ Rd is composed by nP unities and d − nP zeros whose order is

randomly determined, e.g., {0, 1, 1, 0, 0, 0, · · · }. For simplicity we use the random sampling. The study of the better mutation
vector λEMU is our future work.

4

Under review as submission to TMLR

3.3 Theoretical Consideration on EMU

In the following, we demonstrate that EMU generates negative samples that are isotropically distributed
around positive samples, thereby satisfying the condition necessary for achieving optimal embedding. Specifi-
cally, we present the following theorems to illustrate that the negative samples produced by EMU exhibit
isotropic distribution around the positive samples.
Theorem 3.2. Suppose that A and B are vectors in RN and BEMU ≡ λEMU ⊙ B. Assuming a sufficiently
small standard deviation in the vector component of B with non-zero mean value and sufficiently large N , the
angle formed between A and BEMU adheres to a Gaussian distribution whose center is the angle between A
and B.

The proof for this theorem can be found in Appendix C. Utilizing the above theorem, we can deduce:
Theorem 3.3. EMU generates negative samples isotropically around the target positive sample.

Proof. According to the definition (6), the deviation vector ∆zλ can be written as:

∆zλ ≡ z̃EMU − z+ = (1 − λEMU) ⊙ ∆z, (7)

where ∆z ≡ z− − z+. Subsequently, we consider the angular distribution of {∆zλ
i }i=1,...k. Without loss of

generality, we take the angle distribution of ∆zλ in terms of ∆zλ
0 . The cosine function between ∆zλ

i and ∆zλ
0

can be expressed as:

{cos θλ
i } ≡

{
∆zλ

0 · ∆zλ
i

|∆zλ
0 ||∆zλ

i |

}
=

{
∆zλ

0
|∆zλ

0 ||∆zλ
i |

· (1 − λEMU,i) ⊙ ∆zi

}
. (8)

In this context, the operator (1 − λEMU,i)⊙ projects ∆zi onto a lower-dimensional hypersurface, and
Theorem 3.2 hence shows (1 − λEMU,i)⊙ induces the Gaussian distribution in terms of the angle between
∆zλ

0 and ∆zλ
i in the angle-space. This results in isotropic distribution of the EMU samples in the coordinate

space, which are isotropically dispersed around the target positive tail sample.

Before proving the final theorem, we provide the following lemma. In the rest of this subsection, we will
consider z̃EMU, zt,+, ∆zλ as independent random variables.
Lemma 3.4. In the context of EMU, pn,EMU(zt|vhr) can be expressed as:

pn,EMU(z̃EMU|vhr) = A

∫
dzt,+

∫
d∆zλ

[
δD(z̃EMU − zt,+ − ∆zλ)fiso(|∆zλ| |zt,+, ∆z̄)pd(zt,+|vhr)

]
(9)

where δD is the Dirac delta function, fiso is an isotropic distribution with a typical decaying scalar scale ∆z̄,
and A is an appropriate constant.

The proof for this lemma can be found in Appendix D. To finalize, we can conclude the following claim:
Theorem 3.5. Assuming EMU considers the embedding vector of negative samples to be muted in the
neighbor of the considering positive sample, the negative sample distribution by EMU results in near-optimal
embedding.

Proof. According to Lemma 3.4, fiso is a sufficiently rapidly decreasing function when |∆zλ| > ∆z̄. In the
following, we approximate fiso by the Heaviside function: H(∆z̄ − |∆zλ|), which does not affect the following
order-of-magnitude discussion. Concretely, the variation within |∆zλ| < ∆z̄ can be taken into account by
properly renormalize the coefficient denoted as A in the following. Then, Equation 9 reduces to:

pn,EMU(z̃EMU|vhr) ≃ A

∫
d∆zλ H(∆z̄ − |∆zλ|)pd(z̃EMU − ∆zλ|vhr)

≃ A

∫ ∆z̄

0
d|∆zλ|

∫ 4π

0
dΩ∆zλpd(z̃EMU − ∆zλ|vhr)

≃ A′ pd(z̃EMU|vhr) + O((∆z̄λ)2), (10)

5

Under review as submission to TMLR

where A′ is a constant. To obtain the final line, we performed the Taylor expansion in terms of |∆zλ| and
performed the integration in terms of ∆zλ. Then, by substituting the above equation, Equation 5 reduces to:

E[||(θT − θ∗)u||2] = 1
T

(
1

pd(zt|vhr)

[
1 + 1 − O((∆z̄2)

kA′

]
− 1 − 1

k

)
. (11)

As in Y20, this indicates that the order of magnitude of deviation is only negatively related to pd for the case
of EMU.

Theorem 3.5 suggests that the distribution of negative samples generated by EMU closely aligns with
Equation 5 as stated in Theorem 3.1, indicating that EMU produces near-optimal negative sample distribution.
Note that Theorem 3.5 also shows that the near-optimal embedding can be achieved when negative samples
are distributed according to a rapidly decreasing isotropic function, fiso, around the target positive samples.
EMU facilitates the easy generation of such negative samples. Note that we have not explicitly used the fact
that the objective function depends on sDistMult. The logic in the above proof and Y20 can be applied to a
more generic form of the embedding, f(zh, zr, zt) where f is a scalar function that takes zh, zr, zt as inputs.
This formulation encompasses models such as the DistMult and neural networks.

3.4 Overall Loss Terms

Inspired by knowledge distillation (Hinton et al., 2015), we combine the EMU loss function with the usual
loss function without EMU, enabling the model to learn from the vanilla negative samplings (i.e., sampled
using the existing methods) as well. The overall loss function is expressed as:

L = L(s+, {s0,EMU, s1,EMU, · · · }−; ȳ) + αL(s+, {s0, s1, · · · }−; ŷ), (12)

where L is a contrastive loss function, ŷ is the one-hot label, and ȳ is a generalized label by such as a
label-smoothing. The numerical coefficient α is utilized for weight balancing between the losses.

4 Emperical Validation

In this section, we perform an experimental evaluation of EMU for the link prediction problem to validate
the effectiveness of EMU as shown in section 3. To ensure a thorough evaluation, we chose commonly used
KG embedding models (ComplEX (Trouillon et al., 2016; Lacroix et al., 2018), DistMult (Yang et al., 2015;
Salehi et al., 2018), TransE (Bordes et al., 2013), RotatE (Sun et al., 2019)), HAKE (Zhang et al., 2020),
and NBFNet (Zhu et al., 2021) to test with EMU. Although we used the DistMult model in section 3, the
above models enable to assess the effectiveness of EMU to more generic form of operation for triplets than
the inner-product type one. Furthermore, we evaluate them on three widely used knowledge graphs, namely
FB15k-237 (Toutanova & Chen, 2015), WN18RR (Dettmers et al., 2018), and YAGO3-10 (Mahdisoltani
et al., 2013) whose detailed statistics are provided in Appendix F.

4.1 Experimental Setup

In order to enable a fair comparison between the different models and to ensure that all methods are evaluated
under the same conditions, we implemented all the methods 3. Among all existing baselines, we consider
vanilla uniform negative sampling (Bordes et al., 2013), SAN (Ahrabian et al., 2020), and NScaching (Zhang
et al., 2019) as the most relevant to compare our work against. A detailed experimental setup is provided in
Appendix G. For the loss function in Equation 12, we consider the cross-entropy loss function with a slightly
modified label-smoothing as ȳ, which is described in Appendix E. 4

3The code to replicate our experiments can be found: https://anonymous.4open.science/r/EMU-KG-6E58.
4Note that the assumed loss function in section 3, that is, the sigmoid-type loss function Equation 3, is related to but different

from Equation 12 which is one of the recent-popular loss functions (Ruffinelli et al., 2020). The following experimental results
also indicates the wider applicability of EMU than assumed in section 3.

6

https://anonymous.4open.science/r/EMU-KG-6E58

Under review as submission to TMLR

CE DM RE TE
Models

0.20

0.25

0.30

0.35
M

RR
FB15k-237

san san_EMU uni uni_EMU

CE DM RE TE
Models

0.0

0.2

0.4

M
RR

YAGO3-10

san san_EMU uni uni_EMU

CE DM RE TE
Models

0.1

0.2

0.3

0.4

0.5

M
RR

WN18rr

san san_EMU uni uni_EMU

Figure 2: MRR for the datasets: FB15k-237, YAGO3-10, and WN18RR. The blue, orange, green, and red
colored bars mean the result of using the following negative sampling methods: "SAN", "SAN with EMU",
"uniform", and "uniform with EMU", respectively.

Dataset Model Case Parameter: (d, n) MRR HITS@10
FB15k-237 DistMult w/t EMU (200, 64) 0.314 0.500

w/t EMU (1000, 64) 0.327 0.519
EMU (200, 64) 0.329 0.514

HAKE w/t EMU (200, 256) 0.175 0.315
w/t EMU (1000, 256) 0.308a 0.493a

EMU (200, 256) 0.311 0.501
YAGO3-10 DistMult w/t EMU (100, 256) 0.345 0.538

w/t EMU (1000, 256) 0.392 0.594
EMU (100, 256) 0.403 0.601

Table 1: Embedding dimension efficacy study results on FB15K-237 and YAGO3-10. (d, n) denote the
embedding dimension and the negative sample number. "w/t EMU" denotes the model trained without EMU
but with uniform sampling. The best performance is written in bold font and the second best performance is
written with underline.
a The reported values are obtained by our own training of HAKE model with utilizing the official repository (Zhang et al., 2020).

4.2 Results

This section provides a summary and discussion of the obtained results.

Figure 2 illustrates the quantitative results in Table 8, displaying three plots for the MRR results obtained
for the FB15k-237, YAGO3-10, and WN18rr datasets. The results of HAKE model are provided in Table 9
and the results with NScaching are provided in Table 10. Each plot includes four groups of column bars,
representing the results for ComplEX (Trouillon et al., 2016; Lacroix et al., 2018) (CE), DistMult (Yang
et al., 2015; Dettmers et al., 2018; Salehi et al., 2018) (DM), RotatE (Sun et al., 2019) (RE), TransE (Bordes
et al., 2013) (TE). The columns are distinguished by colors that correspond to the results obtained from
running the SAN (in blue), SAN_EMU (i.e.: SAN negative sampling method with EMU, in orange), uniform
sampling (green), and uni_EMU (i.e.: simple uniform negative sampling with EMU, in red). The findings
demonstrate that, in most cases, employing EMU significantly improves the scores across all embedding
models. An exception is observed with the WN18rr dataset, which is further analyzed and theoretically
examined in subsection 4.4.

4.3 Embedding Dimension Efficacy Study

In this subsection, we study the embedding dimension efficacy of EMU using FB15K-237 and YAGO3-10.
For this study, we consider DistMult and HAKE models as classical and recent representative KGE models.
To show EMU efficacy, we performed the training of the models with large embedding dimension without
EMU in comparison with the one with small embedding dimension with EMU. The result is provided in

7

Under review as submission to TMLR

0.2 0.0 0.2 0.4 0.6 0.8
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

cosine sim ilarity of posit ive-negat ive pairs

EMU

uniform

SAN

Figure 3: Cosine similarity between positive and negative sample pair for DistMult trained on FB15k-237
dataset. The used negative samples are: uniform, EMU, and SAN. The larger, the more similar.

Table 1, which shows that EMU enables to achieve the model performance comparable to five times larger
embedding dimension case. In particular, HAKE results show a significant performance gain, indicating that
EMU enables the recent sophisticate model with smaller size but keeping the prediction performance.

4.4 Mutation effect

In this subsection, we analyze and discuss the mutation effect in terms of embedding similarity. We use
DistMult as a reference model and train it on FB15k-237 and WN18rr datasets. We visualize the embedding
vector of the negative tail obtained with EMU to compare it with other negative sampling strategies, i.e.,
uniform random sampling and SAN negative sampling.

Figure 3 shows the cosine similarity of negative samples provided by the three strategies. The similarity
distributions of negative samples produced by the uniform and SAN methods are quite low, resulting in "easy"
negative samples. In contrast, the negative samples generated by EMU exhibits a much larger similarity,
indicating that EMU generates harder negative samples than the other methods as shown in Proposition B.1.

Figure 4 depicts the distribution of true-tails and negative tails for two different datasets, namely FB15k-237
and WN18rr, by plotting the first and second PCA components. The left panel of each figure shows the
distribution when negative tails are uniformly sampled, while the right panel depicts the distribution using
EMU negative-tails. In the Figure 4, the distribution around a true tail is anisotropic for uniform-negative
sampling, while EMU negative-tails show a rapidly decreasing isotropic distribution as shown in Theorem 3.3,
which validates our assumption of fiso by the Heaviside function. Moreover, the distributions for FB15k-237
are quite varied in comparison to those of WN18rr. This could be an explanation for the higher performance
gain when using EMU for FB15k-237 (see Table 8)

2 1 0 1 2
1st eigenvector

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2
n

d
 e

ig
e

n
v

e
ct

o
r

uniform

real tail

uniform -negat ive tail

2 1 0 1 2
1st eigenvector

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2
n

d
 e

ig
e

n
v

e
ct

o
r

EMU

real tail

-negat ive tailEMU

1 0 1
1st eigenvector

1.0

0.5

0.0

0.5

1.0

2
n

d
 e

ig
e

n
v

e
ct

o
r

uniform

real tail

uniform -negat ive tail

1 0 1
1st eigenvector

1.0

0.5

0.0

0.5

1.0

2
n

d
 e

ig
e

n
v

e
ct

o
r

EMU

real tail

-negat ive tailEMU

Figure 4: Results of the analysis of EMU of DistMult model trained on FB15k-237 (Left) and WN18rr
(Right) dataset. Left: The distribution of real-tail and uniformly-sampled negative-tail in terms of the 1st
and 2nd PCA components. Right: The distribution of real-tail and EMU negative-tail in terms of the 1st
and 2nd PCA components.

8

Under review as submission to TMLR

FB15K-237 WN18RR YAGO3-10
Model Method MRR HITS@10 MRR HITS@10 MRR HITS@10
ComplEX uni_EMU 0.344 0.532 0.473 0.547 0.437 0.638
(Lacroix et al., 2018) uni_Mixup 0.324 0.517 0.470 0.547 0.418 0.605
DistMult uni_EMU 0.332 0.513 0.446 0.523 0.403 0.601
(Yang et al., 2015) uni_Mixup 0.319 0.507 0.441 0.517 0.402 0.597
RotatE uni_EMU 0.329 0.514 0.453 0.525 0.365 0.555
(Sun et al., 2019) uni_Mixup 0.281 0.454 0.278 0.428 0.174 0.318
TransE uni_EMU 0.323 0.503 0.216 0.493 0.255 0.436
(Bordes et al., 2013) uni_Mixup 0.269 0.421 0.050 0.139 0.063 0.102

Table 2: MRR and Hit@10 of the results on FB15K-237, WN18RR, and YAGO3-10 datasets. "uni_EMU"
means the uniform negative sampling with EMU and "uni_Mixup" means the uniform negative sampling
with Mixup. The shown results are the average of three trials of the randomly determined initial weights.

4.5 Comparison to Mixup

There is a well-known approach called Mixup, which shares a similar philosophy with the EMU but is
based on a different theoretical background (see also section 5). To compare their performance, we replaced
the Embedding Mutation step with Mixup and present the results in Table 2 5. The findings consistently
demonstrate that EMU outperforms Mixup. We hypothesize that the linear nature of Mixup-generated
examples limits the magnitude of gradients while preserving their direction, thereby restricting its effectiveness.
In contrast, EMU overcomes this limitation by generating updates that can explore multiple directions,
thereby enhancing model training

4.6 Application to NBFNet

In this section, we apply EMU to Neural Bellman-Ford Networks (NBFNet) (Zhu et al., 2021), one of the
state-of-the-art (SOTA) models for knowledge graph tasks. The results on the FB15K-237 dataset are
presented in Table 3, demonstrating that EMU remains effective even when applied to the latest models,
achieving performance competitive with the current SOTA methods6.

FB15K-237
Model MRR HITS@1 HITS@3 HITS@10
NBFNet (reported) 0.415 0.321 0.454 0.599
NBFNet (our experiments) 0.414 ± 0.003 0.321 ± 0.003 0.453 ± 0.003 0.596 ± 0.002
NBFNet w.t. EMU 0.419 ± 0.002 0.326 ± 0.002 0.460 ± 0.003 0.601 ± 0.002

Table 3: MRR, Hit@1, Hit@3, and Hit@10 of the results of NBFNet on FB15K-237 dataset. The results are
the average with the standard deviation of three trials of the randomly determined initial weights.

5 Related Work

KGE Models KGE models such as TransE(Bordes et al., 2013), DistMult (Yang et al., 2015; Dettmers
et al., 2018; Salehi et al., 2018), ConvE (Dettmers et al., 2018), ComplEX (Trouillon et al., 2016; Lacroix
et al., 2018), RotatE (Sun et al., 2019) are commonly used when solving the knowledge base completion task.
Each model implements a scoring function mapping a given triple to a real-valued number. These models
also differ in the embedding spaces used to learn the latent embedding, for instance RotatE (Sun et al., 2019)

5Note that this procedure is already different from the original implementation of Mixup which corrupts the original data,
not that of embedding dimension.

6While the performance improvement is relatively smaller compared to other models, this may be attributed to the additional
structure of NBFNet, specifically the Bellman-Ford iteration, which differs from the architectures used in other experiments.

9

Under review as submission to TMLR

utilizes the complex vector space. The new KGE model investigation is still actively conducted Zhang et al.
(2020); Abboud et al. (2020); Zhu et al. (2021); Tran & Takasu (2022); Zhang et al. (2023); Zhu et al. (2024);
Zhou et al. (2024) and more comprehensive review can be found in Ge et al. (2024).

Negative sampling While training a KGE model for the link prediction task, it is essential to sample
high-quality negative data points adequately from the graph. Poor quality negative samples can hinder
the performance of KGE models by failing to guide the model during training. With this in mind, many
approaches were proposed for generating better-quality negative samples, i.e., hard negatives. The earliest
sampling method is Uniform Sampling (Bordes et al., 2013). Another commonly used method relies on
Bernoulli Sampling where the replacement of the heads or tails of the triples follows the Bernoulli distribution.
(Wang et al., 2014). Newer methods that are based on Generative Adversarial Networks (GAN) are also
used such as KBGAN (Cai & Wang, 2018) and IGAN (Vignaud, 2021) where the generator is adversarially
trained for the purpose of providing better quality negative samples where a KGE model is used as the
discriminator. Building on this NScasching (Zhang et al., 2019) proposed a distilled version of GAN-based
methods by creating custom clusters of candidates entities used for the negative samples. Structure Aware
Negative Sampling (SANS) (Ahrabian et al., 2020) leverages the graph structure in the KG by selecting
negative samples from a node’s k-hop neighborhood. In addition, the subject continues to be actively studied
(Zhang et al., 2021; Islam et al., 2022; Xu et al., 2022; Lin et al., 2023; Yao et al., 2023; Chen et al., 2023;
Qiao et al., 2023) . Unlike the prior work mentioned above, EMU generates hard negative samples, distinct
from traditional approaches aimed at identifying more difficult negative samples. Furthermore, an additional
benefit of EMU is its compatibility with any of the above negative sampling methods, allowing for seamless
integration.

6 Discussion and Conclusion

In the present study, we theoretically identified a condition of the nice negative sample distribution leading
to a near-optimal embedding of KGE and identified a sufficient condition for near optimal embedding. Based
on the condition, we proposed EMU which aims to generate the negative samples following the condition
easily and efficiently. Our comprehensive experimental findings also demonstrate that EMU consistently
outperforms all the baseline negative sampling methods, including uniform sampling, SAN, and NSCaching in
almost all the KGE models and datasets. We also observed that EMU’s efficacy was largely invariant across
embedding models and datasets. Moreover, the experiments shows that EMU enables to achieve comparable
performance to models with embedding dimensions that are five times larger. Our analysis showed that EMU
generates negative samples that are closer to true samples in terms of cosine-similarity, and that the generated
samples exhibit a more isotropic distribution around the true sample in the embedding space compared to
other methods, which is a part of the condition for the near optimal embedding for KGE. Although EMU
involves tuning a few hyper-parameters, we observed that its performance is not heavily reliant on them
(refer to Appendix K). While EMU was developed for KGE tasks, its simple structure enables its application
to other tasks, such as graph node classification and representation learning. Exploring these applications
remains a promising direction for future work.

10

Under review as submission to TMLR

7 Limitations

EMU scope is restricted to KG missing link prediction model trained using the cross-entropy loss function
with negative samples. It cannot be applied to neither 1-VS-ALL method nor the other loss functions for the
moment.

Potential Broader Impact and Ethical Aspects

This paper presents work whose goal is to advance the field of Machine Learning, in particular, knowledge-
graph link prediction. There are many potential societal consequences of our work in the far future due to
the generic nature of pure science, none which we feel must be specifically highlighted here. While we do not
foresee a substantial ethical concern in our proposed strategies, there may be a side effect resulting from
the feature mutation. It is thus important to monitor and evaluate potential bias that may arise during the
model training process. Note that we utilized only publicly available KG datasets, and thus, there is no
concerns regarding compliance with the General Data Protection Regulation (GDPR) law7

References
Ralph Abboud, .Ismail .Ilkan Ceylan, Thomas Lukasiewicz, and Tommaso Salvatori. Boxe: A box embedding

model for knowledge base completion. ArXiv, abs/2007.06267, 2020. URL https://api.semanticscholar.
org/CorpusID:220496538.

Naser Ahmadi and Paolo Papotti. Wikidata logical rules and where to find them. In Companion Proceedings
of the Web Conference 2021, pp. 580–581, 2021.

Kian Ahrabian, Aarash Feizi, Yasmin Salehi, William L. Hamilton, and Avishek Joey Bose. Structure aware
negative sampling in knowledge graphs. In EMNLP, 2020.

Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. Optuna: A next-
generation hyperparameter optimization framework. In Proceedings of the 25rd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, 2019.

Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Taylor. Freebase: A collaboratively
created graph database for structuring human knowledge. In Proceedings of the 2008 ACM SIGMOD
International Conference on Management of Data, SIGMOD ’08, pp. 1247–1250, New York, NY, USA,
2008. Association for Computing Machinery. ISBN 9781605581026. URL https://doi.org/10.1145/
1376616.1376746.

Antoine Bordes, Nicolas Usunier, Alberto García-Durán, Jason Weston, and Oksana Yakhnenko. Translating
embeddings for modeling multi-relational data. In NeurIPS, 2013.

Liwei Cai and William Yang Wang. KBGAN: Adversarial learning for knowledge graph embeddings. In
Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp. 1470–1480, New Orleans,
Louisiana, June 2018. Association for Computational Linguistics. doi: 10.18653/v1/N18-1133. URL
https://aclanthology.org/N18-1133.

Olivier Chapelle, Jason Weston, Léon Bottou, and Vladimir Vapnik. Vicinal risk minimization. Advances in
neural information processing systems, 13, 2000.

Feihu Che, Guohua Yang, Pengpeng Shao, Dawei Zhang, and Jianhua Tao. Mixkg: Mixing for harder negative
samples in knowledge graph. arXiv preprint arXiv:2202.09606, 2022.

Xiangnan Chen, Wen Zhang, Zhen Yao, Mingyang Chen, and Siliang Tang. Negative sampling with adaptive
denoising mixup for knowledge graph embedding. In International Semantic Web Conference, pp. 253–270.
Springer, 2023.
7https://gdpr.eu/

11

https://api.semanticscholar.org/CorpusID:220496538
https://api.semanticscholar.org/CorpusID:220496538
https://doi.org/10.1145/1376616.1376746
https://doi.org/10.1145/1376616.1376746
https://aclanthology.org/N18-1133
https://gdpr.eu/

Under review as submission to TMLR

Tim Dettmers, Pasquale Minervini, Pontus Stenetorp, and Sebastian Riedel. Convolutional 2d knowledge
graph embeddings. In AAAI, 2018.

Qingkai Fang, Rong Ye, Lei Li, Yang Feng, and Mingxuan Wang. STEMM: Self-learning with speech-text
manifold mixup for speech translation. In ACL, 2022.

Kiril Gashteovski, Rainer Gemulla, Bhushan Kotnis, Sven Hertling, and Christian Meilicke. On aligning
OpenIE extractions with knowledge bases: A case study. In NLP (workshop), 2020.

Xiou Ge, Yun Cheng Wang, Bin Wang, C-C Jay Kuo, et al. Knowledge graph embedding: An overview.
APSIPA Transactions on Signal and Information Processing, 13(1), 2024.

Q. Guo, F. Zhuang, C. Qin, H. Zhu, X. Xie, H. Xiong, and Q. He. A survey on knowledge graph-based
recommender systems. IEEE Transactions on Knowledge and Data Engineering, 2022.

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked autoencoders
are scalable vision learners. In CVPR, 2022.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv preprint
arXiv:1503.02531, 2015.

Xiao Huang, Jingyuan Zhang, Dingcheng Li, and Ping Li. Knowledge graph embedding based question
answering. 2019.

Md Kamrul Islam, Sabeur Aridhi, and Malika Smail-Tabbone. Negative sampling and rule mining for
explainable link prediction in knowledge graphs. Knowledge-Based Systems, 250:109083, 2022. ISSN
0950-7051. doi: https://doi.org/10.1016/j.knosys.2022.109083. URL https://www.sciencedirect.com/
science/article/pii/S0950705122005342.

Yannis Kalantidis, Mert Bulent Sariyildiz, Noe Pion, Philippe Weinzaepfel, and Diane Larlus. Hard negative
mixing for contrastive learning. NeurIPS, 2020.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv e-prints, pp.
arXiv–1412, 2014.

Timothée Lacroix, Nicolas Usunier, and Guillaume Obozinski. Canonical tensor decomposition for knowledge
base completion. In International Conference on Machine Learning, pp. 2863–2872. PMLR, 2018.

Zhenzhou Lin, Zishuo Zhao, Jingyou Xie, and Ying Shen. Hierarchical type enhanced negative sampling
for knowledge graph embedding. In Proceedings of the 46th International ACM SIGIR Conference on
Research and Development in Information Retrieval, SIGIR ’23, pp. 2047–2051, New York, NY, USA,
2023. Association for Computing Machinery. ISBN 9781450394086. doi: 10.1145/3539618.3591996. URL
https://doi.org/10.1145/3539618.3591996.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo. Swin
transformer: Hierarchical vision transformer using shifted windows. In ICCV, 2021.

Robert Logan, Nelson F. Liu, Matthew E. Peters, Matt Gardner, and Sameer Singh. Barack’s wife hillary:
Using knowledge graphs for fact-aware language modeling. In Proceedings of the 57th Annual Meeting of
the Association for Computational Linguistics, pp. 5962–5971, Florence, Italy, July 2019. Association for
Computational Linguistics. doi: 10.18653/v1/P19-1598. URL https://aclanthology.org/P19-1598.

Farzaneh Mahdisoltani, Joanna Biega, and Fabian M. Suchanek. YAGO3: A Knowledge Base from
Multilingual Wikipedias. In CIDR, Asilomar, United States, January 2013. URL https://hal-imt.
archives-ouvertes.fr/hal-01699874.

Linghui Meng, Jin Xu, Xu Tan, Jindong Wang, Tao Qin, and Bo Xu. Mixspeech: Data augmentation for
low-resource automatic speech recognition. In ICASSP, 2021.

12

https://www.sciencedirect.com/science/article/pii/S0950705122005342
https://www.sciencedirect.com/science/article/pii/S0950705122005342
https://doi.org/10.1145/3539618.3591996
https://aclanthology.org/P19-1598
https://hal-imt.archives-ouvertes.fr/hal-01699874
https://hal-imt.archives-ouvertes.fr/hal-01699874

Under review as submission to TMLR

George A. Miller. Wordnet: A lexical database for english. Commun. ACM, 38(11):39–41, November 1995.
ISSN 0001-0782. URL https://doi.org/10.1145/219717.219748.

Rafael Müller, Simon Kornblith, and Geoffrey E Hinton. When does label smoothing help? Advances in
neural information processing systems, 32, 2019.

Zile Qiao, Wei Ye, Dingyao Yu, Tong Mo, Weiping Li, and Shikun Zhang. Improving knowledge graph
completion with generative hard negative mining. In Findings of the Association for Computational
Linguistics: ACL 2023, pp. 5866–5878, 2023.

Priya Radhakrishnan, Partha Talukdar, and Vasudeva Varma. ELDEN: Improved entity linking using densified
knowledge graphs. In Proceedings of the 2018 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp. 1844–1853,
New Orleans, Louisiana, June 2018. Association for Computational Linguistics. doi: 10.18653/v1/N18-1167.
URL https://aclanthology.org/N18-1167.

Aniket Roy, Anshul Shah, Ketul Shah, Prithviraj Dhar, Anoop Cherian, and Rama Chellappa. Felmi : Few
shot learning with hard mixup. In NeurIPS, 2022.

Daniel Ruffinelli, Samuel Broscheit, and Rainer Gemulla. You can teach an old dog new tricks! on training
knowledge graph embeddings. In International Conference on Learning Representations, 2020.

Farnood Salehi, Robert Bamler, and Stephan Mandt. Probabilistic knowledge graph embeddings. 2018.

Apoorv Saxena, Adrian Kochsiek, and Rainer Gemulla. Sequence-to-sequence knowledge graph completion and
question answering. In Proceedings of the 60th Annual Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pp. 2814–2828, Dublin, Ireland, May 2022. Association for Computational
Linguistics. doi: 10.18653/v1/2022.acl-long.201. URL https://aclanthology.org/2022.acl-long.201.

Fabian M. Suchanek, Gjergji Kasneci, and Gerhard Weikum. Yago: A core of semantic knowledge. In
Proceedings of the 16th International Conference on World Wide Web, WWW ’07, pp. 697–706, New York,
NY, USA, 2007. Association for Computing Machinery. ISBN 9781595936547. doi: 10.1145/1242572.1242667.
URL https://doi.org/10.1145/1242572.1242667.

Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian Tang. Rotate: Knowledge graph embedding by relational
rotation in complex space. In ICLR, 2019.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Rethinking the
inception architecture for computer vision. In CVPR, 2016.

Ilya O Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Thomas Unterthiner,
Jessica Yung, Andreas Steiner, Daniel Keysers, Jakob Uszkoreit, et al. Mlp-mixer: An all-mlp architecture
for vision. NeurIPS, 2021.

Kristina Toutanova and Danqi Chen. Observed versus latent features for knowledge base and text inference.
In Alexandre Allauzen, Edward Grefenstette, Karl Moritz Hermann, Hugo Larochelle, and Scott Wen-tau
Yih (eds.), CVSC, 2015.

Kristina Toutanova, Danqi Chen, Patrick Pantel, Hoifung Poon, Pallavi Choudhury, and Michael Gamon.
Representing text for joint embedding of text and knowledge bases. In Proceedings of the 2015 Conference
on Empirical Methods in Natural Language Processing, pp. 1499–1509, Lisbon, Portugal, September 2015.
Association for Computational Linguistics. URL https://www.aclweb.org/anthology/D15-1174.

Hung Nghiep Tran and Atsuhiro Takasu. Meim: Multi-partition embedding interaction beyond block
term format for efficient and expressive link prediction. In International Joint Conference on Artificial
Intelligence, 2022. URL https://api.semanticscholar.org/CorpusID:250635995.

Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric Gaussier, and Guillaume Bouchard. Complex
embeddings for simple link prediction. In ICML, 2016.

13

https://doi.org/10.1145/219717.219748
https://aclanthology.org/N18-1167
https://aclanthology.org/2022.acl-long.201
https://doi.org/10.1145/1242572.1242667
https://www.aclweb.org/anthology/D15-1174
https://api.semanticscholar.org/CorpusID:250635995

Under review as submission to TMLR

Dr. Luc Vignaud. Igan: Inferent and generative adversarial networks, 2021. URL https://arxiv.org/abs/
2109.13360.

Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo, and Ling
Shao. Pyramid vision transformer: A versatile backbone for dense prediction without convolutions. In
ICCV, 2021.

Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng Chen. Knowledge graph embedding by translating on
hyperplanes. In Proceedings of the AAAI conference on artificial intelligence, volume 28, 2014.

Dirk Weissenborn, Pasquale Minervini, Isabelle Augenstein, Johannes Welbl, Tim Rocktäschel, Matko Bošnjak,
Jeff Mitchell, Thomas Demeester, Tim Dettmers, Pontus Stenetorp, and Sebastian Riedel. Jack the reader
– a machine reading framework. In ACL, 2018.

Wikipedia contributors. Plagiarism — Wikipedia, the free encyclopedia, 2004. URL https://en.wikipedia.
org/w/index.php?title=Plagiarism&oldid=5139350. [Online; accessed 22-July-2004].

Derong Xu, Tong Xu, Shiwei Wu, Jingbo Zhou, and Enhong Chen. Relation-Enhanced Negative Sampling for
Multimodal Knowledge Graph Completion, pp. 3857–3866. Association for Computing Machinery, New
York, NY, USA, 2022. ISBN 9781450392037. URL https://doi.org/10.1145/3503161.3548388.

Bishan Yang and Tom Mitchell. Leveraging knowledge bases in LSTMs for improving machine reading. In
ACL, 2017.

Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. Embedding entities and relations for
learning and inference in knowledge bases. In Yoshua Bengio and Yann LeCun (eds.), ICLR, 2015.

Zhen Yang, Ming Ding, Chang Zhou, Hongxia Yang, Jingren Zhou, and Jie Tang. Understanding negative
sampling in graph representation learning. In Proceedings of the 26th ACM SIGKDD international
conference on knowledge discovery & data mining, pp. 1666–1676, 2020.

Naimeng Yao, Qing Liu, Yi Yang, Weihua Li, and Quan Bai. Entity-relation distribution-aware negative
sampling for knowledge graph embedding. In International Semantic Web Conference, pp. 234–252. Springer,
2023.

Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and Youngjoon Yoo. Cutmix:
Regularization strategy to train strong classifiers with localizable features. In Proceedings of the IEEE/CVF
international conference on computer vision, pp. 6023–6032, 2019.

Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. mixup: Beyond empirical risk
minimization. In ICLR, 2018.

Yongqi Zhang, Quanming Yao, Yingxia Shao, and Lei Chen. Nscaching: Simple and efficient negative
sampling for knowledge graph embedding. In ICDE, 2019.

Yongqi Zhang, Quanming Yao, and Lei Chen. Simple and automated negative sampling for knowledge graph
embedding. The VLDB Journal, 30(2):259–285, 2021.

Yongqi Zhang, Zhanke Zhou, Quanming Yao, Xiaowen Chu, and Bo Han. Adaprop: Learning adaptive
propagation for graph neural network based knowledge graph reasoning. In Proceedings of the 29th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 3446–3457, 2023.

Zhanqiu Zhang, Jianyu Cai, Yongdong Zhang, and Jie Wang. Learning hierarchy-aware knowledge graph
embeddings for link prediction. In Thirty-Fourth AAAI Conference on Artificial Intelligence, pp. 3065–3072.
AAAI Press, 2020.

Zhanke Zhou, Yongqi Zhang, Jiangchao Yao, Quanming Yao, and Bo Han. Less is more: One-shot subgraph
reasoning on large-scale knowledge graphs. arXiv preprint arXiv:2403.10231, 2024.

14

https://arxiv.org/abs/2109.13360
https://arxiv.org/abs/2109.13360
https://en.wikipedia.org/w/index.php?title=Plagiarism&oldid=5139350
https://en.wikipedia.org/w/index.php?title=Plagiarism&oldid=5139350
https://doi.org/10.1145/3503161.3548388

Under review as submission to TMLR

Zhaocheng Zhu, Zuobai Zhang, Louis-Pascal Xhonneux, and Jian Tang. Neural bellman-ford networks: A
general graph neural network framework for link prediction. In Neural Information Processing Systems,
2021. URL https://api.semanticscholar.org/CorpusID:235422273.

Zhaocheng Zhu, Xinyu Yuan, Michael Galkin, Louis-Pascal Xhonneux, Ming Zhang, Maxime Gazeau, and
Jian Tang. A* net: A scalable path-based reasoning approach for knowledge graphs. Advances in Neural
Information Processing Systems, 36, 2024.

15

https://api.semanticscholar.org/CorpusID:235422273

Under review as submission to TMLR

A Additional Related Work

Model Regularization Methods for Classification Tasks To obtain a good representation of the
embedding vector of a machine learning model, it is common to consider regularization methods. In particular,
there have been several regularization techniques for a better generalization power in the case of the cross
entropy loss function. Mixup (Zhang et al., 2018) is one of the most popular and powerful regularization
methods, originally developed for image and speech processing. This method generates new training samples
by convexly mixing two different training data during the training, resulting in a network with a better
generalization because of Vicinal Risk Minimization (Chapelle et al., 2000). Consequently Mixup has gained
popularity in computer vision (Liu et al., 2021; He et al., 2022; Wang et al., 2021) and voice recognition
(Meng et al., 2021; Fang et al., 2022), among other fields (Tolstikhin et al., 2021; Kalantidis et al., 2020; Roy
et al., 2022; Che et al., 2022). CutMix Yun et al. (2019) is a variant of Mixup that combine two input
images as Mixup but by cutting and pasting patches among images. Our Feature Mutation shares a similar
philosophy but the crucial difference is that feature mutation combines positive and negative tails in "feature"
space that has not yet been tried in any existing work as far as we know.

Label Smoothing (Szegedy et al., 2016; Müller et al., 2019) is also known as a very effective regularization
method when combined with cross entropy loss. Label Smoothing prevents overconfident predictions from
the model by artificially reducing the true labels to be less than unity.

B Further Property of EMU

The following proposition describes that EMU generates more difficult negative samples than the original
ones.
Proposition B.1. The generated negative samples generated by EMU are always closer to the positive
samples than the original negative samples.

Proof. The Euclidean distance between a positive sample z+ = {z+
i }i=1,...,d and a vanilla negative sample

z− = {z−
i }i=1,...,d can be written as:

dPN =

√√√√ d∑
i=1

(z+
i − z−

i)2. (13)

On the other hand, the distance between a positive sample and a negative sample generated using EMU is

dEMU =

√√√√ d∑
i=1

(z+
i − zEMU

i)2

=

√√√√ d∑
i=1

(
z+

i − {λiz+
i + (1 − λi)z−

i }
)2

=

√√√√ d∑
i=nT+1

(z+
i − z−

i)2 ≤ dPN, (14)

where in the last line, we assume the first nP components in λEMU is unity and the others are zero:
λEMU = {1, 1, · · · , 1, 0, · · · , 0}, without loss of generality.

The above equations show that EMU enables to generate hard negative samples than the original ones.

C Proof of Theorem 3.2

In the following, we provide the proof of Theorem 3.2.

16

Under review as submission to TMLR

Proof. For simplicity, we assume the first axis of the coordinate is aligned with vector A: A ≡ a1e1 and we
also represent B as B = {bi}i=1,...,N = {b̄ + ∆bi}i=1,...,N where b̄ is the mean-value of the component of the
vector B. Then, the angle between A and B can be written as:

cos θ0 ≡ A · B
|A||B|

= b1√∑N
i=1(b̄ + ∆bi)2

= b1

b̄
√

N

[
1 + 1

N

N∑
i=1

(
∆bi

b̄

)2
]−1/2

. (15)

Likewise, the angle between A and B can be written as:

cosθEMU ≡ A · BEMU

|A||BEMU|
= λ1b1√∑N

i=1 λ2
i (b̄ + ∆bi)2

= λ1b1

b̄
√

nr

[
1 + 1

nr

N∑
i=1

λ2
i

[
2∆bi

b̄
+

(
∆bi

b̄

)2
]]−1/2

. (16)

In the limit of ∆b ≪ b̄, noting that λ2
i = λi,

cos θEMU

cos θ0
= λ1

√
N

nr

[
1 − 1

nr

N∑
i=1

λiϵi

]
+ O(ϵ2

i)

= λ1

√
N

nr

[
1 − ζ

nr

]
+ O(ϵ2

i). (17)

Here, ϵi ≡ ∆bi/b̄ and ζ ≡
∑N

i=1 λiϵi, and we derived the first equation by the Taylor expansion up to the
first-order in ϵi. According to the central limit theorem, ζ follows the Gaussian distribution in the case of
sufficiently large N , and hence cos θEMU adheres to Gaussian distribution centered around

√
N/nr cos θ0, as

long as λ1 ̸= 0.

D Proof of Lemma 3.4

Proof. First, we consider the case of the real-world data case with only limited data. According to Theorem 3.3
and Equation 6, the negative sample distribution can be written as a linear summation of an isotropic
distribution as:

p̃n,EMU(z̃EMU|vhr) =
N∑

i=1
fiso(∆zλ|zt,+),

zt,+ ∼ p̃d(zt,+|vhr), (18)

where p̃n, p̃d are the expression of pn and pd in the data space and fiso(x|y) is an isotropic function around y.
Note that in the above equation, it is assumed the following relation is always satisfied: z̃EMU = zt,+ + ∆zλ.
If moving back to the idealized data space, Equation 18 reduces to:

pn,EMU(z̃EMU|vhr)

= A

∫
dzt,+fiso(∆zλ|zt,+)pd(zt,+|vhr), (19)

where A is a constant. Then, we obtain the Equation 3.4 if explicitly demanding the relation: z̃EMU =
zt,+ + ∆zλ, by considering the Dirac delta function. Note that the Equation 3.4 also assume that fiso is a
rapidly decaying function with a typical scale ∆z̄ which is the scale implicitly given in Proposition B.1.

17

Under review as submission to TMLR

E Unbounded Label Smoothing for Cross-Entropy Loss Function

Label smoothing is a well-known technique used to regularize classifier models (Szegedy et al., 2016). It
is originally proposed to address the overconfidence issue that certain classifiers such neural networks may
exhibit during training. It works by smoothing the class label as follows:

yLS = ŷ(1 − βLS) + βLS/K, (20)

where ŷ = {y0, y1, ..., yK} is the one-hot label encoding, βLS is a label smoothing parameter that controls the
model confidence, and K is the number of classes. Note that the resultant smoothed label maintains the
total sum equal to unity. However, when applied to problems with a high number of classes, label smoothing
leads to small values for the negative class label (or elements for the contrastive learning case), which still
induces an overly strong penalty on the EMU negative samples whose vector component include the true
positive sample vector that should not be penalized. To address this issue, we propose a new approach called
Unbounded Label Smoothing (Unbounded-LS), which is defined as follows:

yULS,k =
{

1 if k ∈ (+),
β otherwise,

(21)

where β is the softening parameter over the negative samples. The above modification of the negative sample
labels does not affect the probabilistic interpretation of the model output, as it does not change the model
output itself. Our unbounded LS discourages the model from penalizing the negative samples excessively.

F Datasets

Dataset #entities #relations #triples
FB15k-237 14,541 237 310,079
YAGO3-10 123,188 37 1,179,040
WN18-RR 40,943 11 93,003

Table 4: Knowledge Graph dataset statistics. training, validation and testing refer to the number of triples
under each split.

FB15k-237 (Toutanova et al., 2015) is a commonly used benchmark for Knowledge Graph link prediction
tasks and a subset of Freebase Knowledge Base (Bollacker et al., 2008). FB15k-237 was created as a
replacement for FB15k, a previous benchmark that was widely adapted until the dataset’s quality came into
question in subsequent work (Toutanova et al., 2015) due to an excess of inverse relations.

YAGO3-10 (Mahdisoltani et al., 2013) is a subset of YAGO (Yet Another Great Ontology)(Suchanek et al.,
2007), a large semantic knowledge base that augments WordNet and which was derived from Wikipedia
(Wikipedia contributors, 2004), WordNet (Miller, 1995), WikiData (Ahmadi & Papotti, 2021), and other
sources. Because of its origins, YAGO entities are linked to Wikidata and WordNet entity types. The
dataset contains information about individuals, such as citizenship, gender, profession, as well as other entities
such as organizations and cities. The subset YAGO3-10 contains triples with entities that have more than 10
relations.

WN18RR (Dettmers et al., 2018) is a link prediction dataset created from WN18 (Bordes et al., 2013),
which is a subset of WordNet, a popular large lexical database of English nouns, verbs, adjectives and
adverbs. WordNet contains information about relations between words, such as hyponyms, hypernyms and
synonyms (Miller, 1995). However, similarly to the issues that occurred in FB15K, many test triples in
WN18 are obtained by inverting triples from the training set. Therefore, WN18RR dataset was created in
the same work as FB15k-237, in order to make a more challenging benchmark for link prediction.

18

Under review as submission to TMLR

G Experiment Setup

Training Settings Here we describe the general settings we used to train all the models. The optimization
was performed using Adam (Kingma & Ba, 2014) for 105 iterations8 with 256 negative samples9. The
hyper-parameter tuning was performed with Optuna (Akiba et al., 2019). During the training, we monitored
the loss over the validation set and selected the best model based on its performance on the validation set.
For models trained with SAN negative samples, we utilized the default training setup from (Ahrabian et al.,
2020).

Evaluation Settings To ensure that all the methods were evaluated under the same conditions, we utilized
standard metrics to report results, specifically the Mean Reciprocal Rank (MRR) and Hits at K (H@K). If
multiple true tails exist for the same (head, relation)-pair, we filtered out the other true triplets at test time.
To minimize model uncertainty resulting from random seeds or multi-threading, we performed three trials for
each experiment and reported the mean and standard deviation of the evaluation scores.

Baselines Among all existing baselines, we consider vanilla uniform negative sampling (Bordes et al., 2013)
and SAN (Ahrabian et al., 2020) as the most relevant to compare our work against. Additionally, we included
NSCaching (Zhang et al., 2019) as another baseline method, with its results provided in Appendix I 10. The
hyper-parameters for the baselines and EMU are tuned by utilizing Optuna (Akiba et al., 2019).

Implementation Settings We modified the code originally developed by Ahrabian et al. (2020) to perform
Mixup and EMU with SAN. As explained in section 3, the models are trained using cross-entropy losses,
incorporating one true tail sample and multiple negative samples. The optimization was performed using
Adam (Kingma & Ba, 2014). The L3-norm loss function is used on the embedding vectors for the models
with the vanilla uniform negative sampling and SAN. The mini-batch size is set to 1000. To compute the
embedded triplets for all the KG models, we used an Embedding layer with a hidden dimension of : d = 100.
A more detailed hyper-parameters are provided in Table 5 and Table 6. We tuned our hyperparameters,
including the learning rate and the coefficient for weight-decay for baseline scores, through 10000 iterations
on the FB15K-237 validation dataset using Optuna (Akiba et al., 2019). We adopted the officially provided
configuration for the HAKE model setup (Zhang et al., 2020). The hyperparameters for EMU are detailed in
Table 7.

Computational Resources All the experiments other than HAKE were performed on one Nvidia GeForce
GTX 1080 Ti GPU for each run. The experiments with HAKE were performed on one Nvidia GeForce RTX
3090 GPU for each run. The models were implemented by PyTorch 2.1.0 with CUDA11.8. Because of the
additional gradient flow through negative sample components due to mutation, the total GPU memory usage
of EMU becomes around 1.5 to 2 times larger than vanilla case in the case of DistMult with (d, n) = (100, 256)
where d, n denote embedding dimension and negative sample number. Concerning the training time, although
one-step duration becomes around twice longer11, we also found that EMU reaches its maximum performance
much earlier than the case without EMU, leading to a shorter training time in the end. We emphasize that
the additional computational resource allows us to achieve a comparable performance with the case using
even 10 times larger embedding dimension, which requires at least 10 times larger computational resource (see
also subsection 4.3). Note that EMU does not require additional computational resources during inference.

8The total iteration number is the same as the one used in the SAN repository (Ahrabian et al., 2020) to reproduce their best
result.

9In Appendix J, the influence of the number of negative samples on the outcomes is analyzed, and it is demonstrated that
EMU outperforms the uniform-sampling approach in almost all instances.

10Due to the inherent intricacy involved in assessing the impact of different implementations (specifically, SAN-based and
NSCaching-based codes) on performances, we relocated he results obtained with NSCaching to the Appendix.

11The length tends to increase with model complexity and size. However, Table 1 indicates that the performance gain by
EMU also increases with the model complexity, as shown with HAKE

19

Under review as submission to TMLR

Model Method Learning Rate α nP/d β γ

ComplEX uni 0.1 n/a n/a n/a 10−5

SAN 0.1 n/a n/a n/a 10−5

SAN_EMU 0.1 0.34 0.92 0.12 0
uni_EMU 0.1 0.34 0.92 0.12 0

DistMult uni 0.1 n/a n/a n/a 10−5

SAN 0.1 n/a n/a n/a 10−5

SAN_EMU 0.1 0.73 0.94 0.25 0
uni_EMU 0.1 0.73 0.94 0.25 0

RotatE uni 0.005 n/a n/a n/a 10−3

SAN 0.005 n/a n/a n/a 10−3

SAN_EMU 0.005 0.11 0.39 0.53 0
uni_EMU 0.005 0.11 0.39 0.53 0

TransE uni 0.005 n/a n/a n/a 10−3

SAN 0.005 n/a n/a n/a 10−3

SAN_EMU 0.005 0.11 0.39 0.53 0
uni_EMU 0.005 0.11 0.39 0.53 0

Table 5: Hyper-Parameters for FB15K-237 and WN18RR dataset. α, β, γ are the coefficient of original Loss,
negative label value of Unbounded LS, and the coefficient of L3-norm loss, respectively.

Model Method Learning Rate α nP/d β γ

ComplEX uni 0.1 n/a n/a n/a 10−5

SAN 0.1 n/a n/a n/a 10−5

SAN_EMU 0.1 0.536 0.804 0.193 0
uni_EMU 0.1 0.536 0.804 0.193 0

DistMult uni 0.1 n/a n/a n/a 10−5

SAN 0.1 n/a n/a n/a 10−5

SAN_EMU 0.1 0.54 0.949 0.22 0
uni_EMU 0.1 0.54 0.949 0.22 0

RotatE uni 0.1 n/a n/a n/a 10−5

SAN 0.1 n/a n/a n/a 10−5

SAN_EMU 0.1 0.46 0.73 0.84 0
uni_EMU 0.1 0.46 0.73 0.84 0

TransE uni 0.1 n/a n/a n/a 5 × 10−5

SAN 0.1 n/a n/a n/a 5 × 10−5

SAN_EMU 0.1 0.11 0.39 0.53 0
uni_EMU 0.1 0.11 0.39 0.53 0

Table 6: Hyper-Parameters for YAGO3 dataset. α, β, γ are the coefficient of original Loss, negative label
value of Unbounded LS, and the coefficient of L3-norm loss, respectively.

H A Full Description of Main Result

In Table 8 we provide the full description of our result visualized in Figure 2. For the HAKE model, we
provide the quantitative results in Table 9.

20

Under review as submission to TMLR

Dataset Method d ns nb Max-Step Learning Rate α nP/d β

FB15K-237 uni 1000 256 1024 100000 5 × 10−5 n/a n/a n/a
uni_EMU 5 × 10−5 0.1 0.128 0.964

WN18RR uni 500 1024 512 80000 5 × 10−5 n/a n/a n/a
uni_EMU 5 × 10−5 0.1 0.128 0.964

YAGO3-10 uni 500 256 1024 180000 2 × 10−4 n/a n/a n/a
uni_EMU 2 × 10−4 0.1 0.128 0.964

Table 7: Hyper-Parameters of HAKE model. d, ns, nb denote hidden dimension size, negative sample number,
and mini batch size, respectively. α, β, γ are the coefficient of original Loss, negative label value of Unbounded
LS, and the coefficient of L3-norm loss, respectively.

FB15K-237 WN18RR YAGO3-10
Model Method MRR HITS@10 MRR HITS@10 MRR HITS@10

ComplEX uni 0.306±0.001 0.486±0.000 0.461±0.000 0.526±0.002 0.399±0.004 0.605±0.003

(Lacroix et al., 2018) SAN 0.275±0.000 0.437±0.001 0.467±0.001 0.530±0.001 0.318±0.002 0.496±0.004

SAN_EMU 0.298±0.001 0.474±0.001 0.466±0.002 0.543±0.003 0.385±0.002 0.563±0.002

uni_EMU 0.344±0.001 0.532±0.001 0.473±0.003 0.547±0.002 0.437±0.001 0.638±0.004

DistMult uni 0.299±0.001 0.476±0.001 0.428±0.001 0.489±0.002 0.345±0.001 0.538±0.004

(Yang et al., 2015) SAN 0.259±0.001 0.415±0.001 0.425±0.001 0.481±0.002 0.251±0.002 0.428±0.001

SAN_EMU 0.282±0.001 0.446±0.002 0.427±0.001 0.506±0.004 0.293±0.002 0.478±0.002

uni_EMU 0.332±0.001 0.513±0.001 0.446±0.002 0.523±0.003 0.403±0.004 0.601±0.004

RotatE uni 0.305±0.001 0.484±0.001 0.458±0.001 0.549±0.002 0.378±0.003 0.569±0.003

(Sun et al., 2019) SAN 0.257±0.001 0.418±0.001 0.456±0.001 0.532±0.003 0.303±0.003 0.459±0.003

SAN_EMU 0.282±0.000 0.455±0.001 0.451±0.001 0.516±0.002 0.363±0.002 0.535±0.002

uni_EMU 0.329±0.001 0.514±0.001 0.453±0.002 0.525±0.002 0.391±0.001 0.609±0.002

TransE uni 0.314±0.001 0.479±0.002 0.227±0.002 0.506±0.002 0.233±0.001 0.389±0.005

(Bordes et al., 2013) SAN 0.299±0.001 0.460±0.002 0.237±0.001 0.518±0.002 0.222±0.002 0.375±0.001

SAN_EMU 0.281±0.000 0.450±0.003 0.202±0.001 0.493±0.001 0.221±0.003 0.383±0.001

uni_EMU 0.323±0.001 0.503±0.003 0.216±0.001 0.493±0.001 0.255±0.002 0.438±0.002

Table 8: MRR and Hit@10 of the results on FB15K-237, WN18RR, and YAGO3-10 datasets. "uni" means
the uniform negative sampling, "SAN" means the structure aware negative sampling. The shown results are
the average with the standard deviation of three trials of the randomly determined initial weights.

FB15K-237 WN18RR YAGO3-10
Model Method MRR HITS@10 MRR HITS@10 MRR HITS@10

HAKE uni 0.308±0.002 0.493±0.000 0.436±0.002 0.487±0.003 0.452±0.005 0.651±0.004

(Zhang et al., 2020) uni_EMU 0.316±0.001 0.503±0.001 0.453±0.001 0.526±0.002 0.499±0.000 0.687±0.001

Table 9: MRR and Hit@10 of the results of HAKE model trained on FB15K-237, WN18RR, and YAGO3-10
datasets. "uni" means the uniform negative sampling. The shown results are the average with the standard
deviation of three trials of the randomly determined initial weights.

I Results using NScaching

This section presents the results obtained with EMU and NSCaching (Zhang et al., 2019)12. We modified
the official NSCaching repository to enable the use of the cross entropy loss function and EMU. We used
the same hyperparameters as those provided in section 3, mini-batch size is 1000 and 256 negative samples.

12We provided the results with NSCaching in the appendix rather than the main body because of differences in the
implementation between the official repositories for SAN and NSCaching, which makes it difficult to compare those results
equally.

21

Under review as submission to TMLR

Model Method MRR Hit@10
ComplEX NSCaching 0.387±0.001 0.577±0.001

NSCaching_EMU 0.394±0.001 0.585±0.005

DistMult NSCaching 0.370±0.001 0.557±0.003

NSCaching_EMU 0.376±0.002 0.565±0.000

TransE NSCaching 0.322±0.001 0.470±0.002

NSCaching_EMU 0.323±0.001 0.467±0.004

RotatE NSCaching n/a n/a
NSCaching_EMU n/a n/a

Table 10: MRR and Hit@10 of the results with NSCaching code trained using FB15K-237. "NSCaching"
means the NSCaching negative smapling. The shown results are the average with the standard deviation of
three trials of the randomly determined initial weights. Note that the result of RotatE is omitted because
RotatE is not provided in the original repository.

EMU parameters are provided in Table 11. The results are provided in Table 10 which demonstrate that our
EMU consistently improves the performance, even when using NSCaching13.

Model Method Learning Rate α nP/d β γ

ComplEX uni 3 × 10−4 n/a n/a n/a 10−5

NSCaching 3 × 10−4 n/a n/a n/a 10−5

NSCaching_EMU 3 × 10−4 0.44 0.34 0.32 0
DistMult uni 10−3 n/a n/a n/a 10−5

NSCaching 10−3 n/a n/a n/a 10−5

NSCaching_EMU 10−3 0.68 0.17 0.16 0
TransE uni 5 × 10−4 n/a n/a n/a 2 × 10−2

NSCaching 5 × 10−4 n/a n/a n/a 2 × 10−2

NSCaching_EMU 5 × 10−4 0.54 0.168 0.151 0

Table 11: Hyper-Parameters of NScaching code trained using FB15K-237 dataset. α, β, γ are the coefficient
of EMU Loss, negative label value of Unbounded LS, and the coefficient of L3-norm loss, respectively.

J Negative Sample Number Dependence

In the main body of this work, we maintained a fixed number of negative samples at 256. However, in
Figure 5, we depict the relationship between the optimal MRR and the number of negative samples employed.
Our experiments were conducted using the FB15K-237. Notably, EMU demonstrated superior MRR values
in most cases, with a notable increase in performance gains as the number of negative samples increased.

K Hyper-Parameter Dependence Study

In Table 12 illustrates the dependence of EMU performance on hyper-parameters: α, nP /d, and β. We
considered the DistMult as a KGE model. The results indicate that the excessively large values of the
coefficient of EMU loss, α, are undesirable. Conversely, it is preferable to use a moderate value for the
negative label value of Unbounded LS, β. Finally, the performance is relatively insensitive to the change of
the mutation ratio, nP /d, but exhibits a slight improvement as the value approaches the optimal one.

13The obtained MMR and H@10 values may appear excessively good; however, we believe that this may be partly due to the
NSCaching code implementation, although we cannot confirm this with certainty.

22

Under review as submission to TMLR

016 064 256 512
Sam ple Num ber

0.295

0.300

0.305

0.310

0.315

0.320

0.325

0.330

Com plEX

uniform

EMU

016 064 256 512
Sam ple Num ber

0.285

0.290

0.295

0.300

0.305

0.310

0.315

0.320

DistMult

uniform

EMU

016 064 256 512
Sam ple Num ber

0.27

0.28

0.29

0.30

0.31

TransE

uniform

EMU

016 064 256 512
Sam ple Num ber

0.24

0.26

0.28

0.30

RotatE

uniform

EMU

Figure 5: The negative sample number dependence of MRR trained on FB15K-237. The right-edge of the
ComplEX and DistMult of the uniform negative sampling case is the "1 VS ALL" results.

(α, nP/d, β) MRR HITS@10
(0.11, 0.914, 0.53) baseline 0.333 0.513
(0.5, 0.914, 0.53) 0.318 0.498
(0.9, 0.914, 0.53) 0.306 0.484
(0.11, 0.1, 0.53) 0.326 0.509
(0.11, 0.5, 0.53) 0.327 0.504
(0.11, 0.914, 0.1) 0.314 0.496
(0.11, 0.914, 0.9) 0.326 0.501

Table 12: Hyper-Parameters study results using FB15K-237 dataset with DistMult model. α, β, nP are the
coefficient of EMU Loss, negative label value of Unbounded LS, and the number of mutation components,
respectively.

L Ablation Study

In this subsection, we present the results of our ablation study to understand the individual contributions
of the two main components of EMU, i.e. the Embedding Mutation and the Unbounded-LS. To achieve
this goal, we used the FB15k-237 dataset as a reference benchmark and performed a set of experiments

23

Under review as submission to TMLR

Model Ablation MRR HITS@10
ComplEX EMU 0.344 0.532

w/t ULS 0.252 (-0.092) 0.411 (-0.121)
w/t Emb.Mut. 0.302 (-0.042) 0.477 (-0.055)
w/t EMU 0.306 (-0.038) 0.486 (-0.046)

DistMult EMU 0.332 0.513
w/t ULS 0.254 (-0.076) 0.415 (-0.098)
w/t Emb.Mut. 0.300 (-0.032) 0.477 (-0.036)
w/t EMU. 0.311 (-0.021) 0.489 (-0.024)

RotatE EMU 0.329 0.514
w/t ULS 0.236 (-0.093) 0.386 (-0.128)
w/t Emb.Mut. 0.312 (-0.017) 0.496 (-0.018)
w/t EMU 0.305 (-0.024) 0.484 (-0.030)

TransE EMU 0.323 0.503
w/t ULS 0.260 (-0.063) 0.423 (-0.080)
w/t Emb.Mut. 0.308 (-0.015) 0.491 (-0.012)
w/t EMU 0.314 (-0.009) 0.479 (-0.024)

Table 13: Ablation study results on FB15K-237. The number in the parentheses are the difference from the
"EMU" results. "ULS" means Unbounded Label Smoothing, and "Emb.Mut." means Embedding Mutation.

by decoupling the embedding mutation from the Unbounded-LS. We trained the KGE models under three
different scenarios: 1) the EMU, which represents the proposed EMU combining Embedding Mutation
and Unbounded-LS; 2) the baseline without Unbounded-LS (w/t Unbounded-LS); 3) the baseline without
the Embedding Mutation (w/t Emb.Mut.), and 4) the case without EMU (w/t EMU). The aim of the
experiments was to compare the performance reduction by removing one of the components, thereby gaining
insights into their relative importance.

The results obtained from the ablation study are presented in Table 13, with the first two columns indicating
the target model and the experiment setup, and the last two columns showing the MRR and HITS@10 results
with the performance loss compared to the baseline. Our results consistently demonstrate that Unbounded-LS
has a strong impact on all models14. This is quite natural because EMU without Unbounded-LS penalizes
not only pure negative samples but also true sample embedding because of Embedding Mutation. We also
hypothesize that the effectiveness of Unbounded-LS can also stem from its ability to effectively allow large
gradient flow values from negative samples. This is attributed to the relatively large negative sample labels
(typically larger than 0.1) and the tendency of Embedding Mutation to create harder negatives, which results
in larger loss values. The resulting gradients affect both the positive and negative sample components,
ultimately leading to an improved representation of their embedding. In conclusion, Embedding Mutation
combined with Unbounded-LS consistently (EMU) improves performance of multiple and diverse models.

M Comparison between Vanilla LS and Unbounded LS

In this study we proposed the unbounded label-smoothing (LS) technique. To assess its efficacy, we also
trained our models using vanilla LS (Szegedy et al., 2016) with a label smoothing parameter of 0.2. The
result is provided in Table 14 which demonstrate the clear speriority of Unbounded LS for all cases.

14We also compared Unbounded-LS and vanilla LS (Szegedy et al., 2016) in Appendix M and found that Unbounded-LS is
more effective than the usual LS

24

Under review as submission to TMLR

Model Ablation MRR HITS@10
ComplEX Unbounded LS 0.344 0.532
(Trouillon et al., 2016) Vanilla LS (w/t ULS) 0.262 (-0.082) 0.423 (-0.109)
DistMult Unlabeled LS 0.332 0.513
(Yang et al., 2015) Vanilla LS (w/t ULS) 0.252 (-0.080) 0.410 (-0.103)
RotatE Unbounded LS 0.329 0.514
(Sun et al., 2019) Vanilla LS (w/t ULS) 0.236 (-0.093) 0.382 (-0.132)
TransE Unbounded LS 0.322 0.503
(Bordes et al., 2013) Vanilla LS (w/t ULS) 0.259 (-0.063) 0.423 (-0.080)

Table 14: A comparison between Unbounded LS and vanilla LS.

N An Brief Introduction to Mixup

In this section, we provide a brief introduction of Mixup (Zhang et al., 2018). Mixup is a simple regularization
technique that constructs virtual training examples as:

z̃Mixup ≡ λzi + (1 − λ)zj , (22)

where zi, yi are the i-th input and label data, λ ∼ Beta(α, α) is a random scalar value controlling mixing
ratio between the two samples, and α ∈ (0, ∞). Mixup is typically applied across the elements of a given
batch, and randomly produces new virtual samples by linearly mixing two classes as shown in Equation 22.
While Mixup was originally proposed to address problems such as reducing memorization of corrupted
labels and increasing the robustness to adversarial examples, we observed limitations to its performance
when we extended it to embedding methods (refer to Table 2). We hypothesize that the linear nature of
Mixup-generated example restricts the magnitude of gradients without changing their direction, which limits
its effectiveness. On the other hand, EMU overcomes this limitation by producing updates that can take
multiple directions and thus, enhances model training.

For the Mixup experiments, we simply replaced the embedding mutation into Mixup in Equation 22. For
simplicity, we set λ ∼ Beta(α, β)|α=2,β=1. Note that here we did not set as α = β, as in the original
implementation (Zhang et al., 2018), because we found that using different values of α and β resulted in a
significantly improved accuracy. We attribute this to the skewed probabilistic distribution that arises due to
the different values of α and β, which allows for a higher ratio of negative samples than positive samples in
the mixed-tail embedding vectors.

O Detailed Explanation of the Application of EMU to NBFNet

The experiments on Neural Bellman-Ford Networks (NBFNet) (Zhu et al., 2021), described in subsection 4.6,
were conducted using the official repository15. We integrated the EMU loss function into the repository’s
code and executed the experiments using the default configuration. The hyperparameters for EMU are listed
in Table 15. The experiments were conducted using three different random seeds, which were consistently
applied to both the baseline and EMU experiments. All experiments were performed on a single NVIDIA
A100 GPU. In this experiment, we used the binary cross entropy loss for EMU loss because of the usage of
binary cross entropy loss for the vanilla NBFNet.

P Cosine Similarity Between Negative Samples

Figure 6 plots the cosine similarity among negative samples for EMU-EMU, uniform-uniform, and uniform-
EMU. The results indicate that the similarity between uniform negative samples are consistently lower than
that of EMU negative samples, suggesting that EMU generates more hard negative samples.

15https://github.com/DeepGraphLearning/NBFNet

25

https://github.com/DeepGraphLearning/NBFNet

Under review as submission to TMLR

Model α nP/d β

NBFNet w.t. EMU 1.0 0.94 0.25

Table 15: EMU hyper-parameter used for the experiments on NBFNet.

0.2 0.0 0.2 0.4 0.6 0.8 1.0
0

5

10

15

20

25

cosine sim ilarity of negat ive-negat ive pairs

EMU

uniform

uniform-EMU

Figure 6: Cosine similarity of negative-negative tail pairs for DistMult with FB15k-237.

26

	Introduction
	Background and Notation
	Optimal Embedding for KGE and EMU
	Optimal Embedding for KGE Representation Learning
	EMU: Embedding MUtation
	Theoretical Consideration on EMU
	Overall Loss Terms

	Emperical Validation
	Experimental Setup
	Results
	Embedding Dimension Efficacy Study
	Mutation effect
	Comparison to Mixup
	Application to NBFNet

	Related Work
	Discussion and Conclusion
	Limitations
	Additional Related Work
	Further Property of EMU
	Proof of Theorem 3.2
	Proof of Lemma 3.4
	Unbounded Label Smoothing for Cross-Entropy Loss Function
	Datasets
	Experiment Setup
	A Full Description of Main Result
	Results using NScaching
	Negative Sample Number Dependence
	Hyper-Parameter Dependence Study
	Ablation Study
	Comparison between Vanilla LS and Unbounded LS
	An Brief Introduction to Mixup
	Detailed Explanation of the Application of EMU to NBFNet
	Cosine Similarity Between Negative Samples

