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Abstract

The training of overparameterized neural networks has received much study in recent liter-
ature. An important consideration is the regularization of overparametrized networks due
to the highly nonconvex geometry of these networks. In this paper, we consider noise injec-
tion algorithms, which can regularize the Hessian of the loss, leading to flat loss surfaces.
Specifically, by injecting isotropic Gaussian noise into the weight matrices of a network,
we will obtain an approximately unbiased estimate of the trace of the Hessian. However,
naively implementing the noise injection, such as adding noise to the weights before back-
propagation, presents limited empirical improvement. To address this limitation, we design
a two-point noise injection scheme, which injects noise to weights along both positive and
negative directions of the random noise. We show that this form of Hessian-based regu-
larization can improve generalization by proving a PAC-Bayes bound that depends on the
trace of the Hessian and the radius of the fine-tuning region.
Extensive experiments validate that our approach can effectively regularize the Hessian,
thereby improving generalization. First, our algorithm can outperform prior sharpness-
reducing training, achieving up to a 1.8% increase in test accuracy for fine-tuning pretrained
ResNets on six image classification datasets. The trace of the Hessian is reduced by 17.7%,
and the largest eigenvalue is reduced by 12.8%. Second, the noise injection algorithm can
be combined with alternative regularization methods such as weight decay and data aug-
mentation. Third, our approach can be used to improve generalization in pretraining CLIP
models and chain-of-thought fine-tuning.
Lastly, we analyze the convergence of our algorithm. Our analysis expands on a connection
between minimizing noise-injected functions and stochastic optimization, leading to sharp
convergence rates of the above noise-injection algorithm.

1 Introduction

The loss landscape and its geometry properties are a recurring theme in the study of neural networks
(Keskar et al., 2017; Dinh et al., 2017; Hochreiter & Schmidhuber, 1997). Recently, the design of training
methods such as sharpness-aware minimization and stochastic weight averaging has led to improved empirical
performance in a wide range of settings (Izmailov et al., 2018; Foret et al., 2021; Wortsman et al., 2022). The
theoretical study of these training methods has also been explored (Andriushchenko & Flammarion, 2022).
For instance, it has been shown that the sharpness-aware minimization algorithm (Foret et al., 2021) has an
implicit bias to surface regions whose largest eigenvalue of the Hessian is small (Wen et al., 2023; Bartlett
et al., 2023). In this paper, we study methods that have explicit regularization of the Hessian, with provable
generalization guarantees. More formally, given an input function f : Rd → R that represents the empirical
risk of a neural network and a d-dimensional distribution P with mean zero, we consider minimizing the
noise-perturbed function

F (W ) := E
U∼P

[f(W + U)] .

Minimizing this perturbed function can improve the resilience of the neural network to noise injection,
thus leading to flatter loss surfaces and improved regularization (Nagarajan & Kolter, 2020; Dziugaite &
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Roy, 2017). For instance, using PAC-Bayes analysis, one can identify a measure of the “sharpness” of loss
surfaces based on the trace of the Hessian (Tsuzuku et al., 2020; Ju et al., 2022). While this approach is
theoretically motivated, its practical performance is not always evident (Hinton & Van Camp, 1993; An,
1996; Graves, 2011). To motivate our study, we start by conducting several empirical studies to compare
the performance of standard SGD and weight-perturbed SGD (WP-SGD), which first injects random noise
into the weights of the neural network before computing its gradient in SGD. For this empirical study, we
fine-tune pretrained ResNets on three image classification tasks. To ensure the validity of the analysis, we
vary both the distribution of P and the variance of U and find that WP-SGD does not offer clear benefits
over SGD. Our study is consistent with recent studies such as Orvieto et al. (2023). However, we hypothesize
that these results may be due to the randomness of the noise injection rather than the ineffectiveness of the
Hessian regularization.

Our approach to mitigate the randomness of the noise injection involves two parts. First, we add a negative
perturbation along W − U to cancel out the first-order expansion term of W + U (recall that U is a random
sample from P). Meanwhile, the second-order expansion term remains the same after this cancellation. We
term this modification a two-point noise injection scheme, analogous to using two-point gradient estimates
in zeroth-order optimization Duchi et al. (2015). Second, we sample multiple perturbations U1, U2, . . . , Uk

at each epoch and take their averaged two-point gradients.

A major advantage of our approach compared to prior approaches is that we can provide an approximately
unbiased estimate of the Hessian, and we empirically validate this claim across three real-world settings
(see Figure 2, Section 2.3 for an illustration). By utilizing this property, we show a PAC-Bayes bound that
depends on the trace of the Hessian and the radius of the fine-tuning region. We briefly describe this result,
leaving the formal statement to Theorem 2.1. Let α be an upper bound on the trace of the Hessian measured
within the hypothesis space. Let r be the radius of the fine-tuning region, measured in Euclidean geometry.
Suppose there are n empirical samples from an unknown distribution. We show a generalization bound that
scales as O

(√
αr2

n

)
. The proof utilizes a linear PAC-Bayes bound (Catoni, 2007; McAllester, 2013), but we

optimize the variance of the prior and posterior distributions to derive this result. A detailed proof sketch
is presented in Section 2.4.

Next, we validate our approach through comprehensive experiments. First, when fine-tuning pretrained
ResNets on six image classification data sets, our algorithm reduces the trace and the largest eigenvalue of
the loss’s Hessian matrix by 17.7% and 12.8%, respectively, compared to existing sharpness-reducing training
methods. This results in up to 1.8% improvement in test accuracy over these existing methods. Second,
combining our algorithm with other regularization techniques, such as data augmentation and distance-based
regularization (Gouk et al., 2022), can further achieve a reduction of 13.6% in Hessian trace and 16.3% in
test loss on average. Third, we apply our algorithm to multimodal model pretraining and chain-of-thought
fine-tuning. Our algorithm consistently yields a lower Hessian trace and improved test performance than
SAM in the applications.

Lastly, we analyze the convergence of our algorithm. In particular, we study the optimization properties
of minimizing noise-perturbed function F (W ) using techniques from the stochastic optimization literature
(Ghadimi & Lan, 2013; Lan, 2020; Zhang, 2023; Carmon et al., 2020; Drori & Shamir, 2020). Altogether,
we can provide matching upper and lower bounds on the norm of the gradient of the iterates. Our analysis
also raises several new questions, which may be interesting for future work. For instance, can accelerated
gradient descent methods be applied to design flat-minima optimizers? Can recent advances in zeroth-order
optimization be leveraged to better regularize the training of transformer neural networks?

In summary, the contributions of this paper are three-fold: 1) Presenting an algorithm that provides explicit
regularization of the trace of the Hessian, along with a PAC-Bayes bound that guarantees its generalization
effect. 2) Conducting experiments in a wide range of settings to validate our approach, compared to prior
sharpness-reducing training methods, and alternative regularization methods. 3) Analyzing the convergence
of the proposed algorithm based on techniques from the stochastic optimization literature. In Table 1, we
highlight the key aspects of our approach as compared to prior approaches.
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Table 1: Comparison between our approach (NSO) and SAM (Foret et al., 2021). In particular, the inductive
bias of SAM is taken from Wen et al. (2023). Here is a list of notations: α is the trace norm, taken over the
maximum of the entire data distribution; r is the radius of the fine-tuning region measured via Euclidean
distance; n is the number of samples in the training dataset; T is the total number of iterations run by our
algorithm.

Methods Inductive Bias Generalization Guarantee Convergence Rate

Sharpness-Aware Minimization (SAM) λ1[∇2ℓ] - -

Noise Stability Optimization (NSO) Tr[∇2ℓ]
√

αr2
n

(Theorem 2.1) O(
√

1
T

) (Theorem 4.2)

Organization: The rest of this paper is organized as follows. In Section 2, we will present our approach.
We will start by presenting the motivating experiments. Then, we describe our algorithm and a PAC-Bayes
bound that depends on the Hessian. In Section 3, we present our experiments for validating the proposed
approach. In Section 4, we present an analysis of the convergence of our algorithm. In Section 5, we provide a
preliminary study of the Hessian-based regularization effect in an overparameterized matrix sensing problem.
In Section 6, we discuss the related works. Finally, in Section 7, we state the conclusion. In Appendix A and
Appendix B, we provide complete proofs of our theoretical results. In Appendix C, we provide additional
experimental results left from the main text.

2 Our Approach

In this section, we present our approach. First, to set up the stage, we will study the straightforward imple-
mentation of noise injection by directly adding noise to the weights of the network before computing gradients
in backpropagation. We term this procedure as weight-perturbed SGD (or WP-SGD in short). Then, we
describe our approach, along with a PAC-Bayes generalization bound to justify our approach. Lastly, we
empirically measure the theoretical bound and compare the measurements with the true generalization gaps
observed in practice.

2.1 Motivating Experiments

In this subsection, we will compare WP-SGD with standard SGD for fine-tuning pretrained models. We focus
on this setting because overfitting has been commonly observed (Wortsman et al., 2022). Thus, developing
training methods to improve generalization would be crucial. We consider fine-tuning a pre-trained ResNet-
34 on image classification datasets, including an aircraft recognition task (Aircraft) (Maji et al., 2013),
indoor scene recognition (Caltech-256) (Griffin et al., 2007), and medical image classification (retina images
for diabetic retinopathy classification) (Pachade et al., 2021). In WP-SGD, we sample a perturbation vector
from P and add it to the model weights in each iteration before computing the gradient. For WP-SGD,
we will sample the perturbation from an isotropic Gaussian distribution. Then, we will set the standard
deviation of U via cross-validation, choosing between 0.008, 0.01, and 0.012.

We report our findings in Table 2. We observe that the performance gap between SGD and WP-SGD is
less than 0.5%, within 0.75 standard deviations of the independent tests on average. Furthermore, varying
the type of noise distribution does not change the result. In particular, we test choices of P with Laplace
distribution, uniform distribution, and Binomial distribution. Similar to the Gaussian, we set their standard
deviations between 0.008, 0.01, and 0.012 using a validation set. Lastly, using the Laplace or Uniform
distribution achieves a performance comparable to Gaussian. However, WP-SGD struggles to converge
using the Binomial distribution, resulting in significantly lower training and test results.

2.2 Description of Our Algorithm

The above experiment suggests that the straightforward implementation of noise injection does not bring
apparent benefits compared to SGD. In our approach, we make two modifications:
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Table 2: Comparing WP-SGD with standard SGD across four types of perturbation distributions, measured
over three image classification datasets. The results and their standard deviations are averaged over five
independent seeds. Recall that WP-SGD refers to normal weight perturbation (without the paired pertur-
bation). Note that the description of NSO will be presented below; However, we include the results in this
Table for ease of comparison.

Aircraft Indoor Retina Disease
P Train Acc. Test Acc. Train Acc. Test Acc. Train Acc. Test Acc.

SGD None 100.0% ± 0.0 59.8% ± 0.7 100.0% ± 0.0 76.0% ± 0.4 100.0% ± 0.0 61.7% ± 0.8

WP-SGD Gaussian 98.4% ± 0.2 60.4% ± 0.1 99.0% ± 0.3 76.3% ± 0.0 100.0% ± 0.0 62.3% ± 0.5
WP-SGD Laplace 98.3% ± 0.1 60.3% ± 0.3 98.9% ± 0.1 76.4% ± 0.3 100.0% ± 0.0 62.0% ± 0.1
WP-SGD Uniform 98.6% ± 0.3 60.3% ± 0.5 98.6% ± 0.3 76.6% ± 0.1 100.0% ± 0.0 62.3% ± 0.0
WP-SGD Binomial 19.6% ± 0.1 11.3% ± 0.1 18.2% ± 0.9 10.7% ± 0.1 58.1% ± 0.1 57.1% ± 0.0

NSO Gaussian 95.8% ± 0.4 62.3% ± 0.3 95.7% ± 0.2 77.4% ± 0.3 100.0% ± 0.0 66.6% ± 0.7
NSO Laplace 96.5% ± 0.3 61.9% ± 0.3 96.1% ± 0.3 77.1% ± 0.1 100.0% ± 0.0 65.9% ± 0.1
NSO Uniform 96.4% ± 0.4 61.9% ± 0.5 96.4% ± 0.2 76.8% ± 0.2 100.0% ± 0.0 65.7% ± 0.1
NSO Binomial 20.1% ± 0.1 14.3% ± 0.3 22.8% ± 0.1 17.9% ± 0.2 59.2% ± 0.1 57.8% ± 0.1

• Two-point noise injection: During the noise injection, we add the perturbation from both the positive
and negative directions. This is shown in Line 5.

• Averaging multiple perturbations to stabilize the gradient: To stabilize the stochasticity of the noise
injection, we average over multiple noise injections. This is described in Line 7.

To justify the first modification, recall that P is a symmetric distribution. We use Taylor’s expansion on
both f(W + U) and f(W − U):

f(W + U) = f(W ) + ⟨U, ∇f(W )⟩ + 1
2U⊤∇2f(W )U + O(∥Σ∥ 3

2
2

),

f(W − U) = f(W ) − ⟨U, ∇f(W )⟩ + 1
2U⊤∇2f(W )U + O(∥Σ∥ 3

2
2

).

By definition, E [U ] = 0, and E
[
UU⊤] = Σ. Thus, by taking the average of the above two equations, we can

get that

E
U∼P

[
1
2(f(W + U) + f(W − U))

]
= F (W ) = f(W ) + 1

2 ⟨Σ, ∇2f(W )⟩ + O
(

∥Σ∥
3
2
2

)
. (1)

The second modification reduces the variance of the gradient, using the fact that each perturbation is
independent from the others. The entire procedure is summarized in Algorithm 1. As a remark, two-point
gradient estimators are commonly used in zeroth-order convex optimization (Duchi et al., 2015). The use to
design flat-minima optimizer appears novel to our knowledge.

Algorithm 1 Noise stability optimization (NSO) for regularizing the Hessian of neural networks
Input: Initialization W0 ∈ Rd, a function f : Rd → R
Require: An estimator g : Rd → Rd that for any W , returns g(W ) s.t. E [g(W )] = ∇f(W )
Parameters: # perturbations k, # epochs T , step sizes η0, . . . , ηT −1

1: for i = 0, 1, . . . , T − 1 do
2: /* Compute the two-point averaged gradient over each independent noise injection */
3: for j = 0, 1, . . . , k − 1 do
4: Sample U

(j)
i independently from P

5: Let G
(j)
i = g

(
Wi + U

(j)
i

)
+ g
(
Wi − U

(j)
i

)
6: end for
7: Update iterates according to Wi+1 = Wi − ηi

2k

∑k
j=1 G

(j)
i

8: end for
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Figure 1: Illustration of the parameter update in our algorithm.

Generalization Guarantees: Next, we present a PAC-Bayes bound, which depends on the trace of the
Hessian as part of the bound on the generalization gap. As a remark, the trace norm has been studied by
earlier work in the setting of matrix recovery (Srebro & Shraibman, 2005).

Concretely, we have a pretrained model in the fine-tuning setting, which can be viewed as the prior in PAC-
Bayes analysis. Once we have learned a hypothesis, it can be viewed as the posterior. Let D ⊆ X × Y be
an unknown data distribution, supported on the feature space X and the label space Y. Given n random
samples (x1, y1), (x2, y2), . . . , (xn, yn) drawn from D, the empirical loss (measured by loss function ℓ) applied
to a model fW (with W ∈ Rp) is:

L̂(W ) = 1
n

n∑
i=1

ℓ(fW (xi), yi).

The population loss is L(W ) = E(x,y)∼D [ℓ(fW (x), y)] . It is sufficient to think that the empirical loss is less
than the population loss, and the goal is to bound the gap from above (Shalev-Shwartz & Ben-David, 2014).

Let W be any learned hypothesis within the hypothesis space, denoted as H. The generalization bound
will apply uniformly to W within the hypothesis space, assuming that this space, centered at the pretrained
initialization, has a bounded radius of r > 0. We state the result as follows.
Theorem 2.1. Assume that the loss function is bounded between 0 and C for a fixed constant C. Suppose
that ℓ(fW (·), ·) is twice-differentiable in W and the Hessian matrix ∇2[ℓ(fW (·), ·)] is Lipschitz continuous
within the hypothesis space. With probability at least 1 − δ for any δ > 0, the following must hold, for any ϵ
close to zero:

L(W ) ≤ (1 + ϵ)L̂(W ) + (1 + ϵ)
√

Cαr2

n
+ O

(
n− 3

4 log(δ−1)
)

. (2)

where the trace norm of the hypothesis space taken over the data distribution D is given by

α := max
W ∈H

max
(x,y)∼D

Tr
[
∇2ℓ(fW (x), y)

]
.

2.3 Measurements of Hessian and Generalization

Next, we provide several empirical examples to validate the above theoretical bounds. Following the exper-
imental setup described earlier, we fine-tune several pretrained models on one downstream task. We test on
three different modalities of data, including images, texts, and graphs. After fine-tuning, we set the fine-
tuned model weight at the last epoch as W for taking all the measurements. We summarize the empirical
findings below, leaving experimental details to Appendix C. First, we show that Taylor’s expansion of the
noise injection is numerically accurate. We add perturbations to model weights by injecting isotropic Gaus-
sian noise. We then compute the perturbed loss minus the original loss value, averaged over 100 independent
runs, and we measure the trace of the Hessian as the average over the training dataset.

In Figure 2, we find that the trace of the Hessian provides an accurate approximation to the gap between
ℓQ and ℓ (recall that ℓQ is defined in equation (3)). After fine-tuning, we add random noise injections to the
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fine-tuned model weight. We do this for 100 times and again measure the perturbed loss ℓQ on the training
set. We take the gap between ℓQ and ℓ and report that along with the magnitude of σ in the Table. We also
compute the trace of the Hessian using Hessian-vector product computation libraries. Our measurements
show that the error between the actual gap and the Hessian approximation is within 3%. As a remark, the
range of σ2 differs across architectures because of the differing scales of their weights.

0.020 0.025 0.030
σ

1

2

3

×10−2 MLP

Gap

Trace

0.0070 0.0075 0.0080
σ

1

2

3

×10−2 BERT

Gap

Trace

0.040 0.045 0.050
σ

2

4

6

×10−2 GNN

Gap

Trace

Figure 2: Illustration of the approximation to the gap between the perturbed loss ℓQ and ℓ using the trace
of the Hessian. The measurements are taken over the fine-tuned model weight W at the last epoch. σ refers
to the standard deviation of the Gaussian noise injected to the model weights.

2.4 Proof Sketch of Theorem 2.1

We provide a high-level illustration of the ideas behind Theorem 2.1 without belaboring too much on the
technical details. Let Q denote the posterior distribution. Specifically, we consider Q as being centered
at the learned hypothesis W (which could be anywhere within the hypothesis space), given by a Gaussian
distribution N (W, σ2 Idp), where Idp denotes the p by p identify matrix. Given a sample U ∼ N (0, σ2 Idp),
let the perturbed loss be given by

ℓQ(fW (x), y) = E
U

[ℓ(fW +U (x), y)] . (3)

Then, let L̂Q(W ) be the averaged value of ℓQ(fW (·), ·), taken over the n empirical samples. Likewise, let
LQ(W ) be the population average of ℓQ(fW (·), ·).

Having introduced the notations, we start with the PAC-Bayes bound (Catoni, 2007; McAllester, 2013;
Alquier, 2021) (see Theorem A.1 for reference), stated as follows:

LQ(W ) ≤ 1
β

L̂Q(W ) + C(KL(Q||P) + log(δ−1))
2β(1 − β)n , (4)

where β is a parameter chosen between (0, 1), and P is a prior distribution. For the fine-tuning setting, P
can be viewed as centered at the pretrained initialization, with variance σ2 Idp similar to Q.

Next, by Taylor’s expansion of ℓQ (see Lemma A.4 for the full result), we show that:

LQ(W ) = L(W ) + σ2

2 E
(x,y)∼D

[
Tr
[
∇2ℓ(fW (x), y)

]]
+ O(σ3), and

L̂Q(W ) = L̂(W ) + σ2

2n

n∑
i=1

Tr
[
∇2ℓ(fW (xi), yi)

]
+ O(σ3).

Since the Hessian operator is Lipschitz continuous by the assumptions of Theorem 2.1, we can bound the
gap between the above two using uniform convergence (see Lemma A.5 for the result). By plugging in the
above two results back to the PAC-Bayes bound of equation (4), and making up the difference between 1/β
and 1 between the left and right sides by α, we get:

L(W ) ≤ 1
β

L̂(W ) + σ2(1 − β)α
2β

+ Cr2/2σ2

2β(1 − β)n + O

(
σ3 +

σ2√
p

√
n

+ log(δ−1)
n

)
.
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In particular, the above uses the fact that the hypothesis space is uniformly bounded in a ball of radius r,
and the derivation of the KL divergence can be found in Proposition A.2. By choosing σ2 and β to minimize
the above bound, we thus obtain the result of equation (2). This summarizes the high-level proof idea. The
complete proof can be found in Appendix A.1.

3 Experiments

We now turn to the empirical validation of our proposed algorithm. Through extensive experiments, we
show that our algorithm can indeed improve generalization, and this improvement can be explained by the
regularization of the Hessian.

First, we apply our approach to fine-tune pretrained ResNets on various image classification datasets. We
find that NSO can regularize the Hessian of the loss surface much more significantly. We note reductions in
the trace and the largest eigenvalue of the loss Hessian by 17.7% and 12.8%, respectively. We notice that
NSO can outperform four previous sharpness-reducing methods by up to 1.8%. We control the amount of
computation in the experiments to allow for a fair comparison. We justify each step of the algorithm design
through ablation analysis.

Our method is compatible with alternative regularization techniques, including distance-based regulariza-
tion and data augmentation. Combining these methods with our approach leads to even more significant
improvement in both the Hessian regularization and the test performance.

Lastly, we show that our algorithm can also regularize the Hessian trace and improve the generalization
when applied to pretraining contrastive language-image models and fine-tuning language models on chain-
of-thought reasoning datasets.

3.1 Comparison with Sharpness Reducing Training Methods

We now compare Algorithm 1 with five sharpness-reducing training methods, including Sharpness-Aware
Minimization (SAM) (Foret et al., 2021), Unnormalized SAM (USAM) (Agarwala & Dauphin, 2023), Adap-
tive SAM (ASAM) (Kwon et al., 2021), Random SAM (RSAM) (Liu et al., 2022), and Bayesian SAM
(BSAM) (Möllenhoff & Khan, 2023). During comparison, we control for the same amount of computation
by setting the number of sampled injections k = 1. Thus, all of these methods will cost twice the computa-
tion of SGD. For NSO, we sample perturbation from an isotropic Gaussian distribution and tune σ between
0.008, 0.01, and 0.012 using a validation split. For SAM, we tune the ℓ2 norm of the perturbation between
0.01, 0.02, and 0.05. Since each other training method involves its own set of hyper-parameters, we ensure
they are carefully selected. The details are tedious; See Appendix C for the range of values used for each
hyper-parameter. We include SGD and Label Smoothing (LS) to calibrate these results, as they are both
widely used in practice.

We report the overall comparison in Table 3. Notably, in the upper tables, NSO can significantly reduce the
trace of Hessian compared to the baselines by 17.7% on average. NSO also reduces the largest eigenvalue of
the Hessian by 12.8% on average, as reported in Table 10. Moreover, NSO performs competitively with all
the baseline variants. Across these six datasets, NSO can achieve up to 1.8% accuracy gain, with an average
test accuracy improvement of 0.9%, relative to the best-performing baselines. The results are aggregated
over five independent runs, suggesting our findings are statistically significant.

In addition, we compare the measurements between SGD and NSO across three settings in Figure 3. Curi-
ously, we find that the trace of the Hessian also decreases for SGD. While both SGD and NSO reduce the
trace of the Hessian, our approach indeed penalizes the Hessian more significantly than SGD. Compared
with SGD, the generalization gap of the fine-tuned model also lowers by over 20%. The test loss of the
fine-tuned model using our approach is also lower than SGD.

In the above experiments, we do not add momentum and weight decay in NSO. Next, we compare NSO and
SAM when they are both used. The results are reported in Table 4. We find that NSO can still reduce the
trace of the Hessian by an average of 23% than SAM. Moreover, NSO achieves better 1.4% test accuracy
than SAM in this setting.
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Table 3: Comparison between NSO, SGD, Label Smoothing (LS), SAM, Unnormalized SAM (USAM),
Adaptive SAM (ASAM), Random-SAM (RSAM), and Bayesian SAM (BSAM) on six image classification
datasets, by fine-tuning a pretrained ResNet-34 neural network using each method. In this Table, we report
the test accuracy and the trace of the Hessian (for model weight found in the last epoch of each training
algorithm). Lower trace values indicate wider loss surfaces. In all test cases, we report the averaged result
over five random seeds and the standard deviation across these five runs. The results indicate that NSO
outperforms the baselines in the three metrics.

CIFAR-10 CIFAR-100 Aircrafts Caltech-256 Indoor Retina

Basic
Stats

Train 45,000 45,000 3,334 7,680 4,824 1,396
Val. 5,000 5,000 3,333 5,120 536 248
Test 10,000 10,000 3,333 5,120 1,340 250
Classes 10 100 100 256 67 5

Trace
(↓)

SGD 4740 ± 64 14493 ± 359 6218 ± 63 4129 ± 94 4078 ± 78 30433 ± 217
LS 2924 ± 81 11350 ± 499 6332 ± 76 3827 ± 83 4196 ± 36 19219 ± 119
SAM 2827 ± 97 10225 ± 428 5034 ± 59 3849 ± 71 3789 ± 49 16411 ± 161
USAM 2614 ± 88 7854 ± 216 4830 ± 98 3567 ± 55 3269 ± 99 13262 ± 372
ASAM 2896 ± 64 10596 ± 339 5191 ± 32 3890 ± 97 3124 ± 73 14745 ± 131
RSAM 2755 ± 80 10386 ± 577 5579 ± 79 3550 ± 57 4162 ± 60 19945 ± 365
BSAM 3076 ± 51 10323 ± 567 5625 ± 61 3975 ± 12 3553 ± 72 18245 ± 318
NSO 2228 ± 94 5934 ± 74 4193 ± 46 3354 ± 94 2991 ± 32 11554 ± 77

Test
Accuracy

(↑)

SGD 95.5% ± 0.1 82.3% ± 0.1 59.8% ± 0.7 75.5% ± 0.1 76.0% ± 0.4 61.7% ± 0.8
LS 96.7% ± 0.1 83.8% ± 0.1 58.5% ± 0.2 76.0% ± 0.2 75.9% ± 0.3 63.6% ± 0.7
SAM 96.6% ± 0.4 83.5% ± 0.1 61.5% ± 0.8 76.3% ± 0.1 76.6% ± 0.5 64.4% ± 0.6
USAM 96.5% ± 0.0 83.2% ± 0.2 61.4% ± 0.6 76.1% ± 0.0 76.3% ± 0.3 62.8% ± 0.1
ASAM 96.7% ± 0.1 83.8% ± 0.1 62.0% ± 0.6 76.7% ± 0.2 76.7% ± 0.3 64.8% ± 0.3
RSAM 96.4% ± 0.1 83.7% ± 0.2 60.5% ± 0.5 75.8% ± 0.2 76.1% ± 0.7 65.4% ± 0.3
BSAM 96.4% ± 0.0 83.5% ± 0.2 60.5% ± 0.5 76.3% ± 0.3 75.7% ± 0.7 64.9% ± 0.0
NSO 97.1% ± 0.2 84.3% ± 0.2 62.3% ± 0.3 77.4% ± 0.3 77.4% ± 0.5 66.6% ± 0.7
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Figure 3: Comparison between SGD and NSO, for fine-tuning ResNet-34 and BERT-Base, respectively,
on an image and a text classification dataset. We report the test loss, the trace of the Hessian, and the
generalization gap for W taken at the last epoch. For NSO, we sample random perturbations using isotropic
Gaussian distribution with standard deviation σ = 0.01 for both settings.

3.1.1 Dissecting the Design of Algorithm 1

Next, we conduct ablation studies of two components in NSO, i.e., using negative perturbations and sampling
multiple perturbations in each iteration, showing both are essential.
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Table 4: Comparison between NSO and SAM after using both momentum and weight decay. We fine-tune
the ResNet-34 network on six image classification datasets and report the test accuracy and the trace of
Hessian using the model in the last epoch of training. The results are averaged over five random seeds.

CIFAR-10 CIFAR-100 Aircrafts Caltech-256 Indoor Retina

Trace
(↓)

SAM 2429 ± 87 9227 ± 286 4499 ± 70 3285 ± 95 3159 ± 75 15444 ± 173
NSO 1728 ± 79 5244 ± 89 3678 ± 83 2958 ± 77 2737 ± 90 10970 ± 146

Test Acc.
(↑)

SAM 97.0% ± 0.2 84.0% ± 0.4 62.3% ± 0.3 77.0% ± 0.4 77.2% ± 0.3 65.0% ± 0.3
NSO 97.6% ± 0.4 84.9% ± 0.3 63.2% ± 0.3 78.1% ± 0.5 78.2% ± 0.3 67.0% ± 0.4

Comparing using vs. not using negative perturbations, after controlling computation costs:
Recall that our algorithm uses negative perturbations to zero out the first-order order in Taylor’s expansion
of F (W ), leading to a better estimation of ∇F (W ). We validate this by comparing the performance between
using and not using the negative perturbation. To ensure that both use the same amount of computation, we
sample two independent perturbations when not using negative perturbations. We find that using negative
perturbations achieves a 3.6% improvement in test accuracy on average over the one without negative
perturbations.

Increasing the number of noise injections k: Recall that increasing the number of perturbations k can
reduce the variance of the estimated gradient. Thus, we consider increasing k in NSO and compare that
with WP-SGD with comparable computation. We find that using k = 2 perturbations improves the test
accuracy by 1.2% on average compared to k = 1. However, in our experiments, increasing k over 3 brings
no obvious improvement, but adds more computation costs.

Discussion of noise variance scheduling. Besides setting σ as a constant value, one can gradually
increase the regularization strength by increasing the noise level in NSO during training. Analogous to
learning rate schedules, we tested two schedules for adjusting σ. The first schedule is linearly increasing σ
to a specified value. The second is exponential increasing σ to reach a specified value. In our experiments
with image classification datasets, we found that neither schedule offered any performance improvement over
NSO with a constant noise variance.

3.1.2 A More Detailed Comparison to Sharpness-Aware Minimization (SAM)

Varying the radius of SAM: Next, we show that the range of perturbation radius of SAM is comprehen-
sively tuned in our experiments. To illustrate the effect of the radius, we vary the radius of SAM at 0.001,
0.002, 0.005, 0.01, 0.02, and 0.05. We report the test accuracy and the trace of the Hessian for both SAM
and unnormalized SAM on an image classification dataset. The results are shown in Table 5. We observe
that using a smaller radius (less than 0.01) results in larger values of Hessian trace and lower test accuracy.
Thus, in the other experiments, we search for the radius between 0.01, 0.02, and 0.05.

Table 5: Results of varying the perturbation radius of SAM and unnormalized SAM when fine-tuning the
ResNet-34 network on image classification datasets. We report the test accuracy and the trace of Hessian
using the model in the last epoch of training. The results are averaged over five random seeds.

ρ 0.001 0.002 0.005 0.01 0.02 0.05

Trace
(↓)

SAM 4920 ± 158 4347 ± 166 4016 ± 80 3918 ± 94 3789 ± 49 3658 ± 48
Unnormalized SAM 4352 ± 169 3990 ± 70 3723 ± 87 3427 ± 57 3258 ± 39 3538 ± 64

Test Accuracy
(↑)

SAM 73.6 ± 0.2 74.4 ± 0.4 74.8 ± 0.6 75.2 ± 0.3 76.6 ± 0.5 73.8 ± 0.7
Unnormalized SAM 74.1 ± 0.1 74.1 ± 0.7 74.7 ± 0.5 74.6 ± 0.3 76.3 ± 0.3 73.1 ± 0.6

Varying batch size: Further, we evaluate the sensitivity of NSO to batch size. We vary batch size between
8, 16, 32, and 64 in fine-tuning ResNet-34 on two image classification datasets. Table 6 reports the Hessian
traces and test accuracies for both NSO and SAM. We use the same number of gradient update steps for
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each batch size. We observe that NSO is less sensitive to batch size variations than SAM. Moreover, across
different batch sizes, NSO consistently achieves lower Hessian traces and better test performance than SAM.
The best performance was observed with a batch size of 32, which we used in the experiments.

Table 6: Results of varying the batch size of NSO and SAM when fine-tuning the ResNet-34 network on two
image classification datasets. We report the test accuracy and the trace of Hessian using the model from the
last epoch of training. The results are averaged over five random seeds.

Dataset: Indoor Batch size 8 16 32 64

Trace
(↓)

SAM 3213 ± 94 3521 ± 64 3789 ± 49 4441 ± 62
NSO 2757 ± 55 2888 ± 57 2991 ± 32 3325 ± 89

Test Accuracy
(↑)

SAM 69.7 ± 0.6 73.9 ± 0.5 76.6 ± 0.5 73.4 ± 0.3
NSO 70.9 ± 0.2 74.2 ± 0.3 77.4 ± 0.5 75.3 ± 0.5

Dataset: Aircrafts Batch size 8 16 32 64

Trace
(↓)

SAM 4453 ± 87 4643 ± 97 5034 ± 59 6591 ± 63
NSO 3835 ± 82 4186 ± 84 4193 ± 46 4458 ± 61

Test Accuracy
(↑)

SAM 57.1 ± 0.4 60.4 ± 0.7 61.5 ± 0.8 58.3 ± 0.5
NSO 58.4 ± 0.1 61.9 ± 0.5 62.3 ± 0.3 59.5 ± 0.3

3.1.3 Combining Hessian regularization with Alternative Regularization Methods

In this section, we show that the regularization of the Hessian can complement alternative regularization
methods. To validate this, we combine NSO with another regularization method. For distance-based reg-
ularization, we penalize the ℓ2 distance from the fine-tuned model to the pre-trained initialization (Gouk
et al., 2022). For data augmentation, we use a popular scheme that sequentially applies random horizontal
flipping and random cropping to each training image.

The results are shown in Figure 4. We confirm that combining our algorithm with each regularization method
further reduces the trace of the loss Hessian matrix by 13.6% on average. Quite strikingly, this further leads
to 16.3% lower test loss of the fine-tuned neural network on average, suggesting that our method can be
used on top of these alternative regularization methods.
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Figure 4: The Hessian regularization is compatible with ℓ2 distance-based regularization and data augmen-
tation. We illustrate this for fine-tuning a pre-trained ResNet-34 neural network on an image classification
dataset. Combining each regularization method with ours generally leads to lower test losses and lowers
the trace of the Hessian of the loss surface. Note that the shaded area indicates the deviation across five
independent runs, suggesting the statistical significance of these findings.
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3.2 Results for Pretraining

Next, we apply our approach to pretraining randomly-initialized models from scratch. We apply NSO to
pretraining contrastive language-image (CLIP) models (Radford et al., 2021) on a dataset of image-caption
pairs. We use the Conceptual Caption dataset (Sharma et al., 2018), which contains 3.3 million image
caption pairs. Each caption briefly describes the corresponding image, with ten tokens on average. We
use a 12-layer Vision Transformer as the image encoder and a 12-layer GPT-2-style transformer as the text
encoder. We train the encoders jointly to maximize the cosine similarity between the embedding of image
caption pairs following Radford et al. (2021).

Table 7 compares NSO with SAM and SGD in pretraining the CLIP model. For each method, we evaluate
the trace of the loss’s Hessian and recall scores of the top-10 scored images in retrieving images from texts
on the development set. The results show that NSO reduces the trace of the Hessian by 17% compared to
both SAM and SGD. Accordingly, NSO achieves 1.4% higher recall scores in image retrieval than SAM and
SGD.

Table 7: Results of comparing NSO with SAM and SGD in pretraining CLIP on the Conceptual Caption
dataset. We report the recall score of image retrieval and the trace of Hessian using the model in the last
epoch of training. The results are averaged over five random seeds.

Trace (↓) λ1 (↓) Recall@10 (↑)

SGD 220 ± 24 41 ± 2.8 36.1% ± 0.3
SAM 144 ± 20 30 ± 1.1 36.9% ± 0.4
NSO 119 ± 34 22 ± 1.2 37.5% ± 0.3

3.3 Results for Chain-of-thought Fine-tuning

Lastly, we apply our algorithm to fine-tuning pretrained language models on chain-of-thought reasoning
datasets. The task is to generate the reasoning process, i.e., a chain of thoughts and the answer for a given
commonsense reasoning question. We fine-tune pretrained GPT-2 models on Commonsense QA and Strategy
QA datasets, using LLM-generated chain-of-thoughts during training (Ho et al., 2023).

Table 8 compares NSO with SAM and SGD in chain-of-thought fine-tuning. For each method, we evaluate
the trace of the loss’s Hessian and the test accuracy of the fine-tuned language model. The results also show
that NSO yields 25% lower Hessian traces than SAM and SGD and achieves 5.3% higher test accuracy on
average.

Table 8: Results of comparing NSO with SAM and SGD in fine-tuning GPT-2 on Commonsense QA and
Strategy QA chain-of-thought dataset. We report the test accuracy and the trace of Hessian using the model
in the last training epoch. The results are averaged over five random seeds.

CommonsenseQA Trace (↓) λ1 (↓) Test Accuracy (↑)

SGD 372 ± 34 19 ± 0.8 27.7% ± 1.8
SAM 288 ± 15 15 ± 0.3 32.7% ± 1.4
NSO 208 ± 31 13 ± 0.6 39.2% ± 1.4

StrategyQA Trace (↓) λ1 (↓) Test Accuracy (↑)

SGD 294 ± 13 44 ± 1.5 68.9% ± 1.0
SAM 249 ± 33 42 ± 2.6 71.1% ± 1.2
NSO 193 ± 31 33 ± 1.8 75.2% ± 1.2
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4 Convergence Analysis

We now study the convergence of Algorithm 1. Recall that our algorithm minimizes f(W ) plus a regulariza-
tion term on the trace of Hessian. As is typical with regularization, the penalty is usually small relative to
the loss value. Thus, our goal is to find a stationary point of F (W ) instead of f(W ) because otherwise, we
would not have the desired Hessian regularization. We state the convergence to an ϵ-approximate stationary
point such that ∥∇F (W )∥ ≤ ϵ, for any small values of ϵ > 0. The analysis builds on standard assumptions
from the literature (Ghadimi & Lan, 2013; Duchi et al., 2015; Lan, 2020; Zhang, 2023).
Assumption 4.1. Given a random seed z, let gz : Rd → Rd be a continuous function that gives an unbiased
estimate of the gradient: Ez [gz(W )] = ∇f(W ), for any W ∈ Rd. Additionally, the variance is bounded in
the sense that Ez

[
∥gz(W ) − ∇f(W )∥2

]
≤ σ2.

To help understand the above assumption, suppose there is a dataset of size n. Then, in SGD, the stochastic
gradient would be an unbiased estimate of the gradient of the entire dataset. As for the variance of the
gradient estimator, we note that as long as the gradient remains bounded, which holds in practice, then the
condition of the assumption will be satisfied. We now state an upper bound on the norm of the gradient of
the returned solution.
Theorem 4.2. Let P be a distribution that is symmetric at zero. Let C and D be fixed, positive constants. Let
W0 ∈ Rd denote the initialization. Suppose Assumption 4.1 holds. Suppose F (W0) − minW ∈Rd F (W ) ≤ D2,
and f is Lipschitz-continuous. Let H(P) = E[∥U∥2]. There exists a fixed learning rate η < C−1 such that
if we run Algorithm 1 with ηi = η for all i, arbitrary number of perturbations k, for T steps, the algorithm
returns Wt, where t is a random integer between 1, 2, . . . , T , such that in expectation over the randomness of
Wt:

E
[
∥∇F (Wt)∥2

]
≤
√

2CD2(σ2 + C2H(P))
kT

+ 2CD2

T
, (5)

Recall that each iteration involves two sources of randomness stemming from gz and {U
(j)
i }k

j=1, respectively.
Let us define

δi = 1
2k

k∑
j=1

(
∇f
(
Wi + U

(j)
i

)
+ ∇f

(
Wi − U

(j)
i

))
− ∇F (Wi),

ξi = 1
2k

k∑
j=1

(
G

(j)
i − ∇f

(
Wi + U

(j)
i

)
− ∇f

(
Wi − U

(j)
i

))
,

for i = 0, . . . , T − 1. One can see that both δi and ξi have mean zero. The former is by the symmetry of P.
The latter is because gz is unbiased under Assumption 4.1. The following result gives their variance.
Lemma 4.3. In the setting of Theorem 4.2, for any i = 1, . . . , T , we have

E
[
∥ξi∥2

]
≤ σ2

k
and E

[
∥δi∥2

]
≤ C2H(P)

k
. (6)

The last step uses smoothness to show that ∥∇F (Wt)∥ keeps reducing. For details, see Appendix B.1. As
a remark, existing sharpness-reducing methods such as SAM (Foret et al., 2021) seem to suffer from issues
of oscillation (Bartlett et al., 2023) around the local basin, leaving a convergence analysis challenging to
achieve. By contrast, our approach can be analyzed with standard techniques from stochastic optimization
(Ghadimi & Lan, 2013).

Next, we construct an example to match the rate of the above analysis, essentially showing that the gradient
norm bounds are tight (under the current assumptions). We use an example from the work of Drori &
Shamir (2020). The difference here, in particular, is that we have to deal with the perturbations that have
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been added to the objective. For t = 0, 1, . . . , d − 1, let et ∈ Rd be the basis vector in dimension d, whose
t-th coordinate is 1, while the remaining coordinates are all zero. Let f : Rd → R be defined as

f(W ) = 1
2G

⟨W, e0⟩2 +
T −1∑
i=0

hi(⟨W, ei+1⟩), (7)

where hi is a piece-wise quadratic function parameterized by αi, defined as follow:

hi(x) =



Cα2
i

4 |x| ≤ αi,

− C
(

|x|−αi

)2

2 + Cα2
i

4 αi ≤ |x| ≤ 3
2 αi,

C
(

|x|−2αi

)2

2
3
2 αi ≤ |x| ≤ 2αi,

0 2αi ≤ |x|.

One can verify that for each piece above, ∇hi is C-Lipschitz. As a result, provided that G ≤ C−1, ∇f is
C-Lipschitz, based on the definition of f in equation (7).

The stochastic function F requires setting the perturbation distribution P. We set P by truncating an
isotropic Gaussian N(0, σ2 Idd) so that the i-th coordinate is at most 2−1αi−1, for i = 1, . . . , T . Additionally,
we set the initialization W0 to satisfy ⟨W0, ei⟩ = 0 for any i ≥ 1 while ⟨W0, e0⟩ ̸= 0. Finally, we choose the
gradient oracle to satisfy that the i-th step’s gradient noise ξi = ⟨ξi, ei+1⟩ei+1, which means that ξi is along
the direction of the basis vector ei+1. In particular, this implies only coordinate i + 1 is updated in step i,
as long as ⟨ξi, ei+1⟩ ≤ 2−1αi.
Theorem 4.4. Let the learning rates η0, . . . , ηT −1 be at most C−1. Let D > 0 be a fixed value. When
they either satisfy

∑T −1
i=0 ηi ≲

√
kT , or ηi = η < C−1 for any epoch i, then for the above construction, the

following must hold

min
1≤t≤T

E
[
∥∇F (Wt)∥2

]
≥ D

√
Cσ2

32k · T
. (8)

We remark that the above construction requires T ≤ d. Notice that this is purely for technical reasons. It
is an interesting question whether this condition can be removed or not. We briefly illustrate the key ideas
of the result. At step i, the gradient noise ξi plus the perturbation noise is less than 2−1αi + 2−1αi = αi at
coordinate i + 1 (by triangle inequality). Thus, h′

i(⟨Wt, ei+1⟩) = 0, which holds for all prior update steps.
This implies

∇f(Wi) = G−1⟨Wi, e0⟩.

Recall that F (W0) ≤ D2. This condition imposes how large the αi’s can be. In particular, we will set
αi = 2ηiσ/

√
k in the proof. Then, based on the definition of f(W0),

hi(⟨W0, ei+1⟩) = Cα2
i

4 , since ⟨W0 + U, ei+1⟩ ≤ αi.

In Lemma B.2, we then argue that the learning rates in this case must satisfy
∑T −1

i=0 ηi ≤ O(
√

T ).

When the learning rate is fixed and at least Ω(T −1/2), we construct a piece-wise quadratic function (similar
to equation (7)), now with a fixed α. This is described in Lemma B.3. In this case, the gradient noise grows
by 1 − C−1η up to T steps. We then carefully set α to lower bound the norm of the gradient. Combining
these two cases, we conclude the proof of Theorem 4.4. For details, see Appendix B.2. As is typical in
lower-bound constructions, our result holds for a specific instance covering a particular learning rate range.
It may be interesting to examine a broader range of instances for future work.

The proof can also be extended to adaptive learning rate schedules. Notice that the above construction
holds for arbitrary learning rates defined as a function of previous iterates. Then, we set the width of each
function ht, αt, proportional to ηt > 0, for any ηt that may depend on previous iterates, as long as they
satisfy the constraint that

∑T −1
i=0 ηi ≤ O(

√
T ).
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We can show a similar lower bound for the momentum update rule. Recall this is defined as

Mi+1 = µMi − ηiGi, and Wi+1 = Wi + Mi+1, (9)

for i = 0, 1, . . . , T − 1, where Gi is the specific gradient at step i. To handle this case, we will need a more
fine-grained control on the gradient, so we consider a quadratic function as f(W ) = C

2 ∥W∥2
. We leave the

result and its proof to Appendix B.3.

5 Dissecting Hessian: A Case Study in Overparameterized Matrix Sensing

Before proceeding, let us give an example to better understand the regularization effect of the Hessian.
We consider the matrix sensing problem, whose generalization properties are particularly well-understood
in the nonconvex factorization setting (Li et al., 2018). Let there be an unknown, rank-r positive semi-
definite matrix X⋆ = U⋆U⋆⊤ ∈ Rd×d. The input consists of a list of d by d Gaussian measurement matrix
A1, A2, . . . , An. The labels are given by yi = ⟨Ai, X⋆⟩, for every i = 1, 2, . . . n. The empirical loss is

L̂(W ) = 1
2n

n∑
i=1

(
⟨Ai, WW ⊤⟩ − yi

)2
, where W ∈ Rd×d. (10)

When the loss reaches near zero (which implies the gradient also reaches near zero), it is known that multiple
local minimum solutions exist (Li et al., 2018), and the Hessian becomes

1
n

n∑
i=1

∥AiW∥2
F ≈ d ∥W∥2

F = d
∥∥WW ⊤∥∥

⋆
.

By prior results (Recht et al., 2010), among all X = WW ⊤ such that L̂(W ) = 0, X⋆ has the lowest nuclear
norm. Thus, the regularization placed on L̂(W ) is similar to nuclear norm regularization under interpolation.
We formalize this and state the proof below for completeness.
Proposition 5.1. In the setting above, for any W that satisfies L̂(W ) = 0, the following must hold with
high probability:

Tr
[
∇2[L̂(U⋆)]

]
≤ Tr

[
∇2[L̂(W )]

]
+ O(n− 1

2 ). (11)

A similar statement holds if the trace operator is replaced by the largest eigenvalue of the Hessian in equation
(11). To see this, we look at the quadratic form of the Hessian to find the maximum eigenvalue. Let u be a
d2 dimension vector with length equal to one, ∥u∥ = 1. One can derive that:

λ1(∇2L̂(W )) = max
u∈Rd2 :∥u∥=1

u⊤∇2L̂(W )u = max
u∈Rd2 :∥u∥=1

1
n

n∑
i=1

⟨AiW, u⟩2 ≥ 1
d2n

n∑
i=1

∥AiW∥2
F .

The last step is by setting u = d−11d2 , whose length is equal to one. The detailed proof of Proposition 5.1
and derivations for the above step are deferred in Appendix A.2.

Simulation: We conduct a numerical simulation to verify the above result. We generate a low-rank matrix
U⋆ ∈ Rd×r from the isotropic Gaussian. We set d = 100 and r = 5. Then, we test three algorithms: gradient
descent (GD), weight-perturbed gradient descent (WP-GD), and Algorithm 1 (NSO). We use an initialization
U0 ∈ Rd×d where each matrix entry is sampled independently from N (0, 1) (the standard Gaussian).

Recall that WP-GD and NSO require setting σ. We choose σ between 0.001, 0.002, 0.004, 0.008, 0.0016. NSO
additionally requires setting the number of sampled perturbations k. We set k = 1 for faster computation.

Our findings are illustrated in Figure 5. We can see that all three algorithms can reduce the training MSE
to near zero, as shown in Figure 5a. Regarding the validation loss, GD suffers from overfitting the training
data, while both WP GD and NSO can generalize to the validation samples. Moreover, NSO manages to
reduce this validation loss further.
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Figure 5: Comparing the training and validation losses between GD, NSO, and WP-GD.

6 Discussions and Related Work

As mentioned in Section 1, noise injection has been studied since very early machine learning research
(Hinton & Van Camp, 1993; An, 1996). We now elaborate more on the findings from this literature. Graves
(2011) develop a variational inference approach to test different priors and posteriors (e.g., Delta, Laplace,
Uniform, Gaussian) on recurrent neural networks. Camuto et al. (2020) propose a layer-wise regularization
scheme motivated by adaptation patterns of weights through deeper layers. Bisla et al. (2022) conduct
empirical studies on the connection between sharpness and generalization. Orvieto et al. (2023) analyze
Taylor’s expansion of the stochastic objective after noise injection, examining the induced regularization in
various neural network training settings, and found that layer-wise perturbation can improve generalization
and test accuracy.

The connection between Hessian and sharpness has also been studied through the Edge of Stability (Cohen
et al., 2021), which is inverse to the operator norm of the Hessian matrix. Long & Bartlett (2023) identify the
edge of stability regime for the SAM algorithm, highlighting differences from gradient descent. The work of
Agarwala & Dauphin (2023) presents a detailed study of the gradient dynamics of SAM. They first analyze the
full batch gradient descent with unnormalized SAM in a quadratic regression model. This analysis suggests
that at initialization, full batch SAM presents limited suppression of the largest eigenvalue of the Hessian.
Besides, they also show that as the batch size decreases, the regularization of SAM becomes stronger. This
work underscores the intricate dynamics of SAM due to its connection to the min-max problem, which is
computationally intractable (Daskalakis et al., 2021). Dauphin et al. (2024) provide an in-depth comparison
between SAM and weight noise by examining the structure of the Hessian during training. We note that our
results in Section 2.1, which show that weight noise remains ineffective in fine-tuning, are consistent with
the findings of this work. However, we also find that a modified weight noise scheme can perform well in
practice.

Additionally, Gaussian smoothing has been used to estimate gradients in zeroth-order optimization (Nesterov
& Spokoiny, 2017). Besides, recent research has investigated the query complexity of finding stationary
points of nonconvex functions (Carmon et al., 2020; Arjevani et al., 2023). These results provide a fine-
grained characterization of the iteration complexity of iterative methods under different orders of gradient
oracles. By now there is a growing body of work showing that geometric measures such as sharpness and
the generalization of neural networks are strongly connected. We hope further studies of this connection will
lead to better optimization methods for training neural networks.

Lastly, we mention several questions for future work. For instance, can the newly developed techniques be
used to study transformer networks? Can we better understand the dynamics of the Hessian during training?
More broadly, the geometric properties of large models seem poorly understood. Both theoretical modeling
and empirical measurements are needed to better understand their working mechanisms.
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7 Conclusion

This paper examines the injection of noise into the weights of a neural network. We begin by observing that
the natural approach of injecting noise into the weight before running SGD does not work well in practice.
Through extensive experiments, we show that a two-point noise injection scheme can effectively regularize
the Hessian, improving upon SGD, WP-SGD, and SAM. Moreover, we show a generalization bound for
model fine-tuning using PAC-Bayes analysis. Our approach yields statistically significant improvements over
many datasets compared to four sharpness-reducing methods. Lastly, we provide the convergence rates of
our algorithm.
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A Omitted Proofs from Section 2

Notations: We state a few standard notations first. Given two matrices X, Y having the same dimension,
let ⟨X, Y ⟩ = Tr[X⊤Y ] denote the matrix inner product of X and Y . Let ∥X∥2 denote the spectral norm
(largest singular value) of X, and let ∥X∥F denote the Frobenius norm of X. We use the big-O notation
f(x) = O(g(x)) to indicate that there exists a fixed constant C independent of x such that f(x) ≤ C · g(x)
for large enough values of x.

A.1 Proof of Hessian-based PAC-Bayes Bound

We will use the following PAC-Bayes bound (for reference, see, e.g., Theorem 2, McAllester (2013)).
Theorem A.1. Suppose the loss function ℓ(fW (x), y) lies in a bounded range [0, C] given any x ∈ X with
label y. For any β ∈ (0, 1) and δ ∈ (0, 1), with probability at least 1 − δ, the following holds:

LQ(W ) ≤ 1
β

L̂Q(W ) +
C
(
KL(Q||P) + log 1

δ

)
2β(1 − β)n . (12)

This result provides flexibility in setting β. Our results will set β to balance the perturbation error of Q and
the KL divergence between P and Q. We will need the KL divergence between the prior P and the posterior
Q in the PAC-Bayesian analysis. This is stated in the following result.
Proposition A.2. Suppose P = N(X, Σ) and Q = N(Y, Σ) are both Gaussian distributions with mean
vectors given by X ∈ Rp, Y ∈ Rp, and population covariance matrix Σ ∈ Rp×p. The KL divergence between
P and Q is equal to

KL(Q||P) = 1
2(X − Y )⊤Σ−1(X − Y ).

Specifically, if Σ = σ2 Idp, then the above simplifies to

KL(Q||P) = ∥X − Y ∥2
2

2σ2 .

We will use Taylor’s expansion on the perturbed loss. This is stated precisely as follows.
Claim A.3. Let fW be twice-differentiable, parameterized by weight vector W ∈ Rp. Let U ∈ Rp be another
vector with dimension p. For any W and U , the following identity holds

ℓ(fW +U (x), y) = ℓ(fW (x), y) + U⊤∇ℓ(fW (x), y) + U⊤[∇2ℓ(fW (x), y)]U + R2(ℓ(fW (x), y)),

where R2(ℓ(fW (x), y))) is a second-order error term in Taylor’s expansion.

Proof. The proof follows by the fact that ℓ ◦ fW is twice-differentiable. From the mean value theorem, let
η ∈ Rp be a vector that has the same dimension as W and U . There must exist an η between W and U + W
such that the following equality holds:

R2(ℓ(fW (x), y)) = U⊤
(

∇2[ℓ(fη(x), y)] − ∇2[ℓ(fW (x), y)]
)

U.

This completes the proof of the claim.

Based on the above, we provide Taylor’s expansion of the gap between ℓQ and ℓ.
Lemma A.4. In the setting of Theorem 2.1, suppose each parameter is perturbed by an independent noise
drawn from N(0, σ2). Let ℓQ(fW (x), y) be the perturbed loss with noise perturbation injection vector on W .
There exist some fixed value C1 that do not grow with n and 1/δ such that∣∣∣∣ℓQ(fW (x), y) − ℓ(fW (x), y) − 1

2σ2 Tr
[
∇2[ℓ(fW (x), y)]

]∣∣∣∣ ≤ C1σ3.
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Proof. We take the expectation over U for both sides of the equation in Claim A.3. The result becomes

E
U

[ℓ(fW +U (x), y)] = E
U

[
ℓ(fW (x), y) + U⊤∇ℓ(fW (x), y) + U⊤∇2[ℓ(fW (x), y)]U + R2(ℓ(fW (x), y))

]
.

Then, we use the perturbation distribution Q on EU [ℓ(fW +U (x), y)], and get

ℓQ(fW (x), y) = E
U

[ℓ(fW (x), y)] + E
U

[
U⊤∇ℓ(fW (x), y)

]
+ E

U

[
U⊤∇2[ℓ(fW (x), y)]U

]
+ E

U
[R2(ℓ(fW (x), y))] .

Since E[U ] = 0, the first-order term will be zero in expectation. The second-order term becomes equal to

E
U

[
U⊤[∇2ℓ(fW (x), y)]U

]
= σ2 Tr

[
∇2[ℓ(fW (x), y)]

]
. (13)

The expectation of the error term R2(ℓ(fW (x), y)) be

E
U

[R2(ℓ(fW (x), y))] = E
U

[
U⊤(∇2[ℓ(fη(x), y)] − ∇2[ℓ(fW (x), y)]

)
U
]

≤ E
U

[
∥U∥2

2 ·
∥∥∇2[ℓ(fη(x), y)] − ∇2[ℓ(fW (x), y)]

∥∥
F

]
≲ E

U

[
∥U∥2

2 · C1∥U∥2

]
≲ C1σ3.

Thus, the proof is complete.

The last piece we will need is the uniform convergence of the Hessian operator. The result uses the fact that
the Hessian matrix is Lipschitz continuous.
Lemma A.5. In the setting of Theorem 2.1, there exist some fixed values C2, C3 that do not grow with
n and 1/δ, such that with probability at least 1 − δ for any δ > 0, over the randomness of the n training
examples, we have∥∥∥∥∥ 1

n

n∑
i=1

∇2[ℓ(fW (xi), yi)] − E
(x,y)∼D

[
∇2[ℓ(fW (x), y)]

]∥∥∥∥∥
F

≤
C2
√

log(C3n/δ)√
n

. (14)

The proof will be deferred to Section A.1.2. With these results ready, we will now state the proof of the
Hessian-based generalization bound.

A.1.1 Proof of Theorem 2.1

Proof of Theorem 2.1. First, we separate the gap of L(W ) and 1
β L̂(W ) into three parts:

L(W ) − 1
β

L̂(W ) = L(W ) − LQ(W ) + LQ(W ) − 1
β

L̂Q(W ) + 1
β

L̂Q(W ) − 1
β

L̂(W ).

By Lemma A.4, we can bound the difference between L(W ) and LQ(W ) by the Hessian trace plus an error:

L(W ) − 1
β

L̂(W ) ≤ − E
(x,y)∼D

[
σ2

2 Tr
[
∇2[ℓ(fW (x), y)]

]]
+ C1σ3 +

(
LQ(W ) − 1

β
L̂Q(W )

)
+ 1

β

( 1
n

n∑
i=1

σ2

2 Tr
[
∇2[ℓ(fW (xi), yi)]

]
+ C1σ3

)
.

After re-arranging the terms, we can get the following:

L(W ) − 1
β

L̂(W ) ≤ − E
(x,y)∼D

[
σ2

2 Tr
[
∇2[ℓ(fW (x), y)]

]]
+ 1

nβ

n∑
i=1

σ2

2 Tr
[
∇2[ℓ(fW (xi), yi)]

]
︸ ︷︷ ︸

E1

+ 1 + β

β
C1σ3 + LQ(W ) − 1

β
L̂Q(W )︸ ︷︷ ︸

E2

. (15)
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We will examine E1 by separating it into two parts:

E1 = 1
β

(
1
n

n∑
i=1

σ2

2 Tr
[
∇2[ℓ(fŴ (xi), yi)]

]
− E

(x,y)∼D

[
σ2

2 Tr
[
∇2[ℓ(fW (x), y)]

]])
(16)

+ 1 − β

β

σ2

2 E
(x,y)∼D

[
Tr
[
∇2ℓ(fW (x), y)

]]
. (17)

We can use the uniform convergence result of Lemma A.5 to bound equation (16), leading to:

σ2

2β

(
1
n

n∑
i=1

Tr
[
∇2ℓ(fW (xi), yi)

]
− E

(x,y)∼D

[
Tr
[
∇2ℓ(fW (x), y))

]])

≤ σ2

2β
· √

p ·

∥∥∥∥∥ 1
n

n∑
i=1

Tr
[
∇2[ℓ(fW (xi), yi)]

]
− E

(x,y)∼D

[
Tr
[
∇2[ℓ(fW (x), y)]

]]∥∥∥∥∥
F

(by Cauchy-Schwarz)

≤
σ2√

p · C2
√

log(C3n/δ)
2β

√
n

. (18)

As for equation (17), we recall that

α := max
(x,y)∼D

Tr
[
∇2ℓ(fW (x), y)

]
.

Combined with equation (18), we have shown that

E1 ≤
σ2√

p · C2
√

log(C3n/δ)
2β

√
n

+ 1 − β

β

σ2

2 · α. (19)

As for E2, we will use the PAC-Bayes bound of Theorem A.1. In particular, we set the prior distribution P
as the distribution of U and we set the posterior distribution Q as the distribution of W + U . Thus,

E2 ≤
C
(
KL(Q||P) + log 1

δ

)
2β(1 − β)n ≤

C
(

∥W ∥2
2

2σ2 + log 1
δ

)
2β(1 − β)n ≤

C( r2

2σ2 + log δ−1)
2β(1 − β)n . (20)

The last step is because ∥W∥2 ≤ r by assumption of the hypothesis space. Combining equations (15), (19),
(20), we claim that with probability at least 1 − 2δ, the following must be true:

L(W ) − 1
β

L̂(W ) ≤
σ2√

p · C2
√

log(C3n/δ)
2β

√
n

+ 1 − β

β

σ2

2 α + 1 + β

β
C1σ3 +

C( r2

2σ2 + log 1
δ )

2β(1 − β)n . (21)

Thus, we will now choose σ and β ∈ (0, 1) to minimize the term above. In particular, we will set σ such
that:

σ2 = r

1 − β

√
C

αn
. (22)

By plugging in this setting to equation (21) and re-arranging terms, the gap between L(W ) and L̂(W )/β
becomes:

L(W ) − 1
β

L̂(W ) ≤ 1
β

√
Cαr2

n
+ C2

√
2p log(C3n/δ)

2β
√

n
σ2 + 1 + β

β
C1σ3 + C

2β(1 − β)n log 1
δ

.

Let β be a fixed value close to 1 and independent of N and δ−1, and let ϵ = (1 − β)/β. We get

L(W ) ≤ (1 + ϵ)L̂(W ) + (1 + ϵ)
√

Cαr2

n
+ ξ, where

ξ = C2
√

2p log(C3n/δ)
2β

√
n

σ2 +
(

1 + 1
β

)
C1σ3 + C

2β(1 − β)n log 1
δ

.

Notice that ξ is of order O(n− 3
4 + n− 3

4 + log(δ−1)n−1) ≤ O(log(δ−1)n− 3
4 ). Therefore, we have finished the

proof of equation (2).
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Discussions: In the case that f is a strongly convex function, the lowest eigenvalue of the Hessian is
bounded from below. Once the algorithm reaches the global minimizer, our result from Theorem 2 can be
used to provide a generalization bound based on the trace of the Hessian. Notice that the noise injection
will add some bias to this minimizer, leading to a sub-optimal empirical loss. To remedy this issue, one can
place the regularization of the Hessian as a constraint, similar to how ℓ2-regularization can be implemented
as a constraint.

A.1.2 Proof of Lemma A.5

In this section, we provide the proof of Lemma A.5, which shows the uniform convergence of the loss Hessian.

Proof of Lemma A.5. Let C, ϵ > 0, and let S = {W ∈ Rp : ∥W∥2 ≤ C}. There exists an ϵ-cover of S

with respect to the ℓ2-norm at most max
(( 3C

ϵ

)p
, 1
)

elements; see, e.g., Example 5.8 (Wainwright, 2019).
Let T ⊆ S denote the set of this cover. Recall that the Hessian ∇2[ℓ(fW (x), y)] is C1-Lipschitz for all
(W + U) ∈ S, W ∈ S. Then we have∥∥∇2[ℓ(fW +U (x), y)] − ∇2[ℓ(fW (x), y)]

∥∥
F

≤ C1 ∥U∥2 .

For parameters δ, ϵ > 0, let N be the ϵ-cover of S with respect to the ℓ2-norm. Define the event

E =
{

∀W ∈ T,

∥∥∥∥∥ 1
n

n∑
i=1

∇2[ℓ(fW (xi), yi)] − E
(x,y)∼D

[
∇2[ℓ(fW (x), y)]

]∥∥∥∥∥
F

≤ δ
}

.

By the matrix Bernstein inequality, we have

Pr[E] ≥ 1 − 4 · |N | · p · exp
(

− nδ2

2α2

)
.

Next, for any W ∈ S, we can pick some W + U ∈ T such that ∥U∥2 ≤ ϵ. We have∥∥∥∥ E
(x,y)∼D

[
∇2[ℓ(fW +U (x), y)]

]
− E

(x,y)∼D

[
∇2[ℓ(fW (x), y)]

]∥∥∥∥
F

≤ C1 ∥U∥2 ≤ C1ϵ∥∥∥∥∥∥ 1
n

n∑
j=1

∇2[ℓ(fW +U (xj), yj)] − 1
n

n∑
j=1

∇2[ℓ(fW (xj), yj)]

∥∥∥∥∥∥
F

≤ C1 ∥U∥2 ≤ C1ϵ.

Therefore, for any W ∈ S, we obtain:∥∥∥∥∥∥ 1
n

n∑
j=1

∇2[ℓ(fW (xj), yj)] − E
(x,y)∼D

[
∇2[ℓ(fW (x), y)]

]∥∥∥∥∥∥
F

≤ 2C1ϵ + δ.

We will also set the value of δ and ϵ. First, set ϵ = δ/(2C1) so that conditional on E,∥∥∥∥∥∥ 1
n

n∑
j=1

∇2[ℓ(fW (xj), yj)] − E
(x,y)∼D

[
∇2[ℓ(fW (x), y)]

]∥∥∥∥∥∥
F

≤ 2δ.

The event E happens with a probability of at least:

1 − 4|T |p · exp
(

− nδ2

2α2

)
= 1 − 4p · exp

(
log |T | − nδ2

2α2

)
.

We have log |T | ≤ p log(3B/ϵ) = p log(6CC1/δ). If we set

δ =
√

4pα2 log(3τCC1n/α)
n
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so that log(3τCC1n/α) ≥ 1 (because n ≥ eα
3C1

and τ ≥ 1), then we get

p log(6CC1/δ) − nδ2/(2α2) =p log
(

6CC1
√

n√
4pα2 log(3τCC1n/α)

)
− 2p log (3τCC1n/α)

=p log
(

3CC1
√

n

α
√

p log(3τCC1n/α)

)
− 2p log (3τCC1n/α)

≤p log (3τCC1n/α) − 2p log (3τCC1n/α) (τ ≥ 1, log(3τCC1n/α) ≥ 1)
= − p log (3τCC1n/α) ≤ −p log(eτ). (3CC1n/α ≥ e)

Therefore, with a probability greater than
1 − 4|N |p · exp(−nδ2/(2α2)) ≥ 1 − 4p(eτ)−p,

the following estimate holds:∥∥∥∥∥∥ 1
n

n∑
j=1

∇2[ℓ(fW (xj), yj)] − E
(x,y)∼D

[
∇2[ℓ(fW (x), y)]

]∥∥∥∥∥∥
F

≤
√

16pα2 log(3τCC1n/α)
n

.

Denote δ′ = 4p(eτ)−p, C2 = 4α
√

p, and C3 = 12pCC1/(eα). With probability greater than 1 − δ′, the final
result is: ∥∥∥∥∥ 1

n

n∑
i=1

∇2[ℓ(fW (xi), yi)] − E
(x,y)∼D

[
∇2[ℓ(fW (x), y)]

]∥∥∥∥∥
F

≤ C2

√
log(C3n/δ′)

n
.

This completes the proof of Lemma A.5.

A.2 Proof of Proposition 5.1

Proof of Proposition 5.1. We can calculate the gradient as

∇L̂(W ) = 1
n

n∑
i=1

(⟨Ai, WW ⊤⟩ − yi)AiW. (23)

For a particular entry Wj,k of W , for any 1 ≤ j, k ≤ d, the derivative of the above gradient with respect to
Wj,k is

1
n

n∑
i=1

(
[AiW ]j,kAiW +

(
⟨Ai, WW ⊤⟩ − yi

)∂(AiW )
∂Wj,k

)
. (24)

When L̂(W ) is zero, the second term of equation (24) above must be zero, because ⟨Ai, WW ⊤⟩ is equal to
yi, for any i = 1, . . . , n.

Now, we use the assumption that Ai is a random Gaussian matrix, in which every entry is drawn from a
normal distribution with mean zero and variance one. Notice that the expectation of ∥AiW∥2

F satisfies:

E
[
∥AiW∥2

F

]
= E

[
Tr
[
W ⊤A⊤

i AiW
]]

= Tr
[
W ⊤(d · Idd×d)W ⊤] = d · Tr

[
W ⊤W

]
= d ∥W∥2

F .

Thus, by concentration inequality for χ2 random variables (e.g., Wainwright (2019, equation (2.19))), the
following holds for any 0 < ϵ < 1,

Pr
[∣∣∣∣∣ 1n

n∑
i=1

∥AiW∥2
F − d ∥W∥2

F

∣∣∣∣∣ ≥ ϵd ∥W∥2
F

]
≤ 2 exp

(
−nϵ2

8

)
. (25)

This implies that ϵ must be smaller than O(n−1/2) with high probability. As a result, the average of ∥AiW∥2
F

must be d ∥W∥2
F plus some deviation error that scales with n−1/2 times the expectation.

By Theorem 3.2, Recht et al. (2010), the minimum Frobenius norm (∥W∥2
F

) solution that satisfies L̂(W ) = 0
(for Gaussian random matrices) is precisely U⋆. Thus, we conclude that equation (11) holds.
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B Omitted Proofs from Section 4

We say that f is C-Lipschitz continuous, if for any W1 ∈ Rd and W2 ∈ Rd, we have ∥∇f(W2) − ∇f(W1)∥ ≤
C ∥W2 − W1∥ . A corollary is that ∇F (W ) is also C-Lipschitz.

B.1 Proof of Theorem 4.2

First, let us show that ∇F is C-Lipschitz. To see this, we apply the Lipschitz condition of the gradient inside
the expectation of F (W ). For any W1, W2 ∈ Rd, by definition,

∥∇F (W1) − ∇F (W2)∥ =
∥∥∥∥∇ E

U∼P
[f(W1 + U)] − ∇ E

U∼P
[f(W2 + U)]

∥∥∥∥
=
∥∥∥∥ E

U∼P
[∇f(W1 + U) − ∇f(W2 + U)]

∥∥∥∥
≤ E

U∼P
[∥∇f(W1 + U) − ∇f(W2 + U)∥] ≤ C ∥W1 − W2∥ .

Next, we provide the proof for bounding the variance of δi and ξi for i = 0, 1, . . . , T − 1.

Proof. First, we can see that

E
U1

i
,...,Uk

i

[
∥δi∥2

]
= E

U1
i

,...,Uk
i


∥∥∥∥∥∥ 1

2k

k∑
j=1

(
∇f(Wi + U j

i ) + ∇f(Wi − U j
i ) − 2∇F (Wi)

)∥∥∥∥∥∥
2


= 1
k2

k∑
j=1

E
Uj

i

[∥∥∥∥1
2

(
∇f(Wi + U j

i ) + ∇f(Wi − U j
i ) − 2∇F (Wi)

)∥∥∥∥2
]

(26)

= 1
k

E
U1

i

[∥∥∥∥1
2

(
∇f(Wi + U1

i ) + ∇f(Wi − U1
i )
)

− ∇F (Wi)
∥∥∥∥2
]

(27)

where in the second line we use that U j1
i and U j2

i are independent when j1 ̸= j2, in the last line we use fact
that U1

i , . . . , Uk
i are identically distributed. In the second step, we use the fact that for two independent

random variables U, V , and any continuous functions h(U), g(V ), h(U) and g(V ) are still independent (recall
that f is continuous since it is twice-differentiable). We include a short proof of this fact for completeness.
If U and V are independent, we have Pr[U ∈ A, V ∈ B] = Pr[U ∈ A] · Pr[V ∈ B], for any A, B ∈ Borel(R).
Thus, if h and g are continuous functions, we obtain

Pr[h(U) ∈ A, g(V ) ∈ B] = Pr[U ∈ h−1(A), V ∈ g−1(B)]
= Pr[U ∈ h−1(A)] · Pr[V ∈ g−1(B)] = Pr[h(U) ∈ A] · Pr[g(V ) ∈ B].

Thus, we have shown that

E
[
∥δi∥2

]
= 1

k
E

U∼P

[∥∥∥∥1
2

(
∇f(Wi + U) + f(Wi − U)

)
− ∇F (Wi)

∥∥∥∥2
]

. (28)

Next, we deal with the variance of the two-point stochastic gradient. We will show that

E
U

[∥∥∥∥1
2

(
∇f(W + U) + ∇f(W − U)

)
− ∇F (W )

∥∥∥∥2
]

≤ C2H(P). (29)
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We mainly use the Lipschitz continuity of the gradient of F . The left-hand side of equation (29) is equal to

E
U

[∥∥∥∥1
2

(
∇f(W + U) − ∇F (W )

)
+ 1

2

(
∇f(W − U) − ∇F (W )

)∥∥∥∥2
]

≤E
U

[
1
2 ∥∇f(W + U) − ∇F (W )∥2 + 1

2 ∥∇f(W − U) − ∇F (W )∥2
]

(by Cauchy-Schwartz)

=1
2 E

U

[
∥∇f(W + U) − ∇F (W )∥2

]
(by symmetry of P since it has mean zero)

=1
2 E

U

[∥∥∥∥ E
U ′∼P

[∇f(W + U) − ∇f(W + U ′)]
∥∥∥∥2
]

≤1
2 E

U

[
E

U ′∼P

[
∥∇f(W + U) − ∇f(W + U ′)∥2

]]
≤1

2 E
U,U ′

[
C2 ∥U − U ′∥2

]
= 1

2C2 E
U,U ′

[
∥U∥2 + ∥U ′∥2

]
= C2H(P) (by equation (31))

As for the variance of ξi, we note that U
(1)
i , . . . , U

(j)
i are all independent from each other. Therefore,

E{
U

(j)
i

,z
(j)
i

}k

j=1

[
∥ξi∥2

]
= 1

4k
E

U,z

[
∥gz(W + U) − ∇f(W + U) + gz(W − U) − f(W − U)∥2

]
≤ 1

2k
E

U,z

[
∥gz(W + U) − ∇f(W + U)∥2 + ∥gz(W − U) − ∇f(W − U)∥2

]
≤σ2

k
.

The first step uses the fact that both gz(·) and f(·) are continuous functions The second step above uses
Cauchy-Schwartz inequality. The last step uses the variance bound of gz(·), Thus, the proof is finished.

Next, we show the convergence of the gradient, which is based on the classical work of Ghadimi & Lan
(2013).
Lemma B.1. In the setting of Theorem 4.2, for any η0, · · · , ηT −1 less than C−1 and a random variable
according to a distribution Pr[t = j] = ηj∑T −1

i=0
ηi

, for any j = 0, . . . , T − 1, the following holds:

E
[
∥∇F (Wt)∥2

]
≤ 2C∑T −1

i=0 ηi

D2 +
C
∑T −1

i=0 η2
i

(
E
[
∥δi∥2

]
+ E

[
∥ξi∥2

] )
∑T −1

i=0 ηi

. (30)

Proof. The smoothness condition on f implies the following domination inequality:

|F (W2) − F (W1) − ⟨∇F (W1), W2 − W1⟩| ≤ C

2 ∥W2 − W1∥2
. (31)

See, e.g., Bach (2021, Chapter 5). Here, we use the fact that ∇F (W ) is L-Lipschitz continuous. Based on
the above smoothness inequality, we have

F (Wi+1)

≤F (Wi) + ⟨∇F (Wi), Wi+1 − Wi⟩ + C

2 η2
i

∥∥∥∥1
2

(
∇f(Wi + Ui) + ∇f(Wi − Ui)

)
+ ξi

∥∥∥∥2

=F (Wi) − ηi⟨∇F (Wi), δi + ξi + ∇F (Wi)⟩ + Cη2
i

2 ∥δi + ξi + ∇F (Wi)∥2

=F (Wi) −
(

ηi − Cη2
i

2

)
∥∇F (Wi)∥2 −

(
ηi − Cη2

i

)
⟨∇F (Wi), δi + ξi⟩ + Cη2

i

2 ∥δi + ξi∥2
.
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Summing up the above inequalities for i = 0, 1, . . . , T − 1, we obtain
T −1∑
i=0

F (Wi+1) ≤
T −1∑
i=0

F (Wi) −
T −1∑
i=0

(
ηi − Cη2

i

2

)
∥∇F (Wi)∥2

−
T −1∑
i=0

(
ηi − Cη2

i

)
⟨∇F (Wi), δi + ξi⟩ +

T −1∑
i=0

Cη2
i

2 ∥δi + ξi∥2
,

which implies that
T −1∑
i=0

(
ηi − Cη2

i

2

)
∥∇F (Wi)∥2 (32)

≤F (W0) − F (WT ) −
T −1∑
i=0

(
ηi − Cη2

i

)
⟨∇F (Wi), δi + ξi⟩ + C

2

T −1∑
i=0

η2
i ∥δi + ξi∥2

≤D2 −
T −1∑
i=0

(
ηi − Cη2

i

)
⟨∇F (Wi), δi + ξi⟩ + C

2

T −1∑
i=0

η2
i ∥δi + ξi∥2

. (33)

where in the last step, we use the fact that

F (W0) − F (WT ) ≤ F (W0) − min
W ∈Rd

F (W ) ≤ D2.

For any t = 0, 1, . . . , T − 1, notice that as long as 0 < ηt ≤ 1
C , then

ηt ≤ 2ηt − Cη2
t .

Hence, we have

1
2

T −1∑
t=0

ηt ∥∇F (Wt)∥2 ≤
T −1∑
t=0

(
ηt − Cη2

t

2

)
∥∇F (Wt)∥2

,

which implies that

1
2

T −1∑
i=0

ηi ∥∇F (Wi)∥2 ≤ D2 −
T −1∑
i=0

(
ηi − Cη2

i

)
⟨∇F (Wi), δi + ξi⟩ + C

2

T −1∑
i=0

η2
i ∥δi + ξi∥2

. (34)

Additionally, since Ut is drawn from a distribution with mean zero. Hence, by symmetry, we get that

E
Ut

[δt] = 1
2 E

Ut

[∇f(Wt − Ut) − ∇f(Wt + Ut)] = 0. (35)

Thus, if we take the expectation over U0, U1, . . . , UT −1, ξ0, ξ1, . . . , ξT −1, then

E [⟨∇F (Wi), δi + ξi⟩] = 0.

Recall that t is a random variable whose probability mass is specified in Lemma B.1. We can write equation
(34) equivalently as (below, we take expectation over all the random variables along the update since Wt is
a function of the previous gradient updates, for each t = 0, 1, . . . , T − 1, recalling that Pr[t = i] = ηi∑T −1

j=0
ηj

)

E
t; U0,...,UT −1,ξ0,ξ1,...,ξT −1

[
∥∇F (Wt)∥2

]
=

∑T −1
i=0 ηi E

[
∥∇F (Wi)∥2

]
∑T −1

i=0 ηi

≤
2D2 + C

∑T −1
i=0 η2

i E
[
∥δi + ξi∥2

]
∑T −1

i=0 ηi

=
2D2 + C

∑T −1
i=0 η2

i

(
E
[
∥δi∥2

]
+ E

[
∥ξi∥2

] )
∑T −1

i=0 ηi

.
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where we use the fact that δi and ξi are independent for any i. Hence, we have finished the proof of equation
(30).

Based on the above result, we now finish the proof of the upper bound in Proposition 4.2.

Proof. Let the step sizes be equal to a fixed η for all epochs. Thus, Eq. (30) becomes

E
[
∥∇F (Wt)∥2

]
≤ 2

Tη
D2 + Cη

T

T −1∑
i=0

(
E
[
∥δi∥2

]
+ E

[
∥ξi∥2

] )
. (36)

By Lemma 4.3,
T −1∑
i=0

(
E
[
∥δi∥2

]
+ E

[
∥ξi∥2

] )
≤ T · σ2 + C2H(P)

k
. (37)

For simplicity, let us denote ∆ = σ2+C2H(P)
k . The proof is divided into two cases.

Case 1: ∆ is large. More precisely, suppose that ∆ ≥ 2CD2/T . Then, minimizing over η above leads us
to the following upper bound on the right-hand side of equation (36):√

2CD2∆
T

, (38)

which is obtained by setting

η =
√

2D2

C∆T
.

One can verify that this step size is less than 1
C since ∆ is at least 2CD2. Thus, we conclude that equation

(36) must be less than √
2CD2∆

T
=
√

2CD2(σ2 + C2H(P)))
kT

. (39)

Case 2: ∆ is small. In this case, suppose ∆ < 2CD2/T . Then, the right-hand side of equation (36) must
be less than

2D2

Tη
+ 2C2D2η

T
≤ 2CD2

T
. (40)

Thus, combining equations (39) and (40), we have completed the proof of equation (5).

B.2 Proof of Theorem 4.4

Recall our construction from Section 4 as follows. Let et be the basis vector for the t-th dimension, for
t = 0, 1, . . . , T − 1. Define f(W ) as

f(W ) = 1
2G

⟨W, e0⟩2 +
T −1∑
i=0

hi(⟨W, ei+1⟩),

where hi a quadratic function parameterized by αi, defined as follow:

hi(x) =


Cα2

i

4 |x| ≤ αi

− C(|x|−αi)2

2 + Cα2
i

4 αi ≤ |x| ≤ 3
2 αi

C(|x|−2αi)2

2
3
2 αi ≤ |x| ≤ 2αi

0 2αi ≤ |x|.
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For technical reasons, we define a truncated perturbation distribution P as follows. Given a sample U from
a d-dimensional isotropic Gaussian N(0, Idd), we truncate the i-th coordinate of U so that Ũi = min(Ui, ai),
for some fixed ai > 0 that we will specify below, for all i = 0, 1, . . . , d − 1. We let P denote the distribution
of Ũ .

The proof of Theorem 4.4 is divided into two cases. In the first, we examine the case when the averaged
learning rate is O(T −1/2).

Lemma B.2. In the setting of Theorem 4.4, suppose the learning rates satisfy that
∑T −1

i=0 ηi ≤
√

D2kT
2σ2C ,

consider the function f(W ) constructed in equation (7), we have

min
1≤t≤T

E
[
∥∇F (Wt)∥2

]
≥ D

√
Cσ2

32kT
.

Proof. We start by defining a gradient oracle by choosing the noise vectors {ξt}T −1
t=0 to be independent random

variables such that

ξt = ⟨ξt, et+1⟩et+1 and |⟨ξt, et+1⟩| ≤ σ√
k

, (41)

where et+1 is a basis vector whose (t + 1)-th entry is one and otherwise is zero. In other words, only the
(t + 1)-th coordinate of ξt is nonzero, otherwise the rest of the vector remains zero. We use ξ̄t to denote the
averaged noise variable as

ξ̄t = 1
k

k∑
i=1

ξ
(i)
t ,

where ξ
(i)
t is defined following the condition specified in equation (41). Thus, we can also conclude that

|⟨ξ̄t, et+1⟩| ≤ σ√
k

.

We consider the objective function f(W ) : Rd → R defined above (see also equation (7), Section 4), with

αi = 2ηiσ√
k

, for i = 0, 1, . . . , T. (42)

We will analyze the dynamics of Algorithm 1 with the objective function f(W ) and the starting point
W0 = D

√
G · e0, where G = max

{
C−1, 2

∑T −1
i=0 ηi

}
. For the first iteration, we have

W1 = W0 − η0

(1
2

k∑
i=1

(
∇f(W0 + U

(i)
0 ) + ∇f(W0 − U

(i)
0 )
)

+ ξ̄0

)
= (1 − η0G−1)W0 − η0ξ̄0,

where U is a random draw from the truncated distribution P with ⟨U, ei⟩ = min{Pi, ai} for ai = ηi−1σ√
k

.
Next, from the construction of h1, we get

1
2
(
∇f(W1 + U) + ∇f(W1 − U)

)
= G−1⟨W1, e0⟩e0 + 1

2

(
h′

0
(
η0⟨ξ̄0, e1⟩ + ⟨U, e1⟩

)
e1 + h′

0
(
η0⟨ξ̄0, e1⟩ − ⟨U, e1⟩

)
e1

)
.

Here, using the fact that α0 = 2η0σ√
k

from equation (42) above, and the truncation of U , which implies
|⟨U, e1⟩| ≤ η0σ√

k
, and ⟨ξ̄0, e1⟩ ≤ σ√

k
, we obtain

∣∣η0⟨ξ̄0, e1⟩ + ⟨U, e1⟩
∣∣ ≤ 2η0σ√

k
= α0, and similarly

∣∣η0⟨ξ̄0, e1⟩ − ⟨U, e1⟩
∣∣ ≤ 2η0σ√

k
= α0,
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which implies that
h′

0(η0⟨ξ̄0, e1⟩ + ⟨U, e1⟩) = h′
0(η0⟨ξ̄0, e1⟩ − ⟨U, e1⟩) = 0.

This is the first update. Then, in the next iteration,

W2 = W1 − η1

(
G−1⟨W1, e0⟩ + ξ̄1

)
= −(1 − η1G−1)(1 − η0G−1)W0 − η0ξ̄0 − η1ξ̄1.

Similarly, we use the fact that αi = 2ηiσ√
k

and the fact that |⟨U, ei+1⟩| ≤ ηiσ√
k

, which renders the gradient as
zero similar to the above reasoning. This holds for any i = 1, 2, . . . , T − 1.

At the t-th iteration, suppose we have that

Wt = W0

t−1∏
i=0

(
1 − ηiG

−1
)

−
t−1∑
i=0

ηiξ̄i.

Then by induction, at the (t + 1)-th iteration, we must have

Wt+1 = Wt − ηt

(
G−1⟨Wt, e0⟩ + ξ̄t

)
= W0

t∏
i=0

(
1 − ηiG

−1
)

−
t∑

i=0
ηiξ̄i. (43)

Next, from the definition of ht above, we have that

F (W0) − min
W ∈Rd

F (W ) = F (W0) (the minimum can be attained at zero)

= 1
2G

(D
√

G)2 +
T −1∑
i=0

C

4

(2ηiσ√
k

)2
(since ⟨W0 + U, ei+1⟩ ≤ αi)

The above must be at most D2, which implies that we should set the learning rates to satisfy (after some
calculation)

1
T

( T −1∑
i=0

ηi

)2
≤

T −1∑
i=0

η2
i ≤ kD2

2Cσ2 . (44)

We note that for all z ∈ [0, 1], 1 − z
2 ≥ exp(log z

2 ). Thus, applying this to the right-hand side of equation
(43), we obtain that for any t,

t∏
i=0

(
1 − ηiG

−1
)

≥ 1
2 , (45)

where we recall that G = max{C−1, 2
∑T −1

i=0 ηi}. Essentially, our calculation so far shows that for all the hi

except h0, the algorithm has not moved at all from its initialization at W0 under the above gradient noise.
We thus conclude that

min
1≤i≤T

∥∇F (Wi)∥2 = min
1≤i≤T

(
G−1⟨W0, e0⟩

)2
(by the construction of F (·))

≥ 1
4G−2(D

√
G)2 (by equations (43) and (45))

= D2

4 min
{

C,
1

2
∑T −1

i=0 ηi

}
(recall the definition of G above)

≥ D2

4 min
{

C,

√
2Cσ2

2D
√

kT

}
(by equation (44))

≥ D

√
Cσ2

32kT
.
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In the first step, we use the fact that ⟨ξ̄i, e0⟩ = 0, for all 0 = 1, 2, . . . , T − 1.

Thus, we have proved that equation (8) holds for Wi for any i = 1, 2, . . . , T . The proof of Lemma B.2 is
finished.

Next, let us consider the case of large, fixed learning rates.

Lemma B.3. In the setting of Theorem 4.4, suppose the learning rates satisfy that
∑T −1

i=0 ηi ≥
√

D2kT
2σ2C

and ηi = η for some fixed η ≤ C−1. Then, consider the function from equation (7), we have that
min1≤t≤T E

[
∥∇F (Wt)∥2

]
≥ D

√
Cσ2

32kT .

Proof. We define the functions g, parametrized by a fixed, positive constants α = 1−ρT

1−ρ · 2cησ, as follows:

g(x) =

 − C
2 x2 + C

4 α2 |x| ≤ α
2 ,

C
2 (|x| − α)2 α

2 ≤ |x| ≤ α,
0 α ≤ |x|.

One can verify that g has C-Lipschitz gradient, but g is not twice-differentiable. We also consider a chain-like
function:

f(W ) = g(⟨W, e0⟩) +
d−1∑
t=0

C

2 ⟨W, et+1⟩2. (46)

From the definition of f , f also has C-Lipschitz gradient. Similar to equation (41), we start by defining an
adversarial gradient oracle by choosing the noise vectors {ξt}T −1

t=0 to be independent random variables such
that

ξt = ⟨ξt, et+1⟩,E
[
⟨ξt, et+1⟩2] = σ2, and |⟨ξt, et+1⟩| ≤ cσ,

where c is a fixed constant. We use ξ̄t to denote the averaged noise variable as

ξ̄t =
k∑

i=1
ξ

(i)
t .

Suppose {ξ
(i)
t }k

i=1 are i.i.d. random variables for any t, we have

|⟨ξ̄t, et+1⟩| ≤ cσ and E
[∥∥ξ̄t

∥∥2] ≤ σ2

k
. (47)

Next, we analyze the dynamics of Algorithm 1 with the objective function f(W ) and the starting point
W0 =

∑d
i=1

√
D2

Cd · ei. In this case, by setting ηi = η for all i = 0, 1, . . . , T − 1. Recall that η < C−1. Denote
by ρ = Cη, which is strictly less than one.

Since ht is an even function, its derivative h′
t is odd. For the first iteration, we have

W1 = W0 − η
(1

2
(
∇f(W0 + U) + ∇f(W0 − U)

)
+ ξ̄0

)
= (1 − Cη)W0 − ηξ̄0.

where U is a truncate distribution of P ∼ N(0, Idd) with ⟨U, e0⟩ = min{P0, a0} and a0 = cησ.

Using the fact that α = 1−ρT

1−ρ · 2cησ, |⟨U, e0⟩| ≤ cησ, and ⟨ξ̄0, e0⟩ ≤ cσ, we have

g′(η⟨ξ̄0, e0⟩ + ⟨U, e0⟩) + g′(η⟨ξ̄0, e0⟩ − ⟨U, e0⟩) = −2Cη⟨ξ̄0, e0⟩.
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Then, in the next iteration,

W2 = W1 − η
(

C

d∑
i=1

⟨W1, ei⟩ − Cηξ̄0 + ξ̄1

)
= (1 − Cη)2W0 − (1 − Cη)ηξ̄0 − ηξ̄1.

Similarly, we use the fact that α = 1−ρT

1−ρ · 2cησ and the fact that |⟨U, e0⟩| ≤ cησ, which renders the gradient
as g′(x) = −Cx, for any i = 1, 2, . . . , T − 1.

At the t-th iteration, suppose that

Wt = (1 − Cη)tW0 −
t−1∑
i=0

(1 − Cη)t−1−iηξ̄i.

Then by induction, at the (t + 1)-th iteration, we have

Wt+1 = Wt − η
(

C

d∑
i=1

⟨Wt, ei⟩ − C

t−1∑
i=0

(1 − Cη)t−1−iηξ̄i + ξ̄t

)
= (1 − Cη)t+1W0 −

t∑
i=0

(1 − Cη)t−1−iηξ̄i. (48)

Next, from the definition of F above, we have that

F (W0) − min
W ∈Rd

F (W ) = F (W0)

= dC

2

(√D2

Cd

)2
+ C

4

(2(1 − ρT )cησ

(1 − ρ)

)2
, (since ⟨W0 + U, e0⟩ ≤ α)

which must be at most D2. Thus, we must have (after some calculation)

c2 ≤ D2(1 − ρ)2

2σ2ρ2(1 − ρT )2 .

We conclude that

min
1≤i≤T

E
[
∥∇F (Wi)∥2

]
= min

1≤i≤T
E

 d∑
j=1

C2⟨Wi, ej⟩2 + C2⟨Wi, e0⟩2


= min

1≤i≤T

(
dC2(1 − ρ)2t

(√D2

Cd

)2
+ σ2

k
· ρ2

t∑
i=0

(1 − ρ)2(t−1−i)
)

≥ min
1≤i≤T

(
CD2(1 − ρ)2t + σ2

k

ρ

2 − ρ

(
1 − (1 − ρ)2t

))
≥ min

{
CD2,

σ2

k

ρ

2 − ρ

}
≥ σ2

k
C

√
kD2

2Tσ2C

1

2 − C
√

kD2

2T σ2C

≥ D

√
Cσ2

16k · T
. (after some calculation)

Thus, we have proved this lemma.

Taking both Lemma B.2 and B.3 together, we thus conclude the proof of Theorem 4.4.
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B.3 Proof of momentum lower bound

In this section, we prove the following result.
Theorem B.4. There exists a quadratic function f such that for the iterates W1, . . . , WT generated by
equation (9), we must have: min1≤t≤T E

[
∥∇F (Wt)∥2

]
≥ O

(
D
√

Cσ2

k·T
)
.

We will focus on a perturbation distribution P equal to the isotropic Gaussian distribution for this result.
In this case, we know that F (W ) = f(W ) + d. For the quadratic function f(W ) = C

2 ∥W∥2, its gradient is
clearly C-Lipschitz. We set the initialization W0 ∈ Rd such that

F (W0) − min
W ∈Rd

F (W ) = D2.

This condition can be met when we set W0 as a vector whose Euclidean norm is equal to

D

√√√√2 max
{

C−1, 2
T −1∑
i=0

ηi

}
.

The case when µ = 0. We begin by considering the case when µ = 0. In this case, the update reduces to
SGD, and the iterate Wt+1 evolves as follows:

Wt+1 =
(

1 − Cηt

)
Wt − ηtξ̄t, (49)

where we denote ξ̄t as the averaged noise k−1∑k
j=1 ξ

(j)
t , and the noise perturbation U

(j)
t cancelled out

between the plus and minus perturbations. The case when µ > 0 builds on this simpler case, as we will
describe below.

The key observation is that the gradient noise sequence ξ̄1, ξ̄2, . . . , ξ̄T forms a martingale sequence:

• For any i = 1, 2, . . . , T , conditioned on the previous random variables ξ
(j)
i′ for any i′ < i and any

j = 1, 2, . . . , k, the expectation of ξ̄i is equal to zero.

• In addition, the variance of ξ̄i is equal to k−1σ2, since conditional on the previous random variables,
the ξ

(j)
i s are all independent from each other.

The martingale property allows us to characterize the SGD path of ∥Wt∥2, as shown in the following result.
Lemma B.5. In the setting of Theorem B.4, for any step sizes η0, . . . , ηT −1 less than C−1, and any t =
1, . . . , T , the expected gradient of Wt, E

[
∥∇F (Wt)∥2

]
, is equal to

2CD2
t−1∏
j=0

(
1 − Cηj

)2 + Cσ2

k

t−1∑
i=0

η2
i

t−1∏
j=i+1

(
1 − Cηj

)2
.

Proof. By iterating over equation (49), we can get

Wt = W0

t−1∏
j=0

(
1 − Cηj

)
−

t−1∑
i=0

ηiξ̄i

t−1∏
j=i+1

(
1 − Cηj

)
.

Meanwhile,

∇F (Wt) = CWt ⇒ ∥∇F (Wt)∥2 = C2 ∥Wt∥2
.
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Thus, by squaring the norm of Wt and taking the expectation, we can get

E
[
∥∇F (Wt)∥2

]
= C2 ∥W0∥2

t−1∏
j=0

(
1 − Cηj

)2

+ C2
t−1∑
i=0

E
[∣∣∣∣∣∣ηiξ̄i

t−1∏
j=i+1

(
1 − Cηj

)∣∣∣∣∣∣2]. (50)

Above, we use martingale property a), which says the expectation of ξ̄i is equal to zero for all i. In addition,
based on property b), equation (50) is equal to

C2
t−1∑
i=0

η2
i

 t−1∏
j=i+1

(
1 − Cηj

)2
E
[∥∥ξ̄i

∥∥2]
=C2σ2

k

t−1∑
i=0

η2
i

t−1∏
j=i+1

(
1 − Cηj

)2
.

To see this, based on the martingale property of ξ̄ again, the cross terms between ξ̄i and ξ̄j for different i, j
are equal to zero in expectation:

E
[
⟨ξ̄i, ξ̄j⟩|ξ̄j

]
= 0, for all 1 ≤ j < i ≤ T.

Additionally, the second moment of ξ̄i satisfies:

E
[∥∥ξ̄i

∥∥2] = σ2

k
, for any i = 1, . . . , T.

Lastly, let W0 be a vector such that

∥W0∥ = D
√

2C−1 ⇒ F (W0) − min
W ∈Rd

F (W ) ≤ D2.

Setting ∥W0∥ = D
√

2C−1 in equation (50) leads to

E
[
∥∇F (Wt)∥2

]
= 2CD2

t−1∏
j=0

(
1 − Cηj

)2

+ C2σ2

k

t−1∑
i=0

η2
i

t−1∏
j=i+1

(
1 − Cηj

)2
.

Thus, we conclude the proof of this result.

We now present the proof for the case when
∑T −1

i=0 ηi ≤ O(
√

T ). For this result, we will use the following
quadratic function:

f(W ) = 1
2κ

∥W∥2
, where κ = max{C−1, 2

T −1∑
i=0

ηi}, (51)

Lemma B.6. Consider f given in equation (51) above. For any step sizes η0, . . . , ηT −1 less than C−1, the
following holds for the stochastic objective F :

min
1≤t≤T

E
[
∥∇F (Wt)∥2

]
≥ D2

2 max{C−1, 2
∑T −1

i=0 ηi}
.
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Proof. Clearly, the norm of the gradient of F (W ) is equal to

∥∇F (W )∥ = 1
κ

∥W∥ . (52)

Following the update rule in NSO, similar to equation (49), Wt evolves as follows:

Wt+1 =
(

1 − ηt

κ

)
Wt − ηtξ̄t, (53)

where ξ̄t has variance equal to σ2/k, according to the proof of Lemma B.5. By iterating equation (53) from
the initialization, we can get a closed-form equation for W

(1)
t , for any t = 1, 2, . . . , T :

Wt = W0

t−1∏
j=0

(
1 − ηj

κ

)
−

t−1∑
k=0

ηkξk

t−1∏
j=k+1

(
1 − ηj

κ

)
. (54)

Following equation (52), we can show that

∥∇F (W )∥2 = κ−2 ∥Wt∥2
.

Thus, in expectation,

E
[
∥∇F (Wt)∥2

]
= κ−2 E

[
∥Wt∥2

]
= κ−2 ∥W0∥2

t−1∏
j=0

(
1 − κ−1ηj

)2
+ κ−2

t−1∑
i=0

E


ηiξ̄i

t−1∏
j=i+1

(
1 − κ−1ηj

)2


= κ−2 ∥W0∥2
t−1∏
j=0

(
1 − κ−1ηj

)2
+ κ−2

t−1∑
i=0

η2
i

t−1∏
j=i+1

(
1 − κ−1ηj

)2
E
[∥∥ξ̄i

∥∥2]

= 2D2κ−1
t−1∏
j=0

(
1 − κ−1ηj

)2
+ σ2κ−2

k

t−1∑
i=0

η2
i

t−1∏
j=i+1

(
1 − κ−1ηj

)2
, (55)

where we use the definition of initialization W0 and the variance of ξ̄i in the last step. In order to tackle
equation (55), we note that for all z ∈ [0, 1],

1 − z

2 ≥ exp
(

log 1
2 · z

)
. (56)

Hence, applying equation (56) to the right-hand side of equation (55), we obtain that for any i = 0, 1, . . . , t−1,
t−1∏
j=i

(
1 − ηj

max{C−1, 2
∑T −1

j=i ηi}

)

≥ exp
(

log 1
2 ·

t−1∑
j=i

ηj

max{(2C)−1,
∑T −1

i=0 ηi}

)
≥ 1

2 .

Thus, equation (55) must be at least

E
[
∥∇F (Wt)∥2

]
≥ 2D2κ−1

4 + σ2κ−2

k

t−1∑
i=0

η2
i

4 . (57)

The above result holds for any t = 1, 2, . . . , T . Therefore, we conclude that

min
1≤t≤T

E
[
∥∇F (Wt)∥2

]
≥ D2

2 max{C−1, 2
∑T −1

i=0 ηi}
.

Thus, the proof of Lemma B.6 is finished.
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Next we consider the other case when the learning rates are fixed.
Lemma B.7. There exists convex quadratic functions f such that for any gradient oracle satisfying Assump-
tion 4.1 and any distribution P with mean zero, if ηi = η < C−1 for any i = 1, . . . , T , or if

∑T −1
i=0 ηi ≲

√
T ,

then the following must hold:

min
1≤t≤T

E
[
∥∇F (Wt)∥2

]
≥ D

√
Cσ2

32k · T
. (58)

Proof. By Lemma B.6, there exists a function such that the left-hand side of equation (58) is at least

D2

2 max{C−1, 2
∑T −1

i=0 ηi}
≥ CD2

2 max{1, 2x−1
√

T}
= D2x

4
√

T
, (59)

which holds if
∑T −1

i=0 ηi ≤
√

Tx−1 for any fixed x > 0.

On the other hand, if
∑T −1

i=0 ηi ≥ x−1
√

T and ηi = η for a fixed η, then η > x−1/
√

T . By setting ηi = η for
all i in Lemma B.5, the left-hand side of equation (58) is equal to

min
1≤t≤T

(
2CD2(1 − Cη)2t + C2σ2

k

t−1∑
k=0

η2(1 − Cη)2(t−k−1)
)

.

Recall that η < C−1. Thus, ρ = Cη must be less than one. With some calculations, we can simplify the
above to

min
1≤t≤T

(
2CD2(1 − ρ)2t + σ2ρ2

k

1 − (1 − ρ)2t

1 − (1 − ρ)2

)
= min

1≤t≤T

(
σ2ρ

k(2 − ρ) + (1 − ρ)2t
(

2CD2 − σ2ρ

k(2 − ρ)

))
. (60)

If 2CD2 < σ2ρ
k(2−ρ) , the above is the smallest when t = 1. In this case, equation (60) is equal to

2CD2(1 − ρ)2 + σ2ρ2

k
≥ 1

1
2CD2 + k

σ2

= O(1).

If 2CD2 ≥ σ2ρ
k(2−ρ) , the above is the smallest when t = T . In this case, equation (60) is at least

σ2ρ

k(2 − ρ) ≥ σ2ρ

2k
≥ σ2Cx−1

2k
· 1√

T
. (61)

To conclude the proof, we set x so that the right-hand side of equations (59) and (61) match each other.
This leads to

x =
√

2σ2C

kD2 .

Thus, by combining the conclusions from both equations (59) and (61) with this value of x, we finally
conclude that if

∑T −1
i=0 ηi ≤

√
Tx−1, or for all i = 0, . . . , T −1, ηi = η < C−1, then in both cases, there exists

a function f such that equation (58) holds. This completes the proof of Lemma B.7.

The case when µ > 0. In this case, since the update of Wt also depends on the update of the momentum,
it becomes significantly more involved. One can verify that the update from step t to step t + 1 is based on

Xu =
[

1 − Cηt µ
Cηt µ

]
. (62)

Our analysis examines the eigenvalues of the matrix XuX⊤
u and the first entry in the corresponding eigenvec-

tors. Particularly, we show that the two entries are bounded away from zero. Then, we apply the Hölder’s
inequality to reduce the case of µ > 0 to the case of µ = 0, Lemma B.7 in particular.
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Proof. First, consider a quadratic function

f(W ) = 1
2C

∥W∥2
.

Clearly, f(W ) is C-Lipschitz. Further, F (W ) = f(W ) + d, for P being the isotropic Gaussian. Let W0 be a
vector whose Euclidean norm equals D

√
2C. Thus,

F (W0) − min
W ∈Rd

F (W ) = D2.

As for the dynamic of momentum SGD, recall that

Mt+1 = µMt − ηtGt and Wt+1 = Wt + Mt+1.

We consider the case where ηt = η for all steps t. In this case, we can write the above update into a matrix
notation as follows: [

Wt+1
Mt+1

]
=
[

1 − Cη µ
−Cη µ

] [
Wt

Mt

]
+ Cη

[
ξ̄t

ξ̄t

]
.

Let Xµ = [1 − Cη, µ; −Cη, µ] denote the 2 by 2 matrix (that depends on µ) above. Similar to Lemma B.5,
we can apply the above iterative update to obtain the formula for Wt+1 as:[

Wt+1
Mt+1

]
= Xt

u

[
W0
M0

]
+

t∑
i=0

CηXt−i
u

[
ξ̄i

ξ̄i

]
. (63)

By multiplying both sides by the vector e1 = [1, 0]⊤, and then taking the Euclidean norm of the vector
(notice that this now only evolves that Wt+1 vector on the left, and the Wt vector on the right), we now
obtain that, in expectation over the randomness of the ξ̄i’s, the following holds:

E
[
∥Wt+1∥2

]
= 2CD2(e⊤

1 Xt
ue1)2 + C2η2σ2

k

t∑
i=0

∥∥e⊤
1 Xi

ue
∥∥2

. (64)

Above, similar to Lemma B.5, we have set the length of W0 appropriately, so that its length is equal to
D

√
2C−1, which has led to the CD2 term above. Recall that M0 is equal to zero in the beginning. To get

the first term above, we follow this calculation:∥∥∥∥e⊤
1 Xt

µ

[
W0
M0

]∥∥∥∥2
= Tr

[
e⊤

1 Xt
µ

[
W0
M0

] [
W0
M0

]⊤

Xt
µ

⊤
e1

]

= Tr
[
e⊤

1 Xt
µ

[
CD2 0

0 0

]
Xt

µ
⊤

e1

]
= 2CD2(e⊤

1 Xt
µe1)2.

We use e = [1, 1]⊤ to denote the vector of ones. Now, we focus on the 2 by 2 matrix Xu (recall this is
the coefficient matrix on the right side of equation (63)). Let its singular values be denoted as λ1 and λ2.
In addition, to deal with equation (64), let α1 and α2 denote the first entry of Xu’s left singular vectors,
corresponding to a and b, respectively. Thus, we can write

(e⊤
1 Xi

µe)2 = α2
1λ2i

1 + α2
2λ2i

2 . (65)

Now, one can verify that λ2
1 and λ2

2 are the roots of the following quadratic equation over x:

x2 − ((1 − Cη)2 + (Cη)2 + 2µ2)x + µ2 = 0. (66)
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This can be checked by first taking Xu times X⊤
u , then using the definition of the eigenvalues by calculating

the determinant of XuX⊤
u − x Id = 0. Thus, we have that λ1 and λ2 are equal to:

λ1, λ2 = (1 − Cη)2 + (Cη)2 + 2µ2 ±
√

((1 − Cη)2 + (Cη)2 + 2µ2)2 − 4µ2

2 . (67)

Now, α2
1 (and α2

2, respectively) satisfies that:

α2
1 = −Cη(1 − Cη) + µ2

(1 − Cη)2 + µ2 − λ1 + −Cη(1 − Cη) + µ2 . (68)

By enumerating the possible values of Cη between 0 and 1, one can verify that for a fixed value of µ, α2
1 and

α2
2 are both bounded below from zero. Therefore, we can claim that from equation (65),

α2
1λ2i

1 + α2
2λ2i

2 ≳ λ2i
1 + λ2i

2 . (69)

By the Hölder’s inequality,

(λ2i
1 + λ2i

2 ) 1
2i (1 + 1)1− 1

2i ≥ λ1 + λ2 = (1 − Cη)2 + (Cη)2 + 2µ2 (70)
≥ (1 − Cη)2 + (Cη)2, (71)

which implies that

λ2i
1 + λ2i

2 ≥ ((1 − Cη)2 + (Cη)2)i

2(2i−1) . (72)

Now, we consider two cases. If Cη < 1/2, then the above is greater than (1 − Cη)2i, which holds for any
i = 0, 1, . . . , T − 1. By way of reduction, we can follow the proof of Lemma B.7 to complete this proof. If
Cη > 1/2, then the above is greater than (Cη)2i. Again by following the proof steps in Lemma B.7, we can
show that

T
min
t=1

E
[
∥Wt∥2

]
≳ D

√
Cσ2

k · T
.

This completes the proof of Theorem B.4.

C Additional Experimental Results

Approximating perturbed loss using Hessian trace. Recall that we find that the trace of the Hessian
provides an accurate approximation to the gap between the perturbed loss and the trained model loss across
several neural networks. These include (1) a two-layer Multi-Layer Perceptron (MLP) trained on the MNIST
digit classification data set, (2) a twelve-layer BERT-Base model trained on the MRPC sentence classification
data set from the GLUE benchmark, and (3) a two-layer Graph Convolutional Network (GCN) trained on
the COLLAB node classification data set from TUDataset.

In more detail, we set both MLP and GCN with a hidden dimension of 128 for model architectures and
initialize them randomly. We initialize the BERT model from pretrained BERT-Base-Uncased. We train
each model on the provided training set for the training process until the training loss is close to zero.
Specifically, we train the MLP, BERT, and GCN models for 30, 10, and 100 epochs. We use the model
of the last epoch to measure the error in the approximation. We do this for 100 times and again measure
the perturbed loss ℓQ on the training set. We take the gap between ℓQ and ℓ and report that along with
the magnitude of σ in the Table. We also compute the trace of the Hessian using Hessian-vector product
computation libraries.

Table 9 reports the measurement of the Hessian trace and the empirical gap between ℓQ and ℓ, corresponding
to Figure 2. Our measurements show that the error between the actual gap and the Hessian approximation
is within 3%. As a remark, the range of σ2 differs across architectures because of the differing scales of their
weights.
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Table 9: We find that the trace of the Hessian provides an accurate approximation to the gap between ℓQ
(recall that ℓQ is the perturbed loss) and ℓ. In particular, the measurements are taken over the fine-tuned
model weight W at the last epoch.

Multi-Layer Perceptron (MNIST) BERT Base (MRPC) Graph ConvNets (COLLAB)
σ Gap Measure σ Gap Measure σ Gap Measure

0.020 0.0122 ± 0.0027 0.0096 0.0070 0.0083 ± 0.0031 0.0095 0.040 0.0243 ± 0.0097 0.0278
0.021 0.0124 ± 0.0026 0.0106 0.0071 0.0088 ± 0.0031 0.0098 0.041 0.0266 ± 0.0141 0.0292
0.022 0.0137 ± 0.0042 0.0117 0.0072 0.0093 ± 0.0032 0.0101 0.042 0.0287 ± 0.0086 0.0306
0.023 0.0142 ± 0.0049 0.0128 0.0073 0.0098 ± 0.0034 0.0103 0.043 0.0297 ± 0.0109 0.0321
0.024 0.0152 ± 0.0046 0.0139 0.0074 0.0104 ± 0.0035 0.0106 0.044 0.0298 ± 0.0111 0.0336
0.025 0.0175 ± 0.0047 0.0151 0.0075 0.0110 ± 0.0036 0.0109 0.045 0.0313 ± 0.0092 0.0351
0.026 0.0182 ± 0.0038 0.0163 0.0076 0.0117 ± 0.0038 0.0112 0.046 0.0363 ± 0.0105 0.0367
0.027 0.0209 ± 0.0035 0.0176 0.0077 0.0124 ± 0.0040 0.0115 0.047 0.0414 ± 0.0109 0.0383
0.028 0.0215 ± 0.0049 0.0189 0.0078 0.0131 ± 0.0042 0.0118 0.048 0.0449 ± 0.0089 0.0400
0.029 0.0244 ± 0.0075 0.0203 0.0079 0.0139 ± 0.0044 0.0121 0.049 0.0455 ± 0.0160 0.0417
0.030 0.0258 ± 0.0059 0.0218 0.0080 0.0147 ± 0.0047 0.0124 0.050 0.0482 ± 0.0100 0.0434
RSS 2.74% 1.03% 2.16%

Table 10: Comparison between NSO, SGD, Label Smoothing (LS), SAM, Unnormalized SAM (USAM),
Adaptive SAM (ASAM), Random-SAM (RSAM), and Bayesian SAM (BSAM) on six image classification
datasets, by fine-tuning a pretrained ResNet-34 neural network using each method. We report the test
accuracy, the largest eigenvalue of the Hessian (for model weight found in the last epoch of each training
algorithm). Lower values indicate wider loss surfaces. In all test cases, we report the averaged result over
five random seeds and the standard deviation across these five runs.

CIFAR-10 CIFAR-100 Aircrafts Caltech-256 Indoor Retina

λ1
(↓)

SGD 1568 ± 92 4936 ± 121 1239 ± 43 1132 ± 44 1169 ± 66 8996 ± 92
LS 1410 ± 81 3568 ± 110 1339 ± 84 1033 ± 68 876 ± 81 4911 ± 73
SAM 1442 ± 93 2854 ± 131 958 ± 60 1020 ± 35 975 ± 56 4246 ± 55
USAM 1339 ± 28 2499 ± 183 624 ± 33 841 ± 34 797 ± 48 4056 ± 50
ASAM 1488 ± 82 2837 ± 133 641 ± 89 874 ± 63 722 ± 56 4267 ± 58
RSAM 1491 ± 51 3087 ± 134 973 ± 72 829 ± 61 1086 ± 82 5042 ± 30
BSAM 1496 ± 89 3032 ± 191 1069 ± 61 927 ± 63 1021 ± 71 4387 ± 94
NSO 1162 ± 78 2215 ± 49 612 ± 44 695 ± 44 688 ± 58 3916 ± 47

Comparison of the largest eigenvalue of the loss Hessian. Table 10 reports the comparison of the
largest eigenvalue of the Hessian, between our algorithm and sharpness-reducing methods on the six image
classification data sets. We observe that our algorithm further reduces the largest eigenvalue by 12.8% more
than the existing methods on average.

In Figures 6-8, we illustrate the comparison of the test loss, the trace, and the largest eigenvalue of the
Hessian matrix, using the model at the last epoch of fine-tuning. We observe that our algorithm consistently
reduces the three measurements compared with SAM and SGD.

Implementation. We use the same training hyper-parameters for the experiments in Section 3. These
include a learning rate of 0.02, batch size of 32, and training epochs of 30. We reduce the learning rate by
0.1 every 10 epochs. We choose these hyper-parameters based on a grid search on the validation split. The
range of hyper-parameters in which we conduct a grid search is as follows:

• Learning rate: 0.05, 0.02, 0.01, 0.005, 0.002, and 0.001;

• Epochs: 10, 20, and 30;

• Batch size: 16, 32, and 64.

38



Under review as submission to TMLR

Indoor Caltech-252 Aircrafts CIFAR-10 CIFAR-1000

2

4

6

8

L
(f
W

)

×10−1

NSO (k = 1) SAM SGD

Figure 6: Illustration of the test loss measured at the last epoch of model fine-tuning. The results are run
from a pretrained ResNet-34 network across five image classification tasks.
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Figure 7: Illustration of the trace of the Hessian measured at the last epoch of fine-tuning ResNet-34 on five
datasets.
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Figure 8: Reporting the λ1 of the Hessian matrix in the last iteration of fine-tuning ResNet-34 on five
datasets, comparing NSO with SAM and SGD. The results are averaged over five random seeds.

Each baseline method has its own set of hyper-parameters. We also conduct a grid search for the hyper-
parameters specifically for each baseline.

• For label smoothing, we choose the weight of the loss calculated from the incorrect labels between
0.1, 0.2, and 0.3.

• For SAM and BSAM, we choose the ℓ2 norm of the perturbation between 0.01, 0.02, and 0.05.

• For ASAM, we choose the ℓ2 norm of the perturbation for the rescaled weights between 0.5, 1.0, and
2.0.

• For RSAM, we choose the ℓ2 norm of the perturbation between 0.01, 0.02, and 0.05 and the standard
deviation for sampling perturbation between 0.008, 0.01, and 0.012.
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