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Abstract

We present a novel quasi-Monte Carlo mechanism to improve graph-based
sampling, coined repelling random walks. By inducing correlations between
the trajectories of an interacting ensemble such that their marginal transi-
tion probabilities are unmodified, we are able to explore the graph more e�-
ciently, improving the concentration of statistical estimators whilst leaving
them unbiased. The mechanism has a trivial drop-in implementation. We
showcase the e�ectiveness of repelling random walks in a range of settings
including estimation of graph kernels, the PageRank vector and graphlet
concentrations. We provide detailed experimental evaluation and robust
theoretical guarantees. To our knowledge, repelling random walks con-
stitute the first rigorously studied quasi-Monte Carlo scheme correlating
the directions of walkers on a graph, inviting new research in this exciting
nascent domain.1

1 Introduction and related work

Quasi-Monte Carlo (QMC) sampling is well-established as a universal tool to improve the
convergence of MC methods, improving the concentration properties of estimators by using
low-discrepancy samples to reduce integration error (Dick et al., 2013). They replace i.i.d.
samples with a correlated ensemble, carefully constructed to be more ‘diverse’ and hence
improve approximation quality.
Such methods have been widely adopted in the Euclidean setting. For example, when sam-
pling from isotropic distributions, one popular approach is to condition that samples are
orthogonal: a trick that has proved successful in applications including dimensionality re-
duction (Choromanski et al., 2017), evolution strategy methods in reinforcement learning
(Choromanski et al., 2018; Rowland et al., 2018) and estimating sliced Wasserstein dis-
tances (Rowland et al., 2019). ‘Orthogonal Monte Carlo’ has also been used to improve the
convergence of random feature maps for kernel approximation (Yu et al., 2016), including
recently in attention approximation for scalable Transformers (Choromanski et al., 2020).
Intuitively, conditioning that samples are orthogonal prevents them from clustering together
and ensures that they ‘explore’ Rd better. In specific applications it is sometimes possible
to derive rigorous theoretical guarantees (Reid et al., 2023b).
Less clear is how these powerful ideas generalise to discrete space. Of particular interest
are random walks on graphs, which sample a sequence of nodes connected by edges with
some stopping criterion. Random walks are ubiquitous in machine learning and statistics
(Xia et al., 2019), providing a simple mechanism for unbiased graph sampling that can be
implemented in a distributed way. However, slow di�usion times (especially for challenging
graph topologies) can lead to poor convergence and downstream performance.
Our key contribution is the first (to our knowledge) quasi-Monte Carlo scheme that corre-
lates the directions of an ensemble of graph random walkers to improve estimator accuracy.
By conditioning that walkers ‘repel’ in a particular way that leaves the marginal walk prob-
abilities unmodified, we are able to provably suppress the variance of various estimators

úSenior lead.
1Code is available at https://github.com/isaac-reid/repelling_random_walks.
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whilst preserving their unbiasedness. We derive strong theoretical guarantees and observe
large performance gains for algorithms estimating three disparate quantities: graph ker-
nels (Choromanski, 2023), the PageRank vector (Avrachenkov et al., 2007) and graphlet
concentrations (Chen et al., 2016).
Related work: The poor mixing of random walkers on graphs is well-documented and
various schemes exist to try to improve estimator convergence. Most directly modify the
base Markov chain by changing the transition probabilities, but without altering the walker’s
stationary distribution and therefore leaving asymptotic estimators (e.g. based on empirical
node occupations) unmodified. The canonical example of such a scheme is non-backtracking

walks which do not permit walkers to return to their most recently visited node (Alon et al.,
2007; Diaconis et al., 2000; Lee et al., 2012). More involved schemes allow walkers to interact
with their entire history (Zhou et al., 2015; Doshi et al., 2023). Many of these strategies
provide theoretical guarantees that the asymptotic variance of estimators is reduced, but
crucially the marginal probabilities of sampling di�erent walks are modified so they cannot
be applied to non-asymptotic estimators that rely on particular known marginal transition
probabilities. Conversely, our QMC scheme leaves marginal walk probabilities unmodifed.
Research has also predominantly been restricted to the behaviour of a single self-interacting

walker rather than an ensemble, and when multiple walkers are considered analytic results
are generally restricted to simple structures, e.g. complete graphs (Rosales et al., 2022; Chen,
2014). This research exists within the broader literature of reinforced random walks, where
nonlinear Markov kernels are used so that walkers are less (or more) likely to transition to
nodes that have been visited in the past (Pemantle, 2007). However, the analytic focus has
predominantly been on properties like recurrence times, escape times from sets, cover times
and localisation results for simple topologies (Amit et al., 1983; Tóth, 1995; Tarrès, 2004),
rather than the behaviour of associated statistical estimators on general graphs. The latter
is of more direct interest in machine learning.
The remainder of the manuscript is organised as follows. In Sec. 2 we introduce the
requisite mathematics and present our novel QMC repelling random walk mechanism. In
Secs 3-5 we use it to approximate three quantities of interest in machine learning: graph
node kernels (Sec. 3), the PageRank vector (Sec. 4), and graphlet statistics (Sec. 5).
Repelling random walks are empirically found to outperform the i.i.d. variant in every case
and we are often able to provide concrete theoretical guarantees.

2 Repelling random walks

Consider an undirected, connected graph G(N , E) where N := {1, ..., N} denotes the set
of nodes and E denotes the set of edges, with (i, j) œ E if there is an edge between nodes
i, j œ N . Write the graph’s (weighted) adjacency matrix A := [aij ]i,jœN , where aij ”= 0 if
(i, j) œ E and 0 otherwise. Let di :=

q
jœN I[(i, j) œ E ] denote the node degree, which is the

number of neighbours of a particular node, and let N (i) := {j œ N |(i, j) œ E} denote the
set of neighbours of node i. The transition matrix P = [Pij ]i,jœN of a simple random walk

is given by

Pij =
I

1
di

if (i, j) œ E

0 otherwise
(1)

such that at every timestep the walker selects one of its neighbours with uniform probability.
This can be viewed as a finite and time-reversible Markov chain with state space N .
Supposing we have m such walkers on the graph simultaneously, we can define an augmented

Markov chain with state space N
m, consisting of the possible node positions of all the

walkers. If the walkers are independent, the joint transition matrix Q œ RNm◊Nm is given
a Kronecker product of the marginal transition matrices P(i):

Q = ¢
m
i=1P(i) (2)

where the index i = 1, ..., m enumerates the walkers present. Our key contribution is now
to induce correlations between the walkers’ paths such that the joint transition matrix Q is
modified but each marginal transition matrix (and hence the unbiasedness of any estimator
relying on it) is unchanged. The correlations are designed to improve estimator convergence.
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i.i.d.

repelling

Figure 1: Schematic for behaviour of repelling random walkers at a particular timestep. By
sampling from each ‘block’ (blue and green rectangles) without replacement we get a more
even distribution over neighbours, without changing the marginal probabilities.

Definition 2.1 (Repelling random walks). A repelling ensemble has the following behaviour.

Let V
(i)
t denote the set of walkers at node i at timestep t, and N

(i)
t := |V

(i)
t | the size of this

set. Randomly divide these walkers into N
(i)
t //d subsets of size d and one ‘remainder’ subset

of size N
(i)
t %d < d (where // and % denote truncating integer division and the remainder,

respectively). Among each subset, assign the walkers to a neighbour from the set N (i)
uniformly without replacement.

This is in contrast to i.i.d. walkers where V
(i)
t are assigned to the neighbours N (i) uniformly

with replacement. We provide a schematic in Fig. 1. In the repelling scheme, each walker
still has a marginal transition probability Pij = {1/di if (i, j) œ E , 0 otherwise}, but now
they are forced to take di�erent edges and heuristically ‘explore’ the graph more e�ectively.
The sample of walks is more ‘diverse’. Since the marginal transition probabilities P(i) are
unmodified, any estimators that are unbiased with i.i.d. walkers are also automatically

unbiased with repelling walkers, including in the non-asymptotic regime. However, as we
shall see, their concentration properties are often substantially better.
Computational cost and implementation: Repelling random walks have a trivial drop-
in implementation. The only di�erence is whether walkers are assigned to neighbours with
or without replacement. Moreover, the transitions in the augmented state space N

m remain
Markovian (memoryless); there are no extra space complexity costs because we only need
access to the current positions of all the walkers.
Physical interpretation and entanglement: Under repulsive interactions, the joint
transition matrix Q can no longer be written as a Kronecker product. Consider transitions
of 2 walkers in the same ‘block’ from (i1, i2) to (j1, j2). We have:

QNi1+i2,Nj1+j2 := Pr(j1, j2|i1, i2) = Pi1j1Pi2j2 ·

I
1 + ”i1i2

1
di

di≠1 (1 ≠ ”j1j2) ≠ 1
2

if di ”= 1
1 if di = 1

(3)
with ”i1i2 the delta function. This does not generically factorise into (i1, j1)- and (i2, j2)-
dependent parts. In quantum mechanics (QM), an interacting Hamiltonian H which cannot
be written as a Kronecker sum gives rise to a time-evolution operator U := exp(≠ i

h̄
Ht) that

cannot be written as a Kronecker product, which in turn generically gives rise to quantum
entanglement between particles. Just as the von-Neumann entropy (a measure of bipartite
quantum entanglement (Amico et al., 2008)) increases under such interactions, in our QMC
scheme the Shannon mutual information initially increases from 0: during the first timestep,
�I1,2 = ”i1i2 log( di

di≠1 ) Ø 0. Note that the analogy is not exact because in QM the time-
evolution operator acts on (complex) wavefunctions whereas here the transition matrix acts
on the (real positive) probabilities of being in di�erent states of a Markov chain encoding
the positions of walkers on a graph. It is just intended to help build intuition for the reader.
It will be convenient to define one further class of interacting random walk.
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Definition 2.2 (Transient repelling random walks). An ensemble of random walks is de-

scribed as transient repelling the walkers repel (according to Def. 2.1) at the first timestep,

and are independent thereafter.

Such an ensemble will capture the repelling behaviour at early times but eventually relax
to independence. Whilst less practical than the full repelling scheme, we will see that
sometimes it makes theoretical analysis tractable.
We now apply our repelling random walks mechanism to three disparate applications: ap-
proximation of graph kernels (Sec. 3), approximation of the PageRank vector (Sec. 4), and
approximation of graphlet concentrations (Sec. 5).

3 Application 1: approximating graph kernels

We begin by demonstrating the e�ectiveness of repelling random walks for estimating graph

kernels KG : N ◊ N æ R, defined on the nodes N of a graph G. Such kernels capture
the structure of G, letting practitioners repurpose theoretically grounded and empirically
successful algorithms like support vector machines, kernelised principal component analysis
and Gaussian processes to the discrete domain (Smola and Kondor, 2003). Applications
include in bioinformatics (Borgwardt et al., 2005), community detection (Kloster and Gle-
ich, 2014), generative modelling (Zhou et al., 2020) and solving shortest-path problems
(Crane et al., 2017). Chief examples of KG are the d-regularised Laplacian and di�usion
kernels, given by K(d)

lap := (I + ‡
2ÂL)≠d and Kdi� := exp(≠‡

2ÂL/2) respectively. Here, ‡
2 is

a lengthscale parameter and ÂL is the normalised graph Laplacian, defined by ÂL := I ≠ W
with W = [aij/(d̃id̃j)1/2]Ni,j=1 a normalised weighted adjacency matrix (d̃i =

q
j aij is the

weighted node degree and aij is the weight of the original edge). ÂL is the analogue of the fa-
miliar Laplacian operator Ò

2 = ˆ2

ˆx2
1

+ ˆ2

ˆx2
2

+ ... + ˆ2

ˆx2
n

in discrete space, describing di�usion
on G (Chung and Yau, 1999; Chung, 1997).
For large graphs, computing e.g. K(d)

lap exactly can be prohibitively expensive due to the
O(N3) time complexity of matrix inversion. This motivated the recently-introduced class of
Graph Random Features (GRFs) (Choromanski, 2023), which provide a discrete analogue to
Random Fourier Features (Rahimi and Recht, 2007). These N -dimensional vectors „(i) œ

RN are constructed for every node i œ N such that their Euclidean dot product is equal to
the kernel evaluation in expectation,

[K(2)
lap]ij = E

!
„(i)€

„(j)
"

. (4)
In their paper, Choromanski (2023) provides an elegant algorithm for constructing „(i): one
simulates m œ N random walks out of each node i that terminate with probability p at every
timestep, depositing a ‘load’ at every node they visit to build up a randomised projection
of the local environment in G. They show that this gives an unbiased estimate of K(2)

lap,
which can be used to construct K(d)

lap for d œ N or an asymptotically unbiased approximation
of Kdi�. Since the unbiasedness of the estimator depends on the marginal probabilities
of sampling di�erent finite-length random walks being unmodified (c.f. just its stationary
distribution), it is a natural setting to test our new quasi-Monte Carlo scheme.
Remarkably, under mild conditions, we are able to derive an analytic closed form for the
di�erence in kernel estimator mean squared error (MSE) between the i.i.d. and transient-
repelling mechanisms for general graphs (deferred to Eq. 32 in App. A.1 for brevity). This
enables us to make the following statement for some specific graphs, proved in App. A.1.
Theorem 3.1 (Superiority of repelling random walks for kernel estimation). Consider graph

nodes indexed (i, j) separated by at least 2 edges. In the limit ‡ æ 0, provided the number

of walkers in the transient repelling ensemble is smaller than or equal to the node degrees

d{i,j} and the edge-weights of W are equal,

Var([ ‚K(2)
lapij ]repelling) Æ Var([ ‚K(2)

lapij ]i.i.d.) (5)
for both i) trees and ii) 2-dimensional grids.

Though we have made some restrictions for analytic tractability, we will empirically observe
that the full repelling QMC scheme is e�ective in much broader settings. In particular,
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Figure 2: Relative Frobenius norm of estimates of the 2-regularised Laplace kernel (lower
is better) vs. number of random walks for: i) vanilla GRFs; ii) GRFs with antithetic
termination (Reid et al., 2023a) (‘q-a-GRFs’); iii) GRFs with repelling walks (‘q-r-GRFs’);
iv) GRFs with both antithetic termination and repelling walks (‘q-ar-GRFs’). Using both
QMC schemes together gives the best results for all graphs considered and the gains are
large (sometimes a factor of > 2). N gives the number of nodes, p is the edge-generation
probability for the Erdös-Rényi graphs, and d is the d-regular node degree. One standard
deviation on the mean error is shaded but is too small to easily see.

it substantially suppresses kernel estimator variance with many walkers, arbitrary ‡ and
arbitrary graphs. Extending the proof to these general cases is an exciting open problem.
We also note that our scheme is fully compatible with the recently-introduced QMC scheme
known as antithetic termination (Reid et al., 2023a), which anticorrelates the lengths of
random walkers (by coupling their terminations) but does not modify their trajectories.
Both schemes can be applied simultaneously, inducing negative correlations between both
the walk directions and lengths.

3.1 Pointwise kernel estimation

We now empirically test Eq. 5 for general graphs by comparing the variance of [ ‚K(2)
lap]ij

under di�erent schemes. In what follows, ‘GRFs’ refers to graph random features constructed
using i.i.d. walkers, whilst ‘q-{a,r,ar}-GRFs’ denotes the e�cient quasi-Monte Carlo variants
where walkers exhibit antithetic termination (‘a’) (Reid et al., 2023a), repel (‘r’), or both
(‘ar’). We use these di�erent flavours of (q-)GRFs to generate unbiased estimates ‚K(2)

lap,
then compute the relative Frobenius norm ÎK(2)

lap ≠ ‚K(2)
lapÎF/ÎK(2)

lapÎF between the true and
approximated Gram matrices. Fig. 2 presents the results for various graphs: small Erd�s-
Rényi, larger Erd�s-Rényi, a binary tree, a d-regular graph, and four standard real-world
examples from (Ivashkin, 2023) (karate, dolphins, football and eurosis). These di�er
substantially in both size and structure. We take 100 repeats to compute the variance of
the kernel approximation error, using a regulariser ‡ = 0.1 and a termination probability
p = 0.5. The gains provided by the repelling QMC scheme (green) are much greater than
those from antithetic termination (orange), but the lowest variance is achieved when both
are used together (red). Note that the gains provided by repelling random walks continue
to accrue as the size of the ensemble grows; with m = 16 walkers the error is often halved.

3.2 Downstream applications: kernel regression for node attribute
prediction

We have both proved (Theorem 3.1) and empirically confirmed (Fig. 2) that using repelling
random walks substantially improves the quality of estimation of the 2-regularised Laplacian

5



Published as a conference paper at ICLR 2024

kernel using GRFs. Naturally, this permits better performance in downstream applications
that depend on the approximation. As an example, we follow Reid et al. (2023a) and
consider kernel regression on triangular mesh graphs (Dawson-Haggerty, 2023).

Consider a graph G where each node is associated with a normal vector v(i). The task is to
predict the directions of a random set of missing ‘test’ vectors (a 5% split) from the remaining
‘train’ vectors. We compute our (unnormalised) predictions ‚v(i) as ‚v(i) :=

q
j

‚K(2)
lap(i, j)v(j),

where j sums over the training vertices and ‚K(2)
lap(i, j) is constructed using the GRF and

q-{a,r,ar}-GRF mechanisms described in Sec. 3.1. We compute the average angular error
1≠cos ◊ between the prediction ‚v(i) and groundtruth v(i) across the test set. We use m = 16
random walks with a termination probability p = 0.5 and a regulariser ‡ = 0.1, taking 1000
repeats for statistics. Table 1 reports the results. Higher-quality kernel approximations
with repelling random walks give more accurate downstream predictions for all graphs, with
the biggest gains appearing when our repelling scheme is introduced (‘r’ and ‘ar’). The
di�erence is remarkably big when the number of nodes N is big: on torus, the error is
reduced by a factor of almost 3. Accurate approximation is especially helpful for these large
graphs as exact methods become increasingly expensive.

Table 1: Angular error 1≠ cos ◊ between true and predicted node vectors when approx-
imating the Gram matrix with GRFs and q-{a,r,ar}-GRFs (lower is better). Brackets
give one standard deviation. Both schemes in combination works best.

Graph N Pred error, 1 ≠ cos ◊
GRFs q-a-GRFs q-r-GRFs q-ar-GRFs

cylinder 210 0.0650(7) 0.0644(7) 0.0466(3) 0.0459(2)
teapot 480 0.0331(2) 0.0322(2) 0.0224(1) 0.0215(1)
idler-riser 782 0.0528(3) 0.0521(3) 0.0408(2) 0.0408(2)
busted 1941 0.00463(2) 0.00456(2) 0.003833(6) 0.003817(6)
torus 4350 0.000506(1) 0.000482(1) 0.000180(1) 0.000181(1)

Though for concreteness we have considered one particular downstream application, we
stress that improving the kernel estimate can be expected to boost performance in any
algorithm that uses it, e.g. for graph node clustering (Dhillon et al., 2004), shortest-path
prediction (Crane et al., 2017) or simulation of graph di�usion (Reid et al., 2023a).

4 Application 2: approximating PageRank

As a second application, we use repelling random walks to improve numerical estimates of
the PageRank vector: a popular measure of node importance in a graph originally proposed
by Page et al. (1998) to rank websites in search engine results. The PageRank vector is
defined as the stationary distribution of Markov chain whose state space is the set of all
graph nodes N , with a transition matrix

ÂP := (1 ≠ p)P + p

N
E. (6)

Here, p œ (0, 1) is a scalar, N is the number of nodes, P is defined in Eq. 1 and E = [1]i,jœN
is a matrix whose entries are all ones. This encodes the behaviour of a ‘surfer’ who at
every timestep either teleports to a random node with probability p or moves to one of its
neighbours chosen uniformly at random. Since ÂP is stochastic, aperiodic and irreducible,
we can define the unique PageRank vector ⇡ œ RN :

⇡€ ÂP = ⇡€
, ⇡€1 = 1, (7)

where we normalised the sum of vector entries to 1. Physically, ⇡j is the stationary prob-
ability that a surfer is at node j. ⇡ is very expensive to compute for large graphs and the
form of ÂP invites MC estimation with random walkers. Fogaras et al. (2005) suggest the
following algorithm.
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Algorithm 4.1 (Random walks for PageRank estimation). (Fogaras et al., 2005) Simulate

m œ N runs of a simple random walk with transition probability matrix P out of every node

i œ N , terminating with probability p at each timestep. Evaluate the estimator ‚⇡j as the

fraction of walks terminating at node j, ‚⇡j := 1
Nm

q
N

qm
j=1 I(walker terminates at j).

It is straightforward to show that ‚⇡ is an unbiased estimator of ⇡ (see App. A.2). This is
a natural setting to test an ensemble of repelling random walks. We are able to make the
following surprisingly strong statement.
Theorem 4.2 (Superiority of repelling random walks for PageRank estimation). For a

transient repelling ensemble,

Var(‚⇡j)repelling Æ Var(‚⇡j)i.i.d. (8)
for any graph.

We defer a full proof to App. A.2 but provide a brief sketch below.
Proof sketch: Supposing that the number of walkers is smaller than the minimum node
degree, the behaviours of a transient repelling and i.i.d. ensemble only di�er at the first
timestep. In the former scheme walkers are forced to diverge whereas in the latter they
are independent. The expectation values of the estimators associated with each walker are
conditionally independent given their node positions at t = 1 and are identical in both
schemes by definition; denote it by f(vt=1). With the i.i.d. ensemble the variance depends
on Ev(1)‹v(2) [f(v(1)

t=1)f(v(2)
t=1)] where the node positions of a pair of walkers v

(1,2) are inde-
pendent. Meanwhile, for repelling walkers it depends on Ev(1) ”=v(2) [f(v(1)

t=1)f(v(2)
t=1)] where we

condition that v
(1,2) cannot be equal. Simple algebra reveals that the latter is smaller. It

is straightforward to then generalise to when the number of walkers exceeds the minimum
node degree.
It is remarkable that Theorem 4.2 holds for arbitrary G. Table 2 shows the PageRank
estimator error with 2 walkers that are either i) i.i.d. or ii) repelling out of every node.
The quality of approximation is already excellent with just a single pair. The termination
probability is p = 0.3 and we take 1000 trials to compute the standard deviations (10000
for eurosis since it is larger). As per the theoretical guarantees, repelling random walks
consistently perform better.

Table 2: Mean L2-norm of the di�erence between the true and approximated PageRank
vectors fierr := Î⇡ ≠ ‚⇡Î2, using i.i.d. and repelling pairs of random walkers. Lower is
better. Repelling random walks consistently outperform i.i.d. random walks. Paren-
theses give one standard deviation on the mean error.

Graph N PageRank error, fierr
i.i.d. repelling

Small ER 20 0.0208(2) 0.0196(2)
Larger ER 100 0.00420(2) 0.00406(2)
Binary tree 127 0.00290(1) 0.00270(1)
d-regular 100 0.00434(2) 0.00422(2)
karate 34 0.0124(1) 0.0115(1)
dolphins 62 0.00686(4) 0.00651(4)
football 115 0.00385(2) 0.00376(2)
eurosis 1272 0.000342(2) 0.000335(2)

In the PageRank setting, RRWs are closely related to the algorithm presented by Luo (2019),
which was introduced to reduce edge bandwidth. The scheme takes di walks out of every
node i and permutes them randomly among the neighbours at every timestep. Note that
sampling without replacement is identical to permutation if the number of walkers is equal
to the number of neighbours to which they must be assigned.
As a brief addendum for the interested reader: ‚⇡j is actually a member of a broader class
of functions coined step-by-step linear, defined as follows.
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Definition 4.3 (Step-by-step linear functions). Let �r denote the set of all infinite-length

walks starting at node r, �r := {(vi)Œ
i=0 | v0 = r, vi œ N , (vi, vi+1) œ E}. We refer to a func-

tion y : �r æ R as step-by-step linear if it takes the form:

y(Ê) =
Œÿ

i=0
f(vi, i)

iŸ

j=1
g(vj≠1, vj , j, j ≠ 1), (9)

where f : N ◊ (N fi {0}) æ R and g : N ◊ N ◊ (N fi {0}) ◊ (N fi {0}) æ R.

These functions have the property that the variance of the corresponding Monte Carlo
estimator is guaranteed to be suppressed by conditioning that the ensemble of random
walks {Ê}

m
i=1 is transient repelling. Concretely, the following is true.

Theorem 4.4 (Variance of step-by-step linear functions is reduced by transient repulsion).
Consider the estimator Y :=

qm
i=1 y(Êi) where {Êi}

m
i=1 enumerates m (infinite) walks on G

and y : �r æ R is a step-by-step linear function. Suppose that the sets of walks {Êi}
m
i=1 are

either i) i.i.d. or ii) transient repelling (Def. 2.2). We have that:

Var(Yrepelling) Æ Var(Yi.i.d.). (10)

We provide a proof and further discussion in Sec. A.3. Interestingly, the step-by-step linear
family also includes „(i)k, the kth component of the GRF corresponding to the ith node
of G, though of course this alone is insu�cient to guarantee suppression of variance of the
kernel estimator „(i)€

„(j).

5 Application 3: approximating graphlet concentrations

triangle wedge

Figure 3: Graphlets for k = 3

Finally, we use repelling random walks to esti-
mate the relative frequencies of graphlets: in-
duced subgraph patterns within a graph G. For-
mally, a k-node induced subgraph Gk = (Vk, Ek)
satisfies Vk µ V, |Vk| = k and Ek = {(u, v) :
u, v œ Vk · (u, v) œ E}: that is, a subset of k

connnected nodes together with any edges be-
tween them. For example, for k = 3 the possible
graphlets are a triangle and a wedge (see Fig. 3).
Computing a graph’s graphlet concentrations –
the proportions of di�erent k-node graphlets – is
a task of broad interest in biology (Prûulj, 2007; MilenkoviÊ and Prûulj, 2008) and network
science (Becchetti et al., 2008; Ugander et al., 2013) since it characterises the local structure
of G (Milo et al., 2002). Such concentrations even permit construction of graphlet kernels

K : G ◊ G æ R to compare di�erent graphs (Shervashidze et al., 2009).
For large graphs, exact computation by exhaustive counting is unfeasible because of the
combinatorial explosion in the number of graphlets with N . This motivates random walk
Markov Chain Monte Carlo approaches. Such crawling-based algorithms also benefit from
not requiring access to the entire graph simultaneously: a typical restriction for online
social networks where the graph is only available via API calls to retrieve a particular
node’s neighbours (e.g. user’s friends). These algorithms are also easily distributed across
machines.
Chen et al. (2016) propose a general algorithm for asymptotically unbiased, e�cient es-
timation of graphlet concentrations using random walks. We summarise one particular
instantiation of it for k = 3 below.
Algorithm 5.1 (Graphlet concentration estimation using random walks). (Chen et al.,

2016) Simulate a simple random walk of length L œ N (the sampling budget) out of a

randomly selected node. Consider X
(3)
i = (Xi, Xi+1, Xi+2) with 1 Æ i Æ L ≠ 2, the states of

an augmented Markov Chain whose state space is the ordered 3-tuples of consecutively-visited

nodes. Discard all such states where Xi = Xi+2 (where the walker backtracks), and for the

8
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Figure 4: Mean square error on estimates of k = 3 graphlet concentrations with di�erent
numbers of random walks on di�erent graphs. Lower is better. Using the repelling scheme
consistently improves the quality of the estimate compared to independent walks.

remaining n classify the graphlets g
(3)
i to get the weighted counts Cwed :=

qn≠2
i=1 I(g(3)

i =
wedge) di+1

2 and Ctri :=
qn≠2

i=1 I(g(3)
i = triangle) di+1

6 (where di+1 is the degree of the i +
1th node). In the limit of large L, ‚c(3)

tri := Ctri
Ctri+Cwed

gives an unbiased estimator of the

concentration of triangle graphlets.

The weightings in the computation of C{wed,tri} are included to correct for two sources of
bias: di+1 accounts for the fact that the stationary distribution of the expanded Markov
chain is inversely proportional to the degree of the middle node, ⇡(X(3)

i ) = (2|V|di+1)≠1,
and the combinatorial factors adjust for the fact that 6 states X

(3)
i correspond to the triangle

graphlet (twice the number of Hamiltonian paths) but only 2 correspond to the wedge.
We implement Alg. 5.1 with both i) i.i.d. walkers and ii) a repelling ensemble. A rigorous
theoretical analysis of concentration properties is very challenging and is deferred as impor-
tant future work; for now, our study is empirical. Fig. 4 plots the fractional error of the
estimator of triangle graphlet concentration ‚c(3)

tri against the number of walkers. We use the
same graphs as in Sec. 3, but replace the binary tree with polbooks since for the former
‚ctri = 0 trivially. We impose a restricted sampling budget with walks of length L = 16
to highlight the benefits of repelling random walks in the transient regime, and take 2500
repeats over all starting nodes for statistics. Repelling random walks consistently perform
better, providing more accurate estimates of the triangle graphlet concentration, and for
some graphs the improvement is large. Alg. 5.1 can be generalised to estimate the concen-
trations larger graphlets with k > 3; we anticipate that repelling random walks will still
prove e�ective.

6 Conclusion

We have presented a new quasi-Monte Carlo scheme called repelling random walks that
induces correlations between the directions of random walkers on a graph. Estimators con-
structed using this interacting ensemble are guaranteed to remain unbiased but their concen-
tration properties are often substantially improved. We test our algorithm on applications
as diverse as estimating graph kernels, the PageRank vector and graphlet concentrations.
In every case the experimental performance is very strong and often we are able to pro-
vide concrete theoretical guarantees. We hope this work will motivate further research on
developing quasi-Monte Carlo methods to improve sampling on graphs.

9
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7 Ethics and reproducibility
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ever, increases in scalability provided by quasi-Monte Carlo algorithms could exacerbate
existing and incipient risks of graph-based machine learning, from bad actors or as unin-
tended consequences.
Reproducibility: Every e�ort has been made to guarantee the work’s reproducibility.
The core algorithm is clearly presented in Def. 2.1. Accompanying theoretical results are
proved and discussed in the Appendices A.1-A.3, including any assumptions where appro-
priate. Source code is available at https://github.com/isaac-reid/repelling_random_walks.
All datasets used correspond to standard graphs and are freely available online; we give
links to suitable repositories in every instance. Results are reported with uncertainties to
facilitate comparison.
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