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Abstract

Granger causality has been widely used in various application domains to capture lead-lag
relationships amongst the components of complex dynamical systems, and the focus in ex-
tant literature has been on a single dynamical system. In certain applications, one has
access to data from a collection of related such systems, wherein the modeling task of inter-
est is to extract the shared common structure that is embedded across them, as well as to
identify the idiosyncrasies within individual ones. This paper introduces a Variational Au-
toencoder (VAE) based framework that jointly learns Granger-causal relationships amongst
components in a collection of related-yet-heterogeneous dynamical systems, and handles the
aforementioned task in a principled way. The performance of the proposed framework is
evaluated on several synthetic data settings and benchmarked against existing approaches
designed for individual system learning. The method is further illustrated on a real dataset
involving neuroimaging time series data and produces interpretable results.

1 Introduction

The concept of Granger causality introduced in Granger (1969) leverages the temporal ordering of time series
data. It is defined in terms of predictability of future values of a time series; namely, whether the inclusion
of past information (lag values) of other time series as well as its own (self lags) leads to a reduction in the
variance of the prediction error of the time series under consideration. Since its introduction, it has become
a widely-used approach in the analysis of economic (Stock & Watson, 2001), financial (Hong et al., 2009)
and neuroimaging (Seth et al., 2015) time series data. The standard setting in these applications is that one
is interested in estimating Granger causal relationships in a dynamical system (e.g., a national economy, a
brain) comprising of p variables.

Granger causality can also be expressed through the language of graphical models (Dahlhaus & Eichler, 2003;
Eichler, 2012). The node set of the graph corresponds to the p variables at different time points; directed
edges between nodes at past time points to those at present one capture Granger causal relationships.
Traditionally, Granger causality was operationalized through linear vector autoregressive (VAR) models
(Granger, 1969), in which case the entries of the estimated transition matrices correspond precisely to the
edges of the Granger causal graph. More recent work has explored how Granger causal relationships can be
learned through nonlinear models; e.g., see review paper Shojaie & Fox (2022) and references therein.

In certain application domains, one has access to data from a collection of related dynamical systems. A
motivating example is described next. Consider electroencephalography (EEG) recordings obtained from p
electrodes placed on the scalp of a subject (e.g., a patient or an animal). The resulting time series data
constitute measurements from a complex neurophysiological dynamical system (Stam, 2005). On many
instances, one has access to such measurements for a collection of M related subjects (or “entities”, equiva-
lently); for example, they may be performing the same cognitive task (e.g., visual counting, geometric figure
rotation) or exhibit a similar neurological disorder (e.g., epilepsy, insomnia, dementia). In such a setting, one
can always opt to perform separate analyses on each subject’s data; however, it would be useful to develop
methodology that models the data from all subjects jointly, so as to simultaneously extract the embedded
structure shared across subjects and identify the idiosyncracies (heterogeneity) in any single one. In other
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words, if one views all subjects as belonging to a common group, the quantities of interest are the shared
group-level connectivity structure (amongst nodes) and the entity-level ones.

Conceptually, the above-mentioned modeling task is not difficult to fulfill in a linear setting where one can
decompose the transition matrices into a “shared” component and an idiosyncratic (entity-specific) one,
with some orthogonality-type constraint to enforce identifiability of the parameters. However, the task
becomes more challenging and involved in non-linear settings where one hopes to use flexible models to
capture the underlying complex dynamics. In particular, a decomposition-based approach, which requires
the exact specification of the functional form of the shared component or how the shared and the idiosyncratic
components interact, would be rather restrictive. To this end, we adopt a generative model-based approach,
which circumvents the issue by encoding the Granger causal relationships through graphs. By postulating a
model with a hierarchical structure between the shared and entity-specific components, the problem can be
addressed in a flexible, yet principled manner.

Summary of contributions. We develop a two-layer Variational Autoencoder (VAE) based framework for
estimating Granger-causal connections amongst nodes in a collection of related dynamical systems — jointly
for the common group-level and the entity-level ones — in the presence of entity-specific heterogeneity. De-
pending on the assumed connection type (continuous or binary) amongst the nodes, the proposed framework
can accommodate the scenario accordingly by imposing a commensurate structure on the encoded/decoded
distributions, leveraging conjugacy between pairs of distributions. The proposed model enables extracting
the embedded common structure in a principled way, without resorting to any ad-hoc or post-hoc aggrega-
tion. Finally, the framework can be generalized to the case where multiple levels of nested groups are present
and provides estimates of the group-level connectivity for all levels of groups.

The remainder of the paper is organized as follows. In Section 2, we provide a review of related literature on
Granger-causality estimation, with an emphasis on neural network-based methods. The main building block
used in the proposed framework, namely, a multi-layer VAE is also briefly introduced. Section 3 describes in
detail the proposed framework, including the encoder/decoder modules and the training/inference procedure.
In Section 4, model performance is assessed on synthetic datasets and benchmarked against several existing
methods. An application to a real dataset involving EEG signals from 22 subjects is discussed in Section 5.
Finally, Section 6 concludes the paper.

2 Related Work and Preliminaries

In this section, we review related work on inferring Granger causality based on time series data, with an
emphasis on deep neural network-based approaches. Further, as the proposed framework relies on variational
autoencoders (VAE) with a hierarchical structure, we also briefly review VAEs in the presence of multiple
latent layers.

2.1 Inference of Granger causality

Linear VAR models have historically been the most popular approach for identifying Granger causal rela-
tionships. Within the linear setting, hypothesis testing frameworks with theoretical guarantees have been
used (Granger, 1980; Geweke, 1984), while more recently regularized approaches have enabled the estima-
tion in the high-dimensional setting (Basu et al., 2015). Recent advances in neural network techniques have
facilitated capturing non-linear dynamics and identifying Granger causality accordingly, as discussed next.

Note that estimation of Granger causality is an unsupervised task, in the sense that the connectivity as
captured by the underlying graph is not observed and thus cannot serve as the supervised learning target.
However, depending on the model family that the associated estimation procedure falls into, existing ap-
proaches suitable for estimating Granger causality based on neural networks (Montalto et al., 2015; Nauta
et al., 2019; Wu et al., 2020; Khanna & Tan, 2020; Tank et al., 2021; Marcinkevičs & Vogt, 2021; Löwe et al.,
2022) can be broadly categorized into supervised and generative model-based ones. We selectively review
some of them next. In the remainder of this subsection, we use xi,t to denote the value of node i at time
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t, xt := (x1,t, · · · , xp,t) the collection of node values of the dynamical system, and x := {x1, · · · , xT } the
trajectory over time.

Within the supervised modeling framework, recent representative works include Khanna & Tan (2020); Tank
et al. (2021); Marcinkevičs & Vogt (2021), where the Granger-causal relationship is inferred from coefficients
that govern the dynamics of the time series, and the coefficients are learned by formulating prediction tasks
that can be generically represented as xt = f(xt−1, ..., xt−q) + εt, with xt ∈ Rp being the multivariate
time series signal and εt the noise term. In Tank et al. (2021), coordinates of the response are considered
separately, that is, xi,t = fi(xt−1, ..., xt−q)+εi,t, and fi is parameterized using either multi-layer perceptrons
(MLP) or LSTM (Hochreiter & Schmidhuber, 1997). In the case of an L-layer MLP,

x̂i,t = W LhL−1
t + bL; hl

t = σ
(

W lhl−1
t + bl

)
, l = 2, · · · , L; h1

t = σ
( ∑q

k=1
W 1kxt−k + b1

)
;

the Granger-causal connection from the jth node to the ith node is then encoded in some “summary” (e.g.,
Frobenius norm) of {W 11

:j , · · · , W 1q
:j }, with each component corresponding to the first hidden layer weight of

lags xj,t−1, · · · , xj,t−q. Various regularization schemes are considered and incorporated as penalty terms in
the loss function, to encourage sparsity and facilitate the identification of Granger-causal connections. The
case of LSTM-based parameterization is handled analogously. Marcinkevičs & Vogt (2021) parameterizes
f as an additive function of the lags, i.e., xt =

∑q
k=1 Ψk(xt−k)xt−k + εt; the output of Ψk : Rp 7→ Rp×p

contains the generalized coefficients of xt−k, whose (i, j) entry corresponds to the impact of xj,t−k on
xi,t and Ψk is parameterized through MLPs. The Granger causal connection between the jth node and
the ith node is obtained by aggregating information from the coefficients of all lags {Ψk(xt−k)ij}, i.e.,
max1≤k≤q{medianq+1≤t≤T (|Ψk(xt−k)ij |)}. Finally, an additional stability-based procedure where the model
is fit to the time series in the reverse order is performed for the final selection of the connections.

For generative model-based approaches, the starting point is slightly different. Notable ones include Löwe
et al. (2022) that builds upon Kipf et al. (2018), and the focus is on relational inference. The postulated
generative model assumes that the trajectories are collectively governed by an underlying latent graph z,
which effectively encodes Granger-causal connections:

p(x|z) = p({xT +1, · · · , x1}|z) =
∏T

t=1
p(xt+1|xt, · · · , x1, z).

Specifically, in their setting, xi,t ∈ Rd is vector-valued; zij corresponds to a categorical “edge type” between
nodes i and j. For example, it can be a binary edge type indicating presence/absence, or a more complex one
having more categories. To simultaneously learn the edge types and the temporal dynamics, the model is
formalized through a VAE that maximizes the evidence lower bound (ELBO), given by Eqϕ(z|x)(log pθ(x|z))−
KL(qϕ(z|x)

∥∥ pθ(z)), where qϕ(z|x) is the probabilistic encoder, pθ(x|z) the decoder, and pθ(z) the prior
distribution.

In summary, at the formulation level, generative model-based approaches treat Granger-causal connections
(relationships) as a latent graph and learn it jointly with the dynamics, whereas supervised ones extract
Granger-causal connections from the parameters that govern the dynamics in a post-hoc manner. The
former can readily accommodate vector-valued nodes whereas for the latter, it becomes more involved and
further complicates how the connections can be extracted/represented based on the model parameters. At the
task level, to learn the model parameters, supervised-model based approaches rely on prediction tasks where
the values of future timestamps are of interest, whereas generative approaches amount to reconstructing the
observed trajectories; prediction and reconstruction errors constitute part of the empirical risk minimization
loss and the ELBO loss, respectively.

2.2 Multi-layer variational autoencoders

With a slight abuse of notation, in this subsection, we use x to denote the observed variable and zl, l =
1, · · · , L the latent ones for L layers.

A “shallow” VAE with one latent layer is considered in the seminal work of Kingma & Welling (2014), where
the generative model is given by pθ(x, z1) = pθ(x|z1)pθ(z1), with pθ(z1) denoting the prior distribution.
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Later works (Kingma et al., 2014; Burda et al., 2016; Sønderby et al., 2016) consider the extension into
multiple latent layers, where the generative model can be represented through a cascading structure as
follows:

pθ(x, {zl}L
l=1) = pθ(x|z1)

( ∏L−1

l=1
pθ(zl|zl+1)

)
pθ(zL);

the corresponding inference model (encoder) is given by qϕ(z1, · · · , zL|x) = qϕ(z1|x)
∏L

i=1 qϕ(zl|zl−1). The
variational lower bound on log p(x) can be written as

Eqϕ({z}L
l=1|x)

(
log pθ(x|{z}L

l=1)
)
−KL

(
qϕ({z}L

l=1|x)
∥∥ pθ({z}L

l=1)
)

, (1)

with the first term corresponding to the reconstruction error.

Conjugacy adjustment. Under the above multi-layer setting, Sønderby et al. (2016) considers an infer-
ence model that recursively merges information from the “bottom-up” encoding and “top-down” decoding
steps. Concretely, in the case where each layer is specified by a Gaussian distribution, the original distribution
at layer l after encoding is given by qϕ(zl|zl−1) ∼ N (µq,l, σ2

q,l) and the distribution at the same layer after de-
coding is given by pθ(zl|zl+1) ∼ N (µp,l, σ2

p,l). The adjustment amounts to a precision-weighted combination
that combines information from the decoder distribution into the encoder one, that is, qϕ(zl|·) ∼ N

(
µ̃q,l, σ̃2

q,l

)
,

where µ̃q,l = (µq,lσ
−2
q,l +µp,lσ

−2
p,l )/(σ−2

q,l +σ−2
p,l ) and σ̃2

q,l = 1/(σ−2
q,l +σ−2

p,l ). This information-sharing mechanism
leads to richer latent representations and improved approximation of the log-likelihood function. A similar
objective is also considered in Burda et al. (2016) and operationalized through importance weighting.

Finally, it is worth noting that although it was not mentioned in the original paper (Sønderby et al., 2016),
the precision-weighted adjustment coincides precisely with the conjugate analysis of normally distributed
data in Bayesian statistics, where the prior distribution is also assumed to be Gaussian with known variance.
For this reason, we term such adjustment as the “conjugacy adjustment”, which will be used later in our
technical development.

3 The Proposed Framework

Given a collection of trajectories for the same set of p variables (nodes) from M dynamical systems (entities),
we are interested in estimating the Granger causal connections amongst the nodes in each system (i.e., entity-
level connections), as well as the common “backbone” connections amongst the nodes that are shared across
the entities (i.e., group-level connections).

To this end, we propose a two-layer VAE-based framework, wherein Granger-causal connections are treated
as latent variables, segmented into multiple layers, and they are learned jointly with the dynamics of the
trajectories. In Section 3.1, we present the posited generative process that is suitable for the modeling task of
interest, and give an overview of the proposed VAE-based formulation; the details of the components involved
and their exact modeling considerations are discussed in Section 3.2. Section 3.3 provides a summary of the
end-to-end training process and the inference tasks that can be performed based on the trained model.

The generalization of the proposed framework to the case of multiple levels of grouping across entities is
deferred to Appendix C, where the grand common and the group common structures can be simultaneously
learned with those of the entities.

3.1 An overview of the formulation

Consider a setting where there are M entities, each of them having the same set of p nodes, that evolve as a
dynamical system. Let x

[m]
i,t denote the value of node i of entity m ∈ {1, · · · , M} at time t. It can be either

scalar or vector-valued, with scalar node values being prevalent in traditional time-series settings; in the latter
case, it can correspond to the values of node features (e.g., Kipf et al., 2018). Let x[m]

t := (x[m]
1,t , · · · , x

[m]
p,t ) be

the collection of node values at time t for entity m, and x[m] := {x[m]
1 , · · · , x[m]

T } the corresponding trajectory
over time. Further, let z[m] ∈ Rp×p denote the Granger-causal connection matrix of entity m, whose (i, j)

4



Under review as submission to TMLR

entry z
[m]
ij corresponds to the impact of the jth node on the ith and is a scalar; z̄ := [z̄ij ] ∈ Rp×p denotes

the common structure embedded in z[1], · · · , z[M ], and note that it does not necessarily correspond to the
arithmetic mean of the z[m]’s. In the remainder of this paper, we may refer to these matrices as “graphs”
interchangeably.

The posited generative process, whose true parameters are denoted by θ⋆, is given by:

pθ⋆

(
{x[m]}M

m=1, {z[m]}M
m=1, z̄

)
= pθ⋆

(
{x[m]}M

m=1|{z[m]}M
m=1

)
· pθ⋆

(
{z[m]}M

m=1|z̄
)
· pθ⋆(z̄)

=
∏M

m=1
pθ⋆(x[m]|z[m])

∏M

m=1
pθ⋆(z[m]|z̄)

∏
1≤i,j≤p

pθ⋆(z̄ij).
(2)

z̄

z[1] z[2] z[M−1]z[M ]

x[1] x[2] x[M−1]x[M ]

pθ⋆ (z[m]|z̄)

pθ⋆ (x[m]|z[m])

Figure 1: Diagram for the postulated top-down gen-
erative process.

The decomposition is based on the following underlying assump-
tions (see also Figure 1 for a pictorial illustration):

• conditional on the entity-specific graphs z[m], their tra-
jectories x[m]’s are independent of the grand common z̄,
and they are conditionally independent from each other
given their respective entity-specific graphs z[m]’s

• the entity-specific graphs z[m] are conditionally indepen-
dent given the common graph z̄

• the prior distribution pθ⋆(z̄) factorizes over the edges.

The proposed model creates a hierarchy between the common
graph and the entity-specific ones, which in turn naturally pro-
vides a coupling mechanism amongst the latter. The grand common structure can be estimated as one learns
all the latent components jointly with the dynamics of the system through a VAE. Let X := {x[1], · · · , x[m]},
Z := {z̄, z[1], · · · , z[m]}, qϕ(Z|X ) denote the encoder, pθ(X|Z) the decoder and pθ(Z) the prior distribution.
Then, the ELBO is given by

Eqϕ(Z|X )

(
log pθ(X|Z)

)
−KL

(
qϕ(Z|X )

∥∥ pθ(Z)
)

,

and serves as the objective function for the end-to-end encoding-decoding procedure as depicted in Figure 2.

{x[m]} {z[m]}|{x[m]}

sampled z̄

pθ(z̄)

{z[m]} | ·{x̂[m]}

qϕ(z[m]|xm)
qϕ(z̄|{z̄m})

pθ({z[m]}|z̄)
pθ({x[m]}|{z[m]})

(merge info)

(merge info)

(observed)

encoding

decoding

(reconstructed)

(prior)

Figure 2: Diagram for the end-to-end encoding-decoding procedure. Solid paths with arrows denote modeling the corresponding
distributions during the encoding/decoding process; dashed paths with arrows correspond to information merging based on (weighted)
conjugacy adjustment. Quantities obtained after each step are given inside the circles/rectangles. {x[m]} is short for the collection
{x[m]}M

m=1; {z[m]} is analogously defined.

Remark 1 (on the proposed formulation). (1) Depending on the modeling scenario, the entity-level Granger-
causal connections z[m] can either be continuous with values reflecting the strength of the relationships, or
binary thus indicating presence/absence of connections. Encoder/decoder distributions can then be selected
accordingly. In particular, distributions that form conjugate pairs (e.g., Gaussian-Gaussian for the continuous
case and Beta-Bernoulli for the binary case) can facilitate computations. (2) The proposed framework
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naturally allows estimation of positive/negative connections in a principled way without resorting to ad-hoc
aggregation schemes. It also enables incorporation of external information pertaining to the presence/absence
of connections through the decoder. (3) In settings where a large collection of entities is available, but each
entity has limited sample size, the joint learning framework can be advantageous over an individual entity
learning one.

3.2 Modeling details

Next, we provide details on the specification of the encoder and the decoder, the sampling steps, and the
loss function calculations for model (2).

3.2.1 Encoder

The goal of the encoder is to infer the latent graphs z̄ and Z := {z[1], · · · , z[M ]} based on the observed
trajectories X := {x[1], · · · , x[M ]}, m = 1, · · · , M .

Let ϕ denote the collection of parameters in the encoder qϕ(Z|X ). To delineate the dependency between the
trajectories and the graphs, the following assumptions are imposed:

• conditioning on {z[m]}M
m=1, z̄ is independent of {x[m]}M

m=1 and the conditional probability
qϕ

(
z̄|{z[m]}M

m=1
)

factorizes across edges (i, j);
• the entity-specific graphs are conditionally independent given their corresponding trajectories, i.e.,

qϕ

(
{z[m]}M

m=1|{x[m]}M
m=1

)
factorizes across entities.

These assumptions are in line with the structure of the model in (2), in that the conditional dependencies
posited in the generative model are respected during the “bottom-up” encoding process.

Consequently, the encoder can be decomposed into the following product components:

qϕ

(
Z

∣∣X )
= qϕ

(
z̄

∣∣ {z[m]}M
m=1

) M∏
m=1

qϕ

(
z[m]∣∣x[m]

)
=

∏
1≤i,j≤p

qϕ

(
z̄ij |{z[m]

ij }
M
m=1

) M∏
m=1

qϕ

(
z[m]∣∣x[m]

)
.

There are two types of terms in the above expression: qϕ(z[m]|x[m]) that infers each entity’s latent graph based
on its trajectory, and qϕ(z̄ij |{z[m]

ij }M
m=1) that obtains the grand common based on the entity-level graphs,

in an edge-wise manner. Note that for qϕ(z̄ij |{z[m]
ij }M

m=1), together with modeling pθ(z[m]
ij |z̄ij), resembles

prior-posterior calculations in Bayesian statistics using conjugate pairs of distributions; hence, depending on
the underlying structural assumptions (continuous or binary) on the z[m]’s, one can choose emission heads
(or equivalently, the output functional form) accordingly.

At the high level, the encoder can be abstracted into 3 modules, parameterized through fx→h, fh→z and
fz→z̄, respectively:

(enc-a) trajectory to hidden representation x[m] → h[m] := fx→h(x[m]);
(enc-b) hidden representation to the entity-specific graph: h[m] → z[m] := fh→z(h[m]);

(enc-c) entity-level graphs to the grand common (edge-wise): {z[m]
ij }M

m=1 → z̄ij := fz→z̄({z[m]
ij }M

m=1).

Modules (enc-a) and (enc-b) combined, model qϕ(z[m]|x[m]), while module (enc-c) models qϕ(z̄ij |{z[m]
ij }M

m=1).
On the other hand, given the above-mentioned conjugate pair consideration, the choices of fh→z and fz→z̄

are considered jointly.

Formally, for fx→h, we use a similar approach to that in Kipf et al. (2018), where fx→h entails message-passing
operations that are widely adopted in the literature related to graph neural networks (Scarselli et al., 2008;
Gilmer et al., 2017). At a high level, these operations entail “node2edge” (concatenating the representation
of the node stubs) and “edge2node” (aggregating the representation of incoming edges) iteratively and non-
linear functions (e.g., MLPs) in between (full details provided in Appendix A.1). The operation ultimately
leads to {h[m]

ij }, with h[m]
ij ∈ Rnhid being a nhid-dimensional hidden representation corresponding to z

[m]
ij .
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Once the h[m]
ij ’s are obtained, subsequent modeling in modules (enc-b) and (enc-c) can be generically repre-

sented as
z

[m]
ij |h

[m]
ij ∼ qz(· ; δ

[m]
q,ij), and z̄ij |{z[m]

ij } ∼ qz̄(· ; δ̄ij),

where qz(· ; δ
[m]
q,ij) is some distribution with parameter δ

[m]
q,ij := fh→z(h[m]

ij ) being the function output of fh→z.
Similarly, qz̄(· ; δ̄q,ij) is some distribution with parameter δ̄q,ij := fz→z̄({z[m]

ij }) being the function output of
fz→z̄. The exact choices for fh→z and fz→z̄ bifurcate depending on the scenario:

• Case 1, z[m]’s entries being continuous: in this case, we consider a Gaussian-Gaussian emission head
pair. Consequently, δ

[m]
q,ij = {µ[m]

q,ij , (σ[m])2
q,ij}, δ̄q,ij = {µ̄q,ij , σ̄2

q,ij};

qz ∼ N
(

µ
[m]
q,ij , (σ[m])2

q,ij

)
; µ

[m]
q,ij := f1

h→z(h[m]
ij ), (σ[m])2

q,ij := f2
h→z(h[m]

ij ); (3)

qz̄ ∼ N
(

µ̄q,ij , σ̄2
q,ij

)
; µ̄q,ij := f1

z→z̄({z[m]
ij }), σ̄2

q,ij := f2
z̄→z({z[m]

ij }). (4)

f1
h→z, f2

h→z are component functions of fh→z, each with an nhid-dimensional input and a scalar
output; they can be simple linear functions with f2

h→z having an additional softplus operation to
ensure positivity. Similarly, f1

z→z̄, f2
z→z̄ comprise fz→z̄, each with an m-dimensional input and a

scalar output; in practice their functional form can be as simple as taking the sample mean and
standard deviation, respectively.

• Case 2, z[m]’s entries being binary: in this case, we consider a Beta-Bernoulli emission head pair,
i.e.,

qz ∼ Ber
(

δ
[m]
q,ij

)
; δ

[m]
q,ij := fh→z(h[m]

ij ), (5)

qz̄ ∼ Beta
(

ᾱq,ij , β̄q,ij

)
; ᾱq,ij := f1

z→z̄({z[m]
ij }), β̄q,ij := f2

z→z̄({z[m]
ij }). (6)

The output of fh→z corresponds to the Bernoulli success probability and it is parameterized with
an MLP with the last layer performing sigmoid activation to ensure that the output lies in (0, 1).
f1

z→z̄ and f2
z→z̄ are component functions of fz→z̄. Similar to the Gaussian case, their choice need

not be complicated and is chosen based on moment-matching.

Note that the prior distribution pθ(z̄ij) is also selected according to the underlying scenario, with a standard
Normal distribution used in the continuous case and a Beta(1, 1) in the binary case. Once the distribution
parameters for z̄ij are obtained based on (4) or (6), we apply conjugacy adjustment to incorporate also the
information from the prior, before the sampling step takes place.

3.2.2 Decoder

The goal of the decoder pθ(X|Z) is to reconstruct the trajectories based on the entity and group level graphs,
and its components follow from the generative process described in (2), that is,

pθ(X|Z) = pθ

(
{x[m]}M

m=1|{z[m]}M
m=1

)
· pθ

(
{z[m]}M

m=1|z̄
)

=
∏M

m=1
pθ(x[m]|z[m])

∏M

m=1
pθ(z[m]|z̄),

where θ denotes the collections of parameters in the decoder. The two components pθ(z[m]|z̄) and
pθ(x[m]|z[m]), respectively capture the dependency between the entity-specific graphs z[m]’s and their grand
common z̄, and the evolution of the trajectories given z[m]. Consequently, the decoder can be broken into
two modules, parameterized through gz̄→z and gz→x:

(dec-a) pθ(z[m]|z̄), the grand common to entity-specific graphs z→ z[m] := gz̄→z(z̄), with gz̄→z(·) acting on
the sampled z̄ (edge-wise). Samples drawn from this distribution will be used to guide the evolution
of the trajectories of the corresponding entity;

(dec-b) pθ(x[m]|z[m]), graph to trajectory z[m] → xm; concretely,

pθ(x[m]|z[m]) = pθ(x[m]
1 |z[m])

∏T

t=2
pθ

(
x[m]

t |x[m]
t−1, ..., x[m]

1 , z[m]
)

,

7
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with pθ(x[m]
t |x[m]

t−1, ..., x[m]
1 , z[m]) modeled through gz→x(x[m]

t−1, · · · , x[m]
t−q, z[m]) assuming a fixed con-

text length of q (or q-lag dependency, equivalently).

We refer to these two modules as “common2entity” and “graph2trajectory”, respectively.

Common2Entity. We consider a weighted conjugacy adjustment that merges the information from the
encoder distribution into the decoder one, so that it contains both the grand common and the entity-specific
information. Concretely, for some pre-specified weight ω ∈ [0, 1],

• Case 1, in the continuous case, let pθ(z[m]
ij |z̄ij) ∼ N (µ[m]

p,ij , (σ[m])2
p,ij) with µ

[m]
p,ij := f1

z̄→z(z̄[m]
ij ) and

(σ[m])2
p,ij := g2

z̄→z(z̄[m]
ij ); g1

z̄→z, g2
z̄→z : R 7→ R are component functions of gz̄→z. This gives the “un-

adjusted” distribution that contains only the grand common information. With µ
[m]
q,ij and (σ[m])2

q,ij

obtained in (3), the weighted adjustment gives pθ(z[m]
ij |·) ∼ N

(
µ̃

[m]
p,ij , (σ̃[m])2

p,ij

)
, where

µ̃
[m]
p,ij :=

ωµ
[m]
q,ij(σ[m])−2

q,ij + (1 − ω)µ[m]
p,ij(σ[m])−2

p,ij

ω(σ[m])−2
q,ij + (1 − ω)(σ[m])−2

p,ij

, (σ̃[m])2
p,ij := 1

ω(σ[m])−2
q,ij + (1 − ω)(σ[m])−2

p,ij

. (7)

• Case 2, in the binary case, let pθ(z[m]
ij |z̄ij) ∼ Ber(δ[m]

p,ij), where δ
[m]
p,ij := gz̄→z(z̄ij). With δ

[m]
q,ij obtained

in (5), the weighted adjustment gives

pθ(z[m]
ij |·) ∼ Ber

(
δ̃

[m]
p,ij

)
; δ̃

[m]
p,ij = 1

ω/δ
[m]
q,ij + (1− ω)/δ

[m]
p,ij

. (8)

Similar to the function fz→z̄ in the encoder, here gz̄→z corresponds to fz→z̄’s “reverse-direction” counterpart
and its choice can be rather simple. Further, ω governs the mixing percentage of the entity-specific and the
common information: when ω = 1, the “tilde” parameters of the post-adjustment distribution effectively
collapse into the encoder ones (e.g., δ̃p,ij ≡ δ

[m]
q,ij and analogously for µ̃p,ij , σ̃2

p,ij); correspondingly, samples
drawn from pθ(z[m]

ij |·) essentially ignore the sampled z̄ and hence they can be viewed as entirely entity-
specific. At the other extreme, for ω = 0, the tilde parameters coincide with the unadjusted ones; therefore,
apart from the grand common information carried in the sampled z̄, no entity-specific one is passed onto
the sampled z[m]. By toggling ω between (0, 1), one effectively controls the level of heterogeneity and how
strongly the sampled entity-specific graphs deviate from the grand common one.

Graph2Trajectory. Module (dec-b) pertains to modeling the dynamics of the trajectory x[m] given
the sampled z[m]. Here, we focus on one-step Markovian dependency, i.e., q = 1 and thus
pθ(x[m]

t |x[m]
t−1, ..., x[m]

1 , z[m]) ≈ gz→x(x[m]
t−1, z[m]). The extension to longer lag dependencies (q > 1) can

be readily obtained by pre-processing the input accordingly, as discussed in Appendix A.2.

We consider the following parameterization of gz→x. At the high level, given that z
[m]
ij corresponds to the

Granger-causal connection from node j to node i, it should serve as a “gate” controlling the amount of
information that can be passed from x

[m]
j,t−1 to x

[m]
i,t . To this end, each response coordinate x

[m]
i,t is modeled

as follows:

u
[m],j
i,t−1 := x̌

[m]
j,t−1 ◦ z

[m]
ij (gating), u[m]

i,t−1 = {u
[m],1
i,t−1, · · · , u

[m],p
i,t−1}, and ǔ[m]

i,t−1 := MLP(u[m]
i,t−1); (9)

x
[m]
i,t ∼ N

(
µ

[m]
x,it, (σ[m])2

x,it

)
, where µ

[m]
x,it := Linear(ǔ[m]

i,t−1), (σ[m])2
x,it = Softplus

(
Linear(ǔ[m]

i,t−1)
)
. (10)

Note that in the gating operation in (9), we use x̌
[m]
j,t−1 to denote the output after some potential numerical

embedding step (e.g., Gorishniy et al. (2022)) of x
[m]
j,t−1; in the absence of such embedding, x̌

[m]
j,t−1 ≡ x

[m]
j,t−1.

Through the gating step1, x
[m]
j,t−1 exerts its impact on x

[m]
i,t entirely through u

[m],j
i,t−1. The continuous case and

the binary case z
[m]
ij can be treated in a unified manner: in the former case, the value of z

[m]
ij corresponds to

1Note that z
[m]
ij is a scalar and is applied to all coordinates of x̌

[m]
j,t−1 in the case the latter is a vector.

8
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the strength; in the latter case, it performs masking. Subsequently, u[m]
i,t−1 collects the u

[m],j
i,t−1’s of all nodes

j = 1, · · · , p, and serves as the predictor for x
[m]
i,t . Finally, if one simply sums all u

[m],j
i,t−1’s to obtain the mean

of x
[m]
i,t , then it effectively coincides with the operation in a linear VAR system, with z

[m]
ij corresponding

precisely to the entries in the transition matrix.
Remark 2. The above-mentioned choice of gz→x can be viewed as a “node-centric” one, wherein entries z

[m]
ij

control the information passing directly through the nodes. As an alternative, one can consider an “edge-
centric” one, which leverages the idea of message-passing in GNNs and entails “node2edge” and “edge2node”
operations. This resembles the technology adopted in Kipf et al. (2018); Löwe et al. (2022) that consider
primarily having graph entries corresponding to categorical edge types, which, after some adaptation, can
be used to handle the numerical case. In practice, we observe that the edge-centric graph2trajectory decoder
can lead to instability for time series signals2. A more detailed comparison can be found in Appendix A.2,
where additional illustrations are provided for the two.

3.2.3 Sampling

Given the stochastic nature of the sampled quantities, drawing samples from the encoded/decoded distri-
butions requires special handling to enable the gradient to back propagate. Depending on whether entries
of z[m] are continuous or binary, there are three possible types of distributions involved; for notational
simplicity, here we use z to represent generically the random variable under consideration.

• Normal z ∼ N (µ, σ2). In this case, the “standard” reparameterization trick (Kingma & Welling,
2014) can be used, that is, z = µ + σ ◦ ϵ, ϵ ∼ N (0, 1).

• Bernoulli z ∼ Ber(δ). In this case, the discrete distribution is approximated by its continuous
relaxation Maddison et al. (2017). Concretely, z = softmax((log(π) + ϵ)/τ) where ϵ ∈ R2 whose
coordinates are i.i.d. samples from Gumbel(0, 1), π = (1 − δ, δ) is the binary class probability and
τ is the temperature.

• Beta z ∼ Beta(α, β). In this case, implicit reparameterization of the gradients (Figurnov et al., 2018)
is leveraged and the construction of the reparameterized samples becomes much more involved. We
refer interested readers to Figurnov et al. (2018); Jankowiak & Obermeyer (2018) for an in-depth
discussion on how parameterized random variables can be obtained and become differentiable.

3.2.4 Loss Function

The loss function is given by the negative ELBO, that is,3

−Eqϕ(Z|X )

(
log pθ(X|Z)

)
+ KL

(
qϕ(Z|X )

∥∥ pθ(Z)
)

=: reconstruction error + KL;

the first term corresponds to the reconstruction error that measures the deviation between the original
trajectories and the reconstructed ones, while the KL term measures the “consistency” between the encoded
and the decoded distributions, and can be viewed as a type of regularization.

Let µ
[m]
x,t := (µ[m]

x,1t, · · · , µ
[m]
x,pt)⊤ and Σx[m]

t
:= diag((σ[m])2

x,1t, · · · , (σ[m])2
x,pt)⊤ with the components defined

in (10). The reconstruction error is the negative Gaussian log-likelihood loss given by

M∑
m=1

( T∑
t=2

(
x[m]

t − µ
[m]
x,t

)⊤Σ−1
x[m]

t

(
x[m]

t − µ
[m]
x,t

)
+ log |Σx[m]

t
|
)

. (11)

The KL term can be simplified after some algebra to (see Appendix A.3 calculation):

Eqϕ(Z|X )

[
KL

(
qϕ(z̄|{z[m]})

∥∥ pθ(z̄)
)]

+ Eqϕ(Z|X )

[
KL

(
qϕ({z[m]}|{x[m]})

∥∥ pθ({z[m]}|z̄)
)]

; (12)

2to contrast with the physical system (e.g., Springs) considered in the experiments of Kipf et al. (2018).
3Recall that X :={x[m]; m = 1, · · · , M} and Z := {z̄, z[m]; m = 1, · · · , M}.
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both terms can be viewed as “consistency matching” terms that measure the divergence between the distribu-
tions obtained in the encoder pass and that from the decoder pass. Finally, note that in the implementation,
the quantities involved are replaced by their conjugacy adjusted counterparts wherever applicable, and this
is similar to the treatment in Sønderby et al. (2016).

3.3 Training and Inference

The functions in the encoder (fx→h, fh→z and fz→z̄) and those in the decoder (gz̄→z and gz→x) are shared
across all entities m = 1, · · · , M , and thus the model is trained based on the “pooled” data of all entities,
while keeping track of the entity id that each data block is associated with. The steps involved in the
end-to-end training under the proposed framework are summarized in Exhibit 1.

Exhibit 1: Outline of steps for training under the two-layer VAE-based framework
Input: observed trajectories {x[1], · · · , x[M ]}, hyperparameters
– Forward pass, encoder: {x[m]} → {z[m]} → z̄

0. m = {1, · · · , M}: obtain the encoded distribution for entity-specific graphs qϕ(z[m]|x[m]);
1. m = {1, · · · , M}: sample z[m] from qϕ(z[m]|x[m]);
2. based on {z[m]}M

m=1, obtain the encoded distribution for the common graph qϕ(z̄|{z[m]});
– Forward pass, decoder: z̄ → {z[m]} → {xm}

3. merge prior info pθ(z̄) into qϕ(z̄|{z[m]}) then sample z̄;
4. m = {1, · · · , M}: obtain the decoded distribution for entity-specific graphs pθ(z[m]|z̄);
5. m = {1, · · · , M}: merge entity-specific encoded info qϕ(z[m]|x[m]) into pθ(z[m]|z̄), then sample (z[m]| ·);
6. m = {1, · · · , M}: using z[m] and the lag info x[m]

t−1, decode to get x̂[m]
t ; t = 2, · · · , T .

– Loss calculation
7. calculate the EBLO loss by summing up (11) and (12);

– Backward pass: update neural network parameters based on gradients (back-propagation)
Output: Trained encoder and decoder

Several pertinent remarks follow. (1) The data typically consist of “long” trajectories that contain all the
available observations (time points); one needs to partition them to “short” ones of length T (that are
typically between 20-50), which constitute the samples used in model training. (2) In the case where one
has external information regarding presence or absence of edges in the z[m]’s, it can be incorporated by
enforcing the corresponding entries to zero after the former are sampled in Step 5. (3) Once the encoder
(inference model) and the decoder (generative model) are trained, the latent graphs can be obtained by
applying the trained encoder on the trajectories. For entity-specific graphs z[m]’s, the inference model gives
the encoded distribution qϕ(z[m]|x[m])’s. In practice, the graph of interest is extracted by calculating the
“mode” of the distribution; the grand common graph z̄ can be analogously handled. It is worth noting that
for continuous z[m]’s, the proposed framework naturally provides signed estimates and thus positive/negative
Granger causal connections can be readily differentiated. (4) The trained decoder can be utilized to quantify
also the predictive strength of the Granger-causal connection, as discussed in Appendix A.4.

4 Synthetic Data Experiments

We evaluate the performance of the proposed framework, together with benchmarking methods on several
synthetic data settings. For all experiments, we start from a common graph that corresponds to z̄, add
perturbations to it for individual entities to produce heterogeneous Granger-causal connections (i.e., the
z[m]’s), then simulate trajectories {x[m]} corresponding to each entity based on their respective z[m]’s and
the specified dynamics. The estimated entity-specific and grand common graphs are then evaluated against
the underlying truth, for both the proposed and competing methods.
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Supervised type competitors4 include NGC (Tank et al., 2021), GVAR (Marcinkevičs & Vogt, 2021) and TCDF
(Nauta et al., 2019), and a regularized linear VAR model based estimator (Linear; e.g., Basu & Michailidis
(2015)). For generative model-based ones, we consider variations of Löwe et al. (2022). Note that the
original paper and the accompanying code implementation only handles the case where each entry in the
latent graph is a categorical variable denoting the “edge type”. Consequently, we adapt the method and make
necessary modifications to the code, so that it can handle numerical values5. Besides using the edge-centric
graph2trajectory decoder adopted in Kipf et al. (2018); Löwe et al. (2022), we also consider another variant
based on the proposed node-centric one. These two benchmarks are referred to as One-Edge and One-Node.
Note that none of the above-mentioned methods readily handles the multi-entity setting where all graphs are
estimated jointly; hence, for comparison purposes, the estimated grand common graph for the competitors
is simply obtained by averaging the estimated entity ones.

4.1 Data generating mechanisms

The data generating mechanisms used are based on: (1) a linear VAR, (2) a non-linear VAR, and (3) multi-
species Lotka-Volterra systems. Two additional mechanisms corresponding to the Lorenz96 and the Springs
systems are also considered; their description and results are presented in Appendix B. Consistent with
extant notation, p denotes the number of nodes and M the number of entities.

Figure 3: linear VAR: Ā and A[1]; red:(+); blue:(−).

Linear VAR. The dynamics of a linear VAR(1) model are
determined by xt = Axt−1 + εt, xt ∈ Rp, wherein A ∈ Rp×p

is the transition matrix and coincides with the Granger-causal
graph; for notational convenience, let Ā := z̄ denote the grand
common and A[m] := z[m] the entity-specific graphs. For this
mechanism, we set p = 30 and M = 20, while the noise term et

has i.i.d entries drawn from a standard Gaussian distribution.

We first discuss generation of Ā, whose skeleton SĀ (i.e., sup-
port set) is determined by independent draws from Ber(0.1);
nonzero entries are first drawn from Unif(−2,−1)∪ (1, 2), then
scaled so that the spectral radius (i.e., the maximum in absolute value eigenvalue) of Ā is 0.5. Next, we
generate perturbations of Ā by “relocating” 10% of the entries (denote their index set by Sptrb) in SĀ to
random locations in the non-support set Sc

Ā
. This step generates the corresponding A[m]’s. Note that the

perturbation mechanism ensures that Sptrb ⊂ SĀ. Further, the positions of the 10% of entries selected at
random remain fixed for all M entities, and only the “new” locations are randomly selected and hence differ
across the entities, thus inducing heterogeneity across the A[m]’s. As a result of the perturbation, entries in
Sptrb are essentially “flipped” to zero and therefore the final grand common graph changes accordingly; see
also Figure 3.6

Figure 4: non-linear VAR: z̄ and z[1], showing only the
skeleton.

Non-linear VAR. For this mechanism, we set p = 20 and
M = 10. We first describe how z̄ and z[m] are generated, as
they dictate the connections and determine how the dynamics
are specified. First, let z̄(0) be the “initial” common graph, set
to a banded matrix that has non-zero entries on the diagonal
and the adjacent upper and lower diagonals. Next, we perturb
z̄(0) as follows: for all rows not divisible by 3 (e.g., rows, 1,
2, 4, etc.), the two off-diagonal entries are relocated to other
positions at random within the same row. This is repeated for

4The selection of these competitors is based on the results reported in Marcinkevičs & Vogt (2021). Specifically, we picked
the ones that were demonstrated to be competitive. The code implementations for these competitors (except for the regularized
Linear VAR) are directly taken from the repositories accompanying the papers.

5see Appendix A.2 for how the adaptation can be conducted.
6For illustration purposes, we show the grand-common and the entity-specific (using Entity 1 as an example) Granger-causal

connection matrices. In the entity-specific one, nonzero entries that overlap with those in the common structure is grayed out
for more distinctive visual on the idiosyncratic connections.
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all m’s to generate z[m]’s. The perturbation creates a zigzag
pattern for the final z̄, since whenever a perturbation is present, the original off-diagonal entries on the ±1
band are guaranteed to get flipped to zero – see Figure 4 for an illustration6. Within any entity m, response
nodes indexed by i = 2, · · · , p − 1 have 3 parents; denote their indices by k1

i < k2
i < k3

i with subscript i
corresponding to the response node id and superscript the parent id, and k2

i ≡ i by construction.

The trajectories are generated as follows. For i = 2, · · · , p− 1, let xi,t = 0.25xi,t−1 + sin(xk1
i

,t−1 · xk3
i

,t−1) +
cos(xk1

i
,t−1 + xk3

i
,t−1) + εi,t, εi,t ∼ N (0, 0.25). For the first node i and the last node p, their dynamics are

slightly different given that they only have one “neighbor”7. The choice of such dynamics (in particular,
using sine/cosine functions) is somewhat ad-hoc, but aim to induce non-linearities, while ensuring that the
system is stable given that these functions are unformly bounded. Finally, note that we omit the superscript
[m] that indexes the entities, as the dynamic specification applies to the dynamical systems of all entities;
the parent set for each response node i of entity m is dictated by row i of z[m].

Figure 5: Lokta-Volterra: z̄ and z[1], showing the
signed skeleton. Red:(+), blue:(−).

Multi-species Lotka-Volterra system. It comprises of
coupled ordinary different equations (ODE) that model the
population dynamics of multiple predators and preys based
on their interactions, specified by the corresponding Granger
causal graphs. We consider p = 20 and M = 10. The p nodes
are separated equally into preys and predators (i.e., p

2 preys
and predators each). Let xt := (u⊤

t , v⊤
t )⊤ with ut ∈ Rp/2 and

vt ∈ Rp/2 denoting the population size of the preys and the
predators at time t, respectively; ui := {ui,t} corresponds to
the continuous-time trajectory for the ith coordinate and vj

is analogously defined. The dynamics for each coordinate are
specified through the following ODE system:

dui

dt
= αui − βui(

∑
j∈Pi

vj)− α(ui/η)2; dvj

dt
= δvj(

∑
i∈Pj

ui)− γvj . (13)

The parameters are set to α = 1.1, β = 0.2, γ = 1.1, δ = 0.2 and η = 200. Once again, we omit superscript
[m] as this specification applies to all m = 1, · · · , M . The heterogeneity at the entity level is contingent on
their graphs z[m]’s that dictate the coupling mechanism; in particular, Pi and Pj are the parent set of nodes
i and j, and are respectively dictated by the support set of the ith and jth rows of the corresponding z[m].
The generation mechanism of z̄ and z[m] are described next. The common graph z̄ is generated identically
to the one considered in Marcinkevičs & Vogt (2021), where the 20 nodes can be separated into 5 decoupled
systems, each containing 2 predators and 2 preys. We add random perturbations to z̄ to arrive at the
z[m]’s, by adding additional entries. These additional entries in the upper right/lower left blocks need to be
symmetric w.r.t. the diagonal so that the predator-prey correspondence is respected, and they also provide
coupling across the originally decoupled 5× 4 systems – see also Figure 5 for an illustration.6

4.2 Performance evaluation

For all settings, we consider sample sizes of 10K. We run 5 data replicates and report the mean and standard
deviation of the AUROC and AUPRC metrics for the competing methods considered. Given that the
underlying true Granger-causal graphs in the examined settings are sparse, we also report the best attainable
F1 score for each method after thresholding the entries of the group and entity-specific graphs. Results for
two other experimental settings, –the Lorenz96 and the Springs systems–, are presented in Appendix B.1.
Additional metrics such as true positive rate (TPR), true negative rate (TNR) and accuracy (ACC) based on
different thresholding levels are deferred to Appendix B.2, together with visual illustrations of the estimates
obtained by good performing competitors.

7For i = 1, the dynamics is given by x1,t = 0.4x1,t−1 − 0.5x2,t−1 + ε1,t; for i = p, the dynamics is given by xp,t =
0.4xp,t−1 − 0.5xp−1,t−1 + εp,t

12



Under review as submission to TMLR

Table 1 displays the results for all methods. The proposed framework is referred to as Multi-node and
Multi-edge, corresponding to the multi-entity joint learning approaches using the node- and edge-centric
decoders, respectively; a visualization of the estimated z̄ and z[1] for illustration purposes is provided in
Figure 6 for the former.

Table 1: Performance evaluation for the estimated z̄ and z[m]’s: “common” corresponds to z̄ and “entity(avg)” the z[m]’s after averaging
the performance metric across m = 1, · · · , M . Numbers are in % and rounded to integers, and correspond to the mean results based
on 5 data replicates; standard deviations are reported in the parenthesis.

Generative model-based Supervised model-based

Multi-node Multi-edge One-node One-edge NGC-cMLP GVAR TCDF Linear

Linear VAR

common AUROC 100(0.0) 100(0.0) 95(6.6) 98(4.8) 100(0.4) 100(0.0) 79(2.0) 100(0.0)
AUPRC 100(0.0) 100(0.0) 83(20.4) 91(15.9) 99(1.3) 100(0.0) 50(7.6) 100(0.0)
F1(best) 100(0.0) 100(0.0) 81(17.4) 88(15.9) 96(3.5) 100(0.0) 52(5.1) 100(0.0)

entity AUROC 100(0.1) 99(0.6) 100(0.1) 100(0.1) 96(1.8) 100(0.0) 77(1.4) 100(0.0)
(avg) AUPRC 99(0.3) 95(2.4) 99(0.2) 98(0.4) 86(4.4) 99(0.1) 36(5.5) 100(0.0)

F1(best) 97(0.8) 90(3.5) 96(0.6) 95(1.0) 79(4.7) 99(0.4) 44(3.4) 100(0.0)

Non-linear VAR

common AUROC 99(0.2) 82(1.7) 97(0.2) 93(0.8) 90(0.7) 99(0.1) 75(1.0) 99(0.1)
AUPRC 96(0.9) 58(1.1) 80(0.8) 80(8.0) 64(1.1) 98(0.2) 53(0.5) 98(0.1)
F1(best) 94(0.6) 60(0.7) 74(1.0) 83(6.9) 61(0.9) 98(0.7) 56(1.2) 98(0.7)

entity AUROC 98(0.3) 85(0.9) 94(0.4) 95(0.5) 94(0.5) 99(0.3) 73(0.9) 96(0.7)
(avg) AUPRC 93(1.0) 75(0.8) 76(0.2) 89(0.6) 87(0.6) 96(0.6) 44(1.8) 96(0.7)

F1(best) 86(1.5) 73(1.0) 70(0.3) 86(0.8) 82(0.4) 91(0.8) 50(1.5) 97(0.6)

Lotka-Volterra

common AUROC 100(0.0) 100(0.0) 97(1.1) 87(8.4) 100(0.0) 100(0.0) 79(0.8) 100(0.1)
AUPRC 100(0.0) 100(0.1) 92(3.0) 73(10.5) 100(0.0) 100(0.0) 58(1.2) 100(0.4)
F1(best) 100(0.7) 99(0.8) 87(5.4) 69(9.0) 100(0.4) 97(1.2) 53(1.4) 94(3.5)

entity AUROC 89(1.0) 84(1.3) 83(1.6) 75(1.3) 92(1.0) 93(0.6) 72(0.8) 77(1.0)
(avg) AUPRC 80(1.5) 70(2.0) 69(1.8) 51(2.6) 87(1.2) 89(1.0) 41(1.0) 71(1.2)

F1(best) 74(1.4) 65(2.0) 63(1.4) 53(2.2) 84(0.8) 84(0.7) 46(0.3) 71(0.7)

(a) Linear VAR (b) Non-linear VAR (c) Lotka-Volterra

Figure 6: Estimated Granger-causal connections using the proposed framework with node-centric decoder (Multi-node). Top row shows
the estimated z̄ and bottom row shows the estimated z[1] (as an example). Nonzero entries in ẑ[1] that overlap with those in ˆ̄z have
been grayed-out so that the idiosyncratic ones stands out. This is based on the same data seed as the ones shown in Figures 3,4,5.

The main findings are as follows: (1) the proposed joint-learning approach clearly outperforms its individual
learning counterpart (e.g., Multi-node vs. One-node), both at the entity level and the group level (i.e., the
common graph). The performance is overall on-par with GVAR, which is the strongest overall competitor.
(2) The node-centric decoder consistently outperforms its edge-centric counterpart (e.g., Multi-node vs.
Multi-edge). (3) If one focuses only on individual learning methods, the ones based on supervised models
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tend to exhibit superior performance (e.g., GVAR/NGC vs. One-node). In addition, despite the presence of
non-linear dynamics, the regularized linear VAR model exhibits surprisingly good performance, especially for
the common structure. (4) For practical purposes, post-hoc averaging of the entity-specific Granger causal
graphs is reasonably effective for extracting the common structure.

Finally, we remark that despite that GVAR exhibits strong performance (as measured primarily by AUROC
in Table 1) amongst the methods under consideration, it is observed during evaluation time that given
the magnitude of the estimated entries, the quality of the graph skeleton is sensitive to the exact choice
of the thresholding level, whereas the proposed framework is more robust. This has implications on the
difficulty of choosing a good threshold in practice — see also Table 4 and additional discussion and remarks
in Appendix B.2.

5 Application to a Multi-Subject EEG Dataset

The dataset in consideration corresponds to electroencephalogram (EEG) measurements obtained from 72
active electrodes placed on the scalp of 22 subjects (entities), and they are publicly available; see Trujillo
et al. (2017). Prior investigation on this dataset primarily centers around understanding the information
provided by different connectivity measures that are available in the literature, rather than the connectivity
patterns themselves.

The EEG experiment pertains to a stimulus procedure performed on the subjects comprising of 1-min
interleaved sessions with eyes open (EO) or closed (EC). Such experiments aim to provide insights into the
brain’s functional segregation and integration (Barry et al., 2007; Rubinov & Sporns, 2010; Miraglia et al.,
2016). Note that the experiment is integrated, but the data are collated separately for the eyes-open and
the eyes-closed interleaving sessions, which results in two data sets (EO and EC, respectively); they are then
analyzed separately using the joint-learning model (multi-node). Further, note that due to the design of the
experiment, the dynamics governing the data within the EO sessions (respectively, EC sessions) are stable
and stay largely unchanged.

We select to analyze the data from 31 specific EEG channels (and hence p = 31) located at the back of
the scalp (see Figure 7), where the primary visual cortex is located. For both datasets, we restrict the
analysis to entities that have at least 40000 observations (total number of time points)8, and the whole
trajectory is further partitioned into training/validation data, with the latter having 2000 time points. Here
the validation data is used to select the best hyperparameters such that the reconstruction error is minimum
over the search grid.

(a) Eyes Open (EO) (b) Eyes Closed (EC)

Figure 7: Estimated common Granger-causal connections for EO (left panel) and EC (right panel) after normalization and subsequent
thresholding at 0.15. Red edges correspond to positive connections and blue edges correspond to negative ones; the transparency of
the edges is proportional to the strength of the connection. Larger node sizes correspond to higher connectivity levels (incoming), and
the top 5 nodes are colored in gray.

The estimated common Granger-causal connections are depicted in Figure 7, and the patterns resonate with
findings in the literature based on previous EEG studies on similar experiments: (1) the overall Granger

8this restriction has reduced the number of entities to 21 for the EO dataset while the number of entities for the EC dataset
remains at 22.
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causal connectivity is markedly higher for the EC session compared to the EO session; see also Barry et al.
(2007); Marx et al. (2004); Das et al. (2016); Trujillo et al. (2017), albeit using different connectivity measures.
(2) The OZ channel exhibits different connections for the EO and the EC sessions; in particular, it is Granger
causal (i.e., being the emitter of edges) for many other channels in the former and becomes significantly less
so in the latter; see also Hatton et al. (2023).

Finally, an interesting finding that merits further investigation is that the highly connected nodes (shaded
in gray) are located in the center and on the right side of the scalp in the EO sessions, whereas those in EC
are more symmetrically distributed across the two sides.

6 Discussion

This paper proposes a multi-layer VAE-based framework for jointly estimating the group and entity-level
Granger-causal graphs, in the presence of connectivity heterogeneity across entities. The framework is based
on a hierarchical generative structure that couples the group and entity-specific graphs. The model is learned
via an end-to-end encoding-decoding procedure that minimizes the ELBO loss. The joint learning paradigm
has a clear advantage over its “individual learning” generative model-based counterpart, which then leads
to more accurate quantification for both the common connectivity patterns and the idiosyncratic ones. This
advantage becomes more pronounced in settings where one has limited sample size and large collections of
related systems. In addition, the joint learning paradigm can be useful in situations, where one may be
interested in detecting “outlier” dynamical systems in the collection under consideration, or in identifying
clusters of such systems. These tasks can be accomplished by close examination and analysis of the entity
specific graphs.

Although “supervised models plus post-hoc aggregation” heuristics can sometimes exhibit competitive per-
formance, the embedded common structure across entities is completely neglected at the formulation level.
In addition, existing models within this framework are also limited to scalar-valued nodes, partly due to
their reliance on performing ad-hoc extraction/aggregation on intermediate quantities (e.g., neural network
weight matrices during training) to infer the Granger causality.

In the presence of non-linearity, a key advantage of generative model-based approaches is that the Granger-
causal relationships are solely encoded through the latent graph that serves as the gateway for information
propagation. This provides a clean way to model relationships between connectivity patterns — either stat-
ically or dynamically. The setting considered in this work is a static one, and the type of such relationship
manifests as a common-idiosyncratic one. A potential extension to the generative process under consid-
eration, suitable for more complex real-world dynamical systems, is to allow for time-varying connectivity
patterns. For example, Graber & Schwing (2020) extends the work in Kipf et al. (2018) to a dynamic setting.
With appropriate modifications to the proposed approach, such as expanding the conditional relationship of
the graphs dictated in (2) so that they also depend on their past, this modeling task can be handled in a
straightforward manner.

Code and Data Availability

The code repository for this work, including the PyTorch implementation of the proposed joint-learning
framework, its individual learning counterpart as well as the code and configuration files for synthetic data
generation/experiments will be made publicly available at official publication time. The real dataset being
analyzed is available at https://dataverse.tdl.org/dataverse/rsed2017, as provided by Trujillo et al.
(2017).
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A Additional modeling details

In this section, we provide a description for some additional modeling details. In Sections A.1 and A.2, we
omit superscript [m] that indexes the entities whenever there is no ambiguity, as the descriptions therein
apply to all m’s independently unless otherwise specified.

A.1 Encoder

We provide details for the encoder sub-module that is abstracted as fx→h, wherein based on the node
trajectories, one obtains the hidden representations for the edges {hij} := fx→h(x); see also Section 3.2,
module (enc-a).

As the most basic building blocks of message-passing operations, “node2edge” and “edge2node” operate
based off a complete graph, and can be generically represented as:

eij ← concat(xi, xj) (node2edge); xi ←
∑

j
eij (edge2node),

with xi denoting the node representation and eij the edge one. fx→h is then parameterized through the L
passes of such operations:

(init emb) : x̌(0)
i ← emb(xi), ∀i = 1, · · · , p

x̌→ e : e
(l)
ij ← MLP

(
node2edge(x̌(l−1)

i , x̌(l−1)
j )

)
; l = 1, · · · , L

e→ x̌ : x̌(l−1)
i ← MLP

(
edge2node(e(l)

ij ; j = 1, · · · , p)
)
; l = 2, · · · , L

Here xi corresponds to the trajectory of node i over time, that is, xi = (xi,1, · · · , xi,T ) and the final hidden
representation is given by hij := e

(L)
ij , i, j = 1, · · · , p.

Note that this is effectively the MLPEncoder used in Kipf et al. (2018) and the description is given here for
the sake of completeness. We refer interested readers to Kipf et al. (2018) for some other encoders considered
therein.

A.2 Decoder

We divide this subsection into 2 parts, that respectively (1) discuss how the structure adopted in a node-
centric Graph2trajectory module described in Section 3.2 can readily accommodate the presence of depen-
dence on more than 1 lags; and (2) provide a brief discussion on how the original edge-centric decoder
adopted in Kipf et al. (2018); Löwe et al. (2022) can be revised to adapt to the case of a numerical graph,
and compare it with the node-centric one, although architectural choices are not the focus of this paper.

Extension to multiple lag dependency. The extension of a node-centric decoder to accommodate the
presence of more than 1 lags (i.e., q > 1) is straightforward, largely due to the fact that the node value
at time t − 1, denoted by xj,t−1 is not limited to be scalar-valued in the first place. In the case of q-lag
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dependency, one can simply replace xj,t−1 by concat(xj,t−1, · · · , xj,t−q) and proceed with the remainder of
the operations as outlined in (9) and (10). In particular, with the presence of more lags, as an alternative
to a (optional) numerical embedding step, one can instead consider 1D-CNN as a preprocessing module on
the “new” xj,t−1, before an element-wise gate represented by zij is applied to control the information flow.

Adaptation of the edge-centric decoder. The original edge-centric decoder adopted in Kipf et al.
(2018) handles the case where each entry in zij corresponds to an edge type (categorical), and it entails the
following operations:

1. node2edge for each time step, that is eij,t−1 := concat(xi,t−1, xj,t−1) to arrive at the edge represen-
tation at time t− 1;

2. for each edge type of interest, run eij,t−1’s through its corresponding edge type-specific function
(e.g., MLP) to get the “enriched” representation ěij,t−1;

3. aggregate the enriched edge representations back to nodes via an edge2node operation, giving rise
to vi,t−1’s, i = 1, · · · , p; vi,t−1 then serves as the predictor for time-t response xi,t.

In order for the above module to accommodate the case of a numeric zij , the following simple modification
to step 2 is introduced:

2’ run eij,t−1’s through some function (e.g., MLP) to get the “enriched” representation ěij,t−1, and
further update it through a gating mechanism as dictated by zij , that is, ěij,t−1 ← ěij,t−1 ◦ zij .

The information propagation path from node j to i can be represented as:

xj,t−1
node2edge→ eij,t−1

MLP→ ěij,t−1
gating→ ěij,t−1 ◦ zij

edge2node→ vi,t−1 → xi,t;

one can easily verify that for zij = 0, there is no path from xj,t−1 to xi,t.

As a final remark, to contrast it with the node-centric decoder where the gating through zij directly operates
on the node representation, the path is given by

xj,t−1
emb→ x̌j,t−1

gating→ x̌j,t−1 ◦ zij
element of→ ui,t−1 → xi,t;

for the edge-centric decoder, entries in zij determine the lead-lag information passing from j → i via eij,t−1
and therefore is somewhat circumstantial.

A.3 Loss calculation

A derivation of (12) is given next.

KL
(

qϕ(Z|X )
∥∥ pθ(Z)

)
= Eqϕ(Z|X ) log

[
qϕ(Z|X )

pθ(Z)

]
= Eqϕ(Z|X )

[
log qϕ(z̄|{z[m]})

pθ(z̄) + log qϕ({z[m]}|{x[m]})
pθ({z[m]}|z̄)

]
=

∫∫
qϕ

(
z̄|{z[m]}

)
qϕ

(
{z[m]}|{x[m]}

)
log

[qϕ

(
z̄|{z[m]}

)
pθ

(
z̄
) ]

dz̄d{z[m]}

+
∫∫

qϕ

(
z̄|{z[m]}

)
qϕ

(
{z[m]}|{x[m]}

)
log

[qϕ

(
{z[m]}|{x[m]}

)
pθ

(
{z[m]}|z̄

) ]
dz̄d{z[m]}

=
∫

qϕ({z[m]}|{x[m]})
{ ∫

qϕ

(
z̄|{z[m]}

)
log

[qϕ

(
z̄|{z[m]}

)
pθ

(
z̄
) ]

dz̄
}

︸ ︷︷ ︸
KL

(
qϕ(z̄|{z[m]})

∥∥ pθ(z̄)

)
d{z[m]}

+
∫

qϕ

(
z̄|{z[m]}, {x[m]}

) { ∫
qϕ

(
{z[m]}|{x[m]}

)
log

[qϕ

(
{z[m]}|{x[m]}

)
pθ

(
{z[m]}|z̄

) ]
d{z[m]}

}
︸ ︷︷ ︸

KL

(
qϕ({z[m]}|{x[m]})

∥∥ pθ({z[m]}|z̄)

)
dz̄

(a)= Eqϕ({z[m]}|X )

[
KL

(
qϕ(z̄|{z[m]})

∥∥ pθ(z̄)
)]

+ Eqϕ(z̄|X )

[
KL

(
qϕ({z[m]}|{x[m]})

∥∥ pθ({z[m]}|z̄)
)]

.
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For (a), the first term is straightforward, the second term goes through since

∫
p(x|y, z)

{ ∫
p(y|z) log p(y|z)

q(y|x)dy
}

dx =
∫∫

p(y|z)p(x|y, z) log p(y|z)
q(y|x)dxdy

= EY |ZEX|Z,Y log p(y|z)
q(y|x) = EY |ZEX|Z log p(y|z)

q(y|x) = EX|Z

[
EY |Z log p(y|z)

q(y|x)

]
;

and the last equality holds as a result of the Fubini-Tonelli theorem.

A.4 Evaluating the predictive strength of Granger causal relationships

Next, we briefly discuss how the trained decoder can be used to measure the predictive strength of the
Granger causal connections.

Once the model is trained, using the inference procedure described in Section 3.3, one obtains estimates ẑ[m]

for all entity-specific graphs. Further, a trained Graph2Trajectory module, abstracted as ĝz→x, also becomes
available. The predictive strength of any connection entry (i, j) — corresponding to the lead-lag relationship
from j to i — can then be assessed by nullifying the corresponding entry. Throughout the remainder of the
discussion, we omit superscript [m] for ease of presentation, as the procedure is applicable to an arbitrary
entity of interest.

Let z̃(ij) be identical to ẑ except that the (i, j) entry is set to zero (nullified). The reconstructed trajectories,
based on the estimated and the nullified graphs are given by x̂ = ĝz→x(ẑ, x1)9 and x̃(ij) = ĝz→x(z̃(ij), x1),
respectively. The predictive strength can then be evaluated based on the difference in the residual-sum-
of-squares (RSS), with the latter obtained by evaluating the reconstructed trajectory against the observed
values. Concretely, RSS(x̂) can be obtained by 1

T −1
∑T

t=2 ∥xt − x̂t∥2 and that for x̃(ij) can be analogously
obtained; the predictive strength of the (i, j) connection can then be calculated as RSS(x̂)−RSS(x̃(ij)). This
procedure can be generalized to a set of connections, where instead of nullifying a single entry, multiple
entries are nullified simultaneously and the remainder of the evaluation follows. Note that the proposed
procedure resembles that of testing for the presence/absence of Granger causality in linear VAR models,
where an F-test is used (Geweke, 1984). The calculated difference RSS(x̂) − RSS(x̃(ij)) also appears in the
numerator of the aforementioned F-statistic.

B Additional Synthetic Data Experiments and Results

B.1 Lorenz96 and Springs5 experiments

To explore the applicability of the proposed framework to selected special cases, there are two other settings
considered in our synthetic data experiments: the Lorenz96 and the Springs5 systems. Unlike the settings
presented in the numerical experiments in Section 4 wherein the entity-level heterogeneity manifests itself
primarily in the form of perturbations to the skeleton of the shared common graph, for these two systems,
the entity-specific skeletons are either identical across all M entities and only the magnitude of the entries
changes (Lorenz96), or they manifest their heterogeneity through a probablistic mechanism (Springs), as
explained in the sequel.

Similar to those presented earlier, for both settings, we run the experiments on 5 data replicates and report
the metrics after averaging across the 5 runs, with their respective standard deviation included in the
parentheses.

9Recall that throughout the main sections, we use x := {x1, · · · , xT } to denote the trajectory; here x̂ is effectively its
“reconstructed” couterpart.
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B.1.1 The Lorenz96 system

The Lorenz96 system (Lorenz, 1996) has been previously investigated in Tank et al. (2021); Marcinkevičs &
Vogt (2021). The dynamics for a p-variable system evolve according to the following ODE:

dxi

dt
= (xi+1 − xi−2)xi−1 − xi + F, i = 1, · · · , p, (14)

Figure 8: Lorenz96: z̄ and z[0], showing only the skele-
ton.

where xi := {xi,t} denotes the continuous time trajectory of
node i with x0 := xp, x−1 := xp−1 and xp+1 := x1. Such a sys-
tem corresponds to a Granger-causal structure shown in Fig-
ure 8 that depicts its skeleton. The representation in (14) can
be obtained from Kerin & Engler (2022):

dxi

dt
= α(xi+1 − xi−2)xi−1 − βxi + γ, (15)

by reparameterizing α = β, λ = α/β and setting F = αγ/β2. F
is the forcing constant that controls the degree of non-linearity;
in particular, given the relationship between (14) and (15), as
F varies, the strength of the Granger-causality changes despite an invariant skeleton. In other words, to
induce heterogeneity across entities, we can only change the parameter F that induces heterogeneity in the
magnitudes of the Granger causal connections, while the skeleton of the Granger causal graph remains the
same. We consider a setting with p = 20 and M = 5 entities, with the forces taking the following values:
F ∈ {10.0, 17.5, 25.0, 32.5, 40.0}.

Table 2: Performance evaluation for the estimated z̄ and z[m]’s for setting Lorenz96. Numbers are in % and rounded to integers, and
correspond to the mean results based on 5 data replicates

Generative model-based Supervised model-based

Multi-node Multi-edge One-node One-edge NGC-cMLP GVAR TCDF Linear

common AUROC 100(0.1) 100(0.7) 100(0.1) 90(19.7) 97(0.0) 100(0.1) 82(0.9) 99(0.1)
AUPRC 100(0.4) 99(1.6) 100(0.3) 82(32.5) 87(0.1) 100(0.2) 65(0.9) 97(0.5)
F1(best) 97(1.5) 96(3.4) 97(1.3) 80(25.7) 87(0.8) 98(1.0) 59(1.3) 89(0.2)

entity AUROC 95(1.3) 85(3.7) 96(1.0) 88(1.9) 96(0.1) 97(0.8) 79(0.8) 99(0.1)
(avg) AUPRC 89(2.3) 76(4.6) 91(2.0) 78(2.9) 85(0.3) 90(1.5) 62(0.7) 96(0.3)

F1(best) 82(3.2) 71(3.5) 84(2.6) 72(3.1) 83(0.4) 83(0.2) 58(0.5) 88(0.3)

The results are shown in Table 2 and the main findings are: (1) consistent with the results in Section
4, the node-centric decoder outperforms the edge-centric one; (2) the proposed joint-learning approach
Multi-node matches the performance of the supervised GVAR and outperforms all other competitors for the
common graph; (3) for the entity-specific graphs, interestingly, the linear VAR exhibits a slight edge over
all competing methods, while the performance of the proposed model is broadly on-par with the remaining
competitors.

Finally, the common and the five entity-specific Granger causal graphs for the Multi-node method are
depicted in Figure 9. It can be seen that the performance deteriorates for systems with larger external force
F .

B.1.2 Springs5 System

This setting is investigated in Kipf et al. (2018); Löwe et al. (2022), and in this work we consider a “multi-
entity” version of it. In the original setting, particles (i.e., nodes) are connected (pairwise) by springs
at random with probability 0.5; in the case where the connection between particles i and j is present,
they interact according to Hooke’s law Fij = −k(ri − rj), where Fij is the force applied to particle i
by particle j, k is the spring constant and ri is the location vector of particle i in 2-dimensional space.
With some initial location and velocity, the trajectories can be simulated by solving Newton’s equations
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Figure 9: Estimated z̄ and z[m]’s with different F ’s using the proposed joint-learning framework with a node-centric decoder
(Multi-node).

of motion (see also Kipf et al. (2018), Appendix B for details). Crucially, (1) the Granger-causal graph is
essentially a realization of the homogeneous Erdős-Rényi graph (Erdős & Rényi, 1959) with edge probability
being 0.5, and (2) each node’s trajectory is multivariate with 4 dimensions, that is, xi,t ∈ Rd, d = 4; the
first 2 dimensions correspond to the velocity and the last 2 to the location in the 2-dimensional space.

Figure 10: Springs5: z̄ and z[0]. z[0] is binary
(and symmetric) with entries generated according to
Bernoulli distributions.

The extension to the “multi-entity” case that is suitable for
the setup considered in this paper is described next, and it
differs primarily from the original one in how the Granger-
causal connections across nodes are generated. Specifically, we
start from z̄, whose entries (i, j) in its upper-triangular part are
generated independently from Beta(1, 1); then set z̄ji ≡ z̄ij , i <

j so that it’s symmetric. For the z[m]’s, let z[m]
ij ∼ Ber(z̄ij), i <

j, and then set z[m]
ji ≡ z[m]

ij , ∀ m = 1, · · · , M . Once z[m]’s
are generated, they dictate the connections between nodes in
their respective systems, and one can proceed with the same
procedure as in the original setting to simulate the trajectories.
Note that (1) each entity’s Granger-causal graph corresponds
to a realization of a heterogeneous Erdős-Rényi graph; the edge probability differs across node pairs and
depends on the corresponding entry in z̄ that is a realization from the Beta distribution, and (2) the grand
common structure possesses a “probabilistic” interpretation, in that it effectively captures the expectation of
an edge being present/absent across all entities. In this experiment, we set p = 5 and M = 10.

None of the competitors based on the supervised learning models can readily handle this setting10, and
therefore we only present results for those based on generative models. Note that in this experiment, despite
that the underlying true graphs are symmetric, we do not use this information during our estimation.

Table 3 shows the results for the above-mentioned systems, using both the node- and the edge-centric de-
coders. A visualization of the estimates is provided in Figure 11. Overall, the proposed joint learning
framework outperforms individual learning for entity-level graphs, while the performance is largely compa-
rable for the common graph estimate. Given the physics system nature of this dataset (vis-a-vis time series
signals), the edge-centric decoder has a small advantage over the node-centric one; this is manifested by the
fact that under the joint learning framework, the two decoders show comparable performance, whereas the
edge-centric decoder is clearly superior in the case of single-entity separate learning. Note that this points
to another potential advantage of the joint-learning framework, in that it is more robust and exhbits less
volatility than individual learning.

10There are two issues that the supervised competitors can not readily handle and would require major changes: (1) all of
them assume that the Granger-causality to be estimated is numeric and therefore does not naturally handle the binary case,
and (2) at any point in time, each node is assumed to have a scalar value, akin to classical time-series settings, whereas here
each node is vector valued; consequently, the existing code does not readily handle it.
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Table 3: Performance evaluation for the estimated z̄ (error in Frobenious norm) and z[m]’s (accuracy and F1 score after thresholding
at 0.5, averaged across all entities) for the Springs5 system.

quantity metric Multi-node Multi-edge One-node One-edge

common ERR-fnorm 1.00(0.259) 0.92(0.294) 1.30(0.412) 0.79(0.217)
entity(avg) ACC% 99.3(0.84) 99.3(0.76) 87.5(6.45) 96.30(3.99)
entity(avg) F1Score% 99.5(0.79) 99.4(0.73) 88.2(7.45) 96.27(4.78)

Figure 11: Estimated z̄ and z[m]’s (showing the first five) using the proposed framework with node-centric decoder (Multi-node).

B.2 Additional performance evaluation results and their visualization

Table 4 presents additional evaluation metrics (TPR, TNR and ACC) for the proposed method and its strong
competitors, after the estimates of the Granger causal graphs are thresholded at various levels no greater
than 0.5 (after normalization). We only show the results for the estimated common graph z̄, since the results
for the entity-level ones exhibit similar patterns.

As briefly mentioned in Section 4, supervised model-based methods (NGC/GVAR) are more sensitive to the
value of the threshold, manifested by a sudden jump in accuracy once the threshold exceeds a certain level.
On the other hand, the change in ACC for the ones based on generative models is more gradual. Given that
in practice it is common to use a moderate threshold to eliminate small entries of the initial estimates of the
Granger causal graphs to determine their skeleton, the above-mentioned susceptibility can adversely impact
the quality of the final estimate used for interpretation purposes and in downstream analytical tasks.

Multi-node One-node NGC-cMLP GVAR Linear
TPR TNR ACC TPR TNR ACC TPR TNR ACC TPR TNR ACC TPR TNR ACC

Linear VAR
0.10 100 92.1 92.9 98.1 50.3 55.1 100 0.0 10.0 100 0.0 10.0 100 99.9 99.9
0.20 100 99.9 99.9 95.8 78.9 80.6 100 0.0 10.0 100 0.0 10.0 100 100 100
0.30 100 100 100 91.2 90.9 91.0 100 0.0 10.0 100 2.9 12.7 100 100 100
0.40 99.6 100 100 81.8 96.0 94.6 100 48.9 54.2 100 57.4 61.9 100 100 100
0.50 92.7 100 99.3 67.6 98.5 95.4 79.4 99.9 97.9 96.9 100 99.7 98.7 100 99.9

Non-linear VAR
0.10 100 74.2 76.7 100 59.3 63.1 100 0.0 9.5 100 0.0 9.5 99.5 57.1 61.1
0.20 98.4 89.2 90.0 100 82.9 84.5 100 0.0 9.5 100 0.0 9.5 97.4 99.8 99.5
0.30 94.7 91.7 92.0 96.3 89.3 90.0 100 0.0 9.5 100 85.4 86.8 92.1 100 99.2
0.40 89.5 99.4 98.5 72.1 91.8 89.9 99.5 47.9 52.8 71.1 100 97.2 68.9 100 97.0
0.50 73.2 100 97.5 60.5 95.6 92.2 47.4 95.7 91.2 61.1 100 96.3 60.5 100 96.2

Lotka-Volterra
0.05 100 72.8 76.8 99.0 40.5 49.3 100 58.4 64.7 34.0 100 90.1 33.3 100 90.0
0.10 100 97.4 97.8 96.3 73.9 77.3 99.7 100 100 33.3 100 90.0 33.3 100 90.0
0.15 99.3 99.8 99.8 90.0 92.4 92.0 90.7 100 98.6 33.3 100 90.0 33.3 100 90.0
0.30 67.0 100 95.0 50.3 100 92.5 33.7 100 90.0 33.3 100 90.0 33.3 100 90.0
0.50 33.3 100 90.0 33.3 100 90.0 33.3 100 90.0 33.3 100 90.0 33.3 100 90.0

Lorenz96
0.05 95.2 99.5 98.7 93.8 100 98.8 100 0.0 20.0 100 99.8 99.8 95.8 94.1 94.5
0.10 58.8 100 91.8 39.5 100 87.9 100 0.0 20.0 96.8 100 97.0 50.0 100 90.0
0.15 27.2 100 85.5 25.0 100 85.0 100 0.0 20.0 72.8 100 94.5 25.0 100 85.0
0.30 25.0 100 85.0 25.0 100 85.0 100 79.2 83.4 25.0 100 85.0 25.0 100 85.0
0.50 25.0 100 85.0 25.0 100 85.0 93.0 93.4 93.3 25.0 100 85.0 25.0 100 85.0

Table 4: Performance evaluation for the support set of the estimated common graph z̄ at various threshold levels (left-most column).
Numbers are in %, and correspond to the mean results based on 5 data replicates.
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An illustration of the recovered Granger-causal connections (after “optimal” thresholding) is shown in Fig-
ure 12. Note that NGC can only produce the “unsigned” version of the connections and hence all its estimates
are shown as positive, whereas for other methods, the entries are “signed” with red denoting the positive
and blue the negative ones.

One interesting observation is that for the Lotka-Volterra system, all methods have incorrectly estimated
the signs of the diagonals, in that the underlying true dependencies on their own lags are positive for the
preys and negative for the predators, whereas all methods fail to identify such discrepancy — although for
the supervised model-based ones all dependencies show as positive and generative model-based ones have the
opposite sign. This could be partially driven by the fact that during trajectory generation, the Runge–Kutta
method (specifically, RK4) has been used and thus it renders the presence of a self-lag linear term with
coefficient 1 in the recursion; in addition, a small noise term has also been injected.

For this setting, given that the estimated diagonals have dominating magnitude for GVAR and Linear, we
also provide a visual display of the estimates with the diagonals suppressed.
Remark 3. A dichotomous behavior is observed between the unsigned and the signed estimates obtained
from the code implementation of GVAR11, with the former typically being 5-10% better (in absolute values,
for reported metrics such as AUC, ACC that are between 0-100%). In all the tables, we have reported the
performance of the superior one (unsigned), whereas Figure 12 is produced based on the signed estimate
to show the positive/negative recovery. The best attainable F1 scores after thresholding (corresponding to
the result of the specific data replicate being displayed) for these signed estimates are labeled in the title of
the figures; e.g., 0.75 for the non-linear VAR setting, 0.95 and 0.86 for the Lotka-Volterra and the Lorenz96
setting, respectively.

B.3 Lotka-Volterra with perturbation: some characterization

We provide a characterization/justification for the “perturned” Lotka-Volterra system, pertaining to how to
validate a Lotka-Volterra system based on the “perturbed” interaction matrix being stable.

The general form of p-multi-species Lotka-Velterra equations are given by

dxi

dt
= rixi

(
1 +

p∑
j=1

Aijxj

)
, (16)

where ri > 0 is the inherent per-capita growth rate of species xi, i = 1, · · · , p and A ∈ Rp×p the species
interaction matrix. The system considered in (13) can then be put in this canonical form, by assuming that
the first p/2 species are preys and the last p/2 species predators.

Specifically, for the preys the corresponding equation in the canonical form becomes

dxi

dt
= αxi

[(
1− 1

η2 xi

)
− β/α

∑
j∈Pprey

i

xj

]
, i = 1, · · · , p/2

where ri = α, Aii = − 1
η2 , Aij = −β/α for all j ∈ Pprey

i otherwise 0; Pprey
i denotes the support set of the

prey indexed by i. Analogously, for the predators the corresponding equation in the canonical form becomes
dxi

dt
= −γxi

(
1− δ/γ

∑
j∈Ppredator

i

xj

)
, i = p/2 + 1, · · · , p

where ri = −γ, Aii = 0, Aij = −δ/γ for all j ∈ Ppredator
i otherwise 0; Ppredator

i denotes the support set of
the predator indexed by i.

It can be seen that fixed points of the set of equations in (16) can be found by setting dxi/dt = 0 for all i,
which translates to the vector equation

r + Ax = 0, r ∈ Rp, x ∈ Rp, A ∈ Rp×p.

11Repository for GVAR: https://github.com/i6092467/GVAR
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(a) VAR1Sparse: estimated z̄ (or transition matrix Ā, equivalently)

(b) VAR1OneBand: estimated z̄

(c) Lotka-Volterra. Top panel: estimated z̄; bottom panel: estimated z̄ after suppressing the diagonals

(d) Lorenz96: estimated z̄

Figure 12: Estimated z̄ (after normalization) for various methods. The displayed f1score corresponds to the best attainable one (after
thresholding) for each method. Red:(+); blue:(−).

Consequently, fixed points exist if A is invertible and are given by x = −A−1r. Note that xi = 0 is a trivial
fixed point. Further, the fixed point may contain both positive and negative values, which implies that there
is no stable attractor for which the populations of all species are positive. The eigenvalues of A determine
the stability of the fixed point. By the stable manifold theorem, if its eigenvalues are less than 1, then the
fixed point is stable. This can be easily verified once the “perturbed” Granger-causal matrix z’s (which
determines the Pi’s and hence the corresponding A) are generated.

C Generalization to multiple levels of grouping

We discuss the generalization of the proposed framework to the case where multiple levels of grouping are
present and the corresponding group-common graphs at different levels of the hierarchy are of interest.

Consider L-levels of nested grouping where the group assignments become increasingly granular as the level
index increases. Specifically, there is a single level-0 group that encompasses all entities, and M (degenerate)
level-L groups, with each group m having a singleton member being the entity m; all other levels are cases in
between – see also Figure 13 for a pictorial illustration. Note that the case discussed in the main manuscript
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corresponds to the special case with L = 1. As an example for the case of L = 2 levels, consider the data
analyzed in Section 5. Suppose that the subjects can be partitioned into 3 groups according to their ages —
e.g., less than 30 years old, 30-60 years old, over 60. In such a setting, the single level-0 group comprises of
all subjects; the level-1 groups correspond to subjects falling into different age strata; the level-2 groups are
the subjects themselves. The quantities of interest are the connectivity patterns shared by subjects within
their respective groups at all levels.

Entities Level 2 Group Level 1 Group Level 0 Group

Figure 13: Diagram for a 3-level grouping. Neurons corresponds to Gl
k’s that collects the indices of the entities belonging to that group.

Solid lines with arrows indicate how small groups from an upper level form larger groups at a lower level.

Let Gl := {Gl
1, · · · , Gl

|Gl|} denote the collection of groups of level l; each Gl
k is the index set for the entities

belonging to group k at level l and the group membership is non-overlapping, that is, Gl
k1
∩Gl

k2
= ∅,∀ k1, k2 ∈

{1, · · · , |Gl|}. The quantities of interest are the entity-specific graphs z[m], as well as the group-level common
structure for all groups at all levels, that is z̄Gl

k , denoting the group-common structure amongst all entities
that belong to the kth group, with level-l grouping; l = 0, · · · , L− 1 indexes the group level; k = 1, · · · , |Gl|
indexes the group id within each level. Finally, we let z̄ ≡ z̄G0 , which is consistent with its definition in the
main text and it corresponds to the grand-common structure across all entities.

Without getting into the details of each step, the end-to-end learning procedure can be summarized in
Figure 14. Compared with the two-level case, the generalization amounts to additional intermediate en-
coded/decoded distributions in the form of qϕ(z[Gl−1

k
]|z[Gl

k]), pθ(z[Gl
k]|z[Gl−1

k
]) and pθ(z[Gl

k]|·) (post conjugacy
adjustment/merging information); l = 2, · · · , L; k = 1, · · · , |Gl|.

{x[m]} {z[m]}|{x[m]} {z[GL−1
k

]}|{z[m]} {z[G1
k]}|{z[G2

k]}

sampled z̄

pθ(z̄)

{x̂[m]} {z[m]} | · {z[GL−1
k

]} | · {z[G1
k]}| ·

qϕ(z[m]|xm)

qϕ(z̄|{z̄[G1
k

]})

pθ({z[G1
k]}|z̄)

pθ({x[m]}|{z[m]})

(merge info)

(merge info) (merge info)(merge info)

(observed)

encoding

decoding

(reconstructed)

(prior)

Figure 14: Diagram for the end-to-end encoding-decoding procedure in the presence of multiple levels of grouping.
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