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ABSTRACT

This work studies the alignment of large language models with preference data.
We address this problem from a novel imitation learning (IL) perspective. We
establish a close connection between alignment and imitation learning, which
shows that existing alignment objectives implicitly align model and preference data
distributions. Built upon this connection, we develop a principled method DIL to
directly optimize the imitation learning objective. DIL derives a surrogate objective
for imitation learning with direct density ratio estimates, allowing effective use of
preference data. DIL eliminates the need for complex adversarial training required
by current IL methods, and optimizes the IL objective through simple density ratio
estimation losses, achieving lightweight and efficient fine-tuning for large language
models. This paper provides a unified imitation learning perspective on alignment,
encompassing existing algorithms as special cases while naturally introducing new
variants. Bridging IL and RLHF, DIL opens up new opportunities to improve align-
ment by leveraging tools from imitation learning. Extensive experiments demon-
strate that DIL consistently and significantly outperforms off-the-shelf methods on
various challenging benchmarks, including Open LLM Leadboard and AlpacaEval
2.0. Code for DIL is available at https://github.com/Code-DIL/DIL.

1 INTRODUCTION

Aligning large language models (LLMs) with human preferences is essential to ensure that the
responses generated by pre-trained LLMs align with human expectations (Bai et al., 2022; Ouyang
et al., 2022; Stiennon et al., 2020). Recently, Reinforcement Learning from Human Feedback (RLHF)
(Ouyang et al., 2022; Christiano et al., 2017) has become a widely adopted framework for fine-tuning
language models according to human preference data. This approach typically involves training a
reward model based on human feedback and subsequently employing reinforcement learning (RL)
techniques, such as PPO (Schulman et al., 2017), to optimize model to maximize the reward signal.

RLHF has demonstrated impressive efficacy across a diverse range of tasks, from programming to
creative writing. However, its dependence on two-step reinforcement learning presents challenges,
such as computational inefficiency and instability during training (Engstrom et al., 2020; Rafailov
et al., 2024). To mitigate these limitations, alternative one-step approaches such as direct preference
optimization (DPO) and its variants have been proposed (Rafailov et al., 2024; Meng et al., 2024;
Tajwar et al., 2024), which replace RLHF with supervised learning, eliminating the need for explicit
reward modeling. Instead, they directly define an implicit reward based on the likelihood of preference
data, resulting in significant gains in efficiency while preserving competitive performance.

While one-step direct preference optimization theoretically aims to discover identical optimal policies
as RLHF, it and its variants fundamentally adhere to the reward maximization objective and are
determined by parametric models such as the Bradley-Terry (BT) model (Bradley & Terry, 1952),
making them prone to overfitting (Pal et al., 2024; Yuan et al., 2024b) and resulting in suboptimal
alignment with preference data (Xu et al., 2024c; Wu et al., 2024). Some recent studies also show that
the learned policy by DPO and its variants progressively focus on unlearning the rejected responses as
shown in Figure 1, which in turn increases the likelihood of generating out-of-distribution responses,
instead of chosen responses (Xu et al., 2024c), ultimately resulting in suboptimal performance,
especially on reasoning and mathematical problem-solving (Pal et al., 2024; Yuan et al., 2024b;
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Figure 1: The training dynamics of DIL and SimPO on LLama3 show that DIL exhibits the smallest
decline in chosen likelihoods, while SimPO progressively focuses on unlearning the chosen responses.

Meng et al., 2024). This raises a fundamental and open research question: Can we design preference
optimization algorithms from a new perspective to address these shortcomings?

In this paper, we provide answers to the research question stated above. We first revisit alignment
from the perspective of imitation learning. In particular, we show that it is possible to characterize the
objective functions of RLHF and DPO as special cases of a more general imitation learning objective
expressed exclusively in terms of pairwise preferences. Built upon this insight, we propose a novel
and principled imitation learning framework DIL, which not only learns an effective policy from
preference data without relying on the BT assumption, but also achieves simple and fast fine-tuning.
We provide deep insights into the expressive power of imitation learning (IL) for aligning large
language models. Imitation learning (Ho & Ermon, 2016; Hussein et al., 2017; Osa et al., 2018)
addresses the task of learning a policy from a set of human demonstrations, and has shown promise in
domains such as robot control and autonomous driving, where manually specifying reward functions
is challenging, but human demonstrations are available for imitation.

We begin by theoretically demonstrating that alignment with preference data closely resembles
imitation learning and implicitly optimizes the same objective as imitation learning. We then leverage
this insight to design new imitation learning objectives for better alignment. We introduce DIL,
a simple, effective, and general framework for aligning models using preference data. While the
motivation is straightforward, we face significant challenges when applying imitation learning to
large language models. State-of-the-art imitation learning frameworks in reinforcement learning (RL)
are more complex and computationally demanding than supervised fine-tuning (SFT) because of
their reliance on inefficient and unstable adversarial or iterative training on separate discriminator and
policy networks (Ho & Ermon, 2016; Kostrikov et al., 2019a; Sun & van der Schaar, 2024). These
challenges make it impractical to directly apply current IL methods to align large language models.

To address these challenges, we first derive an equivalent surrogate objective with density ratio
rewards for standard imitation learning, enabling the use of preference data. We then leverage
the connection between imitation policy and density ratio reward estimation based on Bregman
divergence minimization, allowing both the policy and the density ratio estimator to be represented
by the same language model. This facilitates straightforward fine-tuning via simple classification
losses, without the need for adversarial training. Notably, DIL offers a generalized framework, and
we demonstrate that can accommodate essentially any density ratio estimation loss.

Our primary technical contributions are as follows: (i) We reconsider learning objectives such
as RLHF and DPO for preference alignment from the perspective of distribution shift and provide a
novel analysis towards explicit guidance and explanations for algorithm design. (ii) We propose
DIL, a simple and generalized imitation learning framework for alignment with preference data. DIL
eliminates the need for adversarial training and BT assumption, achieving simple and fast fine-tuning.
(iii) Importantly, DIL enables a unified view on imitation learning on preference data and sheds light
on connecting a rich literature on density ratio estimation to the designs of alignment with preference
data. (iv) Empirically, we corroborate the effectiveness of DIL on widely-used benchmarks such as
the Open LLM Leaderboard and AlpacaEval 2.0. The results demonstrate that DIL can significantly
outperform previous methods. The effectiveness of DIL shows that in the context of alignment with
preference data for large language models, imitation learning methods have been underexplored.

2 RELATED WORK

Reinforcement Learning from Human Feedback. RLHF has emerged as an effective approach for
aligning LLM with human preferences (Christiano et al., 2017), whereby a model is initially trained
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from human feedback supervised and subsequently serves as a reward model to enhance an agent’s
policy through reinforcement learning, such as Proximal Policy Optimization (PPO) (Schulman et al.,
2017). RLHF is applicable on a broad range of tasks, including summarization (Stiennon et al., 2020),
instruction-following(Ouyang et al., 2022), safety improvement (Bai et al., 2022) and truthfulness
enhancement (Tian et al., 2023). Despite its effectiveness, RLHF possesses significant drawbacks,
such as high complexity and unstable training processes compared to supervised learning.

Offline Preference Optimization. Recent literature highlights the inherent complexity of RLHF,
prompting the search for more efficient offline alternatives. A significant advancement in this area is
DPO (Rafailov et al., 2024). Unlike RLHF, which first learns an explicit reward model and then fits
the policy to rewards, DPO bypasses this second approximation by directly learning a policy from
collected data, without the need for reward modeling. Theoretically, DPO implicitly optimizes the
same objective as existing RLHF algorithms (reward maximization with a KL-divergence constraint),
but it is simpler to implement and more straightforward to train. Other alignment methods, such as
IPO (Azar et al., 2024), KTO (Ethayarajh et al., 2024), and others (Zhao et al., 2023; Yuan et al.,
2024a; Xu et al., 2024a; Hong et al., 2024; Meng et al., 2024), have also been proposed. In contrast,
we rethink and design the alignment objective from a novel offline imitation learning perspective.

Imitation Learning. Classical imitation learning (IL) methods often frame IL as inverse reinforce-
ment learning (IRL) to better utilize expert demonstrations (Sammut et al., 1992; Abbeel & Ng,
2004). In the seminal work (Ho & Ermon, 2016), the authors introduce GAIL, which bypasses
inner-loop reinforcement learning (RL) by establishing a connection between IL and generative
adversarial networks (GANs)(Goodfellow et al., 2020). GAIL and its successor, AIRL(Fu et al.,
2018), have made significant strides. However, these online methods typically require substantial
environmental interactions, limiting their deployment in cost-sensitive or safety-sensitive domains.
To address this issue, recent work on offline IL (Garg et al., 2021) focuses on learning a reward
function from offline datasets to understand and generalize the intentions underlying expert behavior.
IQ-Learn (Garg et al., 2021) simplifies AIRL’s game-theoretic objective over policy and reward
functions into an optimization over the soft Q-function, which implicitly represents both reward and
policy. DICE (Nachum et al., 2019; Kostrikov et al., 2019b; Lee et al., 2021) estimates discounted
stationary distribution ratios and is agnostic to the type of behavior policies used to collect data.

Recently, some works (Sun & van der Schaar, 2024; Wulfmeier et al., 2024) have applied state-of-
the-art IL methods, such as GAIL, AIRL, and IQ-Learn, to the alignment of large language models
(LLMs). However, these approaches are overly complex for LLM alignment. Specifically, methods
based on GAIL and AIRL involve inefficient and unstable adversarial learning, while DICE and
IQ-Learn require training separate value and reward functions, resulting in significant computational
costs and training instability due to their coupled training procedures. These challenges largely
prevent the effective alignment of large language models using current IL algorithms. In this paper,
we address these challenges by proposing DIL, a lightweight and efficient IL algorithm for alignment
with preference data, eliminating the need for the complex training typically required in standard IL

3 NOTATIONS AND PRELIMINARIES

Problem Setup. Let the text sequence x = [x1, x2, . . .] denote the input prompt, and yw =
[y1, y2, . . .] and yl denote two responses, typically sampled from the same reference policy πref(y | x).
The response pairs are then presented to human labelers (or an oracle) who express preferences
for responses given the prompt, denoted as yw ≻ yl | x, where yw and yl denote preferred and
dispreferred responses, respectively. The preference distribution is typically expressed as:

p
(
yw ≻ yl | x

)
= g

(
r(x,yw)− r (x,yl)

)
, (1)

where g : R → [0, 1] is a monotone non-decreasing function (with g(z) = 1− g(−z)) that converts
reward differences into winning probabilities. When g is the sigmoid function σ(x) = 1

1+e−x , we
get the Bradley-Terry (BT) preference model (Bradley & Terry, 1952). Given dataset D, containing
feedback (x,yw,yl), the goal is to learn an LLM policy π(y | x) to align the preference data.

Reinforcement Learning from Human Feedback. Given the estimated reward function r(x,y),
dictating the human preferences, RLHF fine-tunes policy πθ by optimizing the following objective:

max
πθ

Ey∼πθ(y|x)
[
r(x,y)

]
− βDKL

[
πθ(y | x)∥πref(y | x)

]
, (2)
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where β > 0 is an appropriate KL penalty coefficient. RLHF typically optimizes the above objective in
Equation 2 using RL algorithms, such as PPO (Ouyang et al., 2022; Schulman et al., 2017). Although
RLHF with PPO has achieved remarkable success, the training process of PPO is unstable because of
the high variance of the estimates of the policy gradients (Engstrom et al., 2020).

Reward Modeling. One standard approach to reward modeling is to fit a reward function rϕ(x,y)
with the BT preference model in Equation (1). Specifically, the reward function rϕ(x,y) can be
estimated by maximizing the log-likelihood over preference feedback (x,yw,yl):

LRM(ϕ;D) = E(x,yw,yl)∼D

[
− log σ

(
rϕ(x,yw)− rϕ (x,yl)

)]
. (3)

Supervised Fine-tuning (SFT). Given a demonstration dataset, the objective of SFT is minimizing
the negative log-likelihood over the demonstration data as follows:

LSFT(θ;D) = −E(x,y)∼D[log πθ(y | x)]. (4)

SFT is equivalent to behavior cloning (BC) (Pomerleau, 1988), a classical offline imitation learning
method that minimizes the forward KL divergence between the learned policy and data policy:

min
θ

KL
(
πdata(y | x)∥πθ(y | x)

)
= −Eπdata(y|x)

[
log πθ(y | x)

]
, (5)

It is easy to see that the BC problem above shares the same optimal solutions as SFT in expectation.

Directed Preference Optimization. To simplify the optimization process of RLHF, DPO uses the
log-likelihood of the learning policy to implicitly represent the reward function:

rθ(x,y) = β
[
log πθ(y | x)− log πref(y | x)

]
+ β logZθ(x), (6)

where Z(x) =
∑

y πref(y | x) exp(rθ(x,y)/β) is the partition function. By incorporating this
reward into the BT model in Equation (1), DPO (Rafailov et al., 2024) objective enables the comparison
of response pairs, facilitating the discrimination between preferred and dispreferred responses:

LDPO(θ;D) = E(x,yw,yl)∼D

[
− log σ(β log

πθ(yw | x)
πref(yw | x)

− β log
πθ(yl | x)
πref(yl | x)

)

]
. (7)

Energy-based Models. Energy-based models (EBMs) (LeCun et al., 2006) define the distribution
through an energy function. For y ∈ RD, its probability density can be expressed as follows:

pθ(y) = exp(−Eθ(y))/Zθ(y), (8)

where Eθ(y) : RD → R is the energy function, mapping the data point y to a scalar, and Zθ(y) =∑
y exp(−Eθ(y)) is the unknown normalization constant (Song & Kingma, 2021).

4 METHODOLOGY

4.1 RLHF IS A FORM OF IMITATION LEARNING

In this section, we connect RLHF to the imitation learning framework. We show that RLHF is a special
case of imitation learning problem on the distribution chosen response with the reverse KL divergence.
We start with a well-known connection between RL and EBM (Levine, 2018). Specifically, we firstly
define the following energy-based policy (Levine, 2018; Haarnoja et al., 2017) with parameter ϕ:

πϕ(y | x) = πref(y | x)exp
(
rϕ(x,y)

)
/Zϕ(x), (9)

where Zϕ(x) =
∑

y πref(y | x) exp(rϕ(x,y)). We can apply behavior cloning (BC) (Pomerleau,
1988), a classical and widely used imitation learning method, which frames the task as minimizing the
KL divergence between the policy πϕ and the expert policy πchosen generating the chosen response
yw. IL learns the parameter ϕ such that the model distribution imitates the chosen data distribution:

min
ϕ

KL
(
πchosen(y | x)∥πϕ(y | x)

)
. (10)

Minimizing the above forward KL divergence with the chosen responses on preference data gives us:

min
ϕ

E(x,yw)∼D[− log πref(yw | x)exp(rϕ(x,yw))/Zϕ(x)] ⇒

min
ϕ

E(x,yw)∼D

[
− rϕ(x,yw) + log

∑
y
πref(y | x)exp

(
rϕ(x,y)

)]
. (11)
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There are several options for sampling from the reference distribution πref(y | x). A choice that
simplifies the above expression and yields RLHF in practice is πref(y | x) = 1

2 I(Y = yl) +
1
2 I(Y =

yw). In this case, the sample-based approximation of the second term gives us:

min
ϕ

E(x,yw,yl)∼D

[
− rϕ(x,yw) + log

(
exp(rϕ(x,yw)) + exp(rϕ(x,yl))

)]
= E(x,yw,yl)∼D

[
− log σ

(
rϕ(x,yw)− rϕ (x,yl)

)]
. (12)

One can note that the above imitation learning loss over energy-based policy is exactly the same as
the reward loss based on BT assumption in Equation (3) in RLHF. By optimizing this loss function,
we can directly obtain the optimal energy-based policy in Equation (22). Unfortunately, even if
we use the estimate rϕ, it is still expensive to estimate the partition function Zϕ(x), making this
representation difficult to use in practice and significantly higher inference cost (Rafailov et al., 2024).
To address this problem, we can utilize the reverse knowledge distillation (Gu et al., 2024), which
distills the optimal policy in Equation (22) into a analytical policy by using reverse KL divergence,
which allows the policy to require only a single sample at inference time:

min
θ

KL
(
πθ(y | x)||πref(y | x)exp(rϕ(x,y)/α)/Zϕ(x)

)
, (13)

where α is the temperature hyperparameter in distillation process (Hinton, 2015). This gives the
following loss after removing multiplicative and additive constants:

L(θ) = −Eπθ(y|x)
[
rϕ (x,y)

]
+ αKL

(
πθ(y | x)∥πref(y | x)

)
. (14)

One can observe that this distillation objective exactly corresponds to RL objective in Equation (2).

In summary, we provide two key insights: (i) Reward learning in RLHF is equal to an imitation
learning problem against the chosen responses, achieved by minimizing the forward KL divergence
between πchosen and πϕ based on the EBMs shown in Equation (12). (ii) The RL step in RLHF can be
interpreted as a reverse knowledge distillation process, where the imitated policy πϕ, based on EBMs,
is distilled into a final analytical policy πθ by minimizing the reverse KL divergence in Equation (13),
where the temperature determines the level of regularization of KL. Formally, we have:
Proposition 4.1. Suppose the chosen response distribution p(y | x), the EBM πϕ(y | x), and the
model πθ(y | x). KL-regularized RLHF with β = 1 can be viewed as the following problem:

min
πθ

KL(πθ ∥ π∗
ϕ) s.t. π∗

ϕ = argmin
πϕ

KL(πchosen ∥ πϕ), (15)

where πchosen(y | x) = πϕ(y | x) = πθ(y | x) is the equilibrium.

Thus, conducting imitation learning on the chosen response corresponds to solving a standard
KL-regularized RLHF problem and DPO, as DPO seeks to discover the same optimal policies as
RLHF (Rafailov et al., 2024), as also shown in Section 4.5. In addition, we can observe that the upper
level of the objective essentially optimizes a reverse KL (RKL) divergence KL(πθ ∥ πchosen) given
π∗
ϕ = πchosen, which is the optima achieved by the lower level objective.

An interesting question is why SFT, which directly optimizes forward KL (FKL) KL(πchosen ∥ πθ) in
Equation (5), performs worse than RLHF and DPO. While theoretically, minimizing SFT and RLHF/DPO
should lead to the same optimal solution πθ, achieving this in practice requires full data coverage
and infinite computations that are rarely met. Consequently, in practical settings, minimizing either
KL divergence results in learned policies with distinct properties, as discussed in (Murphy, 2012;
Tajwar et al., 2024). Specifically, FKL KL(πchosen ∥ πθ) promotes mass-covering behavior, whereas
RKL KL(πθ ∥ πchosen) encourages mode-seeking behavior (Tajwar et al., 2024; Nachum et al.,
2016; Agarwal et al., 2019). Mass-covering encourages assigning equal probability to all responses
in the dataset, leading to an overestimation of the long tail of the target distribution, while mode-
seeking concentrates the probability mass on specific high-reward regions. Thus, alignment focuses
on generating a certain subset of high-reward responses, which is more effectively achieved by
minimizing reverse KL, as theoretically shown by (Tajwar et al., 2024; Ji et al., 2024a).

4.2 DIRECT IMITATION LEARNING

In the last section, we revisit RLHF from the perspective of imitation learning. Our analysis explicitly
suggests that RLHF is essentially optimized to align closely with the distribution of the chosen
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Table 1: Summary of the variants of DIL with different h-functions for Bregman divergence: LDIL(θ) =
Eπchosen(y|x)[ℓ1(fθ)] + Eπrejected(y|x)[ℓ−1(fθ)] as a function of log ratio fθ = log(πθ(y | x)/πref(y | x)).

h-Bregman Density Ratio Estimation h-function ℓ1(fθ) ℓ−1(fθ)

LSIF (Kanamori et al., 2009) h(r) = (r − 1)2/2 −efθ 1
2e

2fθ

BCE (Hastie et al., 2009) h(r) = r log r − (r + 1) log(r + 1) log(1 + e−fθ ) log(1 + efθ )
UKL (Nguyen et al., 2010) h(r) = r log r − r −fθ efθ

responses. The sample-based approximation of EBMs in RLHF results in a reward loss similar to
the BT model, as shown in Equation (12). However, the BT assumption may not always hold true,
as discussed in (Azar et al., 2024; Munos et al., 2023; Sun & van der Schaar, 2024). Based on the
above insights, we propose a novel alignment method: DIL without the BT assumption. We directly
formulate the objective of imitation learning as minimization the reverse KL-divergence between πθ

and the unknown distribution of chosen response πchosen (Kostrikov et al., 2019a; Fu et al., 2018):

min
θ

LDIL(θ) = KL
(
πθ(y | x)∥πchosen(y | x)

)
= Eπθ(y|x)

[
log

(
πθ(y | x)/πchosen(y | x)

)]
, (16)

where we minimize RKL divergence, rather than FKL divergence as in SFT, as shown in Equation (5).

However, mode-seeking with reverse KL divergence is generally challenging. Directly optimizing
Equation (16) does not effectively leverage chosen preference data, particularly since the data policy
πchosen is unknown. In the RL literature, these challenges have been addressed through adversarial
training (Ho & Ermon, 2016; Fu et al., 2018). However, these methods involve learning a reward
function using complex and unstable adversarial training, which is impractical for large models. In
this paper, we propose a straightforward alternative that leverages preference data without learning a
reward function via adversarial training. We reformulate the imitation learning objective as:

max
θ

Eπθ(y|x)

[
log

πchosen(y | x)
πref(y | x)

− log
πθ(y | x)
πref(y | x)

]
=

Eπθ(y|x)

[
log r(x,y)

]
−KL

(
πθ(y | x)∥πref(y | x)

)
, (17)

where r(x,y) ≜ πchosen(y|x)
πref (y|x) can be viewed as an auxiliary reward function. Equations (16) and (17)

are equivalent by adding and subtracting the same term of log πref(y | x) in the expectation.

Figure 2: The illustration of different losses (LSIF,
BCE, and UKL), as shown in Table 1.

Interestingly, we find that even when only pref-
erence data is available, this objective takes a
form similar to that used in the RLHF objective
in Equation (2). The primary difference lies
in the reward being the estimated log density
ratio, which is often not readily accessible in
real-world applications. The optimization of this
objective, involving the density ratio r(x,y), is
not straightforward. In the next section, we will
demonstrate how to efficiently optimize it by effectively utilizing offline human preference data.

4.3 DENSITY RATIO REWARD ESTIMATION

Before delving into the problem in Equation (17), we first describe how to calculate the auxiliary
reward function in terms of the density ratio. In the tabular setting, we can directly compute
πref(y | x) and πchosen(y | x). However, in a high-dimensional language domain, estimating the
densities separately and then calculating their ratio hardly works well due to error accumulation. In
this paper, we choose to directly estimate the density ratio πchosen(y | x)/πref(y | x) based on the
Bregman divergence (Sugiyama et al., 2012). Suppose r∗(x,y) = πchosen(y | x)/πref(y | x) is the
target density ratio to be estimated with a parameterized discriminator rϕ. Then, we have:

min
ϕ

Dh(r
∗∥rϕ) =

∑
y
πref(y | x)Bh(r

∗(x,y)∥rϕ(x,y))

=
∑

y
πref(y | x)

(
h
(
r∗(x,y)

)
− h

(
rϕ(x,y)

)
− ∂h

(
rϕ(x,y)

)(
r∗(x,y)− rϕ(x,y)

))
, (18)

where Bh is the data-level Bregman divergence. For a twice continuously differentiable convex
function h with a bounded derivative ∂h, this divergence quantifies the discrepancy between two
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density-ratios. Subtracting a constant
∑

y πchosen(y | x)h(r∗(x,y)), we obtain (up to a constant):∑
y
πref(y | x)

[
∂h

(
rϕ(x,y)

)
rϕ(x,y)− h

(
rϕ(x,y)

)]
−
∑

y
πchosen(y | x)

[
∂h

(
rϕ(x,y)

)]
. (19)

A few non-exhaustive examples of the Bregman divergence are Least-Squared Importance Fitting
(LSIF) (Kanamori et al., 2009), Binary Cross Entropy (BCE) (Hastie et al., 2009), and the unbounded
Kullback-Leibl (UKL) (Nguyen et al., 2010). For example, LSIF defines hLSIF = (r − 1)2/2, which
results in the following instance of Bregman divergence on the density ratio:

min
ϕ

DhLSIF(r
∗∥rϕ) =

∑
y

1

2
πref(y | x)r2ϕ(x,y)− πchosen(y | x)rϕ(x,y) (20)

In this case, sample-based approximation of Equation (20) leads to the following loss function:

L(ϕ;D) = E(x,yw,yl)∼D

[1
2
r2ϕ(x,yl)− rϕ(x,yw)

]
, (21)

Here, we use the set of rejected responses yl ∼ πref(y | x) to approximate the expectations under
πref(y | x). It is acceptable to use the set of rejected responses yl from the preference dataset
D to approximate the expectations, as also demonstrated in (Ji et al., 2024b). We can even make
use of both chosen responses and rejected responses to approximate these expectations. However,
since our goal is to decrease the likelihood of rejected responses, we choose to use the rejected
responses to approximate the expectations, and we find it empirically works well. Intuitively, the first
term pushes the model to decrease the density ratio of the rejected response, while the second term
increases the density ratio of the chosen response. In addition, this direct estimation approach with h
Bregman divergence suggests a divergence family for density ratio estimation as shown in Table 1;
see Appendix A for further discussion of other h functions such as BCE (Hastie et al., 2009) and
UKL (Nguyen et al., 2010). We also empirically analyze the effect of using different objectives in
Section 6.3. With the estimated density ratio reward, the surrogate imitation learning objective in
Equation (17) can then be solved with any RL algorithms. However, this two-step process of RLHF
is complex and often unstable. We provide a simpler approach that directly optimizes the imitation
learning objective, bypassing the need for explicit RL training and density ratio estimation.

4.4 OPTIMIZATION

So far, we have observed that the RL-style objective in Equation (17), combined with density ratio
estimation in Equation (21), can effectively leverage the preference dataset for imitation learning.
However, this two-step process is a complex and often unstable procedure, first fitting a reward
model that estimates density ratio, and then fine-tuning the language model policy using the RL-style
objective in Equation (17). To address these challenges, we introduce a simpler approach that directly
optimizes the imitation learning objective, bypassing the need for RL training and density ratio
estimation. The core innovation lies in a specialized parameterization of the density ratio reward,
which allows for direct extraction of the optimal policy, eliminating the need for an RL loop. Notably,
the optimal policy in Equation (17) has a closed-form solution, as shown by (Rafailov et al., 2024):

π∗(y | x) = 1

Z(x)
πref(y | x) exp

(
log r∗(x,y)

)
, (22)

where Z(x) =
∑

y πref(y|x) exp
(
log r∗(x,y)

)
=

∑
y πchosen(y|x) = 1, meaning that the optimal

π∗(y|x) is forced to be self-normalized! This characteristic, determined by the reward definition in
Equation (17), is super beneficial as it allows our imitation learning to theoretically generalize to a
broader class of loss functions beyond the pairwise BT preference model used in DPO. Taking the
logarithm of both sides of Equation (22) and then with some algebra, we obtain the following:

log
π∗(y | x)
πref(y | x)

= log r∗(x,y), (23)

where r∗(x,y) is the density ratio estimated by Equation (21) on the preference dataset. Since the
optimal density ratio is now represented in terms of the optimal policy, as opposed to the discriminator
model, we can explicitly derive the following maximum likelihood objective for a parameterized
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policy over the preference dataset (Rafailov et al., 2024). Analogous to the approach used for density
ratio estimation and using a change of variables, we can formalize our DIL objective as follows:

LDIL(θ;D) = E(x,yw,yl)∼D

[
− πθ(yw | x)

πref(yw | x)
+

1

2
(
πθ

(
yl | x)

πref(yl | x)
)2]

, (24)

where we directly fit an implicit density ratio in Equation (21) using an alternative parameterization
in Equation (23). Interestingly, there are no hyperparameters in our loss, yet it achieves promising
performance, as demonstrated in our experiments. Since our procedure is equivalent to fitting
a reparametrized density ratio estimation model, it theoretically conducts imitation learning by
minimizing RKL divergence against the unknown distribution of chosen response. Table 1 shows a
family of objectives which meet the definition of Bregman divergence.

4.5 DISCUSSION: DPO IS A SPECIAL CASE OF DIL

In this section, we show that DPO can be also viewed as a special case of our framework by using
contrastive predictive coding (CPC) (also as known as InfoNCE) (Oord et al., 2018) for density ratio
estimation. Given the prompt distribution p(x) and the conditional distribution of the chosen response
πchosen(y | x), we sample x ∼ p(x),yw ∼ πchosen(y | x), and yl ∼ πref(y | x). CPC optimizes:

LCPC(ϕ;D) = −E(x,yw,yl)∼D

[
log

exp(fϕ(x
⊤yw)/β)

exp(fϕ(x⊤yw/β)) + exp(fϕ
(
x⊤yl)/β

)], (25)

where fϕ : X × Y 7→ R is a parametric critic function. The optimal critic for this CPC with one
negative sample satisfies the following (Zheng et al., 2024; Ma & Collins, 2018; Oord et al., 2018):

f∗(x,y)/β = log
πchosen(y | x)
πref(y | x)c(x)

= log r∗(x,y)− log c(x), (26)

where c(x) is a function (Oord et al., 2018; Zheng et al., 2024), that depends on x but not y. Thus,
CPC also estimates the density ratio reward in IL objective in Equation (17). Similar to Section 4.4,
by using the closed-form optimal policy in Equation (22) and using a change of variables, we have:

LDIL(θ;D) = −E(x,yw,yl)∼D

[
log σ

(
β log

πθ(yw | x)
πref(yw | x)

− β log
πθ(yl | x)
πref(yl | x)

)]
, (27)

which is exactly the same objective as the well-known DPO. Thus, our framework enables us to
reinterpret DPO. Specifically, we demonstrate that DPO also falls under the imitation learning objective
in Equation (16) and essentially employs the CPC method for density ratio reward estimation.

5 EXPERIMENTS

Datasets. We evaluate DIL on widely used datasets for preference fine-tuning: UltraFeedback Bina-
rized dataset (Cui et al., 2023; Tunstall et al., 2023), Reddit TL;DR summarization dataset (Völske
et al., 2017), Anthropic-HH dataset (Bai et al., 2022). The details of datasets are in Appendix B.1.

Tasks and Evaluation. Following previous work (Rafailov et al., 2024; Tunstall et al., 2023), we
evaluate methods fine-tuned on the UltraFeedback Binarized dataset across tasks on Open LLM
Leaderboard (Gao et al., 2023). The Anthropic HH dataset is used for dialogue generation to produce
helpful and harmless responses (Rafailov et al., 2024). For summarization, we use the Reddit
TL;DR dataset. For these tasks, we use GPT-4 for zero-shot pair-wise evaluation (see prompts in
Appendix B.2). The task and evaluation details are also given in Appendix B.2.

Models. For summarization and dialogue generation tasks, we use Pythia-2.8b (Biderman et al.,
2023) as our base model, with the model after SFT serving as a reference model, following (Rafailov
et al., 2024). For fine-tuning on UltraFeedback Binarized dataset, we use Mistral-7B-Base (Tun-
stall et al., 2023) and Llama3-8b-SFT used in (Meng et al., 2024) as our base models.

Baselines and Implementation. We compare DIL with the following state-of-the-art baselines:
DPO (Rafailov et al., 2024), f-DPO (Wang et al., 2024a), IPO (Azar et al., 2024), SLiC (Zhao
et al., 2023), CPO (Xu et al., 2024b) and SimPO (Meng et al., 2024). We thoroughly tuned the
hyperparameters for each baseline and reported the best performance. The details of baselines and
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Table 2: Evaluation results on various tasks from the Huggingface Open Leaderboard and AlpacaEval
2. The best and second best performance under each dataset are marked with boldface and underline.

Model (↓) / Benchmark (→) MMLU-PRO BBH MUSR MATH GSM8K ARC AlpacaEval 2 Arena-Hard
M

is
tr

al
-7

B
-B

as
e

SFT 27.58 41.26 41.93 2.34 28.13 58.28 6.2 1.3

DPO (Rafailov et al., 2024) 26.73 43.27 43.65 1.36 21.76 61.26 12.5 10.4
SLiC (Zhao et al., 2023) 26.52 42.33 33.74 1.38 33.74 55.38 8.9 7.3
f-DPO (Wang et al., 2024a) 25.96 42.39 37.82 1.27 23.18 62.01 8.5 8.1
IPO (Azar et al., 2024) 25.87 40.59 42.15 1.25 27.14 60.84 9.4 7.5
CPO (Xu et al., 2024b) 27.04 42.05 42.15 2.15 33.06 57.00 8.9 5.8
SimPO (Meng et al., 2024) 27.13 42.94 39.68 2.49 22.21 62.63 20.8 16.6

DIL w/ LSIF 27.44 43.59 44.05 2.95 32.19 63.31 21.7 18.3

L
L

am
a3

-8
B

-B
as

e

SFT 31.00 46.16 41.27 3.70 46.32 60.15 4.6 3.3

DPO (Rafailov et al., 2024) 31.58 47.80 40.48 4.53 38.67 64.42 15.5 15.9
SLiC (Zhao et al., 2023) 31.11 46.53 40.55 3.92 48.82 61.43 13.7 10.3
f-DPO (Wang et al., 2024a) 30.85 47.55 40.39 4.37 39.55 62.85 9.5 14.2
IPO (Azar et al., 2024) 30.18 46.78 39.58 4.02 22.67 62.88 14.2 17.8
CPO (Xu et al., 2024b) 30.95 47.17 41.59 4.25 46.93 61.69 8.10 11.6
SimPO (Meng et al., 2024) 31.61 48.38 40.08 4.23 31.54 65.19 20.3 23.4

DIL w/ LSIF 32.22 48.78 42.75 4.68 48.98 65.37 24.0 25.6

Table 3: Win rates computed by GPT-4 against the SFT generated response and the chosen responses
on the TL;DR summarization and Anthropic-HH datasets on Pythia-2.8b. The best and second best
performance under each dataset are marked with boldface and underline, respectively.

Dataset (→) TL;DR Summarization Anthropic-HH

Method (↓) / Metric (→) vs SFT vs Chosen Average vs SFT vs Chosen Average

DPO (Rafailov et al., 2024) 71.22 57.58 64.40 69.32 59.35 64.34
SLiC (Zhao et al., 2023) 68.61 55.72 62.17 65.52 57.71 61.62
f-DPO (Wang et al., 2024a) 66.19 51.37 58.78 60.21 52.38 56.30
IPO (Azar et al., 2024) 72.17 56.51 64.34 63.19 55.12 59.16
CPO (Xu et al., 2024b) 73.13 58.89 66.01 72.30 63.39 67.86
SimPO (Meng et al., 2024) 69.71 54.38 62.05 67.85 57.51 62.68

DIL w/ LSIF 75.47 60.25 67.86 73.32 65.02 69.17

the hyperparameter search space can be found in Appendix B.3. The density ratio in Section 4.3 is
estimated through an optimization toward the Bregman divergence. A variety of functions meet the
requirements of h, but in all experiments, we choose widely used LSIF as the default objective. The
effect of using different density ratio estimation objectives is empirically analyzed in Section 6.3.

6 EXPERIMENTAL RESULTS

6.1 PERFORMANCE COMPARISON ON BENCHMARKS

Table 4: Ablation study on h-function of Bregman divergence: We
observe that these variants of DIL can further bring improvements.

Model (↓) / Benchmark (→) BBH MUSR MATH GSM8K AlpacaEval 2

Mistral-7B
Base

DIL w/ LSIF 43.59 44.05 2.95 32.19 21.7

DIL w/ UKL 43.92 45.11 2.04 30.71 21.6
DIL w/ BCE 45.13 43.92 2.79 33.13 20.7

LLama3-
8B

Base

DIL w/ LSIF 48.78 42.75 4.68 48.98 24.0

DIL w/ UKL 49.71 43.01 4.98 50.95 22.7
DIL w/ BCE 48.96 47.35 5.06 49.36 24.6

In this section, as shown in Ta-
ble 2, we compare the perfor-
mance of DIL against other align-
ment methods on UltraFeedback.
Our results show that DIL ex-
hibits remarkable effectiveness
in improving performance. Over-
all, DIL consistently outperforms
state-of-the-art SimPO and DPO
in various benchmarks. For in-
stance, on LLama3, the improve-
ments are notable on the Math and AlpacaEval 2 benchmarks, with relative gains exceeding 7.5% and
18.2% over SimPO, respectively. Notably, we observe DPO and SimPO hurt the overall performance
in most reasoning-heavy tasks such as GSM8K. This indicates that SimPO and DPO might not be
suitable to improve reasoning abilities, which is consistent with findings in concurrent work (Pal
et al., 2024; Meng et al., 2024). In contrast, DIL shows clear improvements in both the Mistral and
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Figure 3: The training dynamics of DIL variants, DPO and SimPO on Mistral show that DIL exhibits
the smallest decline in chosen likelihoods, while still increasing the likelihood margins between
rejected and chosen responses, compared to SimPO and DPO. In contrast, SimPO and DPO progres-
sively focuses on unlearning the chosen responses, leading to poor performance on reasoning tasks.
LLama3 models. These findings underscore the effectiveness of DIL. These improvements can be
attributed to avoiding the BT assumption and preventing the likelihood decrease of chosen responses.

6.2 PERFORMANCE COMPARISON WITH HUMAN PREFERENCES

We also explore learning from real human preferences, focusing on summarization and dialogue
generation tasks. Specifically, we utilize the Reddit TL;DR dataset for summarization and the
Anthropic-HH dataset for dialogue generation. We employ Pythia-2.8B (Biderman et al., 2023) as the
base model and fine-tuned it on the chosen completions to train a reference model, ensuring that the
completions remained within the model’s distribution. Table 3 presents the GPT-4 evaluation results,
indicating that DIL outperforms baselines when compared to both the SFT and the chosen responses.
Notably, DIL aligns better with human preferences than baselines, achieving a win rate of at least 60%
against the chosen responses. This highlights the strong potential of DIL for aligning with human
preferences. Furthermore, GPT-4 consistently favored DIL over both baselines and chosen responses,
demonstrating improvements of DIL over baselines in both helpfulness and harmlessness.

6.3 FURTHER ANALYSIS

Generalization to other objectives. As mentioned in Section 4.3, our approach to conducting
imitation learning from preference data generalizes in a straightforward manner to other density ratio
estimations, including UKL and BCE. Table 4 shows the comparison on UltraFeedback. We can
observe that different variants of the h-function can lead to general improvements across various
benchmarks. Specifically, UKL performs best on BBH, achieving the highest scores on both the
Mistral and LLama3 models. BCE achieves a significant improvement on MUSR, with a notable
7.27% increase. These results indicate that appropriate variant can further enhance our performance.

Training Dynamics. We also investigate the likelihood patterns during the training process of DIL.
Figure 3 presents the likelihood patterns of SimPO, and DIL on UltraFeedack. We observe that the
likelihoods of the rejected responses continue to decrease, and the margins between the chosen and
rejected responses steadily increase. However, in the case of DPO and SimPO, the likelihoods of the
chosen responses fall below zero and continue to decrease. These results validate our motivation
and demonstrate the effectiveness of DIL in preventing the likelihood of the chosen responses
from decreasing. This also explains why DIL generally improves downstream task performance,
particularly on reasoning-heavy tasks such as math, as shown in our Table 2.

7 CONCLUSION

We consider the problem of aligning large language models with preference data. We provide a novel
perspective on imitation learning for the alignment problem, and demonstrate RLHF/DPO essentially
conduct imitation learning on the distribution of chosen response. Built upon this connection,
we propose DIL, which directly optimizes the imitation learning objective based on the Bregman
divergence. Unlike existing methods, DIL does not rely on BT assumption, which is important since
this assumption may not hold in the real world. Empirical result shows that DIL establishes superior
performance on a comprehensive set of benchmarks and different families of language models. We
hope that our work will inspire future research on preference alignment with imitation learning,
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A DETAILS OF METHODS FOR DENSITY RATIO ESTIMATION

We overview examples of density ratio estimation methods under Bregman Divergence framework.

Least Squares Importance Fitting (LSIF). LSIF (Kanamori et al., 2009) minimizes the squared
error between a density ratio model r and the true density ratio r∗ defined as follows:

DhLSIF
(r∗∥rϕ) = Eπref

[(rϕ(x,y)− r∗(x,y)2]

= Eπref
[(r∗(x,y))2]− 2Eπchosen

[rϕ(x,y)] + Eπref
[(rϕ(x,y))

2], (28)

where the first term in the above equation is constant w.r.t ϕ. This empirical risk minimization is
equal to minimizing the empirical BD defined in Equation (18) with h(r) = (r − 1)2/2.

KL Importance Estimation Procedure (KLIEP). KLIEP is derived from the unnormalized Kull-
back–Leibler (UKL) divergence objective (Sugiyama et al., 2008; Nguyen et al., 2010), which uses
h(r) = r log(r)− r. Ignoring terms irrelevant to the optimization, we obtain (up to a constant):

DhKLIEP
(r∗∥rϕ) = Eπref

[
r(x,y)

]
− Eπchosen

[
log

(
r(x,y)

)]
. (29)

KLIEP is also known as solving a Lagrangian of the constrained problem with further imposing a
constraint that the ratio model r(x,y) is non-negative and normalized as follows:

max
r

Eπchosen

[
log

(
r(x,y)

)]
(30)

s.t. Eπref

[
r(x,y)

]
= 1 and r(x,y) ≥ 0 for all (x,y). (31)

Binary Cross Entropy. By using h(r) = log(r) − (1 + r) log(1 + r), we obtain the following
Bregman Divergence called the Binary Cross Entropy (BCE) divergence:

DhBCE
(r∗∥rϕ) = −Eπref

[
log

(
1

1 + r(x,y)

)]
− Eπchosen

[
log

(
r(x,y)

1 + r(x,y)

)]
.

This Bregman divergence is derived from a formulation of logistic regression (Sugiyama et al., 2012).

B EXPERIMENTAL DETAILS

B.1 THE DETAILS OF DATASETS

UltraFeedback Binarized (Cui et al., 2023; Tunstall et al., 2023): This dataset1 contains 64k prompts,
each paired with four completions generated by a variety of open-source and proprietary models.
GPT-4 assigns scores to these completions based on helpfulness, honesty, and other metrics. Binary
preferences are constructed by selecting the completion with the highest average score as the chosen
response, while one of the other three completions is randomly selected as the rejected response.

Anthropic-HH (Bai et al., 2022): The Anthropic Helpful and Harmless dialogue dataset2 includes
170k dialogues between humans and LLM assistants, used for evaluating single-turn dialogue
tasks. Each dialogue includes a human query and two model responses rated on helpfulness and
harmlessness. In line with DPO (Rafailov et al., 2024), the chosen responses from this dataset were
employed during the supervised fine-tuning (SFT) phase.

Reddit TL;DR Summarization (Völske et al., 2017): This dataset3 consists of forum posts from
Reddit, specifically curated for summarization tasks with associated preference labels. Following
prior work (Stiennon et al., 2020), we use a filtered version of this dataset to train the SFT policy,
using its preference labels during the subsequent alignment phase.

1https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized
2https://huggingface.co/datasets/Anthropic/hh-rlhf
3https://huggingface.co/datasets/openai/summarize_from_feedback
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Table 5: The hyperparameter search space for the baselines.

Method Method

DPO β ∈ [0.01, 0.05, 0.1] IPO τ ∈ [0.01, 0.1, 0.5, 1.0]

CPO λ = 1.0 SLiC λ ∈ [0.1, 0.5, 1.0, 10.0]
β ∈ [0.01, 0.05, 0.1] δ ∈ [0.1, 0.5, 1.0, 2.0]

KTO λl = λw = 1.0 SimPO β ∈ [2.0, 2.5]
β ∈ [0.01, 0.05, 0.1] γ ∈ [0.3, 0.5, 1.0, 1.2, 1.4, 1.6]

B.2 THE DETAILS OF TASKS AND EVALUATION

This section introduces the benchmark for model evaluation. The model fine-tuned on UltraFeedback
Binarized dataset is evaluated following previous works (Rafailov et al., 2024; Tunstall et al., 2023):
the HuggingFace Open LLM Leaderboard v14 and v25 (Beeching et al., 2023; Fourrier et al., 2024),
including MMUL-PRO, BBH, MUSR, MATH, GSM8k, and ARC; instruction-following benchmark,
AlpacaEval2. The models fine-tuned on Anthropic-HH dataset follow the evaluation protocol provided
by (Rafailov et al., 2024), utilizing GPT-4 for zero-shot pair-wise evaluation.

MMUL-PRO (Wang et al., 2024b): Short hand for Massive Multitask Language Understanding
Professional. This dataset builds on the MMLU by incorporating more complex multiple-choice
questions and undergoing rigorous expert review to enhance quality, difficulity and reduce data biases.

BBH (Suzgun et al., 2022): Short hand for Big Bench Hard. This benchmark includes 23 tasks
selected from BigBench testing capabilities in arithmetic, comprehension, and general knowledge.

MUSR (Sprague et al., 2024): Short hand for Multistep Soft Reasoning. This benchmark contains
complex scenarios to assesses capacity to integrate information and reason across long contexts.

MATH (Hendrycks et al., 2021): This collection comprises math problems for high-school competi-
tions, consistently presented using LaTeX and Asymptote to ensure clear and precise formatting.

GSM8k (5-shot) (Cobbe et al., 2021): This benchmark consists of grade school math problems to
test the model’s capability to navigate and solve complex, multi-step mathematical challenges.

ARC (25-shot) (Clark et al., 2018): Short hand for AI2 Reasoning Challenge. This science-focused
benchmark includes questions from a grade-school curriculum to test factual and logical reasoning.

AlpacaEval 2.0 (Li et al., 2023): This benchmark uses LLM to automatically assess model perfor-
mance on instruction-following tasks, validated against 20,000 human annotations for reliability.

GPT-4 Evaluation (Rafailov et al., 2024): The safety of models trained on Anthropic HH is assessed
using the Anthropic HH test set, with preferred responses serving as benchmarks. GPT-4’s evaluations
are aligned with human judgments, ensuring reliable safety assessments. The model version used for
these evaluations is gpt-4-0314, with specific prompts detailed in Table 6.

B.3 IMPLEMENTATION DETAILS

Training For the general hyperparameters, we closely followed the configurations used in SimPO.
Specifically, during the SFT stage, we applied a learning rate of 2 × 10−5. For both the SFT and
preference optimization stages, we used a batch size of 128, a maximum sequence length of 2048, and
implemented a cosine learning rate schedule with 10% warmup steps for a single epoch, utilizing the
Adam optimizer (Kingma, 2014). These settings were maintained consistently across all experiments
to ensure uniformity and comparability. For method-specific hyperparameters, we also adhered to
the search strategy outlined in SimPO. For each baseline method, which had its own unique set of
hyperparameters, the search strategy is detailed in Table 5. Learning rates for each method were
individually searched within the range of [3e− 7, 5e− 7, 6e− 7, 1e− 6]. For our methods, we also
normalize the likelihood of the response, calculated as the average log probability of all tokens in
a response using the policy model, to avoid the length bias as in SimPO. All training experiments

4https://huggingface.co/spaces/open-llm-leaderboard-old/open_llm_leaderboard
5https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard
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described in this paper were conducted using either four NVIDIA A100 80GB GPUs with 128
batchsize, utilizing the codebase from the alignment-handbook repository.6

Evaluation For the evaluation on the Open LLM Leaderboard V1, we use 5-shot setting for
GSM8K, and 25-shot for ARC. For the evaluation on Open LLM Leaderboard V2, all tasks were
performed by the default setting of the leaderboard. For the evaluation on AlpacaEval 2, we employe
hyperparameters consistent with SimPO. Specifically, we set the temperature to 0.7 for the Mistral-
Base configuration, 0.5 for the Mistral-Instruct configuration, and 0.9 for both Llama3 configurations.

For the following dialogue history to a chatbot, which response is more helpful and
harmless?

Dialogue history:
{dialogue history}

Response 1:
{Response 1}

Response 2:
{Response 2}

FIRST provide a one-sentence comparison of the two responses and explain which you
feel is more helpful and harmless. SECOND, on a new line, state only "1" or "2" to
indicate which response is more helpful and harmless. Your response should use the
format:
Comparison: <one-sentence comparison and explanation>
More helpful: <"1" or "2">

Table 6: GPT-4 prompt (Rafailov et al., 2024) for the safety evaluation on the Anthropic-HH dataset.

Table 7: Performance comparison on reasoning-heavy tasks.

Methods HumanEval LeetCode GSM8K MATH TheoremQA AlpacaEval 2
SFT 28.1 3.3 28.1 2.3 7.0 6.2
DPO 31.7 2.2 21.7 1.4 9.8 12.5
SimPO 26.5 1.9 22.2 2.5 8.5 20.8

DIL 33.5 3.4 32.2 3.0 12.5 21.7

Table 8: Performance comparison on Mixtral-8x22B-Instruct-v0.1.

Mixtral-8x22B HumanEval LeetCode MATH TheoremQA
DPO 75.1 24.5 48.5 34.7
SimPO 76.2 22.5 50.3 35.5
DIL 77.3 28.7 52.8 36.9

C FUTURE WORK

DIL presents many exciting directions for future work. First, we aim to gain a deeper theoretical
understanding of which density-ratio estimation techniques are most effective for alignment. Our
current analysis is limited to the offline setting and does not account for on-policy learning, where
the policy can interact with the reward model during training. Exploring DIL in an on-policy learning
scenario would be particularly interesting. The relationship between DIL and DPO bears a structural
similarity to the connection between Bregman divergence and contrastive predictive coding, which
suggests that further exploration of this connection could be fruitful. While this paper has primarily
focused on three density ratio estimation loss functions, investigating DIL with other density ratio
estimation loss functions would also be an intriguing direction for future research.

6https://github.com/huggingface/alignment-handbook
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