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Abstract

Quantum computing promises to revolutionize machine learning, offering significant effi-
ciency gains for tasks such as clustering and distance estimation. Additionally, it provides
enhanced security through fundamental principles like the measurement postulate and the
no-cloning theorem, enabling secure protocols such as quantum teleportation and quantum
key distribution. While advancements in secure quantum machine learning are notable, the
development of secure and distributed quantum analogs of kernel-based machine learning
techniques remains underexplored.
In this work, we present a novel approach for securely computing three commonly used
kernels: the polynomial, radial basis function (RBF), and Laplacian kernels, when data
is distributed, using quantum feature maps. Our methodology formalizes a robust frame-
work that leverages quantum teleportation to enable secure and distributed kernel learning.
The proposed architecture is validated using IBM’s Qiskit Aer Simulator on various public
datasets.

1 Introduction

Quantum computing is set to revolutionize machine learning (ML) by leveraging its capability to encode
high dimensional data into quantum bits, or qubits. These qubits exist in a superposition of states, enabling
quantum data to represent data exponentially more efficiently than classical computing - data represented
using N classical bits can equivalently be represented by log2N qubits. Further, in addition to superposition,
quantum entanglement enables qubits to exhibit strong correlations that persist regardless of spatial sepa-
ration. These correlations are essential for achieving exponential speedups in specific quantum algorithms
(Jozsa & Linden, 2003). Although practical quantum computers are still in their infancy, various quantum
machine learning (QML) techniques have been proposed (Lloyd et al., 2013; 2014; Biamonte et al., 2017).

Notably, quantum computing has exhibited a substantial efficiency gain in some computational tasks as
compared to classical computing (Schuld & Petruccione, 2018; Zhao et al., 2021): estimating distances
and inner products between post-processed N -dimensional vectors is achieved in O(log(N)) as compared
to O(N). Similarly, clustering N -dimensional vectors into M clusters is expedited to O(log(MN)) using
quantum data, as compared to O(poly(MN)).

Quantum computers are not only efficient at handling high-dimensional data but are inherently secure.
This stems from two fundamental principles of quantum mechanics: the measurement postulate and the
no-cloning theorem (Wootters & Zurek, 1982). Quantum data collapses upon measurement, and cannot
be copied without destroying the original data, offering absolutely secure communication. Secure quantum
computing is well studied and comprises protocols such as quantum teleportation (Bennett et al., 1993;
Bouwmeester et al., 1997), quantum key distribution (Bennett & Brassard, 2014; Bennett et al., 1992), and
quantum secure direct communication (Long & Liu, 2002; Deng et al., 2003; Wang et al., 2005; Sheng et al.,
2022).

Additionally, quantum computers utilizing various technologies, such as trapped ions, photons, supercon-
ducting circuits, and so forth, are actively being developed, enhancing the practical implementation of these
secure communication protocols.
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In parallel, kernel-based ML methods have emerged as effective tools for classification and regression tasks.
These methods compute similarities between data points in high-dimensional spaces, making them particu-
larly suited for problems where data is not trivially separable. In contrast to more advanced counterparts such
as deep learning, many kernel-based ML techniques often offer greater interpretability (Morocho-Cayamcela
et al., 2019; Ponte & Melko, 2017), and better accuracy when high-dimensional data are limited - which is
often the case in many real-world applications (Ding et al., 2021; Montesinos-López et al., 2021). Although
much of the focus in QML has been on developing quantum or hybrid (quantum-classical) deep learning and
neural networks (Garg & Ramakrishnan, 2020; Kwak et al., 2023; Dang et al., 2018; Basheer et al., 2020),
quantum analogs of kernel-based ML techniques are important alternatives, with landmark studies focusing
on centralized data (Havlíček et al., 2019; Schuld & Killoran, 2019).

However, real-world scenarios often involve distributed data (Yu et al., 2006; Hannemann et al., 2023), in
which multiple parties wish to collaboratively train a model while ensuring the privacy of their datasets.
Designing QML techniques that work securely in such distributed settings remains a critical challenge, and
current research on distributed kernel-based QML methods is still sparse. In particular, Sheng & Zhou (2017)
introduced a distributed framework that computes the distance between two data points for classification
tasks. Later, Schuld & Killoran (2019) demonstrated that this approach is a specific instance of a more
general principle: encoding data into an infinite-dimensional Hilbert space as quantum data is equivalent
to mapping data into a higher-dimensional feature space for kernel computation. This insight establishes a
fundamental link between quantum encoding and kernel feature maps, revealing that Sheng & Zhou (2017)’s
distance computation is the quantum analog of the linear kernel within a broader theoretical context.

We used publicly available datasets and Qiskit’s Aer Simulator (Wille et al., 2019) to validate our architecture.
Our evaluation demonstrates that the proposed approach ensures data security and achieves performance
comparable to centralized classical and quantum methods. However, it is important to acknowledge that
achieving identical or superior accuracy to classical methods is not anticipated in our study. This is not
only due to widely recognized challenges in quantum computing, such as quantum noise (Bharti et al.,
2022), approximations in quantum state preparation, and hardware constraints but also due to the inherent
probabilistic nature of quantum states.

We make the following three contributions:

1. Introduction of Quantum Feature Maps: We introduce quantum feature maps for the polyno-
mial, Radial Basis Function (RBF), and Laplacian kernels, and theoretically prove the correctness
of these feature maps.

2. Architecture for Secure Kernel Computation: We formalize a secure architecture to compute
the linear, polynomial, RBF, and Laplacian kernels using quantum encoding in a federated manner
on distributed datasets.

3. Implementation and Validation: We theoretically validate our architecture, and for empirical
validation, we implement it for linear kernels on publicly available datasets using Qiskit’s Aer Sim-
ulator. Due to the limitations of the simulator and our lack of access to a real quantum computer,
we were unable to test other kernels at this stage.
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2 Background

2.1 Kernel-based Machine Learning

In machine learning, one typically works with a dataset X consisting of data points {x1, x2, . . . , xN } ∈ X ,
where the goal is to identify patterns to evaluate previously unseen data. Kernel-based techniques employ
a similarity measure, called the kernel function, between two inputs to construct models that effectively
capture the underlying properties of the data distribution. This kernel function is often an inner product
in a feature space, typically of higher dimensionality, where non-linear relationships between data points
become more apparent. Various kernel functions are used in practice, such as Linear, RBF, Polynomial, and
Laplacian Kernels. These functions are designed to accommodate diverse data characteristics, making them
suitable for various applications. Beyond their many applications, these methods have a rich theoretical
foundation that we briefly explore below.
Definition 1. Kernel function (Aizerman, 1964)
A kernel function K is a map K : X × X → C that satisfies K(x, y) = ⟨ϕ(x), ϕ(y)⟩, where ϕ : X → H is a
map from the input space X to a Hilbert space (H, ⟨·, ·⟩).

One refers to ϕ as a feature map. Since for any unitary operator U : H → H, ⟨ϕ(x), ϕ(y)⟩ = ⟨Uϕ(x), Uϕ(y)⟩,
a kernel can be related to many different feature maps. However, kernel theory defines a unique Hilbert
space associated with a kernel, called the Reproducing Kernel Hilbert space (RKHS) as follows.
Definition 2. Reproducing Kernel Hilbert Space (RKHS) (Aronszajn, 1950)
Let X be an input space, and (R, ⟨·, ·⟩) the Hilbert space of functions f : X → C. Then R is an RKHS if
there exists a function K : X × X → C such that for all x ∈ X and f ∈ R, the following holds true:

f(x) = ⟨f,K(x, ·)⟩.

Alternatively, considering an associated feature map, ϕ : X → H, then R is the space of functions f : X → C
such that for all x ∈ X and ν ∈ H,

f(x) = ⟨ν, ϕ(x)⟩H.

Typically, a large family of machine learning problems aims to compute a prediction function f : X → C
that takes training or test data and predicts the corresponding label. This is often formulated as the solution
to the following optimization problem:

min
f∈R

 n∑
j=1

L(yj , f(xj)) + λΩ(f)

 , (1)

where L is a loss function, xj are training data points, yj the corresponding labels, λ a regularization
parameter controlling the trade-off between the loss and the complexity of the function f , and Ω(f) a
general regularization term that penalizes the complexity of f . This prediction function generally lives in an
RKHS. The representer theorem (Schölkopf & Smola, 2002) then states that the solution to this optimization
problem can be formulated as follows.

f∗(x) =
n∑

j=1
αiK(x, xj),

where K is the corresponding kernel in the RKHS. Hence, the optimization in the infinite-dimensional space
is reduced to a finite-dimensional problem of solving for αi by computing the kernel values at the training
data points.

In summary, kernel functions are fundamental in machine learning as they enable the transformation of data
into higher-dimensional spaces where non-trivial relationships between data can be studied. By leveraging
the theoretical framework of RKHS and the representer theorem, kernels facilitate efficient computations for
a large class of machine learning models, such as Support Vector Machines (SVM), Gaussian Processes, and
Principal Component Analysis (PCA) (Shawe-Taylor, 2004).
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2.2 Random Fourier Features

Kernel methods often face significant computational challenges, particularly with large datasets. To address
this issue, Rahimi & Recht (2007) introduced Random Fourier Features (RFF) as an effective approach to
estimate kernel functions using finite-dimensional feature maps. RFF enables efficient computation of kernel
approximations by leveraging the Fourier transform properties of shift-invariant kernels. One defines RFF
as below:
Definition 3. Random Fourier Features (RFF) (Rahimi & Recht, 2007)
Given a shift-invariant kernel k(x − y) that is the fourier transform of a probability distribution χ, the
corresponding lower dimensional feature map z : RD → Rd defined by

z(x) :=
(√

2cos(w1x+ b1), . . . ,
√

2cos(wdx+ bd)
)
,

with wi ∼ χ((w1, . . . , wd)) and bi are independent samples from the uniform distribution U [0, 2π], satisfies
the following inequality for all ϵ:

P
(
|zT (x)z(y) − k(x, y)| ≥ ϵ

)
≤ 2 exp

(
−Dϵ2

4

)
.

The feature map z is called an RFF.

2.3 Quantum Encoding

Quantum encoding techniques are crucial for translating classical data into quantum states. There are
various methods to do so, such as basis encoding, angle encoding, amplitude encoding, and Hamiltonian
evolution ansatz encoding - each with its own distinct advantages and disadvantages. For instance, one such
encoding is defined below.
Definition 4. Amplitude Encoding (Schuld et al., 2015)
Given classical data x = (x1, x2, . . . , xN )T , where N = 2n, the amplitude encoding of the data is defined as
the quantum state:

|ψ(x)⟩ :=
N∑

j=1

xj

∥x∥
|j⟩ , (2)

where |j⟩ represents the computational basis states of an n-qubit system.

The computational basis here refers to the set of basis states that span the state space of an n-qubit
quantum system. These states are represented with |j⟩ where j ∈ {0, 1, . . . , 2n − 1}, and are expressed as
tensor products of individual qubit states |0⟩ and |1⟩. For example, the computational basis in a 2-qubit
system consists of states:

{|00⟩ , |01⟩ , |10⟩ , |11⟩}.

In the context of our work, we will adopt RFF to determine quantum encodings necessary for the computation
of different kernels.

3 Related Work

3.1 Quantum Feature Maps

Building on the concept of encoding classical data into quantum states, Schuld & Killoran (2019) formalized
the idea of a quantum feature map by noting that any quantum encoding x 7→ |ψ(x)⟩ behaves like a feature
map and maps to a complex Hilbert space H, hence naturally inducing a kernel. This opens up the possibility
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of utilizing the rich theory of kernel methods alongside quantum computing. Of particular interest is when
two input vectors x and y are embedded in an N -dimensional Hilbert space via amplitude encoding. The
resulting inner product of the encodings corresponds to the linear kernel.

⟨ψ(x)|ψ(y)⟩ = xT y = k(x, y).

Beyond discussing the linear kernel, the work introduced additional quantum feature maps that correspond
to other well-known kernels. For instance, the Copies of Quantum States map given by

x = (x1, . . . , xN ) 7→ |ψ(x)⟩ =

 N∑
j

xj

∥xj∥
|j⟩

⊗d

.

is associated with the homogeneous polynomial kernel, expressed as

k(x, y) = (xT y)d,

under the inner product ⟨ψ(x)|ψ(y)⟩ . Similarly, the work proposed the following feature map -

x = (x1, . . . , xN ) 7→ ψ(x) = 1√
N

N∑
j=1

(cos(x2j−2) |2j − 2⟩ + sin(x2j−1) |2j − 1⟩) ,

which is associated with the cosine kernel, expressed as

k(x, y) =
N∏

i=1
cos(xi − yi),

under the inner product ⟨ψ(x)|ψ(y)⟩ .

As discussed earlier, a large family of ML algorithms optimizes the functional in (1) to obtain a prediction
function. There are two primary approaches to this optimization in the context of QML: the implicit approach
and the explicit approach. The implicit approach uses the representer theorem and computes kernels while
offloading the remaining tasks to classical computing, as demonstrated by Rebentrost et al. (2014); Schuld
& Killoran (2019); Schuld (2021). The explicit approach uses variational circuits to solve the optimization
problem in the infinite-dimensional RKHS, as discussed by Havlíček et al. (2019); Schuld & Killoran (2019);
Cerezo et al. (2021). Our work follows the implicit approach, in a distributed setting where quantum states
are used for kernel computation, and the modeling is offloaded to classical computing.

3.2 Distributed Secure Quantum Machine Learning (DSQML)

To the best of our knowledge, only one study, Sheng & Zhou (2017), has implemented kernel-based tech-
niques using quantum computing within a distributed framework. Their work introduced the Distributed
Secure Quantum Machine Learning (DSQML) algorithm, which facilitates distance computation using a
polarization-based quantum system. The setup is designed to ensure security against potential eavesdrop-
ping or interference during the computation, as any disturbance by an adversary can be detected.

The DSQML framework offers two operational modes: Client-Server and Client-Server-Database. In the
Client-Server model, a client with basic quantum technology aims to classify a single data point into one
of two clusters A and B by computing its distance from the reference vectors vA and vB . The client uses
amplitude encoding to quantum encode the data point and employs quantum teleportation to delegate the
inner product computation to the server. This can be interpreted as a computation of the linear kernel
between the data point and the reference vectors as though in a distributed setting.

In the more complex Client-Server-Database model, the client lacks significant quantum resources and can
only perform single-qubit preparation and measurement. In this setup, multiple databases encode their
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respective data points using amplitude encoding and transfer them to the server via quantum teleportation.
The server utilizes a Fredkin gate with the client-prepared ancilla qubit as a control, performs a Hadamard
gate, and returns the ancilla qubit to the client. The client then measures the qubit to extract the inner
product, which is computed over multiple repetitions.

Although DSQML essentially computes the linear kernel in a distributed setting using amplitude encoding, it
does not explicitly acknowledge or leverage the intrinsic relationship between quantum encoding and kernel
methods as proposed later by Schuld & Killoran (2019). Consequently, it overlooked the broader kernel
framework that can be leveraged for various supervised and unsupervised machine learning tasks across
different types of data, including images, text, and numeric data.

In contrast, our research substantially broadens these initial concepts by facilitating the computation of
encoding-induced kernels and other standard kernels such as the polynomial, RBF, and Laplacian kernels for
data of any dimensionality. This generalization to other widely used kernels is much stronger and important
for future study. Further, our method follows a simple Client-Server model and can easily be adapted by
relabeling to a Client-Server-Database model.

4 Quantum Feature Maps

Although Schuld & Killoran (2019) pointed out the implicit connection between quantum encoding techniques
and feature maps, they devised feature maps only for the linear kernel, the homogeneous polynomial kernel,
and the cosine kernel. We extend this by defining quantum feature maps associated with three widely used
kernels in ML: the polynomial, RBF, and Laplacian kernels.

4.1 Polynomial Kernel

Given classical data x = (x1, x2, . . . , xN )T , we define the following quantum feature map:

x 7→ ψ(x) =
(N+d

d )⊗
j=1

√
a
√
d!√

k1!k2! . . . kN+1!
xk1

1 . . . xkN

N

√
c

kN+1 |j − 1⟩ , (3)

where the multi-index k = (k1, . . . , kN+1) runs over all combinations such that
∑N+1

l=1 kl = d, and
c = 1 − a∥x∥ if d ∈ N, or c = −1 − a∥x∥ if d ∈ 2N.

Theorem 1. The quantum feature map above is a well-defined quantum state.

Proof. To be well defined, we require the map to be normalizable. Consider the map x 7→ ψ(x). Then, using
the multinomial theorem (Aizerman, 1964; Boser et al., 1992), we have that

∥ψ(x)∥ =
∑∑
l

kl=d

( √
a
√
d!√

k1!k2! . . . kN+1!

)2

(xk1
1 )2 . . . (xkN

N )2ckN+1 ,

= (a∥x∥ + c)d = 1.

This completes the proof.

Theorem 2. The quantum feature map defined above yields the polynomial kernel (Schölkopf & Smola,
2002),

Kpoly = (axT y + c)d,

under an inner product.
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Proof. This follows directly from the multinomial theorem. Let ϕ(x) and ϕ(y) be two quantum feature maps
of classical data x and y, defined as above. Then,

⟨ϕ(x)|ϕ(y)⟩ =
∑∑
l

kl=d

( √
a
√
d!√

k1!k2! . . . kN+1!

)2

xk1
1 . . . xkN

N yk1
1 . . . ykN

N ckN+1 ,

= (axT y + c)d,

= Kpoly(x, y).

This completes the proof.

4.2 RBF Kernel

Using RFF, given classical data x = (x1, x2, . . . , xN )T , we define the following quantum feature map:

x 7→ ψ(x) = 1√
D

D∑
j=1

(
cos
(
wT

j x
)

|2j − 2⟩ + sin
(
wT

j x
)

|2j − 1⟩
)
, (4)

where ⌈log2(2D)⌉ determines the number of qubits used and the approximation quality, and wi are
independent samples from the normal distribution N (0, σ−2I).

Theorem 3. The quantum feature map above is a well-defined quantum state.

Proof. To be well defined, we require the map to be normalizable. Consider the map x 7→ ψ(x). Then, we
have that

∥ψ(x)∥ = 1
D

D∑
j=1

cos2(wT
j x) + sin2(wT

j x) = 1.

This completes the proof.

Theorem 4. The quantum feature map defined above yields the RBF kernel (Broomhead & Lowe, 1988),

KRBF (x, y) = exp
(

−∥x− y∥2

2σ2

)
,

under an inner product.

Proof. Let ϕ(x) and ϕ(y) be two quantum feature maps of classical data x and y, defined as above. It follows
that

E[⟨ϕ(x)|ϕ(y)⟩] = 1
D

D∑
j=1

E
[
cos(wT

j x)cos(wT
j y) + sin(wT

j x)sin(wT
j y)
]
,

= 1
D

D∑
j=1

E[cos
(
wT

j (x− y)
)
]. (5)

Using Euler’s formula, this can be rewritten as

E[⟨ϕ(x)|ϕ(y)⟩] = 1
2D

D∑
j=1

(
E[exp

(
iwT

j (x− y)
)
] + E[exp

(
−iwT

j (x− y)
)
]
)
. (6)

Since normal distributions remain closed under linear transformations (Wackerly et al., 2008),

wT
j (x− y) =

N∑
k=1

wjk(xk − yk) ∼ N

(
0, 1
σ2

N∑
k=1

(xk − yk)2

)
∼ N

(
0, 1
σ2 ∥x− y∥2

)
.
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Hence wT
j (x− y) is a normal distribution. Then (6) can be rewritten as

E[⟨ϕ(x)|ϕ(y)⟩] = 1
2D

D∑
j=1

(
MwT

j
(x−y)(i) +MwT

j
(x−y)(−i)

)
,

where MZ(t) = E[exp (tZ)] is the moment generating function of a random variable Z. Hence, since the
moment generating function of a normal distribution Z ∼ N (µ, γ2) is given by MZ(t) = exp

(
tµ+ 1

2γ
2t2
)
,

we have

E[⟨ϕ(x)|ϕ(y)⟩] = 1
2D

D∑
j=1

[
exp

(
− 1

2σ2 ∥x− y∥2
)

+ exp
(

− 1
2σ2 ∥x− y∥2

)]
,

= exp
(

− 1
2σ2 ∥x− y∥2

)
= KRBF (x, y). (7)

This completes the proof.

4.3 Laplacian Kernel

Using RFF, given classical data x = (x1, x2, . . . , xN )T , we define the following quantum feature map:

x 7→ ψ(x) = 1√
D

D∑
j=1

(
cos
(
wT

j x+ αj

)
|2j − 2⟩ + sin

(
wT

j x+ αj

)
|2j − 1⟩

)
, (8)

where ⌈log2(2D)⌉ determines the number of qubits used and the approximation quality, wj are independent
samples from the Cauchy distribution C(0, α−1I), and αj are independent samples from the uniform
distribution U(0, 2π).

Theorem 5. The quantum feature map above is a well-defined quantum state.

Proof. To be well defined, we require the map to be normalizable. Consider the map x 7→ ψ(x). Then, we
have that

∥ψ(x)∥ = 1
D

D∑
j=1

cos2(wT
j x+ αj) + sin2(wT

j x+ αj) = 1.

This completes the proof.

Theorem 6. The quantum feature map defined above yields the Laplacian kernel (Smola & Kondor, 2003),

KL(x, y) = exp
(

−∥x− y∥1

α

)
,

under an inner product.

Proof. Let ϕ(x) and ϕ(y) be two quantum feature maps of classical data x and y, defined as above. It follows
like in Theorem 4 that

E[⟨ϕ(x)|ϕ(y)⟩] = 1
2D

D∑
j=1

(
E[exp

(
iwT

j (x− y)
)
] + E[exp

(
−iwT

j (x− y)
)
]
)
. (9)

Since Cauchy distributions remain closed under linear transformations (Nolan, 2012),

wT
j (x− y) =

N∑
k=1

wjk(xk − yk) ∼ C

(
0, 1
α

N∑
k=1

|xk − yk|

)
∼ C

(
0, ∥x− y∥1

α

)
.
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Hence, wT
j (x− y) is a Cauchy distribution. We rewrite (9) as

E[⟨ϕ(x)|ϕ(y)⟩] = 1
2D

D∑
j=1

(
ϕwT

j
(x−y)(1) + ϕwT

j
(x−y)(−1)

)
,

where ϕZ(t) = E[exp (itZ)] is the characteristic function of a random variable Z. Hence, since the charac-
teristic function of a Cauchy distribution Z ∼ C(µ, γ) is given by ϕZ(t) = exp (itµ− γ|t|), we have

E[⟨ϕ(x)|ϕ(y)⟩] = 1
2D

D∑
j=1

[
exp

(
−∥x− y∥1

α

)
+ exp

(
−∥x− y∥1

α

)]
,

= exp
(

−∥x− y∥1

α

)
= KL(x, y). (10)

This completes the proof.

5 Computational Complexity

5.1 Classical Setting

In classical computation, kernel evaluation involves performing pairwise operations onN -dimensional vectors.
For example:

• The polynomial kernel requires computing the inner product - O(N) - and raising the result to the
power d - (O(d)) - leading to a total complexity of O(N + d).

• The RBF kernel requires computing the squared norm of the difference between two vectors - O(N)
- and applying the exponential function - O(1) - leading to a total complexity of O(N).

• The Laplacian kernel involves the L1-norm computation (O(N)) - and applying the exponential
function - O(1) - leading to a total complexity of O(N).

This indicates that classical methods face challenges when N and d are large.

5.2 Quantum Setting

The quantum approach involves two main steps: (1) state preparation and (2) computing inner products in
the corresponding Hilbert space.

Preparing the quantum feature map for an N -dimensional vector scales with O(N). This step is a bottleneck
in the quantum pipeline. However, using quantum feature maps offers implicit security guarantees through
the no-cloning theorem. Secure classical systems require additional overhead, such as homomorphic encryp-
tion or secure multi-party computation, to achieve comparable privacy, which can be computationally more
expensive (Fan & Vercauteren, 2012).
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Once states are prepared, computing the inner product scales logarithmically with the dimension of the
computational basis, D̄, which determines the number of qubits required. Specifically, the number of qubits
used is ⌈log2 D̄⌉, and the computational complexity is therefore O(⌈log2 D̄⌉) for one shot. The dimension D̄
depends on the kernel being computed:

• For polynomial kernels: D̄ =
(

N+d
d

)
, as seen in (3). Using Stirling’s approximation (Stirling, 1730),

the complexity can be approximated as O(d logN) for large N and d. In Appendix A, we show that
to achieve an additive approximation error of ϵ, one must use M = O(1/ϵ2) number of shots, and
hence the overall complexity becomes O((d logN) ·M) = O((d logN)/ϵ2).

• For RBF and Laplacian kernels: D̄ = 2D, where D is the number of random Fourier features used
to approximate the kernel. The number of qubits required in this case scales as ⌈log2(2D)⌉, leading
to a complexity of O(⌈log2(2D)⌉). In Appendices A and A, we show that to achieve an additive
approximation error of ϵ with high probability, one must choose D = O(1/ϵ2) and use M = O(1/ϵ2)
shots. Consequently, the overall computational complexity for inner product estimation in these
cases becomes O(⌈log2(2D)⌉ ·M) = O(⌈log2(2/ϵ2)⌉/ϵ2).

6 Distributed Secure Computation of Kernels

6.1 Architecture

Our architecture builds upon foundational concepts in quantum computing, including quantum teleportation
(Bennett et al., 1993) and Fredkin (controlled-SWAP) gates (Fredkin & Toffoli, 1982), to enable secure and
distributed kernel computation. While prior work in the field (Sheng & Zhou, 2017) explored similar ideas
within a single-qubit/single-client framework, we extend and generalize these principles to an n-qubit system,
k-client system, hence capable of handling high-dimensional data in diverse settings.

Our architecture comprises multiple clients, a central server, and a helper entity. The clients hold sensitive
data from which they want to learn privately and collaboratively. The central server is tasked with computing
the kernel securely and privately. The helper prepares entangled quantum states to facilitate quantum
communication. All entities in this setup are capable of performing the necessary quantum operations. The
architecture is depicted in Figure 1.

Figure 1: Visualization of our architecture consisting of a helper, a server, and multiple clients.

We employ an infrastructure in which clients are initially provided with their shared seeds securely, using
established cryptographic primitives. The helper party ensures the fair distribution of seeds, adhering to
standard privacy-preserving protocols.
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6.2 Protocol Description

Without loss of generality, we describe our protocol with two participants. Our method naturally extends to
any number of participants. To start, Alice and Bob declare the size of their classical data in bits, denoted
by N . The helper entity then computes the number of qubits, n, needed to encode the data for a single
participant based on the chosen encoding technique. The protocol is established within a total system of
(6n+ 1) qubits.

The protocol’s circuit diagram is detailed in Figure 2 below. The correctness of the protocol is theoretically
shown in Appendix A.

Figure 2: Quantum circuit diagram associated with our secure and distributed quantum-based kernel com-
putation architecture.

6.2.1 Helper: Quantum State Preparation for Teleportation

The helper generates 2n Bell states, which are maximally entangled two-qubit states, to facilitate quantum
teleportation. The helper begins by distributing the qubits between Alice, Bob, and the server as follows:

1. In the first set of n Bell states, one qubit from each entangled pair represented by |0⟩HA is sent to
Alice, and the other represented by |0⟩SA to the server.

2. In the remaining n Bell states, one qubit from each entangled pair represented by |0⟩HB is sent to
Bob, and the other represented by |0⟩SB to the server.

This enables the quantum teleportation of Alice’s and Bob’s encoded data to the server for secure computa-
tion.

6.2.2 Clients: Data Encoding and Measurement

Alice and Bob determine the encoding of their data represented by |ψ⟩A and |ϕ⟩B respectively, with multiple
encodings for every data point based on the required model accuracy. The encoding sequence is derived from
the initial shared seed. Subsequently, Alice and Bob execute the following steps:

1. Apply a Controlled-X gate to the qubits they received from the helper using their original quantum
data as control.

2. Apply a Hadamard gate on their original data.

3. Measure their data and the received qubits in the computational basis.

4. Communicate the results to the server through an encrypted classical communication channel.

the server applies appropriate X and Z gates to adjust the qubits it holds.

11
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6.2.3 Server: Inner Product Measurement

The server then executes a standard swap test (Barenco et al., 1997). It prepares an ancilla qubit in the
zero state, applies a Hadamard gate, and uses it to conditionally swap the two sets of qubits received from
Alice and Bob. After reverting the ancilla qubit with another Hadamard and measuring it, the output helps
determine the required inner product (Buhrman et al., 2001). This measurement process is repeated p times
to enhance accuracy.

6.3 Security of Protocol

In our proposed adversarial model, clients, including Alice and Bob, as well as the server, are semi-honest.
They adhere to the defined protocol yet may attempt to infer additional information from the data they
handle. A helper entity, deemed a semi-honest third-party, guarantees the integrity of the quantum states
used in communication, similar to protocols implementing secure multi-party computation (SMPC) (Yao,
1982). The server is explicitly characterized as non-colluding with the clients, consistent with established
norms in distributed and federated architectures (Swaminathan et al., 2024; Hannemann et al., 2024).

In our setup, each client processes exclusively their own data and cannot access information from other
clients, effectively mitigating the risk of adversarial clients learning the data from honest input parties. The
non-colluding server does not know the series of encodings applied to the original data, and hence cannot
reconstruct the original classical data from the quantum data it receives, since it does not know how to
measure it. It only learns the kernel matrix reflecting similarities between participants’ data. However,
since the labels are obfuscated and are irrelevant to model training, the server gains no knowledge beyond
the similarity distribution pertaining to obscured labels. Further, following the same argument, we note
that in the case of the presence of colluding malicious clients and a non-colluding malicious server, the non-
adversarial clients’ data remains private. However, the malicious participants can affect model accuracy.

An adversarial third-party attempting to eavesdrop on the quantum data would face significant challenges due
to the no-cloning theorem (Wootters & Zurek, 1982), which prohibits the duplication of quantum information
without destroying the original information. In the event of interception, the adversarial entity would need
to generate and transmit its own quantum data to the server. This can be effectively detected if clients and
the server periodically exchange predetermined random quantum states, enabling the server to check for any
discrepancies indicative of interference (Sheng & Zhou, 2017). Additionally, the utility of intercepted data
is limited for the third-party as the encoding of data for transmission is randomized, and only known to the
clients through the pre-shared seed.

7 Experimental Evaluation

All the proof-of-concept experiments in our following evaluation were conducted using classical computing
resources on a High-Performance Computing (HPC) cluster. Each node within this HPC environment was
equipped with an Intel XEON CPU E5-2650 v4, complemented by 256 GB of memory and a 2 TB SSD
storage capacity. We used the Qiskit Aer Simulator to run the program offline due to limited access to
IBM’s quantum resources. As a result, we were restricted to simulating only 31 qubits in our environment.
Note that we don’t report any timings since the experiments are run on a simulator.

Our experiments focused on computing the linear kernel. Given the limitation of simulating only 31 qubits,
which confines us to 27 features, we adopted this approach and assigned n = 7 qubits to each party in
our distributed setup. While implementing other kernels, such as encoding-induced kernels, RBF kernels,
polynomial kernels, and Laplacian kernels, would require more qubits than available, our primary goal is to
validate the architecture rather than exhaustively test every encoding. Since the validity of these encodings
has already been theoretically established, our focus is on demonstrating that our architecture functions as
expected within this framework.

12



Under review as submission to TMLR

Additionally, we tested our methodology in a two-party configuration. This can be easily expanded, as
the data can be redistributed to additional participants while maintaining consistent results. Due to the
constraints on qubit simulation, a two-party configuration is employed, allocating 14 qubits for the two data
providers, 14 for the helper, and 1 for the server.

7.1 Accuracy Analysis

We present a comparative analysis of our distributed quantum kernel learning setup against centralized
quantum kernel computation and centralized classical kernel computation. Centralized quantum kernel
computation only performs the swap test, and does not constitute quantum teleportation. The datasets
used for this analysis are widely used, and publicly available, and include the Wine dataset (178 samples,
13 features) (Asuncion et al., 2007), the Parkinson’s disease dataset (197 samples, 23 features) (Sakar et al.,
2019), and the Framingham Heart Study dataset (4238 samples, 15 features) (Bhardwaj, 2022). Kernel-
based training was performed using SVM for all datasets, and PCA was applied to the binary datasets
(Parkinson’s and Framingham Heart Study) to reduce dimensionality. After applying PCA, SVM was used
on the transformed data to obtain accuracy metrics. All SVM training and evaluation were performed using
stratified 5-fold cross-validation to ensure unbiased accuracy metrics. The accuracies of the different models
on the datasets are summarized in Table 1 below.

Table 1: Comparison of accuracies across different methods and datasets.

Dataset
(Samples × Features)

Method
Accuracy

Centralised
Classical

Centralised
Quantum

Distributed
Quantum

Wine (178 × 13) kernel-SVM 0.9860 ± 0.0172 0.8805 0.8874 ± 0.0259
Parkinsons
(197 × 23)

kernel-SVM 0.8196 ± 0.0644 0.7875 0.7983 ± 0.0798
kernel-PCA 0.7872 ± 0.0716 0.7451 0.7660 ± 0.0744

Framingham Heart
Study (4238 × 15)

kernel-SVM 0.6788 ± 0.0108 0.6308 0.6340 ± 0.0143
kernel-PCA 0.6788 ± 0.0095 0.6249 0.6422 ± 0.0092

As expected centralized classical methods generally achieve the highest accuracy, serving as a baseline.
Centralized quantum methods show competitive performance, although slightly lower than their classical
counterparts, due to the inherent characteristics of quantum data and quantum simulators. Our distributed
quantum architecture exhibits comparable but not the same accuracy as centralized quantum architecture,
due to the complexity introduced by additional gates in the quantum circuit. All experiments were conducted
with 1024 shots of the quantum circuit to ensure reliable accuracy. Here, shots refers to the number of times,
p, that a circuit is repeated.

7.2 Effect of Noise

Quantum computing is susceptible to various types of errors due to environmental interactions and im-
perfections in quantum gate implementations. Our objective is to evaluate the performance of distributed
kernel-based QML under different noise conditions on Qiskit and compare it with a classical SVM. We
employed three noise models:

No Noise: This model assumes an ideal environment without any noise. It serves as a baseline to evaluate
the performance of the our protocol in the absence of errors.
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Noise Level 1: This model introduces a depolarizing error with a 0.1% error rate for single-qubit gates
and two-qubit gates. Depolarizing error is a type of quantum error where a qubit, with a certain probability,
is replaced by a completely mixed state, losing all its original information.

Noise Level 2: This model simulates a more challenging environment with a depolarizing error rate of
1%.

Our results reported in Figure 3 show that increasing noise had a negative impact on model performance.

Heart Study
kSVM

Parkinsons
kSVM

Parkinsons
5-kPCA

Parkinsons
6-kPCA

Parkinsons
7-kPCA

0.6

0.8

1

A
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Classical
Quantum (No Noise)
Quantum (Noise Level 1)
(Quantum Noise Level 2)

Figure 3: Comparison of accuracy scores across different noise levels. The baseline includes centralized clas-
sical kernel computation and our distributed quantum kernel computation with no noise. We incrementally
introduce noise, using depolarizing error at Level 1 and Level 2, to evaluate and report the corresponding
accuracy loss.

7.3 Effect of Shots

Here, we detail the impact of varying the number of shots used in Qiskit to repeat a quantum circuit on
the performance of our proposed algorithm. We used a subset of the Digits dataset containing 100 samples
(Pedregosa et al., 2011). The objective was to classify these samples into 10 labels (0-9) and evaluate the
classification accuracy using linear kernel-based SVM.

We varied the number of shots, specifically using 128, 256, 512, and 1024 shots, to observe the effect on
the classification accuracy. The results, depicted in Figure 4, indicate improved performance with increased
amount of shots.

8 Conclusion and Future Work

In this study, we introduced a novel kernel-based QML algorithm that operates within a distributed and
secure framework. By utilizing the implicit connection between quantum encoding and kernel computation,
our method supports the calculation of encoding-induced as well as traditional kernels. To that end, we
extended the existing body of knowledge by introducing three novel quantum feature maps designed to
compute the polynomial, RBF, and the Laplacian kernels, building upon previous studies that primarily
focused on linear and homogeneous polynomial kernels. Furthermore, we have theoretically validated that
the proposed quantum feature maps help compute the concerned kernels.

Using a hybrid quantum-classical architecture, our approach functions under a distributed environment where
a central server aids data providers in processing their data collaboratively, akin to a centralized model. This
setup primarily addresses the case of a semi-honest scenario—a common consideration in studies involving
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Figure 4: Accuracy of linear kernel-based SVM on a subset of the Digits dataset featuring 100 samples and
10 labels, compared against the number of shots run by the simulator.

distributed architectures. We have demonstrated that our proposed framework upholds security against
semi-honest parties as well as external eavesdroppers.

The application of our architecture to compute the linear kernel for publicly available datasets using Qiskit’s
Aer Simulator validates our distributed framework, yielding accuracies comparable to those achieved in
centralized classical and quantum frameworks.

In the future, we aim to adapt our methodology to scenarios involving actively malicious entities. Addi-
tionally, given the rich potential of kernel theory, further theoretical and practical exploration of quantum
feature maps represents a promising direction for future research in the field.

Supplementary information

Our code and results are available at the following URL: https://anonymous.4open.science/r/
distributed-secure-kernel-based-QML-5CDE/.
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A Correctness of Architecture

In this section, we provide a theoretical proof of correctness for our architecture, demonstrating that it
accurately computes the kernel matrix for given input data. Without loss of generality, consider an n-qubit
system, where Alice’s encoded data is represented by |ψ⟩A and Bob’s data by |ψ⟩B . As illustrated in Figure
1, the Helper initializes the system by preparing 2n Bell states. The initial state consists of |0⟩⊗n

HA, |0⟩⊗n
SA,

|0⟩⊗n
SB , and |0⟩⊗n

HB , where the superscript denotes qubits in each subsystem, e.g., the i-th qubit of Alice’s data
is represented as |ψ⟩i

A.

Let |ψ⟩ in the computational basis be written as α |0⟩ + β |1⟩ and |ϕ⟩ as δ |0⟩ + γ |1⟩. Initially, the entire
system is in the state:

|ψ⟩⊗n
A ⊗ |0⟩⊗n

HA ⊗ |0⟩⊗n
SA ⊗ |0⟩⊗n

SB ⊗ |0⟩⊗n
HB ⊗ |ϕ⟩⊗n

B .
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For simplicity, we track only the i-th qubit of each n-qubit state:

|ψ⟩i
A ⊗ |0⟩i

HA ⊗ |0⟩i
SA ⊗ |0⟩i

SB ⊗ |0⟩i
HB ⊗ |ϕ⟩i

B .

After applying Hadamard gates to the Helper qubits, the system evolves to the following state:

|ψ⟩i
A ⊗ 1√

2

(
|0⟩i

HA + |1⟩i
HA

)
⊗ |0⟩i

SA ⊗ |0⟩i
SB ⊗ 1√

2

(
|0⟩i

HB + |1⟩i
HB

)
⊗ |ϕ⟩i

B .

Upon applying the Controlled-X gates, the system is entangled, preparing it for quantum teleportation:
1
2

(
|ψ⟩i

A ⊗
(

|00⟩i
HA,SA + |11⟩i

HA,SA

)
⊗
(

|00⟩i
SB,HB + |11⟩i

SB,HB

)
⊗ |ϕ⟩i

B

)
.

Next, Alice and Bob perform Controlled-X gates, resulting in the state:
1
2

(
α |000⟩i

A,HA,SA + β |110⟩i
A,HA,SA + α |011⟩i

A,HA,SA + β |101⟩i
A,HA,SA

)
⊗1

2

(
γ |000⟩i

SB,HB,B + δ |011⟩i
SB,HB,B + γ |110⟩i

SB,HB,B + δ |101⟩i
SB,HB,B

)
.

After applying Hadamard gates, the system evolves to:
1
4

(
α |000⟩i

A,HA,SA + α |100⟩i
A,HA,SA + β |010⟩i

A,HA,SA − β |110⟩i
A,HA,SA

+α |011⟩i
A,HA,SA + α |111⟩i

A,HA,SA + β |001⟩i
A,HA,SA − β |101⟩i

A,HA,SA

)
⊗1

4

(
γ |000⟩i

SB,HB,B + γ |001⟩i
SB,HB,B − δ |011⟩i

SB,HB,B + δ |010⟩i
SB,HB,B

+γ |110⟩i
SB,HB,B + γ |111⟩i

SB,HB,B − δ |101⟩i
SB,HB,B + δ |100⟩i

SB,HB,B

)
.

Once the classical bits are communicated to the server, the server applies the appropriate X and Z gates,
resulting in the system state:

|0⟩a (α |0⟩SA + β |1⟩SA) ⊗ (γ |0⟩SB + δ |1⟩SB).

After applying a Hadamard gate, the server obtains:
1√
2

(|0⟩a + |1⟩a)(|ψ⟩SA) ⊗ (|ϕ⟩SB).

The final step involves applying Fredkin gates, with the ancilla qubit as the control:
1√
2

(
|0ψϕ⟩a,SA,SB + |1ϕψ⟩a,SA,SB

)
.

Upon applying a Hadamard gate to the ancilla qubit, we obtain:
1
2

(
|0⟩a ⊗ (|ψϕ⟩SA,SB + |ϕψ⟩SA,SB) + |1⟩a ⊗ (|ψϕ⟩SA,SB − |ϕψ⟩SA,SB)

)
.

Measuring the ancilla qubit along the computational basis yields:

Pr(0)a = 1
4 (⟨ψ| ⟨ϕ| + ⟨ϕ| ⟨ψ|) (|ψ⟩ |ϕ⟩ + |ϕ⟩ |ψ⟩) = 1

2 + 1
2∥⟨ψ|ϕ⟩∥2,

where, P (0)a is the probability that the anscilla qubit is in the |0⟩ state. Rearranging, this then determines
the inner product of |ψ⟩ and |ϕ⟩.

∥⟨ψ|ϕ⟩∥ =
√

2Pr(0)a − 1, (11)
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B Error Analysis and Measurement Complexity

B.1 Shot Complexity for Inner Product Estimation

In this section, we derive the relationship between the number of measurement shots, M , and the additive
error ϵ in estimating the inner product of quantum states.

As discussed earlier in (11), the probability of obtaining the outcome |0⟩ in the inner product measurement
is

p = 1 + ∥⟨ψ|ϕ⟩∥2

2 .

For each shot, we define the Bernoulli random variable Xi by

Xi =
{

1, if the outcome is |0⟩,
0, if the outcome is |1⟩.

We know E[Xi] = p and Var(Xi) = p(1 − p). After M independent shots, the sample mean is X̄ =∑M
i=1 Xi/M, with E[X̄] = p and Var(X̄) = (p(1 − p)/M). Labeling (1 + ∥⟨ψ|ϕ⟩∥)2/2 = l, an estimator for l

is l̂ = 2X̄ − 1. Its variance is Var(l̂) = 4 Var(X̄) = (4p(1 − p))/M), and the standard deviation is

σĉ = 2
√
p(1 − p)
M

.

The standard deviation attains its maximum at p = 1/2. In that case, p(1−p) = 1/4, and hence σĉ ≤ 1/
√
M.

To achieve an additive error ϵ in estimating l, we thus require 1/
√
M ≤ ϵ, which implies

M = O
(

1
ϵ2

)
.

B.2 Determining Number of Qubits for the RBF Kernel

In this section, we derive the relationship between the number of qubits required, given by ⌈log2(2D)⌉, and
the additive error ϵ in approximating the RBF kernel. We consider the quantum feature map corresponding
to the RBF kernel defined in (4).

x ∈ Rd 7→ ψ(x) = 1√
D

D∑
j=1

(
cos
(
wT

j x
)

|2j − 2⟩ + sin
(
wT

j x
)

|2j − 1⟩
)
.

Here, wj are drawn independently from the multivariate normal distribution N (0, σ−2I). The associated
kernel approximation is then given by

K̂(x, y) = ⟨ψ(x), ψ(y)⟩ = 1
D

D∑
j=1

cos
(
wT

j (x− y)
)
.

As shown in (7), the expectation of this approximation is

E
[
K̂(x, y)

]
= exp

(
− 1

2σ2 ∥x− y∥2
)

= KRBF(x, y).

Define for each j = 1, . . . , D, the random variables Xj = cos
(
wT

j (x− y)
)
. Then, the kernel approximation

can be written as K̂(x, y) =
∑D

j=1 Xj/D. Next, we compute the variance of each Xj . Let Zj = wT
j (x− y).
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Because wj ∼ N (0, σ−2I), it follows that Zj ∼ N
(
0, ∥x− y∥2/σ2) . Standard results for the cosine of a

Gaussian random variable yield

E[cos(Zj)] = exp
(

−∥x− y∥2

2σ2

)
, E[cos2(Zj)] = 1

2

(
1 + exp

(
−∥x− y∥2

σ2

))
.

Thus, the variance of Xj is

v := Var(Xj) = E[cos2(Zj)] − (E[cos(Zj)])2 = 1
2

[
1 − exp

(
−∥x− y∥2

σ2

)]
.

Since the Xj are i.i.d., the variance of the average K̂(x, y) is Var
(
K̂(x, y)

)
= v/D.

We then define the centered random variables Yj := Xj − E[Xj ]. Each Yj then has zero mean and variance
v. Since cos(·) is bounded in [−1, 1], it follows that |Xj | ≤ 1 and |Xj − E[Xj ]| = |Yj | ≤ 2,. We then apply
Bernstein’s inequality (Bernstein, 1924) to the sum

∑D
j=1 Yj , whose summands are bounded by M (here

M = 2), and whose total variance is σ2 = vD. We have for any t > 0,

Pr

∣∣∣∣∣∣
D∑

j=1
Yj

∣∣∣∣∣∣ ≥ t

 ≤ 2 exp
(

− t2

2vD + 2
3Mt

)
.

Setting t = Dϵ, we see

Pr
(∣∣∣K̂(x, y) − E[K̂(x, y)]

∣∣∣ ≥ ϵ
)

≤ 2 exp
(

− Dϵ2

2v + 4
3ϵ

)
.

For sufficiently small ϵ (i.e. when the term 4
3ϵ is negligible relative to 2v), this simplifies to

Pr
(∣∣∣K̂(x, y) −KRBF(x, y)

∣∣∣ ≥ ϵ
)

≤ 2 exp
(

−Dϵ2

2v

)
.

To ensure that the additive error is bounded by ϵ with probability at least 1 − δ, we require

2 exp
(

−Dϵ2

2v

)
≤ δ.

Taking natural logarithms and rearranging, we obtain

D ≥ 2v
ϵ2

ln
(

2
δ

)
.

Thus, to guarantee an additive error of at most ϵ with confidence 1 − δ, the number of random features must
satisfy

D = O
( v
ϵ2

)
.

For large ∥x− y∥2/σ2, we have v = 1/2, and for small ∥x− y∥2/σ2, we can approximate the exponential
term in v with the first order of the Taylor expansion. Hence

D =
{

O
( 1

ϵ2

)
, for large ∥x− y∥2/σ2,

O
(

∥x−y∥2

σ2ϵ2

)
, for small ∥x− y∥2/σ2.

(12)

It is important to note that the constant v depends on the ratio ∥x−y∥2/σ2. For a fixed pair (x, y), increasing
σ results in a smaller v. Consequently, for larger σ (i.e., for a wider kernel), a smaller number of random
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features D is required to achieve a given error tolerance ϵ. Conversely, for smaller σ (i.e., for a narrower
kernel), the ratio ∥x− y∥2/σ2 increases, leading to a larger v and thus a larger D is necessary. This can be
seen in Figure 5(a).

Moreover, when σ becomes very small (for example, when σ < 0.5) or when ∥x − y∥2 is very large (i.e.,
x, y ∈ Rd, and d is very large), the exponential term in v rapidly approaches zero, and v asymptotically
approaches its maximum value of 1/2. In this regime, the relationship between D and ϵ becomes independent
of σ. Consequently, the error curves will converge as we observe in Figure 5(c).

B.3 Determining Number of Qubits for the Laplacian Kernel

In this section, we derive the relationship between the number of qubits required, given by ⌈log2(2D)⌉,
and the additive error ϵ in approximating the Laplacian kernel. We consider the quantum feature map
corresponding to the Laplacian kernel defined in (8) as

x ∈ Rd 7→ ψ(x) = 1√
D

D∑
j=1

(
cos
(
wT

j x+ αj

)
|2j − 2⟩ + sin

(
wT

j x+ αj

)
|2j − 1⟩

)
,

where wj are drawn independently from the Cauchy distribution C(0, α−1I) and the phase shifts αj are
independent samples from the uniform distribution U(0, 2π). The associated kernel approximation is then
given by

K̂(x, y) = ⟨ψ(x), ψ(y)⟩ = 1
D

D∑
j=1

cos
(
wT

j (x− y)
)
.

As shown in (10), the expectation of this approximation is

E
[
K̂(x, y)

]
= exp

(
−∥x− y∥1

α

)
= KL(x, y).

As before, define for each j = 1, . . . , D, Xj = cos
(
wT

j (x− y)
)
. Then, the kernel approximation can be

written as K̂(x, y) =
∑D

j=1 Xj/D. Next, we compute the variance of each Xj . Let Zj = wT
j (x − y). Since

wj is drawn from C(0, α−1I) and Cauchy distributions remain closed under linear transformations, we have

Zj ∼ C (0, γ) , γ = ∥x− y∥1

α
.

The characteristic function of a Cauchy random variable Zj ∼ C(0, γ) is given by ϕZj
(t) = exp (−γ|t|) . Thus,

setting t = 1 we obtain
E[cos(Zj)] = exp(−γ) = exp

(
−∥x− y∥1

α

)
.

Moreover, using the trigonometric identity cos2(Zj) = (1 + cos(2Zj))/2, we have

E[cos2(Zj)] = 1 + exp(−2γ)
2 =

1 + exp
(

− 2∥x−y∥1
α

)
2 .

Thus, the variance of Xj is

v := Var(Xj) = E[cos2(Zj)] − (E[cos(Zj)])2 =
1 − exp

(
− 2∥x−y∥1

α

)
2 .

Now, following the same procedure as in A by defining Yj = Xj −E[Xj ] and applying Bernstein’s inequality
on
∑D

j=1 Yj , we find that
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D =
{

O
( 1

ϵ2

)
, for large ∥x− y∥1/α,

O
(

∥x−y∥1
αϵ2

)
, for small ∥x− y∥1/α.

It is important to note that the constant v depends on the ratio ∥x−y∥1/α. For a fixed pair (x, y), increasing
α results in a small v. Consequently, for larger α (i.e., for a wider Laplacian kernel), the required D to achieve
a given error tolerance ϵ is smaller. Conversely, for a smaller α (i.e., for a narrower kernel), v increases. Thus
a larger D is necessary. This can be seen in Figure 5(b). Similar to before, when α becomes very small (for
example, when α < 1) or when ∥x − y∥1 is very large (i.e., x, y ∈ Rd, and d is very large), the exponential
term steadily approaches zero, and v asymptotically approaches its maximum value of 1/2. In this regime,
the relationship between D and ϵ becomes independent of α as we observe in Figure 5(d).

B.4 Classical Simulation of Kernel Approximation Error

In this section, we describe experiments run on a classical computer to validate the theoretical claims made
in Sections A and A. Our goal is to assess the quality of the kernel approximations obtained via our feature
maps for both the RBF and Laplacian kernels. To quantify the approximation quality, we compute the
relative Frobenius norm error between the estimated kernel matrix and the exact kernel matrix. The error
metric is defined as

∥Kexact −Kapprox∥F

∥Kexact∥F
,

where ∥·∥F is the Frobenius norm.

Our empirical results as seen in Figure 5 confirm that the kernel approximation error decreases as the number
of random features D increases. In both the RBF and Laplacian kernel experiments, the observed decay
rate aligns with the theoretical O(1/

√
D) behavior predicted earlier. These findings, albeit using classical

resources provide strong evidence that the proposed feature maps produce reliable approximations to exact
kernel matrices.

C Broader Impact Statement and Ethical Concerns

Our work focuses on computing commonly used kernels in machine learning using quantum computing. As a
piece of fundamental research, our contribution is theoretical in nature and does not, in itself, pose any direct
negative societal impacts or ethical concerns. The methods and datasets involved do not contain sensitive
personal data, nor do they target or adversely affect any vulnerable populations.

While it is acknowledged that kernel-based machine learning methods can, in certain applications, be associ-
ated with issues such as bias amplification or limited interpretability, especially when applied to non-curated
datasets or in safety-critical systems, our work builds upon established techniques without introducing fun-
damentally new methods that would exacerbate these concerns. We recognize that downstream applications
of kernel methods may encounter ethical challenges. However, such considerations are intrinsic to the broader
field rather than a consequence of our specific contribution.

Given the theoretical scope of this work, no further mitigation strategies are necessary. Nevertheless, we
urge practitioners to consider the ethical implications in any concrete application of these methods.
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(a) RBF Kernel, d = 10. Different curves correspond
to various values of σ, with the x-axis showing the
number of random features D (and corresponding
qubits, ⌈log2(2D)⌉).

(b) Laplacian Kernel, d = 10. Different curves corre-
spond to various values of α, with the x-axis showing
the number of random features D (and correspond-
ing qubits, ⌈log2(2D)⌉).

(c) RBF Kernel, d = 100, 000. In this regime the
∥x − y∥2 term dominates, causing the variance to
approach 1/2 and all curves to coincide.

(d) Laplacian Kernel, d = 100, 000. Again, the
∥x − y∥1 term dominates, causing the variance to
approach 1/2 and all curves to coincide.

Figure 5: Kernel approximation error curves for the RBF and Laplacian kernels under two data regimes.
All experiments were performed on simulated datasets with 100 samples, and each experiment was repeated
5 times with the errors reported as averages. Top: Experiments with a small feature dimension (d = 8)
show clear dependence on σ (RBF) or α (Laplacian). Bottom: Experiments with a large feature dimension
(d = 100, 000) exhibit nearly overlapping curves regardless of kernel parameters, as the large ∥x− y∥ values
force the variance to saturate at 1/2, resulting in D = O(1/ϵ2).
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