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ABSTRACT

Decentralized federated learning (DFL) captures FL settings where both (i) model
updates and (ii) model aggregations are exclusively carried out by the clients with-
out a central server. Existing DFL works have mostly focused on settings where
clients conduct a fixed number of local updates between local model exchanges,
overlooking heterogeneity and dynamics in communication and computation ca-
pabilities. In this work, we propose Decentralized Sporadic Federated Learning
(DSpodFL), a DFL methodology built on a generalized notion of sporadicity in
both local gradient and aggregation processes. DSpodFL subsumes many exist-
ing decentralized optimization methods under a unified algorithmic framework by
modeling the per-iteration (i) occurrence of gradient descent at each client and (ii)
exchange of models between client pairs as arbitrary indicator random variables,
thus capturing heterogeneous and time-varying computation/communication sce-
narios. We analytically characterize the convergence behavior of DSpodFL for
both convex and non-convex models and for both constant and diminishing learn-
ing rates, under mild assumptions on the communication graph connectivity, data
heterogeneity across clients, and gradient noises. We show how our bounds re-
cover existing results from decentralized gradient descent as special cases. Exper-
iments demonstrate that DSpodF L consistently achieves improved training speeds
compared with baselines under various system settings.

1 INTRODUCTION

Traditional works in federated learning (FL) have focused on a conventional “star topology” con-
figuration where clients are connected directly to a central server (Konecny et al.,|2016; McMahan
et al.,[2017; Bonawitz et al.| 2019). In this setup (see Fig.@, FL iterates between (i) client-side local
model updates, typically via stochastic gradient descent (SGD) on local datasets, and (ii) server-side
model aggregations. However, a central server may not always be present/feasible for synchroniza-
tion, e.g., in the growing body of direct peer-to-peer networks. To address this, recent research has
proposed decentralized federated learning (DFL) (Koloskova et al.,[2020), replacing the server’s role
in FL aggregations with distributed optimization techniques (Nedi¢ et al., [2018). This introduces a
new challenge in DFL as clients need to reach consensus while optimizing their local models via
gradient descent (see Figs. [Ib}{Id). Towards this end, clients exchange models with their neighbors
over the decentralized topology to form aggregations through gossip protocols (Huang et al.| [2022).

FL settings are often dominated by heterogeneity and dynamics in various dimensions, including
client processing capabilities, communication capabilities, and local dataset statistics varying across
clients and over time (L1 et al.| 2020). This causes (i) computing gradients at every iteration to be
costlier (e.g., in terms of delay) at clients with weaker/slower processing units, and (ii) higher trans-
mission delays for clients with low-quality communication links (e.g., lower available bandwidth or
transmit power), among other impacts (Wang et al.| [2021)). Existing works in centralized FL have
addressed these issues by letting the number of local SGD steps between aggregations vary across
clients (Maranjyan et al., [2022)), and also over training rounds (Yang et al., [2022)), i.e., to deal with
differing and/or varying capabilities while maintaining convergence guarantees.

Motivation and key challenges. In the fully decentralized setting, by contrast, there has not yet
been a comprehensive study of how different forms of heterogeneity and dynamics jointly impact
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Figure 1: Illustrations of centralized FL (Fig. and different consensus-based decentralized optimization
algorithms (Figs. [TB}[Te). In decentralized gradient descent (DGD, Fig.[Tb)), local updates and inter-client com-
munications occur at every iteration of training. Fig.|Ic|depicts decentralized local SGD, or DFedAvg, where
communications occur only every D-th iteration. Communication and computation operations are carried out
in a deterministic pattern (solid lines, thickness representing relative frequency) in Figs. [Ib] and Random-
ized gossip (RG, Fig. [Id) adopts sporadic communications for aggregations. DSpodFL in Fig. considers
sporadicity in both communications and computations (dashed lines), where the number of local SGDs and the
period of model aggregations are heterogeneous across clients and vary over time.

the FL performance. Integrating these factors into DFL makes the analysis challenging because there
are multiple client aggregators without a central coordinator which must reach consensus under the
following conditions: (i) the aggregation periods across the system become heterogeneous as they
depend on the number of local SGDs conducted by each client’s neighbors prior to sharing; and (ii)
these periods become time-varying depending on dynamics in communication/computation resource
availability of clients/links. Most existing DFL algorithms (Koloskova et al.,2020; Sun et al.| 2022}
Mishchenko et al.l |2022) have not taken these factors into account, resulting in longer times to
achieve a target accuracy in the presence of heterogeneous and time-varying resources. We thus aim
to answer the following key question in this paper:

How can we integrate heterogeneity and dynamics of local SGDs and aggregations into decentral-
ized FL to capture the impact of resource availability while maintaining convergence guarantees?

Contributions. We answer this question by developing a generalized algorithmic framework for
DFL that allows local model aggregations and transmissions to happen after any arbitrary number
of local updates. We refer to this as sporadicity in client participation, which enables capturing the
impacts of heterogeneity and dynamics in DFL. Our methodology, Decentralized Sporadic Federated
Learning (DSpodFL), encapsulates the joint effects of (i) sporadicity in local client computations
and (ii) sporadicity in inter-client communications arising from resource variations over clients and
time. In doing so, DSpodFL captures the impact of different numbers of local SGDs and different
aggregation periods across clients, and allows for these values to vary over the training process, not
constraining them to any prefixed deterministic pattern. We make the following novel contributions:

» Sporadic DFL framework capturing resource heterogeneity and dynamics: We formulate
DSpodFL by modeling the occurrences of (i) a local SGD step at each client and (ii) an exchange
of models between a pair of clients in each training iteration as arbitrary indicator random vari-
ables. This enables clients to conduct these processes intermittently according to their available
resources without delaying DFL training. As illustrated in Fig. [T} DSpodFL (Fig. [Te) subsumes
multiple decentralized optimization methods from existing research (Fig. [IbId), which can be
seen as handling special cases of our generalized notion of sporadicity.

* Convergence analysis under mild assumptions for convex and non-convex settings: We analyt-
ically characterize the convergence behavior of DSpodFL for both strongly-convex and non-
convex loss functions, under mild assumptions on the communication graph, data heterogeneity,
and gradient noises. We conduct our analysis for both a constant learning rate (Thms. [4.1T] .12)
and diminishing learning rate (App. [ [G), revealing conditions under which a zero optimal-
ity/stationarity gap can be achieved. The introduction of sporadicity to DFL makes the analysis
challenging, since both local SGDs and model aggregations occur without any predetermined pat-
tern. We show how our results recover the convergence rates of existing DFL algorithms under
special cases of sporadicity.

» Experiments in heterogeneous and time-varying DFL settings: Our numerical experiments demon-
strate that DSpodF L reaches target accuracies with significantly smaller delays compared to DFL
baselines. Further, we find that DSpodFL consistently outperforms the baselines as the degrees
of data heterogeneity, resource heterogeneity and dynamics, and the network properties vary.
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Properties of Algorithmic Framework | Assumptions and Theoretical Results
Paper Fully |SporadiclSporadic Dynamic |General.| Loose | Last | Convex &
Dece}rll IS) GDs I; . Resource Data | Graph | Iterates|Non-Convex
’ get Het. Hetﬂ Conn. ConV, Analysis
Koloskova et al.| (2020) v v N v v
| [Maranjyan et al.| (2022)) v v
i Yang et al.|(2022) v v v
| |Sun et al.[(2022) v v
Mishchenko et al.|(2022)
Ours v v v v v v v v

“In Assumptions and (b)l we consider a more general/milder data heterogeneity assumption
based on two parameters ¢ and (. These assumptions are not restricting the gradient norms to a constant bound.

In Assumption , we neither require the underlying network graph to be static, nor B-connected.

‘Discussed in Sec. .5} and Appendix proof of Theoremon convergence of convex models).

Table 1: Summary of eight key properties of our paper compared to representative related works.

2 RELATED WORKS

Table [T| summarizes key contributions of our work relative to closely related literature in centralized
and decentralized FL. To the best of our knowledge, our work is the first to consider sporadic SGDs
and aggregations simultaneously, capturing heterogeneous and time-varying resources in the fully
decentralized setting. Below, we discuss related works along DFL’s two key processes.

Local SGDs. Several works in centralized FL. (McMahan et al., 2017 |Wang & Joshil 2018} |Stich,
2018 |Liet al.,2019; Lin et al.,[2019; |Karimireddy et al.; 20205 [Woodworth et al.| | 2020; Mishchenko
et al., 2022) proposed algorithms with multiple local updates between consecutive model aggrega-
tions, assuming a fixed number of local SGDs across clients. InMaranjyan et al.|(2022), the authors
proposed an FL. method in which at each round of training, the number of SGD steps can differ for
each client considering resource heterogeneity. However, the varying number of local SGD steps
across clients remains fixed throughout the training process. To alleviate this issue, Anarchic FL was
proposed |Yang et al.| (2022)); similar to our notion of sporadicity, each client chooses when to con-
duct computations/communications freely on its own throughout the training process, generalizing
all prior work discussed above. Compared to these works in centralized FL, we focus on sporadicity
in the fully decentralized setting. This introduces new challenges to our analysis, including dealing
with multiple client aggregators and the consensus process among the clients.

A few recent works have also considered decentralized counterparts of fixed local SGD methods
(Wang & Joshil 2018 [Sun et al., [2022; Nguyen et al., 2023}, [Liu et al., [2024), without considering
the heterogeneity and dynamics of client resources. Compared to these works, our focus is on
the sporadic case in DFL, modeling heterogeneous number of local SGD steps for different clients
and allowing them to be time-varying as well. As a result, DSpodFL subsumes prior methods in
decentralized fixed local SGD as a special case. We will further show in Sec.[d]how our convergence
results (Thms. [d. 11} {.T2)) recover DGD-like methods when there is no sporadicity in SGDs. Finally,
we note that our contribution takes the consideration of sporadic SGDs a step further, by analyzing
the joint effects of sporadic SGDs and sporadic aggregations in DFL.

Consensus strategies. Sporadicity in communications for distributed consensus formation has been
studied in randomized gossip (RG) algorithms. Several works Boyd et al.[(2006); Even et al.| (2021);
Pu & Nedic|(2021) study gossip algorithms with two clients conducting consensus at each iteration,
while (Koloskova et al., 2019} |[Kong et al.| [2021; |Chen et al., 2021} [Zhu et al., [2022) allow more
general mixing matrices. |Saha et al.[(2024) further deals with privacy constraints while implement-
ing gossip communications. In another direction, Srivastava & Nedic| (2011); [Lian et al.| (2018));
Bornstein et al.| (2022) have studied asynchronous DFL, where the communication delay between
inter-client model exchanges can be modeled as sporadic aggregations. The authors of [Koloskova
et al.| (2020) unify several existing DGD algorithms, under similar generalized data heterogeneity
and graph connectivity assumptions that we consider in our analysis. However, none of these works
in sporadic aggregations have considered sporadic SGDs in their methodology, making our work
among the first to analyze the efficacy of the joint consideration of sporadic SGDs and aggrega-
tions. A contemporary of our work |[Even et al.| (2024) has also unified several DFL algorithms, but
for the asynchronous setting without consideration for time variations in resource heterogeneity. In
this respect, compared to all prior works, our modeling using general indicator random variables
(Sec.[3.1)) enables us to jointly incorporate heterogeneous and time-varying resource availability of
clients. This approach leads to more generalized results accompanied by new challenges in studying
convergence, making both our algorithmic framework and analysis unique.
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3 DECENTRALIZED SPORADIC FEDERATED LEARNING

In this section, we formalize our DSpodF L algorithmic framework and the notion of sporadicity. A
summary of notation used throughout this paper can be found in Appendix [A]

3.1 DSproDFL: DECENTRALIZED FL WITH SPORADICITY

We consider a DFL system with m clients M := {1,...,m} and a series of training iterations k =
1,..., K. The clients are connected through a time-varying communication graph G*) = (M, £(K)),
where (i,7) € £®) if clients i and j can directly communicate at iteration k. Define G = (M, &)
as a graph such that £*) & for all k£ > 0. The goal of DFL is for clients to discover the globally
optimal model 6* = arg mingp. F'(#) for a given global loss function F'(#). To do so, each client
1 € M updates its own version 6; of the model by (i) conducting SGDs on its local loss F;(6) and
(i1) mixing its model with those received from its neighbors. The relationship between local and
global loss is given by

1
FO)=— > F@), FE@)= Y lxup(®). (1
ieM (x,y)€D;
in which D; is the local dataset of client i € M, (x, y) denotes a data point with features x and label
y, and £(x ) (0) is the loss incurred by ML model 6 on a data point (x,y).

Goal and motivation. Eq.|l|is the conventional objective function of FL, which we consider opti-
mizing for the decentralized setting under sporadicity. Specifically, we aim for each client to arrive
at ¢ = --- = 0, = 6*. This means that the clients need to reach consensus through the local
exchange process alongside implementing local SGD (Nedic, [2020). Due to heterogeneity and time
variance in communication/computation resources, we allow for autonomy in the number of SGDs
conducted and in the periods between model sharing across client pairs. This will make the process
particularly challenging to analyze too.

Algorithmic framework. DSpodFL achieves the above goal by modeling sporadicity in client par-
ticipation for DFL, decoupling the number of SGD iterations conducted by a client from the time
between model exchanges with its neighbors and the resulting consensus mixing process. Specifi-
cally, at each iteration k, client ¢’s update is modeled in the following generalized manner:

0§k+1) _ ez(k) + Z Tij (9]("7) _ 91(1“)) ,[}Z(f) _ ()é(k)gl(»k)l}l(k)7 )

JEM Sporadic SGD

Sporadic aggregation

where 0{*) is the vector of model parameters of client i at iteration &, and g = VF;(6*) +
is the local stochastic gradient with SGD noise egk). In Eq. vik) € {0,1} is a random indicator
variable, capturing the sporadicity in SGD iterations, which is 1 if the client performs SGD in that
iteration. Similarly, vff ) € {0,1} is a binary random variable capturing the sporadicity in model
aggregations, which indicates whether the link (¢, j) is being used for communications at iteration
k or not (@f;") = o and 3/ = 0). r;; € [0,1] is the mixing weight assigned to link (4, j), for
which the only requirement is that the mixing matrix R = [ry;],; ;,, is doubly stochastic. For
example, with the Metropolis-Hastings heuristic (Boyd et al., [2004), r;; = 1/(1 + max {|N;], |N;|})
when j € N;, and 0 if j ¢ A, in which A is the set of neighbors of client ¢ in the physical graph
G = (M,€E). Setting r;; = 1— 3., r; and noting that r;; = rj;, i.e., R being symmetric,
completes the design of a doubly stochastic mixing matrix R. The full pseudocode of DSpodFL
implementing Metropolis-Hastings mixing weights is given in Appendix [B}

The update rule of Eq. With two different sporadicity terms vi(k) and f)g@, each capturing both
heterogeneous and time-varying characteristics, has not been considered in the DFL literature.

o

3.2 KEY TAKEAWAYS FROM DSPODFL

Interpreting sporadicity. The novelty of DSpodFL in the integration of the two sporadicity terms
(.e, v and f;g-“)) to model the impacts of resource heterogeneity and dynamics in DFL. Specifi-

cally, client ¢ may set UEM = 0 for computation efficiency in iterations where computing a new SGD
is not feasible or does not significantly benefit the statistical/inference performance of the decen-

tralized system. Similarly, a pair of clients can set ﬁf]k) = 0 for communication efficiency when
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using link (7, j) is too costly at iteration k relative to local resource availability and/or expected

performance impact. These two key parameters ka) and f;g” can vary arbitrarily over the training
process according to decisions made by clients independently over time. This incorporation of spo-
radicity increases the degrees of freedom DSpodFL accounts for, thereby distinguishing it from the

literature in Sec. [2] (See Appendix [P2] for further remarks).

Unifying existing work. By introducing these two sporadicity terms, DSpodFL subsumes other
decentralized learning algorithms, including those shown in Fig.|l| Specifically, DSpodFL reduces
. . . . . (k) (k)
to DGD (Fig. , DFedAvg (Fig. , and RG (Fig. for specific configurations of v; " and 0;;".
However, these two sporadicity terms introduce several novel challenges when analyzing conver-
gence due to their creation of uncorrelated aggregation periods in DFL, which we address in Sec. [4]

3.3 MATRIX FORM OF UPDATES IN DSPODFL

To facilite our convergence analysis, we can rewrite the update rule given in Eq.[2|compactly as
ekt —plgk) _ (kyvHE Gk, (3)

where ©%) and G are matrices with their rows comprised of (6"))” and (g*)7, respectively,
and V® is a diagonal matrix with vﬁk) as its diagonal entries, for clients 1 < 7 < m. Here,
G® = v® 4 E® where V® (respectively, E*) is the matrix whose i-th row is (VF;(8%)))”

; (R)\T ; (k) — 1,(K)
(respectively, (e;")") for 1 < ¢ < m. The elements of P** = [p;”], <ijm AT€ defined as

pl =riold i, p =1-3"rppls i=j )

JjeEM
Note that the random matrix P(k), by definition, is doubly stochastic and symmetric with non-
negative entries, i.e., P(*)1 = 1 and (P(k))T = P Finally, in our analysis, we will find it useful

to define a row vector ) which is the average of model vectors 95’“), . oﬁ,’f ) across clients. Based

onEq.[3
glk+1) _ glk) _ a(k)@(k), 5)

where (80")T = (1/m) ¥, he gt ol

7

4 CONVERGENCE ANALYSIS

4.1 DEFINITIONS AND ASSUMPTIONS

Assumption 4.1 (Convex loss functions) For analysis in the strongly convex case, we assume the
local loss function F; at each clienti € M is (a) B;-smooth and (b) p;-strongly convex. Also, (c) the
gradient diversity is measured via §; > 0 and (; > 0as ||[VF(0) — VF;,(0)|| < & + ¢ |0 — 6,
forall § € R™. We define B = max;ec aq B, t = Minge g fbi, 0 = maxX;epq 0; and ¢ = max;e aq G-

For the non-convex analysis in Sec.[d.5] we will replace Assumptions . TH(D)&(c)|with the following:

Assumption 4.2 (Non-convex loss functions) The local loss function F; at each client i € M is
(a) B;-smooth. Also, (b) the gradient diversity across clients is measured via 6; > 0 and (; > 0 as
IVE,(O)| < 6 + G |IVF(O)|, forall € R™, i € M. We let B = maxiepm Bi, § = maxijem 9;
and ( = max;cam G.

Assumption 4.3 (Random variables) For all i € M and all k > 0, (a) The gradient noise W of

i
each client is zero mean with bounded variance o2. We also let 02 = max;cpq 02. (b) Gradient

(k)

noise vectors €.*) are uncorrelated across the clients, as are the indicator variables v\*). The indi-
~ (k)

cator variables v;;’ are also uncorrelated among the network links. (c) Random variables ef;k) and

K
o™ are uncorrelated for all clients .

Assumption 4.4 (Asymptotic graph connectivity) Denote the asymptotic graph union of the un-
derlying time-varying communication network graphs by G = (./\/l, limg 00 Ufzog(k)). We as-
sume that G is connected, and that for every edge (i,j) € G, we have (i,7) € E¥) for infinitely
many iterations k.
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More detailed mathematical expositions of our assumptions are provided in Appendix|[C] In Assump-
tions 4. 1H(c)&4.2H(b), we do not make the stricter assumption of { = 0 found in some works on DFL
(Sun et al.,|2022; Mishchenko et al.,2022). The addition of this proximal term makes our analytical
bounds tighter as they only require a constant bound at optimal/stationary points (Lin et al.| 2021}
Assumption4.4]is milder than similar assumptions made in prior works, e.g., static connected graphs
(Sun et al.} 2022} [Mishchenko et al.,|[2022; 'Wang & Nedié, 2023)) or B-connected graphs (Nedic &
Ozdaglar, 2009). Table[I|summarizes this comparison along these and other dimensions.

Definition 4.5 We define %) as the collection of random variables v'", ﬁf;) and €\ for all

i € M, (i,5) € EM and 0 < r < k. With this, the expected consensus rate (Koloskova
et all 2020) can be characterized via p\®, the spectral radius of the expected mixing ma-

trix, as B [P O® — 1,,0% 1] < pF gy [|OF) — 1,,0%)||"], which we present/prove in
Lemma|D.4\{(c) and Appendix respectively)
Definition 4.6 (Indicator variables) The expected values of variables v( ) and v( )
By 1] =, B [o0] = By [o0] = 9 = o >
! i i ji

in which dgk) € (0, 1] captures client i’s probability of conducting SGD, and bgj) € (0, 1] captures

the probability of link (i, j) being used for communication, at iteration k. We also define dfﬁx =

(ki) = min;e m d(k) Note that the probability distributions of these indicator

(k) 5k)

are defined as

max;c d<k) and d

variables can be time-varying, allowing for an arbitrary range of profiles for v; ' and v 0;;

4.2 AVERAGE MODEL ERROR AND CONSENSUS ERROR

To characterize the convergence behavior of DSpodFL, we first provide an upper bound on the
average model error Ex i) [||[*+1) — 6*||?] (Lemmal4.7)), and also upper bound the consensus error

Egw [|©@F+HD —1,,00+D) ||2} (Lemmal4.8), at each iteration k.

Lemma 4.7 (Average model error) (See Appendix|[F|for the proof.) Let Assumptions @1 and
hold. For each iteration k > 0, we have the following bound on the expected average model error:

= = 2 = 2
E=oo [|0%) — 6%)%] < 6Bz o [[18%) — 6] + 615 Bz n [[©F) — 1,,8®) ] + 9P,
where ¢{5) =1 — ia® (1 + pa® — (a®)”) + 222 (1 4 pa®)(1 - d))2,

k aF) g(k) g2 k a® k a2 k) 2

1) = (14 pat) ot and y{*) = 222 (1 4 pa®)(1 - diy), )52 + oL

m

In Lemma [£7 the upper bound on the expected error at iteration k + 1 is expressed
in terms of the scaled expected error ¢§’§)EE(;€_1)[H§<’“) —0*||2], the scaled consensus error

AP B0 [|©F — 1,,6%)||*] (which will be analyzed in Lemma , and the scalar ¢{", all at
iteration k. We can see that this bound captures the impact of sporadicity in local SGDs at devices,

through dgfi)n and dffgx. It recovers the bound for DGD when dgfi)n = 1, i.e., making vgk) =1 for
alli € M (e.g., see Lemma 5-b of [Zehtabi et al.| (2022)).

Lemma 4.8 (Consensus error) (See Appendix[F2|for the proof.) Let Assumptions and
hold. For each iteration k > 0, we have the following bound on the expected consensus error:

Ezw [|@F+) — 1,00+ 1% < 6By [10%) — 0 %] + ¢85 Egwn [|©F) — 1,60|1%] + v,

2 2 (k) k) _ 1™
) (C + 25 ( - dmm)) ¢22 - + +
k) (K k k (k) ~ . .
31+’i(k)d§ngx( (k)) (¢? +2B?), ¢§ ) = m(a(k) dr(ngx(sljffw 62 + 02), and p™*) is defined in
Deﬁmtton-
'Our notation of E= k) [o] denotes the full expectation operator with respect to the random variables in
matrix 2, ie., Ege-n) [Eeo) [0 [E* V)] = Eeo) [Be [ - Egtremy [Egiy [0 [EFTV]IEFTD]. . [¢O]).
Note that v( 7 and v(k) are thus Bernoulli random variables for each k. However, the expectation changes

where gb(k) = 3 1+€m mdfx’fzix(

over time, i.e., varying d<k) and b( ) , making v ) and v( %) dynamic Bernoulli variables.
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Lemma captures the impact of sporadicity in model exchanges, through 5(*) (which is smaller
when the mixing matrix is more strongly connected), as well as in SGDs. It additionally shows how
gradient diversity (¢, ) makes the bound larger. It reduces to a bound for DGD when (a) ¢ = 0 and
(b) dgfi)n = 1, resulting in dl(.k) = 1for all 4, in turn forcing ¢§’§> = 0 (e.g., see Lemma 5-c inZehtabi
et al. (2022)).

4.3  SUFFICIENT CONDITION FOR CONVERGENCE

We observe that the the average model error and consensus error from Lemmas 4.7 and [.§] are cou-
pled. We next characterize their joint evolution and provide a condition for DSpodFL convergence.

Definition 4.9 (Error vector) We denote the error vector at iteration k as v¥), defined as the con-
catenation of the average model error and the consensus error:

~ 2 2117
v = [Bzuon [[6® - 0[], Ezon [[|O® - 1,8®°]] . (©)
Using this definition, it follows that
D < @) (k) 4 g k) (7)
with @) = [(bg?)]l <ij<2 and TF) = | ik), wék)}T. Recursively expanding the inequalities in

Eq.[7)gives us an explicit relationship between the expected model error and consensus error at each
iteration, and their initial values, which will be usgful in Theorem|4.11

yk+1) < P (%:0),,(0) + Z@(k:r)‘ll(r—l) + \I’(k)7 (8)

r=1
where we have defined ®(%¢) = ®*) k-1 ... &) for k > s, and ®**) = ) Note that
VO =180 - 0", |8 — 1,80
From Egs.[/|and |8} we can apply linear system theory to identify a sufficient condition for conver-

gence of DSpodFL: that the spectral radius of matrix ®(¥) is less than one, i.e., p(®*)) < 1. In the
following proposition, we show this can be enforced through appropriate choice of learning rate.

Proposition 4.10 (Spectral radius) (See Appendix[E3|for the proof.) Let Assumptions .1} 4.3 and
M4 hold. If the learning rate satisfies the following condition for all k > 0:

1 1—5F) 1

1 u / (1—5(’“) )2/3
1 oy/3a0), Vs /242627 \ 12(c2+262 (14l )) 2dW ’

then we have p(@(k)) < 1forallk > 0, in which p(-) denotes the spectral radius of a given matrix,
and ®%) is given in Eq. E] The exact value ofp(<I>(’“)) is given in Appendix

a® < min

Proposition implies that limy,_, .. ®**) = 0 in Eq.|8l which means the consensus and average
model errors will converge. The exact convergence rate depends on the choice of learning rate ().

4.4 MAIN THEOREM AND DISCUSSIONS FOR CONVEX CASE

We characterize the convergence bound of DSpodFL for the convex case in the following theorem.

Theorem 4.11 (Strongly-convex convergence result) (See Appendix [F4| for the proof.) Let As-

sumptions and 4.4 hold, and suppose a constant step size &%) = o > 0 satisfying the con-

ditions outlined in Propositionis employed. Let p = maxo<p<k p%) be the maximum expected

spectral radius of the mixing probabilities from Definition 4.5|and dyin = Ming<ip<i icMm dgk) be

the minimum of the SGD probabilities. Then, we can rewrite Eq.[8|as
(K+1) < K+1_(0)

y D < p(@) KO v, ©)

1—p(®)

in which ® = %) gnd & = ®*) from Eg. Bfor all k (given the bounds p*) < p, dﬁ’f;x < 1and
dffi)n > dmin), and v %) is the error vector. This means for large enough K, we have

2 (1 1) (1~ dinin) 6 + 227

1
lim E+D < _— _
- mo (3%;52 + 02)

K00 24 ’ (10)
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where A = %2(1“5 -1)(1- F—lo) with 'y, I's > 1 being constant scalars defined in Appendix Note
that Proposition ensures p(®) < 1.

Discussion on convergence. The bound in Eq. [J] indicates that by using a constant step size,

DSpodFL obtains a geometric convergence rate (ie., O(p(®)")) as in other DFL methods
(Mishchenko et al., |2022; Nedic & Ozdaglar, |2009), Eq. [E]characterizes the asymptotic optimality
gap as K — oo. We observe that this bound holds for any choice of time-varying SGD and ag-
gregation probabilities, d*’ and b}’ through 5(*) (see Appendix , respectively. Additionally,
the optimality gap is reduced by (1) choosing a smaller learning rafe o and (ii) having a system
with a larger minimum SGD probability dp,i,. As discussed after Lemma in the conventional
DFL setting where SGDs occur at every iteration, we have d,,;;, = 1. In this setting, the optimality
gap in Eq.[10| would be proportional to «, showing that DSpodFL recovers well-known results of
DGD-like algorithms (Maranjyan et al.,2022) in this special case of no sporadicity in local updates.

Diminishing learning rate. By contrast, when diminishing step size a(*) is used, DSpodFL can
achieve a zero optimality gap with a sub-linear convergence rate O(In K /v/K), matching the rate
achieved by existing DGD-based methods (Nedi¢ & Olshevsky} 2014} [Zehtabi et al.l 2022). See
Appendix [[] for detailed proofs and discussion.

Effects of sporadicity terms. Both p(®) (from Proposition and the first term in the optimality
gap vector given in Eq.|10|can be made smaller by choosing a larger dm:» = minp<x<x,icm dgk) =1,
which will result in a faster convergence rate and a lower average model error. On the other hand,
the communication probabilities bgl-c) affect the bounds through the spectral radius parameter p (ex-
act relationship given in Appendix . To elaborate, increasing the frequency of communications
will lower the spectral radius term p, leading to faster convergence and a smaller gap for the con-
sensus error. However, this is not always desirable since choosing d; and b;; solely based on the
convergence rate can result in longer iteration lengths, due to resource-limited clients. As we will
see in Sec. E], choosing d; and b;; considering resource availability leads to speedup in achieving
performance targets.

4.5 ANALYSIS FOR NON-CONVEX CASE

Our discussion so far has revolved around strongly convex loss functions. For the non-convex case,
we follow a similar roadmap for our analysis as in Sec.[d.2}{4.4] The detailed supporting lemmas and
propositions can be found in Appendix [G] Ultimately, we arrive at the following theorem:

Theorem 4.12 (Non-convex convergence result) (See Appendix for the proof.) Let Assump-

tions and hold, and sui i ose a constant learning rate o\") = o with o > 0 satisfying the

constraints given in Proposition|G.6|is employed. Let p = maxo<p<k p*) for the spectral radius
and dyin = Ming<i< K, ic M dgk) for the local SGDs. Then,

~(r 2 — —
S0 e IVFONIT] 1 (F@EO)-F* | |©9-1,0 Pws | 2
o <a | o+ o) + a?waws + (1 — dmin)wa + qws |,

in which F* = mingegn F(0) is the globally optimal loss, and wi = 5(1 — 5-)(1 — ) (1 — 75),
4

wo = /3(21‘1“)"78*?3 ws = mdmax(lﬁ’%ﬁ:é? +02), wy = (1 +T'3)6? and ws = M%;}jﬁ. Also, the
m(l—p Y L
conditions on the constant scalars T'; with0 < i1 < 4 arel'g,I'1,T'2,Ty > 1 and T's > 0. On letting
K — oo, we obtain
K 0.
lim Yoo Bzt [IIVF@O ) < a?wows + (1 — diin)wy + aws
K—oo K —+ 1 - w1

2
I

Discussion. Theorem4.12]shows that many takeaways from Theoremd.TT|extend to the non-convex
case. Specifically, Theorem.12] generalizes results of existing DFL works by capturing the effect of
sporadicity with non-convex losses. As in Theorem by setting din = MiNg<i<K,ic M dz(,k) =
1, our work recovers well-known convergence guarantees in DGD when there is no sporadicity in
SGDs Koloskova et al.[(2020) (see Appendix. for further discussion). Additionally, the stationar-
ity gap, which is bounded regardless of the d; values, can be reduced by choosing a smaller learning
rate o and/or a larger minimum SGD probability dpin. One key difference from Theorem is
that Theorem provides sub-linear convergence (i.e., O(1/K)) of average gradient norms as
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Figure 2: Accuracy vs. latency plots. DSpodFL achieves the target accuracy much faster with less delay,
emphasizing the benefit of sporadicity in DFL for SGD iterations and model aggregations simultaneously.
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Figure 3: Effects of system parameters on FMNIST. In Figs. and 3l client and link capabilities d; and
b;; are sampled from a uniform distribution 2/ (0, 1]. The overall results confirm the advantage of DSpodFL.

opposed to geometric convergence of models’ last iterates across clients. We also provide analysis
for the diminishing learning rate case in Appendix

5 NUMERICAL EVALUATION

Models and datasets. To evaluate our methodology, we consider image classification tasks using
the Fashion-MNIST (FMNIST) (Xiao et al.,[2017) and CIFAR10 (Krizhevsky et al., 2009) datasets.
We use FMNIST to train the Support Vector Machine (SVM) model (Cortes & Vapnikl [1995), while
CIFARI10 is adopted for training VGG11 (Simonyan & Zisserman, 2015)).

Settings. By default, we consider m = 10 clients connected via a random geometric graph (RGG)
with radius 0.4 (Penrose, 2003)). We adopt a constant learning rate o« = 0.01, and use a batch size
of 16. The SGD probability d; for each client and exchange probability b;; for each link are ran-
domly chosen according to either the Beta distribution Beta(a, ), uniform distribution U0, 1] or

Bimodal Truncated Gaussian distribution 0.5(N{o 1) (141, 07) 4+ Nio.1) (12, 03)), and are held constant
over iterations k. Choosing o = 8 < 1 for the Beta distribution results in an inverted bell-shaped
distribution, which corresponds to scenarios where the clients and communications links exhibit
significant heterogeneity. For FMNIST, we use d;, b;; ~ Beta(0.5,0.5), and for CIFAR10, we use
d;, b;j ~ Beta(0.8,0.8). We consider two different data distribution scenarios: (i) IID, where each
client receives samples from all 10 classes in the dataset, and (ii) non-IID, where each client re-
ceives samples from just 1 class for the FMNIST dataset, and from 3 classes for CIFAR10. Unless
stated otherwise, our experiments are done under the non-IID setup. We measure the test accu-
racy of each scheme achieved over the average total delay incurred up to iteration k. Specifically,
Thotat = Thrams *+ Toroe, in which 73020, = [ (1/ING]) 32, 0657 /b )/ (72, (1/|NG]) 325 1/big) and
Tf,fgc =", vf“ /dil/[>-i~, 1/ds] are the per-client transmission delays incurred across links and
processing delays incurred across clients in iteration k, respectively (see Appendix for further
discussion). For a fair comparison, we determine the aggregation frequency D for the DFedAvg
algorithm (depicted in Fig. [I) based on these d;, i.e., D = [(1/m)Y ", 1/d;]. We conduct the
experiments based on a cluster of three NVIDIA A100 GPUs with 40GB memory. We run the
experiments multiple times in each setup, and present the mean and 1-sigma standard deviation.

Baselines. We compare DSpodFL with four baselines that are tailored to decentralized settings: (a)
Distributed Gradient Descent (DGD), where SGDs and local aggregations occur at every iteration
(Nedic & Ozdaglar, |2009); (b) the Randomized Gossip (RG) algorithm (Koloskova et al., [2020),
which is equivalent to Sporadic Aggregations (with constant SGDs); (c) Sporadic SGDs (with con-
stant aggregations); and (d) Decentralized Federated Averaging (DFedAvg) (Sun et al.,[2022). Note
that all these baselines can be viewed as special cases of DSpodF'L as elaborated in Fig.[I}
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Accuracy vs. delay comparisons. Fig. 2compares the test accuracies of different schemes in terms
of overall delay. By allowing for sporadicity in both SGDs and aggregations, DSpodF L outperforms
all baselines for both data distributions and models/datasets. In the IID setups of Figs. [2a] and
the performances of the baselines are reasonably similar. Meanwhile, our DSpodFL is able to
significantly outperform those algorithms by an accuracy margin of 10 — 20% in the initial stages of
training. The gain of DSpodFL becomes more significant for non-IID data distributions as shown in
Figs.[2bland [2d] Inter-client communications become more crucial in non-IID setups, as each client
has access only to a small portion of the distribution of the whole dataset. Depending on the baseline
and dataset, DSpodFL is able to achieve 10 — 40% improvement in accuracy for a particular delay.

Effects of system parameters. In Fig.[3] we study the accuracy reached by a certain training delay
as system parameters are varied. In contrast to Fig. 2] where client/link capabilities were sampled
from the Beta distribution, for completeness, Figs. [3af{3c|are sampled from the uniform distribution.
In Fig. [3a] we see how increasing the number of labels possessed by each client (i.e., moving from
non-IID to IID) improves the achieved accuracy of all methods. Further, DSpodFL outperforms the
baselines for each data distribution. In Fig. [3b] we see that increasing the radius of the underlying
RGG (which controls the density of connections) improves the achievable accuracy for all baselines.
Again, DSpodFL performs the best for all choices of radii, confirming the benefit of integrating
the notion of sporadicity in both communications and computations. Fig. [3c| depicts the impact
of the number of clients in the system. DSpodFL obtains the largest improvement as the size of
the network increases, whereas the baselines are more likely to suffer from resource bottlenecks if
weak nodes are added. Finally, in Fig. we analyze the effects of parameters & = (3 in the Beta
distribution, which control the communication/computation heterogeneity across clients. Note that
increasing these parameters to 1 brings the distribution closer to uniform. We see that DSpodFL is
robust to the underlying resource distribution, and the gap between our approach and other baselines
become more significant when the levels of heterogeneity in client/link resources are higher, i.e.,
lower @ = f3.

Generalization of results to various settings. Dfedivg —— DGD  —— DSpodFL (Ours) "G Sporadic SGDs

In Fig. ] we provide experimental results o

where some of the default system parameters $os W
that were used for Figs. 2] and [3] are changed. *os

In Fig. fia] a total of 50 clients are considered gos l l l L
for the decentralized system. The results illus- £°° Lﬁ—‘y—f—f—!"H—i
trate that the improvements become more pro- =
nounced with m = 50, confirming the trend

seen with increasing m in Fig.[3a] In Fig.[Ab] (a) Varying number of la- (b) Varying y in d;, bij ~

a Bimodal Truncated Gaussian distribution is bels per clientinanetwork 0.5(Njgqj(p,0.01)  +
used to generate probabilities d; and b, ;, which ~©f m = 50 clients. Nio.ay(1 = p1,0.01)).

for small values of variance when the means of
the two modes are far from each other, gives
heterogeneous clients. We see that when vary-
ing 1, a wider margin of improvement (15%) with lower ;o where p1; = ppand po = 1—pis achieved.
This confirms that DSpodFL is most advantageous relative to the baselines under higher levels of
heterogeneity, similar to how the improvements under the inverted bell-shaped Beta distribution
were more pronounced than those under the uniform distribution in Fig.[3d|
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Figure 4: Scalability to larger clients and robustness
against distributions on FMNIST.

Additional results. In Appendix [O] we report experimental results when time-varying SGD and
aggregation probabilities are used, as well as under other configurations of resource heterogeneity.

6 CONCLUSION AND LIMITATIONS

We proposed DSpodF L, a DFL algorithmic framework that generalizes the notion of sporadicity to
fully decentralized scenarios. By considering (i) sporadic gradient computations and (ii) sporadic
client-to-client communications simultaneously, our approach tackles the challenges in heteroge-
neous and time-varying resource settings and subsumes well-known decentralized optimization al-
gorithms. We analyzed the convergence behavior of DSpodFL, and showed how our results recover
existing DGD-like algorithms under special cases of sporadicity. Through experiments, we demon-
strated the advantage of DSpodFL compared to various DFL baselines. Future work could consider
further validating DSpodFL on larger datasets and a more expansive set of tasks beyond image
classification.

10
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REPRODUCIBILITY STATEMENT

We use open-source datasets detailed in Section[5] Complete code for training and testing is available
in the supplementary material. Pseudo-code of our algorithm is given in Appendix [B] The assump-
tions for our theoretical results are outlined in Sec.[d.1] and the proofs of our Lemmas, Propositions

and Theorems (Secs. [d.2}}4.3)) are given in Appendices
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A NOTATION

Arguments for functions are denoted with parentheses, e.g., f(z) implies 2 is an argument for
function f. The iteration index for a parameter is indicated via superscripts, e.g., h(*) is the value of
the parameter A at iteration k. client indices are given via subscripts, e.g., hl(-k) refers to parameter
belonging to client 5. We write a graph G with a set of nodes (clients) V and a set of edges (links) £

asG = (V,€&).

We denote vectors with lowercase boldface, e.g., x, and matrices with uppercase boldface, e.g., X.
All vectors x € R4X! are column vectors, except in certain cases where average vectors X € R!*¢
and optimal vectors w* € R'*? are row vectors. (x,x’) and (X, X') denote the inner product of
two vectors x,x’ of equal dimensions and the Frobenius inner product of two matrices X, X’ of
equal dimensions, respectively. Moreover, ||x|| and || X|| denote the 2-norm of the vector x, and the
Frobenius norm of the matrix X, respectively. The spectral norm of the matrix X is written as p(X).

B ALGORITHM PSEUDOCODE

Algorithm 1 Decentralized Sporadic Federated Learning (DSpodFL)

Imput: K. {G" = (M, €M)}y, {vz‘(k)}ieM,OSkSK’ {@ff)}(i,j)eam,ogkgx’
{a(k)}ogkgl(

2: Output: {6V},

3: k 4+ 0, Initialize 0V, {0, 00}, (. {0 O}, {8 0} e

4: while k < K do

5. foralli € Mdo
6: ggk) 0, aggrl(.k) 0
7: if vgk) = 1 then
8: sample mini-batch @UQ) € D;
9: g — VEOM; M)
10: end if
11: forall j € Ei(k) do
12: if 6. = 1 then
13: rij < 1/(1 + max {|N;], [N;]})
14: aggrgk) — aggrz(-k) + 7y (Oﬁk) — 95“)
15: end if
16: end for
17:  end for
18: forall; € M do
19: 95’“*” — 9§k) + aggrl(-k) - a(k)ggk)
20:  end for

21: k+—k+1
22: end while

C ASSUMPTION STATEMENTS

In this section, we state the mathematical inequalities that follow from the assumptions we made in
Sec. which are used in our subsequent Lemmas and Propositions.

* Assumption 4.1}
Bi-smoothness: |VE;(0) — VE (@) < B: 10 =0"|| < B0 — 0|,
pui-strong convexity: (VF;(0) — VF;(0'),0 — 0') > |0 — 0'||* > pl|0 — ¢/
8;, C;-gradient diversity: |[VEF(0) — VF;(0)]] < 8 + ¢ |0 — 0| <0+ C |0 — 0%,

2
s
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for all (6',0) € R™ x R™ and all i € M, where u = min;en i, f = max;ea Sis
6 = max;en 6; and ¢ = max;eaq G-
Note that these measures are related to each other via the inequalities ¢ < p; < 8; < f3,
0<¢ <Bi+Band0 < ¢ <28 (see Appendix [E-T). We will also find the relationship
FO) < F(0)+ (VF(©),0-0) + §||9’ — 9||2 useful in our treatment of smoothness.

* Assumption 4.2}
Note that it is possible to make this assumption even for convex models instead of Assump-
tion|4.1}{(c)} since smoothness implies that | VF ()| < 3||6 — 6*||. However, we choose to
use Assumption . T}{(c)]instead of Assumption[d.2{(b)| for convex models, since it is a less
strict assumption.

* Assumption 4.3}
Zero mean and bounded variance of stochastic gradient noise: Ee(k)[el(»k)] = 0,
Blje";] < o <%
where 02 = max;cp 02, forall i € M and all k > 0.
Let us define SGD noise vectors 6< ) and e(k) indicator variables v( ) and v(k), and
A(k) and © (k) . Then for all ¢ # j, and (4, j) # (l,q), we have:

E <k>[< i % € = (EwleLEwle). Bew o ?v] = i IE, 0 o)
Egw [01 0111 = Eqo [0 g0 6], B [ePo) = B, [€]8, 0 (o),

i i

* Assumption [4.4}

This assumption implies that if P(*) = [p(k)

i i jam MR =

Egs. and are the doubly-stochastic mixing matrices assigned to G(*) and G, respectively,
we have

[Pme® — 1mg(k>”2 <|je® — 1m§(k)!|2,
IRO®) — 1mg<k)||2 <p2-|@w - 1m9(’“)!|2,
with 0 < p, < 1, where p,- denotes the spectral radius of the matrix R — %1m1§1.

[rijli<i j<m as defined in

C.1 GRADIENT DIVERSITY ASSUMPTIONS FOR CONVEX AND NON-CONVEX MODELS

In this section, we will discuss why we change the gradient diversity assumption when we treat
non-convex models, i.e., move from Assumption to Assumption {.2}{(b)}

We note that if we are dealing with strongly-convex models, i.e., we make Assumption [£.I}{(b)]
for p-strongly convex models, the inequality in Assumption for data heterogeneity is a
much stronger assumption than Assumption 4. I| To show this, We ﬁrst note that making the
B-smoothness assumption (made in both Assumptions@-T}{(a) and F.2}{(a)) implies that

IVE@)] < B0 07,

where 6* is a point where VF(6*) = 0, i.e., a globally optimal point for convex models and a
stationary point for non-convex models (note that we present and prove this result in Lemma [D:T}
(b)). Then, since we have [|[VF;(0)|| < §; + ¢;||VF(0)]| according to Assumption 4.2H(b)l we can
conclude that

IVE@O) = VE@) < IVE@) +VEO) < 6+ A+ G)IVFO)] < 6 + (1+¢)BII0 — 07

We observe that defining 6, = ¢; and {/ = (1 + ;)8 > 0, Assumption is implied with
parameters ¢, and ¢/. The converse is not necessarily true though, i.e., Assumption does not
imply Assumption 4.2(b)

D INTERMEDIARY LEMMAS

Lemma D.1 (Gradient bounds) (See Appendix [E_1| for the proof.) Let Assumption @1 hold. We
have
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(a) The global loss function F(0) is B-smooth and p-strongly convex, i.e.,
IVE@©) = VE@) <BlO—0ll,  (VF©O)~VF©),0-0) > pllo— 0.

(b) The gradients of the global and local loss functions, and the gradient of the local loss function
at the optimal point are bounded as

IVF@I <8l —6"ll, IVE@I <2 (8210 - 0°7 +32),  [IVE(E")] < 6.

Part{(a)] of Lemma outlines the smoothness and convexity behaviour of the global loss function
based on the measures of local loss functions, and part [(b)| provides upper bounds on the gradients.
Note how these show that we are not making the bounded gradients assumption for all § € R", but
only bounded local gradients at the globally optimal point 6*.

Next, we provide upper bounds on the expected Frobenius norms of the following quantities related
to SGD noises.

Lemma D.2 (Expected value of SGD noise average and deviation) (See Appendix [E2] for the
proof.) Let Assumption hold. For every iteration k > 0, the average SGD noise and their
deviation from this average can be bounded as

Ee) {

in which eo¥) = L3~ (k) (k).

1111

2 2
@oc)H ] <d®.o?m,  Eew {HVUC)EU@) ~ 17,@(@“ } < md® o2,

Note that by setting dmax = 1lin we get back the well-known estimation bounds for these
quantities (e.g., see Lemma 2 in|Pu & Nedic|(2021)).

Next, we find an upper bound on the expected deviation of the gradients from their average (similar
to the second quantity in Lemma [D.2).

Lemma D.3 (Gradient deviation bound) (See Appendix [E.3| for the proof.) Let Assumption
hold. For each iteration k > 0, we have the following bound on the expected error of gradients from
their average

max

E=c) {HV(’C) 1 Vv(k)H ] < 64

mé? + (¢* + 282) Bgamy) M@W _1, 9<k>H ]

il

o,k _

+m (¢ +28% (1-d)) E=en [H(W)
in which V%) is a matrix whose rows are comprised of the gradient vectors V F; (G(k)) and Vv
m k k
7 S VE( ).
Finally, we analyze the behaviour of the random mixing matrix P(*) defined in Egs. [3{and

Lemma D.4 (Expected mixing matrix) (See Appendix[E.4|for the proof.) Let Assumptiond.4 hold.
For each iteration k > 0, we have

(a) The expected mixing matrix, denoted as R™¥), is irreducible and doubly-stochastic:
(k) L,
E¢o [PH] 2 RM) = [f(@} ) _ Jbig T ) i #7.
) 9 hcigen” T (1= 00y =

(b) Bg [(PB)] = ®R®)* + R 2RO,

where R((Jk) is a matrix whose rows and columns sum to zero. Thus, R*) will be irreducible
and doubly-stochastic.
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(©) Ezw [[PROW — 1,00 °] < jPEzu [[0F) — 1,097,

in which p\¥) is the spectral radius of the matrix R® — %lmlT

m*

E PROOFS OF INTERMEDIARY LEMMAS

E.1 PROOF oF LEMMA D]

[(@)|First, we use Eq.[I] triangle inequality and the smoothness property given in Assumption
to get

IVE(®) — VE@O)] = Z(VFJ'( — VE;(6") Z IVE;(0) — VE;(6")]]

IN

1 m
*Z 10 —0'll =300 <Blo—0.
m j=1
Next, using Eq.[I]and the strong convexity property of Assumption#.I}{(b)] we have
1 « 1« 2
r _VEF(O S (! —_o\ > — o _ p!
(VE(0) = VE(®').0 mg (Mﬁﬁﬂm;mwﬁﬂ

=allg -0 > pllo -0

mce = y ae nition, we can use the results o part a)|ot this lemma to show that
()| Since VF(6*) = 0 by definiti he results of part[(@) of this 1 how th
IVF@)| <8116 —6".

Once again noting that VF'(6*) = 0, we next use the gradient diversity bound outlined in Assump-
tion to get
IVE(67)] < 6. 1D

Finally, using Eq.[IT]and Assumption{-1}j(a)} we write
IVEO)* < 2 (IVF(8) — VRO + IVE(67)*) <2 (82016 - 07|* +62) ,

finishing the proof.

To explain the statement written after Assumption [#.I]on how these measures relate to each other,
we first have

p<pi < B < B,
in which u; < f; is a well-known fact (see [Bottou et al.| (2018)) as a reference), and u < u; and
B; < B follow from the definitions given in Assumption 4.1l Moreover, if we upper-bound the
gradient diversity term ||V F(0) — V F;(6)]|| without using Assumption 4. 1{(c)l we will have
IVF(0) = VE(O)[| < [VF(©) = VFi(6") + VE(0") — VE(O)||

< IVE@)| + [VE@) + [IVFi(8) — VFi(67)]] (12)

<O+ Bill0 -7+ 516 — 0"l <0+ (B +B) 16— 67|,
in which we used the triangle inequality, Assum and the results of Lemma[D.T}{(b)] Now

A TH(o)

comparing Eq. @ with the assumption made in4.1H(c)|for the same expression, we conclude that

G < Bi+ 5, ¢ <28
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E.2 PROOF OF LEMMA [D.2]

We start by finding an upper bound for the average SGD noise, by expanding the terms using their
definitions and employing the properties given in Assumption [4.3]and Definition 4.6

1 ’

726?‘)(01(16)

m i=1

o LSS 9], ¢
WZXX e[ B €

2
| ] = e

Ee) [

zzw

L
N
<

ST~
=

N
—_
~—

1 & 2
=2 2B e o)

ﬂéii@ o |8 Bg (0] B [ |Bg0 [57])

i=1j

2 1 dinaxo”
B[] = 7 S0t < B
' i=1

1 m
= — E & |||€
>3 w[
m 121 67/

Next, we found an upper bound for deviance of the error matrix from its average, using a simi-
lar approach as above. Noting that || - || is the Frobenius norm for matrices, Assumption 4.3|and
Definition .6 implies that

2
Eewo [Hv(k)E(k) ~ 10 }

2 2
— Eeo [Hwk)E(k) ” —2(VOBM, 1,0 4 Hlm@u@) H }

m 9 m ,
e ]Eg(k) [ ‘| - ZEE(k) [Z <€Ek‘)vz(k')7@(k)> + Eg(k) |:m @(k)H :|
i=1 i=1
2 2
72]}3 (k) |: (k):| E ZEffk) |: El(»k) vl(k):|
=1

m

2 m 2
BB [0 S 400 o ]

JFi
~(1-2+1) > B ) e 1]
=1
2SS (g [ [ B [ 18]
i=1 j=1
JFi
(1= 1) S0 < o ittt <

E.3 PROOF OF LEMMA [D.3]

Noting that

2

)

Hv(k)v(k) ~1,,Vo T H < 2HV (k) _ V(k)VF(k)H2 + QHV(’“)VF(’“) _ lmW(k)’
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according to Young’s inequality, we first find an upper bound for each of the two terms above
separately. For the first term, noting that || - || is the Frobenius norm for matrices, we have

[vOv® - vEvE® H2 = i |VE(6)ol™ — vr(6) o H2
=1

I o VP < N~ (5 4 0
- Jon (09) - r) [0 <5 oo

%
ol

2
on

where Assumption4.T}j(c)] triangle inequality and Young’s inequality were used for the inequalities,
respectively. For the second term, again noting that || - || is the Frobenius norm for matrices, using
Eq.[T]and the triangle inequality, we can write

_ 2 m o 2
mev];(k) _ lva(k)H -y HVF((’Ek))U§k) B WmH
i=1

2

o) — 6+ )2u(’“>

I
_

qu

(5 +G

-5

<.

I/\
i1

(52 + <-2

- o -

i (V5 (60)6 = v, (609 )l

I
e
3=

i=1 j=1
i % i |V (01)0l = v (60
i=1 =1

Continuing from there and using Young’s inequality and Assumption we have
- Z Z |VE;(6) o = 0 (090) o) + 9 F; (090) o) — V(00
+ VE ()0 = VE; (000 + VE; (09) o — (08 ) o H2
m _ 2 _ 2 2
23 (lom (o) - wm () [of + or (5) - wm@ (4 - o)
_ 2
SORZICIEY

<3 >y (ﬁ?Heg’“ 00 1 g2 — o

i=1 j=1

Ms

3
m

7

2
(vl(k) + vﬁk) — 2Ufk)vj(-k))
2
o)

3 X m . B 2 B NE . . -
j=1 i=1
g(k) ® %, k)
+ HH Oj H v; )

332 m o2 mo 2
< 5[7”2”92(@ _9<k>H o® +mZH9(k) _(,j(k)H o)
i=1 j=1

+ 3|6

-

mZv(k)—i—mZv(k) 222”@ , 1

=1 j=1
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2
CHENEe U(k))
(3o (3o
L~ w || o
1-— E;Uj v

oS o -0 o o
i=1

<o $s o0+ o -

where for the last three inequalities we used the properties of the binary indicator random variables

(k> € {0,1}. Now, by combining the two components together we get

[veow - 1mﬁ(’“)H2 — 2| viv® - V(k)VF(k)HQ +2[[VEVE® - 1mw(’“)H2

o3
i=1

5+ (¢ + 280 — 0|

1 & - 2

2 2 (k) k (k)

+ ¢ +28 1_E§ 1vj He()— * 11) .
=

Finally, we have to take the expected value of the above inequality to conclude the proof. Towards
»

this, we multiply v;" inside the parentheses and use Definition 4.6|to get

E=zw U‘V(’C)V(’“) - lmW(k)HQ]
(51'2 + (¢ +26%) Egun) [H9fk) — " HQD E,m [v§’“)] + <C¢2Ev§k> [”gk)]
(s 1] S 1] - 2 (]S )

i

m

SGZ

]EE(k—l) |:H§(k) - 0*

0" - 0<’“>H2D di + ( 2a"

o Lm0 ~(k
+26% | 4" — ) — —d| §. l:dj )EE(k_l) {Hg()
j:
i

07 + (7 +26%) Ezoen Meﬁ’” - MHQ]
+ (Cf + 242 (1 — % 1+ i@@}))@aw” [Hg(z@) _ o
j=1

J#i
_ 2
| me?+ (¢ +26%) Bz {HG“”M@““M
1
m

+m <<2 +2p° (1 ——[1+(m )dg;;m Eeo 1) {HW o

]

53

< C2 + 2,32) Ezx-n [

o]

=6 i )
i=1

)

< 6dk)

]
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_ 2
= GdEI]f;X mé2 + (CQ + 252) Ezti, U’(_)(;@) B 1m9(k)H }
2 2 1 (k) - 2
m <C +28 <1 - ) (1- dmm)> Egon) U’g< ) _gr }
m
2
S RO o

+m (¢ +26% (1-d,) ) E=en [HW) 0"

]

where the last four lines are algebraic manipulations to simplify the bound.

E.4 PROOF oF LEMMA [D.4]

We take the expected value of the matrix P(¥) by looking at its individual elements. Using Eq. E|
and Definition [£.6] we have

(k) . .
Ti‘EA(k) {7}-- H i FJ
N (k) _ [ T L 1<i,j<m
By [PV] = By o] _, . = b8 o~
ij 1<i,5<m 1-— ZJ 1 T’UE (k) =]
1<i<m
(k) }
— [blj Tij 1<i,j<m ' 7&] — R(k)
k
[1 g ng)T”}KKm 1=

b)[ Similar to the proof of the previous part, we take the expected value of (P(k) )TP(k) (P(k))
by looking at its individual elements. Again, using Eq.[4]and Definition[4.6] Assumption[d.3]implies
that

ifi 7

k k
Egw lz Pyl )]

3

m
L (k k (K
=Egw Z mm]vl vl )4 (1 - Zriqqu)> 70 fj) (1 — Zr]qvjq ) 730 z(j)

l#w

=Egwm anj z(z)“l(g) <

Ms

~(k ~(k
T‘Zq’U (k) + quUJ('q))) er’Ul(] )‘|
1

q

rlqv( ) + rquj(};)) rijﬁi(j’-c)

Ms

E rary0 Zl ”zg + 2 —
=1 q=1

q#z J

k k k
- le z(_])+r] ())r” 757)‘|

= ZTZZTIJE (k)|: }]E (k) |:’Ul(]k):|

- EV(’C)

m

+ (27 X2 (o (0] + raaogn [07]) | rsBagn (0] - 2B 017

g=1
q#i,J
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i i T lb i+ 2— i (b(k)mq + by;)rjq) bg?)mj — 2bz(.§)7‘i2j
- pimg
On the other hand,
ift=7:

m 2
B |3 ranlf i+ <1-znq@55>)
g=1

l;éz

=Evm irivff) +1-— 22%4’“) i i zqmﬁ(k) (k)‘|

EVW [Zpll pl]

IEV(M Z Tzlvz(lk) +1-2 Z T“]Uzq + Z Z qurltvzq it + Z r?q@z(j;)

1 1 =1
q= i;éq q
m m m m
= QZT lE (k) [ } +1- ZZTWE (k) [UZ((I;)} + Z qumt]EA(k) [Uzq)}EA(k) ['E)zt }
q=1 q=1t=1
t#q
S S RS SIS 3l N
q=1t=1
t#q

Finally, comparing the above expression with the elements of (R(k))z, we get
2 m
B [(P(“) ] = sz(-zk)pz(f)] ]

_ 2b(k) b(k) . L # ] _ -
:W””%gﬁ&olﬁaﬁ’ii=W%ﬁﬁﬁm“

1<i<m

Eg o

1<i,j<m

. . k) . .
in which Ré ) 1S a matrix whose rows and columns sum to zero.

In order to prove this inequality, we expand the left-hand side Frobenius norm by its columns
and use the results of part[(b)|of this lemma. We have

2 lids _ 2
Exc [HP(’“)Q(’“) ~ 1,0%| } —Ezw [ Y [[P@e o1,
j=1

= Ezw)

I

_ 2 - N 2
[P@e — o P®1,, |7 =Bz | S|P (6 — 011, ) |
j=1

j=1

NE

= E=w | Y (0 - 9](-k)1m)T(P(k))TP(k) (o —11,0)

1

[
1l

(9§’“>—9’§.’“>1m) Eg [POPO] (6~ 51,)

NE

= EE(k—l)
1

<.
Il

=Ezu-n (Gﬁk)—éf)lm) R* (9’“ — 91 )

NE

1

<.
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_ 2 _ 2
< Ege-n Zp o8 - 81| sfs““)EE(k1>[H@<k>—1m9<k>\”.

Note how we used the double stochasticity of P(*) in the second line.

F PROOFS OF MAIN RESULTS

F.1 PROOF OF LEMMA [4.7]

Using Lemma on A% the average model parameters at iteration &, we get

for ()" <2 (o0 -

+ 53) . (13)

Now, if 0 < a®) < we can write

_2
putpe

He(k+l)

_ Hg(k) aPgpk) _ g*

- H@““ 0BT [ =2 (59— T — g, ) 4 (o))

< (1 + ua(k)) Hé(k) - a(k)VF(é(k)> _o|”

(1 m) 5 o i [vr: (89 v E(6)o|
9 <§<k> — o™ _ g, a(k)@(k)> N (a<k>>2

< <1+ua(k))(1fua(k))zHg(k) EPRIEI

+ 22 (1 pa®) 32 g2 — o)
=1
+2a( ) <1+ a(k)) zm: (5_2 g(k)
- Iz i

2
) H

9*

mp
=1

vgkz)zl
2
+ 5?)
'ugk):O
9 <§(k) — W™ g, a<k>@<k>> n (aw))zH@(k) H

(1) (1) 20 ) 558 (1) -

1

2

2

ok

+ — (1 + ,uoz(k)) Zﬁ2H9§k) - é(k)HQUi(k) + 2;(:) (1 + ua(k)) zm:éf (1 - v )

i=1
_9 <g<k> — o™ g, a<k>@<k>> n (a(k))2

2
o

in which the relationship in first four lines follow from (i) Eq. |5 (ii) ggk) = ng) + el(»k) for all
i € M, (iii) Young’s inequality, (iv) Lemma 10 in[Qu & Li| (2017), Assumption[d.I}{(a) and Eq.[T3]
Next, we take the expected value of the above inequality and use Definition[4.6] Assumption4.3]and

Lemma[D.2)to get
2 2
} < Eyw [ (1 + ,Uoz(k)) (1 - ,ua(k))

L 207 20:(F) (1 +Ma(k)) zm:ﬁ ( )}]E_(k b [HQ _ 0"

e i=1

Ee [Hmm) e

]
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aF)

+ — <1 + /,La(k)) 262]E~<k 1 [

. (K) _ o) HQ] B, [v”)]

+ 2;? (1-+ pat )25 B0 [1— )]

e (B9, ] o e ]
(1 + Ma(k)) (1 _ ua(k))Q n 2:17(’6) (1 n Ma(k)) éBQ (1 _ dgk))]
Eztn U’@(k) o 2}
+ 07;:;) (1 + palk ) lz:d(k)ﬁzﬂf—(k 1 [H@ — g H ]
+ 2:1(5 (1+pa ) iéﬁ (1 _ d§k>) n ()nf(axg
o (#9555 ] o) i ]

= [1 — pa®) (1 + pa®) — (Ma("'))Q) + 262 : (1 + Moz(k)) ( dg;)n) B ]
e 2]

EE(k—l) |:H0(k)

0 ), 52 T
+ (1 + ua(k)) %EEWU [HQW - 1me(’f>H ]

+ 2o;(k) (1 + ua(’“)) (1 — mm) 5%+ (())T:llgnaxa.

F.2 PROOF OF LEMMA[4.§]

Using Eqs. [3]and[5] we first expand the left-hand side norm, and then use Young’s inequality to get
H@<k+1> _ 1mg(k+1>H2 _ Hp(k)@<k> 1,809 o® (V<k)(;<k'> _ 1mg7<k>) H2
< Hp(k)@(k) —1,,0%) — q®) (V<k>v< 1,90 ) H
—9a® <P<k>@(k> 1,00 — o® ( vE gk _ an(’f)) VR _ 1m@(’“>>
n (a<k>)2HV<k>E<’f) _ 1"@(@”2

< (1 + 1_p(> HP ok 1 9<k>H

25(F)
i (14 2200 (a) [vore® - 1,75
1—pk) m

(14)

_9g®) <p(k)@<k> ~ 1,809 — a® (VOT® - 1,75,

I, — 11,17 ) VOE®
m m

n (Oé(k))Q”V(k)E(k) _ 1m@<k>H2,
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Next, we take the expected value of the above inequality and use Lemmas [D.2} [D-3] and [D-4}{(c)] to
get

B 2 5(k) _ 2
Ego [H@(kJrl) _ 1m9(z@+1)H } < 1;(/;) OBy [H@(k) B lme(k)H ]
p

14+ 5 2 o2
+3 i L, (an)) <m§2 + (2 +262) By [H@W —1,,0® H ]
—p

+m (428 (1-d,)) Bzus {Hé(k) o

1)

—2a(k)EE(k)\E(k)

<P(k>@<k>_1mg<k>_a<k> (Vv -1, 7).,

1
<Im - m1m1§> VO Egaw [EU“)D

+m(a®) a0

1+ pk)

1+ 5k 2
P +3 oo d® (M) (¢2 +267)

2 1—
+ 31 i— ZE ; dfffgx( (k))2 (CQ + 232 <1 _ dgfi)n)) Bt {He(k) B

bm(a®) a), (55 e )
max 1_p

_ 2
]EE(’C—U |:H®(k) - lma(k)H :|

2
9*]

F.3 PROOF OF PROPOSITION 4,10

Step 1: Setting up the proof. We want to find the conditions under which we will have p(é(k)) <
1. As we have (%) = [$i5]1<; j<o and p(@") = max{‘)\gk)’ ; ’Aé’“)‘} where A{") are the

)\g’“)l} <1
Therefore, we first write the eigenvalue equation of the matrix as

Since this is a quadratic equation in the form of aA\? +b\+c = 0, we know thatif b < 0, and a, ¢ > 0
and the determinant is positive, we will have max { ’)\(1’“) , ‘)\ék) ’} — =b+vb®-dac Vzlf_‘l‘m. Therefore, we

—b+vb%2—4ac
2a

eigenvalues of the matrix ®*) for i = 1,2, we need to show that max{

solve for < 1 as follows

Vb2 —dac<b+2a = 4da(b+c)+4a*>0 = a+bt+c>0.

Now, rewriting the above inequality in terms of the actual coefficients, we get
k k k k k
1- ¢§1) - ¢é2) + ¢ ¢22 - ) é1) >0 = (1 - ¢§1)) (1 - ¢§2)) > ¢12)¢2 15)

2
Furthermore, note thata =1 > 0, b = — ( k) 4 ¢>(k)) < 0and b? — 4ac = (¢ﬁ) - ¢§’§)) +
4¢$ (k) > 0 hold by definition, so we only need to check for
c= iy ol — o5l > (16)
Egs. andlay out the necessary conditions in order to get p(é(k)) <1

Step 2: Simplifying the conditions. Starting off with the more important of the two, we first
solve for Eq. In order to simplify this inequality, we choose to have (i) 0 < (;Sg]i) < 1 and (ii)
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0< qb(k) < 1 for the main diagonal entries. For ¢§]§) as defined in Lemma we have

1+ pa®) — (ua(k))Q 232 (k)
1+ pak) Tz 12 (1 B d“““) 17

To better characterize the condition on «*) based on the above inequality, we put the following

oM <1

constraints on dfm)n and o™ to get

1 F(k)
Constraints 1: d*) > > —, alF) < 21
min Sk) L

252 1 2
5 pa® > 2 (o L (1+18) + (1) =1,
®
" T

where Fék) > 1land ng) > 0 are scalars. The above condition requires the learning rate a(¥) to be
lower-bounded, which is something we want to avoid. Thus, if the right-hand side of the inequality
is non-positive, this condition only requires us to choose a non-negative value for the learning rate,
which is sensible. So, we have

25; (1 - F(lk)> (1+18) + (F%’“’)Q ~1<0
0

N2 (282 (L N\ (28°, 1
= (r1)+<u2 1 e o+ (S (1 ) 1) <0

2 1
= ng)f% - —5 || < 1
1 Iy
2 (k‘) 22
ng)g1—% 1<} g%(l—r(}) -1
=
2 2
oI i%(l_F}k))_lSI‘gk)Sl
0 0

242 1 . 232 1
=  min 1,% 1—— | =17 < T < max 1% 1-—5 | -1¢
p Iy p I

k)

:—L

We observe that we found a lower and upper bound for the choice of
qbgli) as defined in Lemma we can use Eq.|17|to write

R ) R (l S L ) Lo
2

. Next, in order to simplify

Constraint 2: 1+ pa® = M2 I‘(k)

in which I‘ék) > 1 ensures that the constraint is satisfied, since we solved for Eq.|17|and found the
conditions on a(*), F(()k) and ng) to do so. Hence, for the bounds defined in Lemma4.7, we get

212 ) 10 0) (- Yo,y < LT )
0

mpy
20k ()} gk) 52
o< 200 (1) (1l ) 4 LSO
n m

and there are no changes to the upper bounds of ¢§’“), (k) and wz , which were defined in Lemma
Note that matrix ®*) and vector ¥*) in Eq. [7| were used as upper bounds, therefore we can
always replace their values with new upper bounds for them. Furthermore, note that in z/)gk), the

a®)

)

term dgfi)n was intentionally not interchanged with its lower bound. Consequently, with this new
value for qﬁﬁ), we continue as

(k) k) H

) P (1 + r(l"”) (rg’” - 1) (1 — F}k>) 52
0

26
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Finally, we check the next conditions on ¢;’3) defined in Lemma ie,0 < qbé];) < 1. Note that
for qbu , ¢ and ¢g§) the lower bound is 0, but for ¢g§) it is 1%5(“. Therefore, the lower-bound
condition of d) ) > 0is already met. For the upper-bound condition gz522 < 1, noting that we have

(k)
L < 1, we can write gb(k) < 3+” to enforce this constraint. We have

5(0) 5(0) _ 5
1+50 g 345 0 <ot o1 1
2 4 2\/351(’“) \/1+p(’“> V(42

Step 3: Determining the constraints. Now that we have made sure that (i) 0 < ¢§’§) < 1 and (ii)

0 < qb(k) < 1 in the previous step, we can continue to solve Eq. For the left-hand side of the
inequality, we have

() -a) - [ i) (-9 1 ) a0 18
> [i (1 + Fg’ﬂ) (Fé"') _ 1) (1 B P;}q)) 52@(@1 1 _4/3(1@).

Now, putting this back to Eq.[T3] we get

%(Hrﬁ’“)) (r$" - 1) <1 - r) a “”] 74( {5 o5
0

(14 7) s

= mp a®) [3 dfﬁgxl +€(k) (C 49282 (1 ( )n>) (Oé(k))T
< [i (1 +F(1’€)) (ng) — 1) (1 — 1"(k)> 52a®) I—Tﬁ(k)

VI —1 /1= i (1=79)
VB /1 + 5P \/ ¢+ 2ﬂ2 dfﬁl)

= a®) <

Finally, we solve for Eq. Noting that by solving Eq. 15| we made sure that 1 — Qﬁﬁ) — ¢§’;> +
d M o) — 6Bl > 0, we can write

c>0 = ol —oBel) >0 = o) el —1>0

2 1+ 5%
= 1—7(1+F§’“))(Fg’“)—1) 1—W Ba® 4 LT 15y
Iz Iy 2
p(1+pM)

a(1+1) (1 - )( _> g
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Step 4: Putting all the constraints together. Reviewing all the constraints on a(*) from the begin-
ning of this appendix, we can collect all of the constraints together and simplify them as

r? 1 1—p® 1
o) < min {1’ p*(k) 2 2’ : ’
oo fadi VI P V20 2(1+&§“)(F§>—1)(1—1@0>52
0
p(1+p%)

() () (1)
VI — 1 1—% 1- ) }
r(’” 1 1—p® 1 (1 + ™)
ZV%d ) V10 VG (1+FQ)(@>—1)<y—ﬂ;>ﬁ2
0
VI =1, 1= o (1= ) }
Vodinax/1+ pF) \/42 +26% (1-dly),)

while satisfying

)

e >1,  1¢ >1,

232 1 2 1 (18)
max <{ 0, min 1’% 1_W -1 §F§)<max 52 1-— ~® —1;.
H Iy i Lo

. e . . . 5()
Note that one of the terms in the above minimization function was trivially removed since 1*% <

1. In order to simply the condition on o(*) further, we take the minimum of these terms with respect
to each variable separately to get

(k) 14 50
ROP mm{n%gl{17 min_ { p(1+pM) 7
U L (1) (1 -1) (1 )
0

VI —1 (1-p®
VBdi/1+ pF \/<2+262 —di,)

1 1—pk 1
2\/3dr(r’fgx V1450 /(24267 |

Solving for the inner minimization in Eq. first using ng) by defining cgk) =

ﬁ( ) " (1+r<k>) (1—0—)52

andcy ' =

VBT [c2+22 (1-d3, ) p(1+0)

, we have

k k k *
Cg ) Fé ) 1< c“‘)(r‘l(k)fil); 1< Fé ) < Fg(k)
> (I'y

, (20)
o < yIs -1 Y >
ey (T 1)
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in which ng) > 1 1is due to Eq. We can see that in Eq. one of the expressions is increasing

with respect to Fék), and the other one is decreasing. Thus, we find the optimal value for it I‘;(k)

as
3
1 1
«(k) (k) _
r; 1 NONG] = ;' = L +1
Cl C2 (C1 cy )
2/3
k - k
VBdSEh/1+ P(k)\/C2 + 252 (1 - dr(ni)n) (14 5M)
= F*(k) — + 1
2 1— 5 (1— ™) (k)
JI- e (=7 4(1+r1)< W)BQ
JCRYANNE \/ ¢+ 28 (1-dy,) b ”
— max - —"_ 1
2(1- -4 (1_ﬁ(k))<1+rgk))ﬁ2
i
Choosing F(k) gk)*, we get
k k) ~
2 1159) VP -
) (k) ’
Ty (1 + F ) ( ) (1 - dmln) 62 \/gdmaxm\/cz + 2ﬁ2 (1 - dfr?n)
o 2/3 1/3
() (d9) oy’
R e

1/3

_ p A
e +r®) (@ + 232 (1 - dfffi)n)) <2d§,’f§x5> '

Note that by making this minimization over Iik), the dependency on I‘ék) was removed as well.
19 Y

Moving on to the second minimization in Eq. |19|using T

k

, we note that finding the optimal value
would be analytically cumbersome due to the conditions that need to be satisﬁed for it; First,

ng) ~ 0, and second, min{l (1 _ d(k)) 1} < ng) < max{ (1 _q%® ) - 1}.

min min
Thus, in order to get a more intuitive upper bound for a(¥)

for it. If we choose ng) = 1 which is the only point satisfying the conditions in Eq. |18|and it also

, we settle for a possible suboptimal value

does not rely on the value of a™)

min?

we get

1/3

2/3
1 1— 5k)
o®) < min —, a . (J) ,
w\12 (282 (1-d%)) 2diax

1 (k) 1
2y/3dl), V1+P0 V4282 |
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Step 5: Obtaining p(®(*)). We established p(®(*)) < 1 in the previous steps. The last step is to
determine what p(®(*)) is. We have

k k k k k), (k k) (k

((I)(k')) b+ /B2 —4ac ¢( )+¢( ) \/( ! )+¢( )) 4( 51) 52) - 52) él))

p =
2a 2

2
9+ 08+ (o) - o) + aolloty)
2
_n 2 MY (1) _ 1 oy, LA
_2[1 M<1+F1)(F2 1) (1 ) et =
1—|—p 2
+31_~(k)dmax( (k)) (§2+2ﬁ2):|
2 ®) (k) R
<1 N(1+F1>(FQ 1) (1 Ba
71+,5(k) 1+ﬁ(k)

2
_ (k) (k) 2 2
3w b (e ) (¢ +25))

B (1 n rg’”) k). 82 NONEY md(®)_ (a<k>)2 (42 + 24 (1 ~dy, )) ] :

!
2

mp 1-— ﬁ(k)

_ 3+4ﬁ(k) B % (1 +ng)) (Fék) _ 1) (1 - Fg’ﬂ) 32a®)

31+P 2 2 )\
- ~(,f)dmx(uzﬁ)( )

1 /1=p" 2 ®) (10 LY g2 )
+2[( : —;<1+F1 )(r2 —1) L gy ) #a

14 k) 2

— 3 ik (¢ +26%) (a(k)>

T ) L ) (o () ()]

/2

Therefore, p(®*)) follows as p(®*) = 3+4ﬂ — Ak 4 B’“)(a(k) +
. 2
%\/(—1*5“” — 2(AW ) + BE (a®))*))” + C®) (alk))?, where A = L(T3™ — 1)1 -
S(k) (K (k) k
)8 B = $HEG (¢ + 28) and O — 248 5 @) (C2+262(1—d5m)n))

n 1— p(k)

The value for the constant F;(k) > 1 was given in step 4.

F.4 PROOF OF THEOREM [4.11]

Note that by the properties of spectral radius, we have that ®|| - || < p(®)|| - ||. Now, using Eq.
we can write

— )
Ba |4 — 0] | o e

@) M wLw.
Bz [H@(K—H) _1m§(1<+1)H2 HGO) 1 9(0)| JrZP +

We emphasize that the time index & in @) and ¥*) was dropped since we are using a constant

learning rate, and substituting the bounds for dgfgx < 1 and dmln > dpin and ﬁ(k) < p. This
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results in the constant matrix ®(*) = & and the constant vector ¥(*) = ¥ Focusing on the term
SE (@) 4+ W, we get

i K K+1 K o
Y p@) e L= p@) e = <Z p@)“) v < (Z p@)“) v
r=1 r=1 u=0 u=0
1 1

i@ T @)

Putting the above inequalities together concludes the proof of Eq. @ Finally, noting that p(®) < 1
following We can let K — oo to get Eq. Note that I — p(®) > 2Aq, where A =

%Q(Fg - 1)(1 - F%) with I'g, I'5 > 1 being constant scalars defined in Appendix

We also note that Egs. [0] and [I0] are derived for the consensus error and the average model error
themselves, i.e., their last iterates. As summarized in Table|l} this is an improvement over existing
works with sporadic aggregations (Koloskova et al.l 2020} [Lian et al 2017} Sundhar Ram et al.,
2010) where only the Cesaro sums (i.e., the running averages of the iterates) of these error terms are
bounded.

G NON-CONVEX ANALYSIS

In this appendix, we analyze the convergence of our methodology when non-convex loss functions
are utilized. Our approach will be entirely different than the one done in Sec.[4] as we will be using
the non-convexity assumption (Assumption 4.2)) instead of strong convexity (Assumption 4. 1)).

We will still characterize the expected consensus error as Eg [[|©*+1) — 1,,6¢+1 ], but con-
trary to what was done in Sec. |4] instead of the distance of the average model from the optimal
solution, we will analyze the norm of the average model gradients Eg [||[VF(6%T1)[|2]. As an
alternative to Lemmal4.7] we first provide an upper bound on the average model performance at each
iteration for the non-convex case, i.e., Eg) [F(A*+1))], in Lemma Then, as an alternative to
Lemma @ we also calculate an upper bound on the consensus error for non-convex models, i.e.,

Bz [|©F+) — 1,,60+1|"], in Lemma|G.4]

We first need two preliminary Lemmas, each of which will be useful in the proof of Lemmas [G.3]
and respectively.

Lemma G.1 (Gradient bounds for non-convex models) (See Appendix[H.1) Let Assumptions@d.I}
[(@)] and [M.1| hold. The following upper bounds related to the gradient of the global loss
function can be obtained in terms of the gradient norms Eg .1, [|VF(0™))||?] and the consensus

error Bgo—n [||@®) —1,,00) H2]

_ . 2 _
(@) BEzw [[VF@E®) -7 < 220 = d%)Ezu s [[VFE@))7 +
2 k —
B By [|©F) — 1,807 +2(1 — d®),)62.
_ TGNV S U VR () TONE
(b) —Ezw [(VE@E), Vo) <~ — (1 — d®))Ezu s [|[VFEM)T] +
2 k —
B s By [|0F) — 1,00 + (1 — d*), )62,
15 oo™ < 1 202(1 — dP)E VAR
© FE=olTIT < g 2 B NEzun [[VE@E®)T] +
2 ¢ _
s B [|OF) — 1,00 |*] 4+ 2(1 — %) )52

Next, we find an upper bound on the expected deviation of the gradients from their average for
non-convex models, similar to Lemma[D.3| which was derived for strongly convex models.

Lemma G.2 (Gradient deviation bound for non-convex models) (See Appendix for the
proof.) Let Assumption hold. For each iteration k > 0, we have the following bound on the
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expected error of gradients from their average

. 2
B {HV(’“)V(’“) —1mw(’“)H } < 8d%) | BBy [H@ — 1,6k H }

+2m(?Ege-1) U]VF (9% m + 2m521 :

*) _

in which V'®) is a matrix whose rows are comprised of the gradient vectors V F; (Q(k)) and Vv

m k k
Ly VE@OM ).

Now, we can continue with our key lemmas for the non-convex case. Similar to the con-

vex case, we first derive counterparts for average model error and consensus error, i.e., Lem-

mas [{.7] and [4.8] for convex models, respectively. we first provide an upper bound on the aver-

age model performance Eg [ F(e_(kJrl))gemma , and also upper bound the consensus error
G4

Egw [|@F+H) —1,,00+D) ||2] (Lemmal|G.4), at each k.

Lemma G.3 (Average model performance for non-convex models) (See Appendix [H.3] for the
proof.) Let Assumptions B.2|and .3\ hold. For each iteration k > 0, we have the following bound
on the expected average model performance:

_ — — 2
B [F(O*+D)] < Ezoc o[F(O®)]  —  ¢WEza o[|[VFE®)]  +
¢ Egun [[0F) — 1,00)|"] 4 i),

where ¢ = a®[1 —¢2(1—d)) - B(1+2¢2(1 - dF) ))a®), p&) = Fdudea®) (1 4-28a)

min

and 1 = a®[(1 = d¥) )(1 4 28a0))52 + £ak) dmaxe®)

In Lemma|[G.3] the upper bound on the expected error at iteration k + 1 is expressed in terms of the
expected performance Eg—1) [F ()], the scaled gradlent norms qSu Bz [||VF (O )|| the
scaled consensus error ¢§§)E5<k71> [|@*) —1,,0) ] (which will be presented in Lemma ,
and a scalar wgk), all at iteration k. We next bound the consensus error in the following lemma.

Lemma G.4 (Consensus error for non-convex models) (See Appendix[H.4|for the proof.) Let As-
sumptions and .4 hold. For each iteration k > 0, we have the following bound on the
expected consensus error:

— 2 = 2 = 2
EE<;>H|@<H1> — 1,05 %] < 0 Bz [|VFOE) 7]+ 65 Ezi—n [|[©F) — 1,60 +
(k
2 ’

2 (k) 2
where (;Sgi = 16 ”P(k)mdfnix( (k)) 2 gzﬁé';) = H% + 81+€(A)d5111€a),x(a(k)) B* and wék) =

m(al®) dffféx( Glte(k) 62 + 02), where p'¥) is defined in Deﬁnmonand Lemma M

From this point forward, our analysis method will differ from the one done in Sec. [d] Instead of
forming an error vector like Eq. [f]and analyzing their joint behavior, we first expand the consensus
error recursively to get the next lemma.

~(k)

46x/d$n’2x(1+p<k>

Let Assumptions 4.2| and ¥

Lemma G.5 (Explicit consensus error for non-convex models) (See Appendix@[for the proof.)
with ng) > 1,
then for each iteration k > 0, we have the following bound on the expected consensus error:

Exio €+ — 1,60+ < G100 — 1,607+
(k:r41 r r kir+1 r

Srmo 065 B o [IVEO)] + g o 0s”,

where qi)(k ") = Hl;:r ész) and the values ofgb21 , ¢(k) and ¢§k) are given in Lemma
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Finally, we use the upper bound derived in Lemma [G.3] in Lemma [G.3] to derive the following
proposition.

Proposition G.6 (Explicit average model performance for non-convex models) (See Ap-
pendix[H.6] for the proof.) Let Assumptions [#.2| and B3| hold. If a non-increasing learning rate is
used, i.e., «* TV < o) which also satisfies the following condition

(k) — ~(k7) CQ 1 - dI(Ill)l’l
a® < min { Ls 1 L/ L ( )

i W i)
) )l )

ary/1+ 1l dinaxC 3 V14 p®)

then for each iteration k > 0 we have the following bound on the expected average model perfor-
mance:

Ez [F(8*D)] < FO©) —  YF au B o [[VFOO)Y] +
0 0 2 k—1 r r T k T

o@wi? @ — 1,00 + SF - aMwl Iyl + S i,

. (k) 4 (k) _ _ p2dd) (41

in which wy” = (3 — ¢*(1 = i) T ar)(1— (Fi+))2)’ Wy " = m(1—,-,<k>)(1—7(j(k))2)’ and the

values of w;k) and wék) were given in Lemmas E and

H PROOFS FOR NON-CONVEX ANALYSIS

H.1 PROOF OF LEMMAI[G.T]

[(@)] For this deviation term, we use Eq.[[]and triangle inequality to write

Z (VF @k — VFi(eﬁ’“))ug’“))
i:l

2

forioe v -

m _ 2
L Z HVFi(Q(k)) - VFi(agk))”z(k)H
m -

<
=1
_ 1 m 7(k k (k)
=— > |VE@ +— Z VF;(0
1)5"6:):1 (k) -0
1 ¢ 21| (k) ®|*, 2 - 2 2 ) 2
<15 s 2 S ()
(2,62)11 szio

=G S (o) (-et),

where in the line second to last, smoothness and gradient diversity (Assumptions@.2}{(a) and [4.2}{(b))
were used. Taking the expected value of the above inequality concludes the proof.

Second, for this inner product term, we have
_ <VF(§U€)),W(1€)> - <VF(§(k))’W(k) _VRE) + VF(é(k>)>
_ 2 _ - 7
= |[vFE®)| "+ (VFES), vFED) - 7o)

<3 e[+ Yran o)
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Now, taking the expected value of this inequality and using part[(a) of this lemma, we get
_ _ 1 o2
“Ezw KVF(G(’“)), Vv(k)>} < —5E=un [HVF(W)) H }

Qd(k)
+ /8 max
2m

Eete s [H@< ) 1,60 H ]

¢ (1=dtn) Bmes [ 9P ]
(1 - dgfm> 52

< - <; -2 (1 dr(mn)>E-—<k 1) |:HVF H }

ﬁzdga"ﬂiawn |:H@(k) _ 1m9(k)‘ﬂ N (1 _ dfffi)n> 52,

_|_

[(©)] Finally, for the norm term, we have

1= 2 [ — _ - 2
§HVU(’“)H :§HV7J(1€)7VF(0(’“))+VF(0(’“ H <HVF H +HVF >)fw(’“)H.

Taking the expected value of this inequality and utilizing part[(a)]of this lemma

fE-m [HW(’“)H ] < Eegon {HVF(G(’“))‘H ﬂQdﬁnaxE_(,ﬁ N {H@(k 1 g(k)H }

m

+2¢% (1-df),) Bz UjVF | } +2(1-dl,) 5

min

< [1+2¢ (1-d®)] Eso U[va W J By Um@m_l W)M

m

+2 (1 - fr’fl)n) 52,

H.2 PROOF OF LEMMA[G.2]

We have using the definition of Frobenius norms on matrices and triangle inequality that

[verv® —1, 76" = S| wr@@n® - |
=1

2

NE

1
m

I

«
Il
ol

IA
3
NE
NER

>~ (VE@O )l — VE 60
1

HVF (O )™ —VFJ-(9§.’“>)U§’“>HQ

@
Il

-
Q.
I

=

|-
-
NgE

s
Il
-

.
Il

HVF 6™ — VE(6®)o® + VE(E® )P - VE;(60)0M)

= 2
N/ k k? k:
FJ’(H(k))’UJ(’ ) 513'(9;‘ ))U§ )H

i i |70 — 97,009 [ o + || E0®) o) + | vEs @) o

3\%

_ 2
+ HVF]-(G(’“)) - VFj(ag.’“))H v
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\ AN

72252"9(@ g(k)H (k)+2<5i2+@2 VF(g(k)) ) (k)

_1_

v (8 +¢vr(a®) 2) o)+ 528 - "ot
lZBQ o) 22”3(53%3 vr(a©) > (k)
+zz<62+<zuw<e<k>>u) e
S0
oS s (el ) S

/N

o) _

where in the sixth line above, smoothness and gradient diversity assumptions of Assumption [@.2]
were used. We next take the expected value of the expression above and use uncorrelatedness or
random variables of Assumption [4.3}j(b)]and Definition [4.6]to get

£ [[vwt 2,55
<553 o 000~ 090 1]

16 (CBun [ ()] + ) S o]
[} (e o )] ) St

< 882d%) Ego v [H@(k) —1,,0¢k H ] + 16md™®) (g Egos, [va(g(k))H } )

— 84 {ﬂz]EH(k N [H@<k) 1,,8% H ] + 2B [HVF( )H ] +2m52} .

H.3 PROOF OF LEMMAI[G.3|

We have

FE*D) < F(OW) + (TF@ED), 00D —g®) + ﬂHe(k “”H
F(O®) + (TFE®), —a®go®) + 5(@ ﬁ(k)“
= F(@®™) — o® <VF( ), w(’“’> —a® <VF(§(’“)),ﬁ(k)>

+ g(aw))?HW(k)H n g(am)w@(muz +6(a(k)) (T =)

in which the relationship in each of the three lines follow from (i) Smoothness (Assumption [4.2}{{(a)),
(ii) Eq.[5] (iii) g( ) ng) + 6§k) for all 7 € M. Next, we take the expected value of the above
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inequality and use Assumptions4.3] and Lemmas [D.2]and [G.1]to get

Ez {F(g(k-s-l))} <Ezx 1) [F(é(k))} _a® (; e (1 _ dirllvl)n)) Ect [HVF(H(M)HT

2 (k) 2
LB dmaxa(k)]EE(k_l) [H®<k) _ lmg(k)H ] 1 a® (1 _a® ) 52

2%m, min

o[y (- )] (40 e [0

3d(k) 2 _ 2
N @(a(m) e [ng _ 1mg(k>” ]
m

+28 (1-dl,) 8 (a(k))2 + g(a(’“))zdfffgxg

_ B % e (1 _ dfrllci)n) .y (1 422 (1 — dfjl?n)) a(k)] Ezk-1) [HVF(G(IC))HQ]

2 (k) _ 2
L Fdmax ) (14280 Ego {H@w) _ 1m9<k>H }
m

T a® :(1 ) (1+28009) 52 4 La® dmaﬂ |

min
m

H.4 PROOF OF LEMMA

Note that we proved a similar bound for the case of convex models in Lemma 8] Thus, we start
from Eq. [T4] derived in the proof of that lemma in Appendix [4.8] We take the expected value of the

inequality in Eq.[T4]and use Lemmas[D.2] [G.2]and to get

~(k
Ezw {H@(lﬁl) — lmg(k+1)H1 < 1;56() )ﬁ(k)EE(k—l) [H@(k) - 1mé(’€>H2]
p

1+ 5k 2 ~ 9
+81 : e(k) dl(rr]f;x (a(k)) [52E5(k1) |:H@(k) — lmﬂ(k)H ]
P

T UjVF (§<k>) HZ} + 2m52]

7201(k)EE(k)\E(k)

<P<k>@(k> 1,00 —a® (VOTO 1,750

1
(Im . ml’”l%) Vg [EU“)D

2
+ m(a(k)> dgfglxaz

1 5(k) 1 ~(k) 5 ) )
+2P +8 1 i Z(k) dr(rlfe)tx (a(k)) 62 ]EE(k—l) [H@(k) _ lme(k) H :|

i t Z:; md{h), (Oé(k))QCQEE(k—l) D’VF (é(k)) HQ}

2 1+ 5k
+m(a®) dk) (16 +€ 2 +o?).
max 1 — p(k)

+16
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H.5 PROOF OF LEMMA[G.3|

We expand the bound derived in Lemma[G.4]to get

Ea o - 2,040

(H ¢<”> [00 - 1,00 + 3" ( 10 ¢>é§’> o [[vE(0)| ] + 087
r=0 \s=r+1

We need to make sure that the consensus error diminishes over the iterations. Towards this goal, we
ensure that ¢§ < 1 for all k£ > 0. Using the definition of qS ") from Lemma L we have
1+ %)

1+ p% 2
2p + 81 — 50 dk) (o752 <1 = ol

B < 1—p .
48\ dW(1 + p0)

We will find it useful later in the proof of Proposition [G.6] to define the following equivalent con-
straint

1 1—pk)
o L GRS
T 480/ab (1 + 5®)

145 1 1—5k)
+g + (k)\2 g :
ry™)

alF) <

This results in (;Sg’;) <

H.6 PROOF OF PROPOSITION[G.6I

Step 1: Recursively expanding consensus error. We substitute the upper bound derived in
Lemma|G.3|in Lemma[G.3|to get

Bz [F(é“““))} < Ege-1 [F(é““))] $ By [HVF@(’“))HQ}

. _ 2
+o{ {¢>§’;1'°> |e© —1,59|

el [ogma [Jor(e0) [+ |+t

< Ezun [F(OD)] - () Ezo.- 1>[HVF o) ] + ool |0 1m§<0>H2
(k)z¢(k 1r+1)¢gq)]EH(T Y {HVF@(T )H } +¢(k)z¢(k 17+1)w(7) Jr%k).

Now, summing both sides of the inequality from £k = 0 to k = K, we get

K
Ezo [F(é(KH))} < F(O0) — Z ¢§§)Ea<k71> [HVF(G(M)HZ}
+Z¢ o0 @ — 1,60
+ Z (,255 Z éf’g’; 1: 7"+1)¢(7)]E,=(T_1) |:HVF (0_(”’)) H2:|
k;@ - )
+3 oy Z PR S S
k=0 r=0 0
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K

K
~ B 2 _ 2 1.
FEO) _§:¢§’§)E5<k_1) {HVF(G(’“))H ] + @@ 1,003 olf ol
k=0

+ Z¢21 Eze- 1)|:HVF( )H ] Z ¢§ (k 1ir+1)

— K
D DRI NS
r=0 k=r+1 k=0
K- 2
= F(6O) - ¢(k> ) Z 30 glr= MH]EswU[HVF(é(k))H }
k=0 r=k+1

— ¢{1 Ezucy {HVF 01y H ] +H®<0 —1,,00 H Z¢ (k-10)

+ Z A3 S0l 43 g
k=0

r=k+1

Step 2: Simplifying using non-increasing learning rate. Using the definitions of ¢12 and (b(k)
from Lemmas and a non-increasing learning rate means that the upper bounds for ¢>12 and
QSZ];) is non-increasing as well, knowing that dgk) < 1and [7(’“) < 1. Thus, we have

Ezoo [F(OFD)] < FO©)

K—1 r—1—k 2
_ Z l (k) _ () () Z ( ’”1)) ] Egek-1 [HVFW(IC))H ]
k

-0 r=k+1
[uwwm o sy (i)

k=0

k=0 rekt1 k=0 '
< F0)- 3 [ - o ot S (57)" B [ora|]
k=0 —
BT wE )
) (et o (k) (k)
+k=0w P12 ;} (22 ) +Z¢
gF(§<0>)7K_1 o) %B&“”Z(&’””) Eze- {HVF | }
k=0
— ¢ Eg s MVF 0| ] +[ew -1 *@H%@i (@g))’“
k=0

K

k), (k+1 E+1)\“ k

+z@wg> (o) > 0
k=0

u=0
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K-1 (k) ,(k+1) _ 2
Q(O Z (k) ¢2 ¢(k+1) Bzt |:HVF(9(1<:))H :|
k=0 - ¢22

a 2 (0) K— k) ,(k+1
¢§11()E=- K—1) [HVF Q(K H :| ||®(O) — 1m9(0)|| ¢12 'l/’é )¢( )

0 k1
1_¢é2) k=0 1= gz :
K
3w
k=0
K-1 (k) 4 (k)
5 K P2 @ TONE
FOO) = 3 ol = A | B vr@)|]
k=0 22
o] (@@ - 1,802 Kol g
— ¢\ Egucy [HVF(G(K))H } N o "o ¢>(k)
1—¢ — 1
22 k=0 22
K
k
o
k=0
Step 3: We need to ensure that the gradient descents result in lowering the average model loss.
()
Thus, we need to make sure that (bﬁ) > 0 and ¢( ‘75121 o1z > 0. Using the definitions of ¢11
22
from Lemmas we first solve for ¢§’§) > 0 to get
a® { e (1 - n’fﬁn) —ﬁ<1+2§2 (1_dg;11)) (k )} >0
<2 H]fl)n
= 0<a®< ( )

s (H?@( ~dn))

Note that the above inequality implicitly assumes the following constraint as well

1 1
2—C2( dﬁr'fl)n) >0 = d(k)>1——

min

2¢%’
which alternatively is equal to
® w1 1 (k)
dmln = 1 (k) 2<2’ r > 1

(k) (k)
Next, to solve for ¢§1 ¢121 ;12 > 0, we need two extra constraints on o), The first one follows
as

1 1- ﬁ k
a(’“)gm—o, F( > 1,
Ty 2p (1 + }m)
FO

F(k) >0,

(1+ F(k))a(k) Using the previous two results and the upper bound
for qﬁgg) derived in Lemma we can continue as

aw)( ; )( ; )1_ﬁ(k)< : ) oo
—1-—==1-—= 1— > ¢y ¢

k k 2 21 Y12
? Iy’ r) 2 (ri?)
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(k) 1 1\ 1-—p® 1
= 5 (1‘ <k>> (1— m) > <1‘ "2
FO r (Fl )

1+ p® &) )\ 2 B2 (k) (k)
>(161_p dmax( )g a (1+r3)

1— —L 1— L
(k) \/< (FW)Q)( Fék)) 1—p® \/1_$
o <

NN L+ (il

Finally, setting the following constraint

1 \/( (r)* )1 - o) 4/ 1 (" )
- k = k ’ 4
r 4y/24/1+ T V1+55 ¢Bdi

o _ ool o (1 _ 1) (1 . 1) L
k k 2
1 - ¢’22 2 F(() : Fé ) (Fik))

H.7 PROOF OF THEOREM [4.12]

we obtain

We are given that a constant learning rate «(*) = « is being used, and we have that 5(*) < j with

p = MaXo<k<K ﬁ(k) for the spectral radius and dz(k) > dmin With dpin = ming<p<k,ic m dgk) for

SGD probabilities. Thus, we can simplify the results of Proposition[G.6]to get
Ezuo [FOF)] < F(09) - wlaZE~<r 1> [HVF dl }
“+ aws HQ(O) — 17”9(0) H + Oé’wgng + ¢1 (K + 1)

Therefore, if the learning rate satisfies

s 1 o1-5 1 1-¢
a<min{ —,— =, — o,
{25 'y 481+ p 2F2g(1+%)

0

1 1

\/(1_F1) (1_%2)\/—7?0 1-5 }

42T/ 1T B Vi+p

then we have

2
o 5 _ g H 0) _ -<0>H
K+1Z]E( 1>[HVF H } 70&01[(“) F(0O) - "+ [ 0© - 1,00 aw,

+ OéU)Ql/JQK + wl(K + 1) .

FEO) P[00 1,09 s

2 1_dmin
olh +1) 1 + a”wows + ( Jwg + aws

9

B dimax (14T'3)

m(1-p)(1-# )’
wy = (1+T3)62 and ws = MQA" Also, the conditions on the constant scalars I'; with 0 < i < 4
are ['g,['1, ', Ty > 1and I's > 0.

where wy = 3(1 — £)(1 — 5)(1 - Fii), wy = wsy = mdmax(16ifé62 +0?%),

40



Under review as a conference paper at ICLR 2025

I DIMINISHING LEARNING RATE POLICY FOR CONVEX MODELS

In this appendix, we do the convergence analysis of our methodology under a diminishing learning
rate policy, i.e., when a*t1) < (¥ for all k > 0. We will show that convergence to the globally
optimal point is possible if the frequency of SGDs, i.e., dgk), is increasing over time. Thus, a
few preliminary lemmas are first required, to re-derive the counterpart of Proposition for the
increasing dgk) strategy.

Proposition 1.1 (Spectral radius with diminishing learning rate) (See Appendix for the
proof.) Let Assumptions and hold. If the SGD probabilities are chosen as dgk) =
1- r]l(k)oz(k) with 0 < nik < ﬁ and nr(nin = min;e pm nl(k), and the learning rate satisfies the
following condition for all k > 0

k ~
o® < min Q L 150 L
p2V3 /14 50 /(2 + 282

1/3

p AN
6 (¢ + 202 (1+17) < 28 ) }

min

then we have p('I’(k)) < 1jorall k > 0, in which p(-) denotes the spectral radius of a given matrix,
and ®¥) s given in the linear system of inequalities of Eq. E] p(é(k)) is given by

p(@M) = 1 — h(a®), where h(a®) = 1—Tp“‘> + AWe® — BR (g2

) 2,,2 3 ) p{®) k) pox(k
%\/(—1 2 _ 9(AW k) + BH) (alk))?)) +C(’“)(Oz((’“:) cand A®) = Twmt— (147 (05" —
- ~(k) r(k)y g2 ~(k) k k) 82
182, B®) = 315005(¢2 + 262), and € = 12008 100062 4 200 T 82). The value
Sor Fg(k) is given in Appendix and 0 < ng) < 1/(1+262nr(fi)rl/u2) is an arbitrary scalar value.

Proposition implies that limy_,., %9 = 0 in Eq. However, note that this is only the
asymptotic behaviour of ®*0) and the exact convergence rate will depend on the choice of
the learning rate %), Furthermore, noting that the first expression in Eq. (8] asymptotically ap-
proaches zero, Proposition [[.T] also implies that the optimality gap is determined by the terms

S @ENWr=1) L §*) and it can be made zero if the learning rate a(*) satisfies certain con-
ditions, which we will discuss in Theorem[L.3}

Proposition [I.1{ outlines the necessary constraint on the learning rate o(*) at each iteration k& > 0.
We next provide a corollary to Proposition[[.T] in which we show that under certain conditions, the

above-mentioned constraint needs to be satisfied only on the initial value of the learning rate, i.e,
(0)
o',

Corollary 1.2 (Constraint on diminishing learning rate initialization for convex models)
(Corollary to Proposition If the learning rate o'®) is non-increasing, i.e., ¥t < (¥ the

SGD probabilities are determined as dz(-k) =1- moz(k) with) <mn; < ﬁ and Nin = Min;e pq M,

for all k > 0, and we have constant aggregations probabilities bgf) = byj, then the constraints in
Proposition|l 1] simplify to
1/3

- -\ 2/3
% < min E, ! 1—p~ ! ) a (1—p> .
#2VBVIF D427\ 6 (2 + 2 Ti ) (14T) 2

This also results in time-invariant scalars A = A®), B = B®) and C = C®), where these
quantities were defined in Proposition

In the above Corollary, we obtained the constraints on the initial value of the learning rate, i.e.,
o), that lead to the spectral radius of ®(*) being less than 1, i.e., p(®*)) < 1. Note that since
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(0)

the learning rate is diminishing, i.e., limy_,oo a®) = 0, it follows that d;’ =1~ nia(o) and

limg 00 dgk) = 1, which means that all clients will basically do SGDs at every iteration for large
enough values of k.

Two final building blocks are necessary for the proof of Theorem [.5] We present these in the
following lemmas.

Lemma 1.3 (Bound for product in summation form) (See Lemma 1 in|Zehtabi et al.|(2022) for
the proof.) Let {(,.}, -, be a scalar sequence where 0 < ¢, < 1, Vr > 0. For any p > 1, we have

k

1
1-¢)f < —.
g( <) PY_ oG

Next, we outline another crucial lemma for our analysis.

Lemma 1.4 (Bounds for learning-rate-based quantities) (See Appendix|J.2|for the proof.) Let a
diminishing learning rate o*) = oz(o)/« /1 + k/v be used, which satisfies the properties

oo oo 2
a1 < o), ZO‘ _ Z (a(m) < .. 1)
=0 k=0

Under the setup of Proposition |I. 1| for the SGD probabilities, i.e., dz(-k), if the aggregation proba-

Zil;'ttiies are constant, i.e., bgf) = byj foralli € M and (i,j) € EW), then the following bounds
0

(a) Z’;Z,Aa(q) > 200 (\/@7 \/@)

(b) h(a®) >24a®),

alr— 1))
(© Lot i)

@
> A

2(7“) —I—ln 1 2\/1+5
1+ ,/ e Vi1 1+

where h(a'®)) and the constant A*¥) were defined in Pmposition

—_

Using Corollary [[.2]and Lemmas[[.3]and [[.4] our main theorem follows.

Theorem L.5 (Strongly-convex convergence result with a diminishing learning rate) (See Ap-
pendix [I.3) for the proof.) Let Assumptions and hold. If a diminishing learning rate
policy a'F) = a(o)/\/ 1+ k/v with v > 0 satisfying the conditions outlined in Corollary is
employed, and the SGD probabilities are set to dl(k) =1-((1- dEO))/a(O))a(’f) foralli € M,
while aggregation probabilities are set to constant values, i.e., bvf = by for alli € M and
(i,7) € EF), then we can rewrite Eq. E?]as

1
(K+1) < @( > (0)
v 174
N vK
2(1+pa ) (1-d{Q)

max) 2 4
In K 1 1)
(0) _ = «(0) m
+ (a ) (3(9( K>+O< T()HO(’“)) m‘(gﬁgdzm)
(22)

Letting K — oo, we get
lim 5+ = . (23)

K—o0

3Note that the last condition implies limg_, oo a®) =0
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The bound in Eq. 22] of Theorem [L.5]indicates that by using a diminishing learning rate policy of
a®) = a0/, /14 k/~, DSpodFL achieves a sub-linear convergence rate of O(In K /v/K), and

Eq.[23|shows that asymptotic zero optimality gap as £ — oo can be achieved.
However, it is worth noting that choosing the SGD probabilities based on the learning rate, i.e.,

dz(-k) =1-0a®/a® foralli € M and k > 0, is only of theoretical value in this paper. This
is because our motivation of introducing the notion of SGD probabilities was to capture compu-
tational capabilities of heterogeneous clients in real-world settings, therefore, it is an independent
uncontrollable parameter and cannot be chosen based on the learning rate.

Finally, note that setting d,gk) =1—a™ /a9 is equivalent to having all clients in the decentralized
system to conduct SGD at each iteration as k — oo. This result is akin to Wang & Nedi¢ (2023)),
in which an increasing similarity between the learning rates of clients is needed for convergence,
despite them being initially uncoordinated.

J PROOFS FOR DIMINISHING LEARNING RATE POLICY FOR CONVEX
MODELS

J.1 PROOF OF PROPOSITION [[LT]

Let the SGD probabilities dgk) be chosen as the following for all : € M:

(k) _ 1 _ (k) (k) <g® < 1 * _ (k) (k) _ (k)
di” =1-u v 0SSy Thnax SWAXN, Mgy = MRy

where a(*) is the learning rate with a diminishing policy, i.e., limy_,o o) = 0. Based on this
relationship that we put between the SGD probabilities and the learning rate, we first rewrite the
bounds for matrices ®*) and ¥(*) which were given in Lemmas and We have

(k) (a(k))2

2 onlk
¢Yi) =1—pa® (1 + pat®) — (/ta(k)) > + 7nmmu

() g2
o5 = (14 nal) (1 - nlla®) &= -
mu

o8 =90 m (1 i) () (¢ 2505

14 5k 14+ 5% 2
- LY LGP (1 o) ()’ ¢+ 297)

PP = ( (k ) [277511)11 (1+ua(k)> 52 1 (1 —m(ﬂxa(k)) j’)j ’

O = m (1= a0 ®) (a®) (gije(k)az )

The important difference with the terms in Eq. [24] and the corresponding ones outlined in Lemmas

and is the fact that we get a (oz(”“))2 factor for 1" and "), This factor will help us show
heorem [I.5|that zero optimality gap can be reached, which follows mainly from Eq.

(1 + ua(k)> 52,

(24)

Next, we do an analysis similar to the proof of Proposition [#.10] which was given in Appendix [F.3]

Step 1: Setting up the proof. We skip repeating the explanations for this step, as they are exactly
the same as step 1 in Appendix [F:3]

Step 2: Slmpllfymg the conditions. Recall that we have to ensure (i) 0 < ¢11) < 1 and (ii)
0< gb(k) < 1. For (;511 as defined in Eq. we have

L pa® — (o) _ 220
(1+pa®)atk) = p2 -

pM<1 = (25)
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We then put the following constraint on o(*) to get a tighter lower bound for Eq. We have
r{” 26820 k k)2
Consmin 109 < T a0 5 2 (14 p 4 ()7 1,
K Iz

where I‘gk) > 0 is a scalar. In order to avoid a positive lower-bound on the learning rate (%), we

find the conditions under which the right-hand side of the above inequality is negative. We have
2 2
28 ”mmﬂk) (1+18) + (") —1<0
2 2 (k) 2 2 2 (k) )
- 1 2 i ()" + 2 i)y < g,
I I
232 1
- <<1+ o "mm> () — 1) (r+1) <0 = —1<r e ——
1 28201
#2

Next, in order to simplify (bﬁ) further, we add another constraint using Eq. [25|to parameterize the
lower bound in Eq.[25] We have

Lt pa® — (pa®)” 262nmmp
1+ Ma(k) -

, Y2

L+ pa® — (na®)” 28700 0 v

. Fl FQ )
1+ Ma(k) 2

in which ng) > 1 makes sure that the constraint in Eq. [25|is satisfied. Hence, we can update the

entries of matrices ®*) and ¥*) as

Constraint 2: Fék) > 1,

() (k)
(k) <1- nmm (1 _|_ng?)) (F(k )62 (k)
I
(1+1) 5 14 50 2 2

1+ 5k 1+ 5k) 2
o <=5 Hﬁﬁwwvw+wx
2 [ oK) 2/ 1
wi’” < (a(k)) [ Mnin (1+r§’“>) 5247 ¢§k) Sm(am) <3 +p(k) 52 + 2>.
I 1-p

Note that matrix ®*) and vector ¥(¥) in Eq.[7|were used as upper bounds, therefore we can always

replace their values with new upper bounds for them. Consequently, with this new value for qﬁ%’i),
we continue as

(k) k) < H

2n(*) p(k) (1 +r<’“)) (F(k) _ 1) g2
Finally, we check the next COl’ldlthIl 0< ¢22 < 1. Noting that we have 2 4 < 1, we can enforce
qﬁé < 1 by setting ¢2 (k) < 3+p . We have

5(k) 5(k) _ (k)
2 4 2V3 V1458 /(2 + 25

>0 = al

Step 3: Determining the constraints. Having made sure that (i) 0 < ¢gli) <land(i)0 < ¢g§) <1
in the previous step, we can continue to solve Eq.[I3] For the left-hand side of the inequality, we

have
(1-o) (1 - g;))l fm};r( (1410 (1 1) Bzauc)] (1- o)

(k) p(k) — 5%
2n5 o T 1
[ Thnin (1 +ng)) (ng> _ 1) 52(1(’“)] e
o

4
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Now, putting this back to Eq.[I5] we get

) (0 | 1 50
lrm; (14+18) (r$? - 1) 6%“] —— > ool

(1+117) 52

= A ) 3m1 + ’?( 42 2n (k) F(k) B (a(k))Q
mu 1_ (k) mm
(k) (k) _ (k)
BINAR ®) (pk) 2 ()| L=p
<_M(1+F ) (18 = 1) pa —
(k) (k)( (k) ) _ 5(k))?
r"(ri —1) (1
6 (1 7) (¢ + 2 I )

Finally, we solve for Eq L i.e., c = ?bﬁ)d)(k) gf)(l];)qi)(k) > 0. Noting that by solving Eq. we
made sure that 1 — 11 ¢22 + ¢11 ¢22 ¢52) ¢§1) > 0, we can write

c>0 = oY +ol) —1>0

0 () 1(B) 14 50
= 1= Fmel (3400 (1) - 1) g2a® 4 +Tp —1>0

1
(k) < p(1+p™)
4n®) P (1 +r<’“)) (rg’“) _ 1) 32

in which we have used the value of gbg itself, but the lower bound of gb(k)

Step 4: Putting all the constraints together. Reviewing all the constraints on a® from the
beginning of this appendix, we can collect all of the constraints together and simplify them as

E ~
o®) < min E L1 ! a
BBV VER 2R 0 (1410 (10— 1) 52

i (14 8 nn L1 (187 = 1) (1= 5®)?
W (1 T0) (1) \ 0+ 70) (¢ 2o )
1 1w 1 p(1+5")
= min )
i3V V28 e (14 T) (180 1) 2

6 (1 + ﬁ(k)) (CZ + QT](k) F(k) B2

min

U;I)nr(k) (F(k) ) (1- ~(k))2
)

(26)
while satisfying
1 1
max{—1,0} =0 < ng) < min{ 1, W (= DR
25277 2520
(k) k) =
ry” >1, Ognminfa(k).
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5
Note that one of the terms in Eq. |2 . 6| was trivially removed since H’g

obtain
I () 1 p(1+pM)
NN C R/ GO PR (1+1) (rf? —1) 2

Tmin min

< 1. Consequently, we

a® < min
()
1

W (1 - 1) 1=
>}}’

o) (@ 2T

(28)
First, we focus on minimizing the inner expression in Eq. using I‘ by defining ¢;’ =
) ) (1 k) an® () (1400 g2
AN . )k >y and C(Qk) = (~ ") . We can see that one of the above
o) (o ) W(4707)

expressions is increasing with respect to I‘gk), and the other one is decreasing. Thus, we have

(k) F( ) —1< 1 N P ng) S I“E(k)

I GO

k k k «
o (pl(m_l) B cg ) Pé - I; I‘é ) > FQ(k)'
in which r; ) > 1is due to Eq. E 74 Hence, we find the optimal value for it, i.e., F*(k),
3
1 1
(k) _ *(k) _
I 1 OO = ;' = (k)()2/3+1
c1 ¢ (01 o )
2/3
1) (2 (k) (k)ﬁj) _
— N 2
T W (1)
1/3 2/3
L (3¢ e) p :
2 0 p (1- k) (1 + r§’“))
We choose ng) = F;(k) (see the explanation given in related step of Appendix to get
i (1+50) i (18 = 1) (1= 50)?
min . . .
o | et (14 0() (18 1) 827\ 6 (1+ 50) (¢2 + 2 r{V 2
2/3 1/3
= (k) (k) 2
1450 () ()
P () g\ o
1/3 23

5(8)
B 6 (c2+ 2n(">nr(u>‘jf) (1+18) (25)

Note that in the process of minimizing Eq. [28|over ng), two out of the three dependencies on n

and two out of four dependencies on ng)

11— 1
a®) < min #, p ,
f2V3 /14 R (/2 + 252

(k)

min?

were removed. Hence, we get

1/3

p 1— 0\
6(<2+2nﬁgr(">ﬂ ) (1+F§k)) ( 28 ) }
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(k)

min

Finally, we make a remark that we do not minimize over 7, here, as we take it as a given deter-

ministic value based on the choice of dgk) =1- n(k)a(k)

Step 5: Obtaining p(®(*)). We established p(®(*)) < 1 in the previous steps. The last step is to
determine what p(®(*)) is. We have

k k k k)\ 2 k) L (k k) L (k
(q)(k)) b+ /b2 — dac o + 0% + \/( W fbéz)) —4 ( Wols - g2)¢é1)>
p = =

2a N 2
9+ o 4/ (o)~ o))+ a0l
B 2
27 T (k) (k) 20(k) | 145 (2 (2 2
— 2l (1400 (T = 1) B2a® 4+ B2 4 315250 (o) (2 4 262)
B 2
(k) (k) ~(k)
1 r{ 1
+5 (1 % (1 + Fﬁk)) (Pg’“) - 1) B2 +T”

(k) 2
A )

p
(1+18) 82 g 2
a® P (k) 2 (k) (k) B
e ™ m(a ) (c +2n®) 1 u)]

_ 34w nr(m)nl—‘gk) (k) (k) s kL 3L+PM N2 e 2
I 7 (1187 (187 = 1) B2 +§17ﬁ<k>(0‘ ) (€+28)
L[ (1-5® 2y 0¥ () (1) 2 (k)

g (1 - 2 (1) (1 1)

2
14 ptk) ®)? (2 2
731_13(]6) (a ) (C +2B)

1 F(k)) 2 ~ ) 1/2
+12( )P (a(k)>3 ¢ 1 g 0 5?
/14 1 _ p~(k;) Hlln 1u

~(k
_ 3+ +4P( ) AW 4 B®) (a<k>)2

1 [(1—p® N 3
+\/< ; f2<,4<k>a<k>+3<k>(a<k>) )> + O (k)

J.2  PROOF OF LEMMA [[L4]

Since a®) = 29 e have
,/1+%
0
Za(@_ ol” / a®de o of k- o7
=r q= T\/l"‘q \/1"_% v v

Based on the equatlon p(‘IZ'(k)) =1— h(a™) given in Proposition|L.1, 2(a*)) was given as

2
h(a®)) = 4 Py Aa® — B(a(m)

_ ;\/<1;P _9 (Aaw) i B(a<k>)2))2 +C(a®)?,
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Further note that since we established 0 < p(®*)) < 1 in Proposition it would mean 0 <
h(a'®)) < 1. Using triangle inequality, we have

) 15 - o) - (152 (4ot ()] - 27 (o)

> 240,
2
«©
k—1 (Oé(r_l))z B zk: (Oé(r_l))Q - Z \/7
ot Z’;:Th(a(@) T~ E',j:r 2Ak) ola) 2A<k> b al
(@)?
1 b 1+
S 0
248 = 2a (\/1+f—\/1+
B O[(O) k—1
= %
O ) ()
a0 2 142
= k
WO (1+2) (Jr+5- iv )
NO 1 e (1+1) da
= 4AK) k 1 / k
1o el A (1) (fie k- i)
Focusing only on the integral and defining u(z) 1+ 2, we have

k—1 (1 + %) dz k=1 2y (1 + %) du(z)

/1 (1re)(Jfres- i) :/1 u(w) (u(k) — u())
2ty 1 1
- G ) e
C2(y+1) u(k —1) u(k) —u(1)
= (1“ o k) — k- 1))

2(v+1) . ulk—uk)  2(v+1) 1

_ Z(Z) o T Z(Z) nu(k) + In =

’y+1

- 1/1+ +ln
1+ \/1+'y+k1

Putting everything back together concludes the proof.
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J.3 PROOF OF THEOREM[L3

First, using the fact that ®*)|| . || < p(®®))| - || for each iteration k > 0, we can rewrite Eq. to
get
Es(k) plk+1) _ g* 2 k p0) _ g*
L W G P | S
e 00 1,300 | =\ 00 — 1,70
k [k 2 | 20diiy) (14 pa(@) 6% 4 <
+ (@(q)) ( (7‘71)) 110 (0) - g

2 (I 0 | s o

(29)

where the ¥ (%) matrix was written using Eq.

Next, in order to obtain Eq.[22)when k — co, we need to simplify each of the three terms in Eq.
. (k) %
both of its entries 1), ’ and 9,

have a factor (a(k) )2 multiplied by a value that can be upper-bounded by a constant. Thus, we have

The easiest one to show is the last term, i.e., (%) Based on Eq.[24

2 [2(1tpa@)(1—di),)
gt < (@) R
T+t m(s%gaugz)

Regarding the first and the second term, i.e., H];:o p(®@) and Sk (H];:T p({>(Q))) (a(r_l))Q,
respectively, we have

ECOR I a@)zz e
> (Tofe)) (o) =3 (1T 0 )<<~ z%

in both of which Lemma [[.3| was used, since 0 < h(a®)) < 1. Next we employ Lemmaon the
above expressions. The proof easily follows. Note that In \/7 < O(Ink).

YF+k—1

K DIMINISHING LEARNING RATE POLICY FOR NON-CONVEX MODELS

In this appendix, we do the convergence analysis of our methodology under a diminishing learning
rate policy, i.e., when a(*t1) < o(*) for all £ > 0. We will show that convergence to a stationary

point with zero optimality error is possible if the frequency of SGDs, i.e., dl(.k), is increasing over
time.

First, we rewrite the coefficients qﬁl(-f) and wl(k) with 1 < 4,7 < 2, using the fact that the SGD
probability is chosen as dz(.k) =1- ngk)oz(k).

Corollary K.1 (Average model performance and consensus error simplifications) (Corollary

to Lemmas|G.3|and Let Assumptions and[.4 hold. If the SGD probabilities are chosen

as dl(-k) =1- nfk)a(k) with 0 < nfk) < a(lk) and nnlfin = min;e pmq n(k)

Lemma simplify to '
k k k k 2
o1 = a®[§ — (g, +B(1 + 2<2n;;2>> a®), 915 = 520 (1 + 250" and
2
¥ = [lh (1 +28a®)5? + 52 (@),
Similarly, the quantities in Lemma|G.4|also simplify to

, then the quantities in

(k)

d)(k) 16 14+5%) 42( (k) )2 (k) _ 1+g(k) 81+P k 52( ) and

21 — ~(k) 22
k 2
P = <161*€<k 82 + o) ().
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Next, using the simplified results derived in Corollary [K. 1| we further simplify the results of Propo-
sition to arrive at the following Proposition.

Proposition K.2 (Stationary point for non-convex models with a diminishing learning rate)
(See Appendix [L.1| for the proof.) Let Assumptions .2l and @.3| hold. If the SGD probabilities are

chosen as d,gk) =1- ngk)a(k) and a non-increasing learning rate is used, i.e., a1 < oF) then
the constraints on the learning rate given in Proposition|G.6|are simplified to

k .
a® < min —Fé ) —1 71 — p(k) —1 %
26 "7 481+ 50 T8 20 4 g (1 + 2C2n§'fi)n)

- — | (1- -5
\/( <F5’”>2>< Fé“> 11— p® }
awarPy 1) P VIH®
h) _ (

where 1) i = min;e pm r]ik). Consequently, for each iteration k > 0, we get the following bound on
the expected average model performance:

E=o [F(O%D)] < FOO) — S a®uwEge [[VFOO)T]  +
0 0 2 k— r T T k T

a@w? @O — 1,00 + S8 aMwi ) + 328 Jul,

. o (k) (k) B2(141) (k)

wék) were given in Corolla"y

Note that the conditions laid out for the learning rate in Proposition [K.2 have to be satisfied for all
iterations £ > 0. As one last step, we outline the sufficient conditions under which we can derive a
single constraint on the initial value of the learning rate.

Corollary K.3 (Constraint on diminishing learning rate initialization for non-convex models)
(Corollary to Proposition If the learning rate o'\®) is non-increasing, i.e., a*t1 < a(¥) the

SGD probabilities are determined as dl(-k) =1- ma(k) with) < n; < ﬁ and Niin = Min;e pq 7,

or all k > 0, and we have constant aggregations probabilities b(j-c) = b;;, then the constraints in
g8reg p 17 J
Proposition[K.2] simplify to ‘

1_;) (1_¢)

~ 1 ( T2 To ~

. — 5 1 —
oz(o)<mln{FS 1 _1-p 1 2 L 1-p L

28° T1 48145 T2 Clmin+B(1+2C% Mmin) ° 4v204/14D3 B V/1+p

This also results in time-invariant scalars A = A®, B = B®) and C = C®), where these
quantities were defined in Proposition

With Corollary we have most of the ingredients required to prove the main Theorem. We will
just need two extra upper bounds on summations involving the learning rate, as presented in the next
Lemma.

Lemma K.4 (Bounds for powers of learning rate sums) (See Appendix[L.2]for the proof.) Let a
diminishing learning rate o%) = a(o)/\ /1 + k/~ be used, which satisfies the properties in Eq.
Under the setup of Proposition for the SGD probabilities, i.e., dgk), if the aggregation proba-

Zil;’s’es are constant, i.e., bgf) = b;j foralli € Mand (i,j) € EW), then the following bounds
0

(@) Y, (a9)? < (@) (1 4+ vIn (1 + k/7)),

(b) Yi_, (@) < (@) (1+29)
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Theorem K.5 (Non-convex convergence result with a diminishing learning rate) (See Ap-

pendix [L.3] for the proof.) Let Assumptions and @A hold. If a diminishing learning rate
policy a(F) = a(O)/\/l + k/y with v > 0 satisfying the conditions outlined in Corollary is

employed, and the SGD probabilities are set to dl(»k) =1-(1- dEO))/a(O ya®) for all i € ./\/l
while aggregation probabilities are set to constant values, i.e., bl(;?) = b foralli € M and
(i,7) € E®), then we have

«(0)

2 1
_ Z (N [va )| } L
« r—1
E 04(7 =y ) 2w VK

+ UJQHG')(O) - 1m§(0)" (’)(&) + wows (a(o))Z (14+2) O(lK) (30)

e (s120(28) |

in which F* = mingegn F(0), and the values of scalars w; with 1 < i < 5 are given in Ap-
pendix[H.7] On letting K — oo, we obtain

F(§<0>)F*O( 1 )

1
- - E M Ee s [IVE(O™
I(ILI;IéOE Oa(7 = Oa Bzo- )[H Gl } D

Eq. [30] in Theorem illustrates the convergence rate that can be achieved when a diminishing

learning rate policy is used to train non-convex models. We recover the well-known O(In K /v/K)
rate for DGD methods here. Furthermore, letting X' — oo in Eq.[30} we observe in Eq. [31] that the
stationarity gap becomes zero.

L PROOFS FOR DIMINISHING LEARNING RATE POLICY FOR NON-CONVEX
MODELS

L.1 PROOF OF PROPOSITION[K.2]

Considering the fact that the learning rate is diminishing, we can simplify the learning rate con-
straints in Proposition[G.6] Using the updated coefficients derived in Corollary we rewrite the
constraints from Appendix [G.5]and Step 3 in Appendix [H.6]to get

(i)

_ 5(k)

(k) (k) 1-p

<1 = o\t <
22 1 %1 n ﬁ(k)ﬁ
1 1-p%®
(O (k)
= at™ < —, v >1
T 4y/1+ 53
1—p®) 1
- ez ()
Try”)
(ii)
(k) (k) %
o7 >0 = 0< o™ <
. o, + B+ 2¢2 %))
1 1
(k) 2 (k)
= a\ < = I's’ >1
) ¢n® 4 81 +2¢n®) ’

(k) o 1 1 K

= 11 > 5 ( — I‘(k)> Oz( ).
2
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(iii)
)
(k) « 23 (k)
a'® < 25 rs” >0
2 2
- o<l B’ o aaria®, e < [ ® (1 4 ®2 4 Zm} (a®)?

(iv)

k) ,(k
(1]? _ ¢51)¢gz) =0

1— o4
~ 3 k
1oL ) w160+ P2 (a®)”2(1 4 T§)
2 \" T ®

~ 2
=57 (1= )
J(-25) (- ) -
(k) <

421+ (B 1+ T

1 1 ~
1 \/ (1-) (1= -
k

>0

«

a® < ., T

®)
Iy 4V2/1+ B ¢py/1+ T

(k) 4 (8) ) )
= ﬁ) Pa1 ¢(k) 25 2 (1 - (k)) (1 (k) 2) al®).
1= Ly ry”)

Putting together all of these constraints concludes the proof.

L.2 PRrRoOF OoF LEMMA [K4

k 2 2 k 2 2 ko(q0)2
;(M”) < (a(o)) —|—/0 (a(I)> dz = (a(o)) —|—/0 wdz‘
= (a(o))2 + (a(o))Qvln (14+k/vy) = (a(o))2 I4+~vIn(1+k/y)).
(b))

k k k MO
S ()" < @)+ [ () 't = @)+ [ L
- () i)' (1= ) < )

L.3 PROOF OF THEOREM[K.3]

For each iteration k > 0, (i) the learning rate being diminishing, (ii) the fact that dl(k) =1-(1-
(0)) /a©)a®) and (iii) b( = b;; which results in 5(*) = 5, results in Propositionimplying

2
Eec [F(H(’““))] < F(§©) wlza Eeirr MVF H } +a© w2H®<0 ~1,,00 H

+ wy Z aMypi) 4 Z .
r=0 r=0
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Substituting the values of ’L/JYC) and z/ék) from Corollary then rearranging the inequality and
dividing it by Zk o™, we get

1 _
. N aEg [HVF g H } - |F@9) - F
« =(r—1)
Z o a(r) Z . wq Zf:o a(r) ( )
2 k-1 3 k 2
+ a(o)wQHG(O) -1,,00 H + wows Z (a(r)) + wy Z (oz(r)>
r=0 r=0

. . 1 1 1 _ B2(14T3) _ 145 52 2
in which wy = 5(1 = £)(1 = F52), w2 = m, ws = m(167756% + 0*) and

2
Wy = 1=dpa (fg;ax( 1+ F3)52 + 132%
Finally, using Lemmas[[.4}{(a) and [K.4] we conclude that

, 1
72 = Za( Ege1 MVF (0) H } 2w, a0 (\/W_ 1)

2 3 2
+a(0)w2H®(0)—1m9(0)H +w2w3<a(0)) (1+2A/)+w4(a(0)) (1+71n(1+k/v))1.

F(O©) - F*

M NON-CONVEX ANALYSIS UNDER THE PL CONDITION

In this appendix, we make the convergence analysis of our developed framework when non-convex
ML models satisfying the PL condition are employed. Our approach will be quite similar to Sec. 4]
with the key difference that we will use the milder Polyak-Lojasiewicz (PL) condition (Xin et al.,
2021) (Assumption instead of strong convexity (Assumption (b)) to make this generaliza-
tion.

Assumption M.1 (PL inequality) The global loss function F meets the PL condition |V F () |2
2u (F(0) — F*) with some (1 > 0, where F™* is the optimal value of F'.

Under this assumption, we further know that F' satisfies the quadratic growth condition (QG-

condition) || — 6*||> < (2/u)(F(#) — F*), where 6* is the nearest point to the optimal solution of
the minimization problem under consideration. This will also be useful in our analysis.

We will still characterize the expected consensus error as Ega) [|[@F+1) — 1,,0(-+1) ||2] but con-
trary to what was done in Sec. 4] the distance of the average model from the optimal solution will
be captured via Eg [F(0F+1) — F*]. As an alternative to Lemma we first provide an upper
bound on the expected error in the average model at each iteration for the non-convex case, i.e.,
Egw [F(A%+D) — F*], in Lemma Then, as an alternative to Lemma we also calculate an

. . 2, .
upper bound on the consensus error for non-convex models, i.e., Eg) [||®(k+1) — 1,0+ [I'], in

Corollary [M.4]

We first need a preliminary Lemma which will be useful in the proof of Lemma

Lemma M.2 (Gradient bounds under the PL condition) (See Appendix [N_1| for the proof.) Let
Assumptions B 1\(a)] H.1W[(c) and M. 1) hold. The following upper bounds related to the gradient of
the global loss function can be obtained in terms of the optimality error Eg—1y [F(0%)) — F*] and

the consensus error Egu— [||@F) — 1,00 ||]

_ . 2
(@) Eaw[[VFE®) -] < 20— dl))Eze o[FOW) - F7] +
Elns B [[0F) = 1,80 +2(1 - dff) )%

min

(b) —E~<k>[<VF<9 D), 7o) < —u(t = 21— dR))Esw o [F(BW) — FY] +
s B [|©) — 1,00 + (1 - iy, )82

min
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(©) Bz V0™ < 23— 2d® )Eguy [FOM) - F7]  +
Pl B [|OF) — 1,80 %] +2(1 — dl), )82
Now can continue with the key lemma and corollary.
Lemma M.3 (Average error for non-convex models satisfying the PL condition) (See Ap-

pendix [N2| for the proof.) Let Assumptions and [M.1] hold. For each iteration

k > 0, we have the following bound on the expected average model error
Egio [F(004) = F7] < 67 Bgn [F(0) = F] + 6 B [[0F = 1,00 + 1",

where o) = 1+ Z7(3 — 2d13) ()" — pa® (1 = 21— df}))), o) = Fika®(1 +
26a'¥)), and
o = a1~ )8 + §(a®) (1 — df) )07 + duae]

min

Similar to our discussion around Lemma note again how the coefficients simplify when dffi)n =

1, which is essentially equivalent to the conventional DFL setup where clients perform SGDs at
every iteration, i.e., v( ) = 1foralli € M.

. Lo = 2 .
We next bound the consensus error at each iteration, i.e., Ega [||@*+1) — 1,0+ ||"], which
measures the deviation of ML model parameters of clients from the average non-convex ML model.

Corollary M.4 (Consensus error for non-convex models satisfying the PL condition)

(Corollary to Lemma Let Assumptions and [M1) hold. For each

iteration k > 0, we have the following bound on the expected consensus error

Bz [|©FH) — 1,,0040 )] < ¢ Egin [F(BP) — F*]+ ¢ Egun [|OF — 1,607 +
(k)
2

5(k) 2
where ¢ = & FEirmd{ix(aM)"(¢2 + 28%(1 — d{jy,),

~(k) 2 2
%) = B 32 d(a®) (2 + 26°), and 9§ = m(a®) dW(3EEL 502 + o).

Proof Lemma 4.8) states that Ega [||@F+1) — lmé(kJrl)HQ} < d)gi)EE(k—l)[Hé(k) - 9*||2} +
(;522 ]E'—(k 1 [||(9(’C -1 O(k)H 1+ w(k) Now, using the PL condition (Assumption , we know
that ||§%) — 9*H (F(O( )) — F*). Hence, we get gi)(k) (b(k)

Corollaryis almost the same as Lemma with the only difference being in (bgi). Note again

that gbgi) = 0 in the conventional DFL setup, where (a) ( = 0 and (b) dgfi)n = 1, resulting dl(k) =1

forall i € M.

Let us denote the error vector at iteration & with Z/T(LC), defined as
Ezw-1 [F(0W) — F*]

Ezon [0 — 1,00]

With this definition, putting the results of Lemmas [4.7] and [4.8] together form the following linear
system of inequalities:

v =

(32)

Putting the results of Lemma and Corollary [M.4] together form the following linear system of
inequalities:

v < @O0 + W, (33)
with @) = [Qf),(f)}l <i.i<2 and (%) = [¢§k> ék)}T. Recursively expanding the inequalities in
Eq. [33] gives us an eip’liEit relationship between the expected model error and consensus error at
each iteration and their initial values:

(k+1) < @(k 0) _|_ Z @(k T \Il(r 1) 4 ‘Ij(k) (34)

r=1
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where we have defined ®(55) = F) H*-1) ... ) for k > s, and PF*F) = ),

In order for us formalize the convence bound of DSpodFL, we have to show that the spectral

radius of matrix ®(*) given in Eq. [33|is less than one, i.e., p(®*)) < 1. This part was outlined in
Proposition [M.5]in the main text.

Proposition M.5 (Spectral radius under the PL condition) (See Appendix|N.3|for the proof.) Let
Assumptions [4.]] 41 and [M1] hold. If the learning rate satisfies the following

condition for all k > 0

_282 (1 q® .
*) . Lz (1 dmin) ,u72 5 (1 + p(k))
o < min 3 2 . s

232 (k)
1 o 1-p® 1—ﬁ(1—dmm)
6y/2a0,  VITION 1+ 2 (1-di) )

then we have p(®®) < 1 for all k > 0, in which p(-) denotes the spectral radius of a
given matrix, and ®¥) is the linear system of inequalities of governing the dynamics of optimal-

ity and consensus errors. p(®F)) follows as p(®@*)) = ﬁ — ARk 4 B(k)(oz(’“))2 +
. 2
L/ (=22 — 940900 + BO @®)?)” + 0 (@®)’, where A®) = 21— 28 (1- di8))),

2 2 min

BU) = ST (¢2 4 98%) and OW = T2 140 (a0, (¢2 4 262(1 — d8)).

Proposition [M.3] enables us to guarantee convergence of DSpodFL when non-convex models are
used. The argument follows along the lines of the things we discussed in Sec. Proposition
implies that limy,_, . ®*9) = 0 in Eq.[34] However, this is only the asymptotic behavior of ®(¥:0),
and the exact convergence rate will depend on the choice of the learning rate o(*). Furthermore,
since the first expression in Eq. [34] asymptotically approaches zero, Proposition [M.5] also implies
that the non-negative optimality gap is determined by the terms Zle SErw =1 4 k) and it
can be either zero or a positive value depending on the choice of a(¥).

Proposition outlines the necessary constraint on the learning rate a*) at each iteration k& > 0.

We next provide a corollary to Proposition|[M.5] in which we show that under certain conditions, the

above-mentioned constraint needs to be satisfied only on the initial value of the learning rate, i.e,
(0)

o\,

Corollary M.6 (Constraint on learning rate initialization under the PL condition) (Corollary

to Proposition If the learning rate o*) is non-increasing and the probabilities of SGDs dgk)

and aggregations bx«c) are constant, i.e., a1 < q¥), dl(.k) =d; bgf) = by, forall k > 0, and we
have then the constraints in Proposition|[M.5| simplify to

2
1= 25 (1 — dmin) 5

,LL2
10 (3 - 2dmin) 6378“, (1 — 27522 (1 - dmin)) ,

1 ¢ 1-5 u2—252(1—dmm)}

a® < min {

67/ 2max B2 VI + 5 \| 2+ 282 (1 — dimin)

Theorem M.7 (Non-convex result under the PL condition) (Proof is similar to the proof of The-
orem|d. 11| given in Appendix[F4)) Let Assumptions and and M1 hold. Let
a constant learning rate o'*) = o with a > 0 satisfying the conditions of Proposition be
employed, and the probabilities of SGDs and aggregations be time-invariant, i.e., dl(k) = d; and
bgf) = by, for all k > 0. Then, the convergence rate is geometric, specifically p(®)E+L, with an
optimality gap
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2
m

_ C\§2 4 B _ 24
lim y(k+1) < (1= dumin)” + 5 (4(1 donin) 0%+

1
A ~ ) (35)
K—oo A mao (3%{;}52 +o )

for ® given in Lemmaand Corollary and w(l]z) defined in Eq. Propositionensures

p(®) < 1.

We see that the optimality gap in Eq. [35]can be decreased by choosing a smaller learning rate « and
a larger minimum SGD probability dpiy, similar to the argument made for Theorem[d.11]

N PROOFS FOR NON-CONVEX ANALYSIS UNDER THE PL CONDITION

N.1 PROOF OF LEMMA [M.2]
[()] For this deviation term, we have

2
frroe v -

Zl (VF @Ry — vpiwg“)vg“)

3=
NgE

< |VE@®) - VR () (’“)H

1=1

1§ (®)
o) R R

" |VE@O®) - vE©6) Z v

1)“_):1 (k) =0

1 & _ 22 m _ 2
< 5 a2 S (oo o)

v@zk:)il (lk:i

1
ms

ot -4 25 (4 () ) (),

=1 i=1 K

where in the last two lines, (i) Smoothness (Assumptiond.T}j(a)) and Lemma|[D.T}{(b)|and (ii) PL con-

dition (Assumption [M.T) was used, respectively. Taking the expected value of the above inequality
concludes the proof.

Second, for this inner product term, we have

_ <VF(§U€)),W(1€)> _ <VF(g(k))’W(k) _VRE) + VF(é(k>)>
—for]'+ (vpu.vrun -5y

<3 e[+ Yran o)
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Now, taking the expected value of this inequality and using part[(a)| of this lemma alongside the PL
condition (Assumption[M.T), we get

Bz [<VF(9(k)) w(’“)ﬂ < Bz [F(é(k)) - F}

2dWx e
+62m‘ Ezeov M(-)(k)—lmG(k)H]

+ 252 (1= dih.) Bzon [FOD) - F7]

min

+ (1 - dmm> 52

)) Egon [F(OW) - F*| + b ng’fngs(k—n U]@W - 1m9<k>m

s—u<1—2ﬁ (1—d<’c

u min 2m
+(1-dl,) e
Finally, for the norm term, we have
| — 22 [ — _ _ 2
5“%“”” - 5”%““) — VF@®)Y + VE@E™) H < HVF H + HVF By vv(’“)H .

Taking the expected value of this inequality and utilizing part [(a)] of this lemma alongside the PL
condition (Assumption [M.T)

1 = 2 2 2 = 2dmax
“Exw [Hw“‘”” ] <P g [FO®) - F*] + Bl {H@W 1 0<’€>H ]
2 o m

min

) B O] 2 2)

< 252 <3 — QdErlfi)n) Eze-1 [F(é(k)) _ } ﬂQdmaxE_w D [H@(k) 1 e(k)H }

+2(1-dl,)

N.2 PROOF OF LEMMA [M.3|

Using Lemma on #®) | the average model parameters at iteration &, and then employing
Assumption M. 1] we get

| < 25 (F(H_(’“)) - F*) .

_ 2 _
[er@®)| < 22
I

Now, we can write
FEED) — pr < pE) + <VF(§(/€)) g+ _ gl > 5“9(@ <k+1>H
— F(I®) + <VF(§(’€))7 _a<k>g—v<k>> n §Ha<k>g—v k)” _
F(O®) = F* = a® (VF@®), 7o) — o (TF(@ED), e

G o

+ (o) (T5, @),

in which the relatlonship in each of the three lines follow from (i) Smoothness (Assumption 4. IH(a)]),
(ii) Eq. |5 I (iii) g V( ) + e(k) for all i € M. Next, we take the expected value of the above
inequality and use Assumptlon @ and Lemmas[D.2) and [M.2] to get
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Ex [F(é(’““)) - F*} < Eegeon {F(é(’“)) - F*}

0 (1= 2 (12 2) ) B [P0 - ]

. ﬁmﬂfﬁxa(k)EE(H) [H@(m N 1m9<k)H2] 4 a® (1 —d® ) 52

2m min

+ QiB ( - Qdfrlfl)n) (O‘(k)f]EE(kfl) [F(é(k)) B F*}

| Pdinds (0) B [H@m . 1m(;<k>HQ] 28 (1-d%,) 82 (o)’

m

+§(a(k)) FORa

max

< {1 + 253 (3 - 2dfffi)n> (a<k>)2 — pa™® (1 - % (1 - dfjj@))} B 1) {F(é(’ﬂ) - F*]

B2d(k) N 2 k
i 2;;axa(k) (1 n 2504(k)> E=e1) [H@(k) _ 1mg(k)H ] +a® (1 — dr(ni)n) 52

0(a®) [t (1-df) 4 ],

N.3 PROOF OF PROPOSITION [M.3]

We will do an analysis similar to the proof of Propositions .10 and [I.I| which were given in Ap-
pendices [F.3]and [l 1] respectively.

Step 1: Setting up the proof. We skip repeating the explanations for this step, as they are exactly
the same as step 1 in Appendix [F.3]

Step 2: Simplifying the conditions. Recall that we have to ensure (i) 0 < qbgli) < 1 and (i)
0< q522) < 1. For d) as defined in Lemma we have

2 28° (k)
qETE) z
o<1 = aW< o = A1

We can see that we got a requirement for d® here, and it should be lower bounded. Therefore,

Hlll’l (k)

contrary to when strongly convex models were being used that d;"’ could have had any value for all

1 € Mand k > 0, when using a non-convex model this is no longer the case, and d(k) have to be

larger than a threshold 1 — To put this into better context, note that 1 — > 3, and thus at

35
the best possible scenario we can allow dz(- ) > z.

W

We then put the following constraint on a(¥) to get a more compact form for (Z)n), defined in Lemma
We have

{1 ()
Constraint 1: o™ < (" - min 7 0<r® <1
233 (3 ~2d%),)

Note that although the above constraint has to be satisfied for a*), we also obtain an upper bound
for the condition for theoretical analysis purposes. We have

(k)
o) < ) ”3 <O
25° ~ 28
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Hence, we can update ¢§§) and ¢§’;> as defined in Lemma m as the follows

¢§l§) <1- (1 - ng)) ( 25 (1 - dgfl)n)) pe ) ¢12 > /Bzdmax (1 + ng)) alk),

2m

Note that other entries of matrices ®(*) and ¥(*) remain the same as initially given in Lemma
and Corollary Moreover, since matrix ®*) and vector ¥*) in Eq. were used as upper
bounds, therefore we can always replace their values with new upper bounds for them. Conse-

quently, with this new value for ¢ﬁ), we continue as

p(1-m) (-5 (1 *dfr’fll))

Finally, we check the next cond1t10n 0< QSQQ < 1. Noting that we have 32— < 1, we can enforce
(bé < 1 by setting ¢22 < 3+p . We have

*)'> 0 = a® <

. 5(F) 1 1—pk) 1
§¢(2];)§3+7p = O<oz(k)< P

1 T gy sl VLA VEE 25"

1+ 5%
2

Step 3: Determining the constraints. Having made sure that (i) 0 < ¢§]§) <land(ii)0 < qbég) <1
in the previous step, we can continue to solve Eq.[I3] For the left-hand side of the inequality, we

have
(-8 (1) =11 (- 25 (-2) o] (- )
> [(1 -1{) <1 252 (1- dfﬁl)) Ma(k)} 1 —45(’“)

Now, putting this back to Eq.[T3] we get

(- 00) (12 (1) ) ] 22 ot

N [&dmax (1410 a(k)] {2 1 i iig md(), <a<k)) (282 (1~ dE:l)n)>:|

< [(1 -1 (1 - 2522 (1- dﬁr’fi)n)) ,ua(k)} 1 —4ﬁ(k)

267 ()
1-1 1-50 4 1—7(1—dmin)
L+ V40 B\ 14 2 (1-dR))

Finally, we solve for Eq.|16} i.e., c = ¢§’§)¢g ¢§ qb(k) > (. Noting that by solving Eq. we
made sure that 1 — (k) (k + <;$1 qﬁg) - ¢12) qﬁél) > 0, we can write

1
2/3d%),

= oW <

c>0 = ¢(k)+¢(k) 1>0

N 1—(1—F§’“)) (1-1@2‘(1—d(’“))>w<k>+1+2’5m—1>0

min

1+ p®
20 (1-1(7) (127 (1-a)))

in which we have used the value of d)ﬁ) itself, but the lower bound of ¢§’;)

= a(k) <
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Step 4: Putting all the constraints together. Reviewing all the constraints on o(*) from the
beginning of this appendix, we can collect all of the constraints together and simplify them as

. 7 ( (1 *dffl)n» 1
a® < min {F(k) 253 (3 2dm1n) ’ U (1 — ng)) (1 — ii; (1 — dfr?“)) |
11w 1

2/adf I+ Y+ 2

2p2 (k)
1 1-1" 1-50 4 1—7(1—dmm>
2v3dfin \ 14+ T VI B0\ 1422 (148
14+ ﬁ(k)
ou(1—1®Y (1282 (1 - g® (36)
K Tl - uzr ~ “min
26° (k)
N . (k}) H“Q (1 — 'uz (1 — dmin)) 1 + ﬁ(k)
=min< I} - , - G
(o) () (o ()
1 1— /3(’@) 1

o o, VI8 T

232 (k)
1 1-— ng) 1— ﬁ(k) ﬂ - 2 (1 - dmln)
2v/3dii \ 1+ T V1450 50\ 14 22 (1-al))

while satisfying
o<1 <1,
. . . 5()
Note that one of the terms in Eq.[36| was trivially removed since H'%
last two terms, we have

< 1. Furthermore, for the

1 l—p(k) 1 1 1—~<k> 1

1 11 150 4 [1- 2f2 (1 —dfm)n)
Y AL\ 1+ T 1+ 50 BCA[ 1+ iif (1-d%)
~ k
1—-p® 1 1-1®
% ®
R

We found a lower bound for (a), and an upper bound for (b). Since the constraint on o(*) includes
the minimum of these two terms, showing that the upper bound for (b) is less than the lower bound
for (a), will constitute the fact that the (b) < (a). We have

Cdd,
1-— C2d1(1112x F(k) > 1- 662 =T*
1 +1"( ) T 632 - to= 14 & s v
1 + 6B2

Therefore, choosing ng) = I'7 will give us tightest possible bounds. However, in order to get

simpler expressions for the first two terms in Eq. [36]which would give us better intuition, we choose
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the infimum of ng) for them, i.e., 1/5, to obtain
2(1_ _ g% ~
(k) ) H (1 (1 dmm)) 5 1+ pk)
« < min s 0
1033 ( —2al)) ton(1-2 (1-4R)))

w 1-p® 1—2%2(1—dfﬁ)n)

6\/2d VI 142 (1—dfff1)n)}

Step 5: Obtaining p(®(¥)). We established p(®*)) < 1 in the previous steps. The last step is to
determine what p(®(*)) is. We have

k k k k
—b+ VB~ dac _ o + o) + \/(0551) + ¢§2))

k) L (k k) L (k
4 (¢§1)¢52) - ¢§2) ¢§1))

”(q)(k)) - 2 2
9+ o+ ) (o)~ o))+ a0l
- 2
- (1) (12 (1 dih) ) e + 27 4 8 EEG (a)” (¢2 4 26%)
2
Al (-2 (“dfff&))
1+ 5 \?2 (2 2 ’
() (29 >>
~ /
AT () L B () (¢ 2 (1)
_3 *fk) -5 (1-1) (1 - 252 (1- d(")n)) pa® 4+ z 1 i ’fig (a(k))2 (¢® +28%)

:
+;K1 —2;3<k> B (1—F§’“)) (1_ 2522 (1 —dfffll)> a®

14 5k 2 2
3P (oz(k)> (¢ + 252)>

L1262 0)) LA™ V2 (Y (2 4 9p2 (1 g®) v
o (1) =7 () (o) (20 (1-dli)
34 pk) i 2
Ay O PN ORI 10 (am)

1
1 [(1—p® N 3
i 2\/< L2 (Aae)a(k) + B (k) )) + C®) (k)

O FURTHER EXPERIMENTS

0.1 ACCURACY VS. DELAY WITH UNIFORM DISTRIBUTION

In the experiments we provided in Fig.[2] the SGD and aggregation probabilities were sampled from

a Beta distribution, e.g., d(k)7 bgf) ~ Beta(a, ). In this section, we investigate sampling these

probabilities from the uniform distribution, denoted as 2/ (0, 1].
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Figure 5: Accuracy vs. latency plots obtained in different setups where the SGD and aggregation
probabilities are sampled from the uniform distribution 2/ (0, 1]. DSpodF L achieves the target accu-
racy much faster with less delay, emphasizing the benefit of sporadicity in DFL for SGD iterations
and model aggregations simultaneously.
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Figure 6: Effects of system parameters on FMNIST, where client and link capabilities d; and b;;
are sampled from a Beta distribution Beta(0.5,0.5). The overall results confirm the advantage of
DSpodFL in various settings.

We have provided experimental results for only the non-IID cases in Fig. [5} under exactly the same
setup outlined in Sec. 5] It can be observed that the findings discussed in Sec. [5]also hold here.

In other words, our DSpodFL method outperforms the baselines in terms of accuracy per overall
delay.

We will explain the intuitive reason of why DSpodFL is outperforming other baselines in both
Figs. and Let G = (M, &) be given a network graph, and assume there exits two paths between
nodes ¢ and 7. Let one of these paths have a communication cost k times more than the other path,
where k£ > 1. In our DSpodFL method, the path with lower cost will be utilized roughly % times
more than the other path, thus resulting in lower communication overhead while still preserving
information flow between nodes ¢ and j. Meanwhile, other methods, especially DGD and DFedAvg
methods, do not take this into account.

0.2 EFFECTS OF SYSTEM PARAMETERS WITH BETA DISTRIBUTION

In the experiments we provided in Fig.[3] specifically Figs. and the SGD and aggregation
probabilities were sampled from a uniform distribution, e.g., dik)7 bgf ~ U(0,1]. In this section,
we investigate sampling these probabilities from the Beta distribution, denoted as Beta(0.5,0.5).
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Figure 7: Effects of system parameters on CIFAR10. In all figures, client and link capabilities d; and
b;; are sampled from a Beta distribution Beta(0.8,0.8). The overall results confirm the advantage
of DSpodFL in various settings.
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Figure 8: Accuracy vs. latency plots when SGD and aggregation probabilities are time-varying.
DSpodFL achieves the target accuracy much faster with less delay, emphasizing the benefit of
sporadicity in DFL for SGD iterations and model aggregations simultaneously.

We have provided experimental results for only the non-IID cases in Fig. [6| under exactly the same
setup outlined in[3] It can be observed that the findings discussed in Sec. %also hold here. In other
words, the performance gain of our DSpodF L method compared to the baselines is robust regardless
of the variation in system parameters, i.e, (i) data heterogeneity level, (ii) level of graph connectivity
level and (iii) number of clients in the system.

0.3 EFFECTS OF SYSTEM PARAMETERS ON CIFAR10

In both Sections [5]and [0.2] we analyzed the effects of system parameters on the FMNIST dataset.
Here, we will provide similar experimental results for the CIFAR10 dataset. Note that while an
SVM model was trained on the FMNIST dataset, for CIFAR10 we use the VGG11 model. We

sample the SGD and aggregation probabilities from the Beta distribution, i.e., dgk) ~ Beta(0.8,0.8)
and bg;) ~ Beta(0.8, 0.8), respectively.

The results in Fig. [7] are carried out in the non-IID regime as well, under the setup described in
Sec.]5] Again, the findings discussed in Sec.[5|and[O.2]can be validated here, showing that DSpodFL
outperforms the state-of-the-art in various settings. This demonstrates that our results hold regardless

of the dataset in question and the ML model being used, adding yet another dimension of robustness
to our methodology.

0.4 DyNAMIC SGD AND AGGREGATION PROBABILITIES

In the experiments done in Sec. [5} the SGD and aggregations probabilities where set to constant

values for all clients, i.e., dgk) = d; and bgk) = b;;, for all £ > 0. In this section, we conduct exper-
iments by letting these probabilities to be time-varying. This setup corresponds to situations where
the computation/communication resources of clients vary over time. To be specific, we change prob-

abilities dl(k) and b%’?) every 1000 iterations of model training. However, note that we still randomly
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Algorithm 11D Non-IID
Iter. 1000 [ Tter. 2500 [ Tter. 3500 || Tter. 5000 [ Iter. 10000 [ Iter. 15000
DGD 0.80 0.81 0.82 0.72 0.73 0.75
DFedAvg 0.79 0.81 0.81 0.39 0.41 0.41
RG 0.80 0.82 0.82 0.60 0.65 0.64
Sporadic SGDs 0.77 0.80 0.80 0.70 0.74 0.74
DSpodFL 0.77 0.80 0.80 0.63 0.67 0.70

Table 2: Accuracy vs. iteration results for experiments in Fig. [2{done for the FMNIST dataset.

Algorithm 11D Non-IID
Iter. 1500 | TIter. 3000 | Tter. 4500 [[ Iter. 3000 | Iter. 6000 | Iter. 9500
DGD 0.73 0.73 0.74 0.77 0.80 0.81
DFedAvg 0.73 0.74 0.75 0.56 0.70 0.76
RG 0.72 0.74 0.74 0.73 0.80 0.80
Sporadic SGDs 0.74 0.74 0.75 0.71 0.76 0.79
DSpodFL 0.72 0.73 0.73 0.65 0.72 0.76

Table 3: Accuracy vs. iteration results for experiments in Fig. [2|done for the CIFAR10 dataset.

sample them from the same distribution, i.e., Beta(0.5,0.5) for FMNIST and Beta(0.8,0.8) for
CIFAR10.

It can be observed that the findings discussed in Sec. [5|also hold here. In other words, our DSpodF L
method outperforms the baselines in terms of accuracy per overall delay regardless of the time-
variation in SGD and aggregation probabilities.

0.5 ACCURACY VS. ITERATION

We have provided the accuracy vs. iteration results for the experiments done in Fig. [2] In Tables 2]
and[3] we give the results for several sampled iterations.

We observe that given enough time, i.e., after sufficient epochs, the achievable accuracy for
DSpodFL matches the achievable accuracy for the other baselines. The accuracy for DSpodFL
being slightly lower than DGD at some iterations is due to the fact that gradient and consensus op-
erations occur at every iteration for all devices in DGD, without taking resource availability into
account. In DSpodFL, on the other hand, at each iteration some devices do not compute gradients
and/or some of the links are not utilized for communications. Thus, it is not unexpected for the
accuracy of DSpodFL to be lower than DGD across the iterations, since it is actually designed to
achieve faster convergence in terms of the actual physical delay incurred as seen in Fig.[2] Regard-
less, the final achievable accuracy is the same for all baselines, as they all fit within the DSpodFL
framework, and we theoretically prove in the paper that all of these algorithms will converge to the
same global ML model.

0.6 DECOMPOSING ACCURACY VS. DELAY RESULTS

In Tables ] and [5] we have decomposed the results from Fig. [2]into their processing and transmis-
sion delay components. We have reported how long it takes for different algorithms to achieve a
specific accuracy in terms of 1) processing delay, 2) transmission delay and 3) overall delay. We
can see that to reach a certain accuracy, DSpodFL strikes the best balance between transmission
and processing delays, leading to a better overall delay. Specifically, it obtains a similar processing
delay to the Sporadic SGDs algorithm and transmission delay to RG, which are the best baselines in
those respective categories. Note that the reported delays below are in units of time.

0.7 RESULTS WITH A TRUNCATED GAUSSIAN DISTRIBUTION

In Fig. [2] we have further explored the performance of DSpodFL under a truncated Gaussian distri-
bution Npg 17 (s, 0?) to generate probabilities d; and b; ;, which for small values of variance o gives
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Algorithm [ID, with accuracy = 0.75 Non-IID, with accuracy = 0.40
Process. | Transm. [ Overall Process. | Transm. | Overall
DGD 4605.26 | 1915.95 | 6521.22 2470.37 1027.76 3498.14
DFedAvg 5947.19 88.82 6036.01 221418.66 | 3070.60 | 224489.26
RG 6130.19 | 331.40 | 6461.58 9180.18 451.15 9631.18
Sporadic SGDs 591.84 | 7614.84 | 8206.68 127.38 1270.18 1397.56
DSpodFL 593.69 893.32 1487.00 257.68 430.96 688.65

Table 4: Decomposition of accuracy vs. delay results in Fig. 2 for the FMNIST dataset into their
processing an transmission delay components.

Algorithm IID, with accuracy = 0.65 Non-IID, with accuracy = 0.30
Process. | Transm. [ Overall Process. | Transm. | Overall
DGD 3462.06 | 2571.64 | 6033.70 2250.12 | 8807.37 | 11057.49
DFedAvg 2784.81 | 482.01 3266.83 9627.35 2065.34 11692.70
RG 3462.06 | 614.68 4076.74 2250.12 161.15 2411.27
Sporadic SGDs 440.73 | 2888.25 | 3328.98 160.13 13081.37 | 13241.50
DSpodFL 628.97 990.24 1619.21 327.27 647.24 974.51

Table 5: Decomposition of accuracy vs. delay results in Fig. [2| for the CIFARI10 dataset into their
processing an transmission delay components.

the setting of relatively homogeneous and static clients. Fig.[9a] demonstrates accuracy vs. latency
when using this distribution with a mean and standard deviation of 0.5, and Fig. shows the result
for different 2. We see a wider margin of improvement with a relatively larger o2. This confirms
that DSpodFL is most advantageous relative to the baselines under extreme levels of heterogeneity
and dynamics, similar to how the improvements under the inverted bell-shaped beta distribution are
more pronounced than those under the uniform distribution as seen in Fig. [3d] We have also ex-
perimented with fixing the variance of the truncated Gaussian distribution and varying its mean in

Fig.
0.8 FURTHER GENERALIZATION AND SCALABILITY VERIFICATION

In Fig.[I0] we present further experimental results under different settings than the setup given in the
main text. In Fig. we analyze the effect of graph connectivity on the overall performance when
a total of m = 50 clients are present in the network. We observe that the improvement gap between
DSpodFL and other baselines becomes even more significant compared to Fig. [3b] In Figs. [T0b]
and we isolate the effect of varying b;; and d; separately, in contrast to Fig. [3d| where both the
SGD probabilities d; (i.e., computation capabilities) and aggregation probabilities b;; (i.e., commu-
nication capabilities) were varied together. The results are show that DSpodFL is more robust to
variations in b;; or d; compared to the baselines, respectively. In Figs. (and[10c), while the het-
erogeneity in computational (communication) resources is preserved across the whole experiment,
moving from o« = § = 0.5 to o = 5 = 1 brings us from a heterogeneous regime to a homogeneous
one in terms of communication (computational) resources. Thus, the Sporadic SGDs (Sporadic Ag-
gregations) component of DSpodFL, i.e.m green curve (red curve), becomes key to improvement
over other baselines when communication (computational) resources are homogeneous. Finally in
Fig. we compare the sequential Combine-then-Adapt (CTA) process to simultaneous SGDs and
aggregations considered so far for DSpodF L. We observe that while the differences are not vast, the
simultaneous version of DSpodFL achieves slight accuracy improvements (2%) over the sequential
version. More importantly, both versions of DSpodF L outperform existing DFL baselines.

0.9 EFFECT OF LEARNING RATE

We vary the learning rate in the range « € {0.0001,0.001, 0.01, 0.1} in our experiments. In Fig.
we present the test accuracy results for our DSpodFL algorithm and other baselines, when they
reach a total delay of 7 = 500. We observe that even the best performance of the baselines is lower
than our DSpodF L algorithm with learning rates o = 0.01 or « = 0.1.
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Figure 9: We investigate the FMNIST, Non-IID setup from Figs. andusing a Truncated Gaussian
Distribution to sample SGD and aggregation probabilities d; and b;;, respectively. We denote this

distribution as ./\~/'[071] (1, o), which only has values in the interval [0, 1].
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Figure 10: Further investigation of DSpodFL’s generalization to various setups.

P REMARKS

P.1 EFFECT OF COMMUNICATION SPORADICITY ON ANALYTICAL BOUNDS

We will make a remark about this in two parts:

1. Effect of b;; on the spectral radius 5(*): As mentioned in Sec. |4.4s “Discussion on conver-
gence”, the probabilities b;; affect the bounds through the spectral radius of the expected mixing
matrix, i.e., p*) = p(R®) — (1/m)1,,17) from Deﬁnition We can refer to the elements of
matrix R(*) in Appendix (b), given as

~) (1) r2

ij

P F ]

R®) 2 (R(H)Q + [ ng‘jgm
t=17

[Z;L 2b§lk) (1 - bgz“) h 1<i<

where R(® is defined in LemmaD.4]{(a)] as
(k)

RO — { K ”} 1<i,j<m i
{1 — 2= by r”} 1<i,j<m v=J

As we can see, the values of bz(f) directly affect R®), and hence the communication sporadicity

parameters bl(-;-c) affect all the convergence bounds and learning rate constraints through 5(*), the
spectral radius of R*®) — (1/m)1,,17.

From the definition of f{(k), we can draw some intuitions on the relation between bl(-;-c) and ﬁ(k): If

bz(-f) — 0 for all (i,j) € &, we will have a diagonal R*), meaning that 5*) = 1. On the other
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Figure 11: Effect of the learning rate o.

(k)
]
that p(%) = p2. This would be the lowest achievable spectral radius o), as it is utilizing all the

extreme, if b;;’ — 1 for all (¢,5) € &, we will have the main diagonal of R*) = R2, meaning
communication links as frequently as possible. All other cases of bgf) result in 5(*) between these
two extremes, with higher connectivity decreasing p(%).

(k)
ij

establish the connection between bl(?) and the convergence bound. We can see in Propositions (4.10
and (convex and non-convex cases) that if p = 1 (one possible scenario being that all bgj) =

0, as explained in the previous paragraph) the constraint on the learning rate becomes a*) < 0.
Intuitively, no learning rate can make DSpodFL converge if none of the communication links are

2. Effect of 5(*) on the analytical bounds: Based on the relationship between b, and p*), we can

ever utilized. On the other hand, having all bgk) = 1 results in the minimum achievable p, allowing
a larger learning rate to be chosen based on the constraints given in Propositions #.10and [G.6] In

other words, as the connectivity of the graph induced by bgk) increases, larger step sizes can be
tolerated while still guaranteeing convergence in Theorems and[@4.12}

P.2 PERFORMANCE SUPERIORITY OF DSPODFL

Our performance improvements over the baselines come from sporadic operations of both local
SGDs and aggregations. In decentralized FL, resource availability is often heterogeneous and dy-
namic, as discussed in Sec. m there are (i) variations in computation capabilities at clients, causing
bottlenecks in assuming consistent participation in SGD computations, and (ii) variations in link
bandwidth, causing bottlenecks during model aggregation. Referring to Algorithm I]in Appendix [B]
DSpodFL overcomes these limitations as follows:

* Client ¢ conducts an SGD in iteration % only if vgk) = 1 (line , which has a probability
d; proportional to its processing availability. Consider that multiple clients may possess
overlapping data distributions. In such scenarios, the system can benefit from more fre-
quent SGD updates from the clients with the highest resource availability, as they provide
information representative of multiple clients and finish iterations faster.

probability b;; proportional to its bandwidth availability. DSpodF L takes advantage of the
fact that model information can propagate through the system rapidly over the fastest links
in the graph. For example, if link (4, j) has low bandwidth, our method will make client i’s
relevant local update information reach client 7 more rapidly through a series of other high
bandwidth links.

* Link (4, 7) is used for model sharing in iteration k only if v(]’.c) =1 (line , which has a
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Unlike DSpodFL, the baselines evaluated in Sec. [5] work under (a) fixed SGDs and/or (b) fixed
aggregations. DGD assumes local SGDs and aggregations at every iteration, RG employs constant
SGDs (but sporadic aggregations), Sporadic SGDs assumes constant aggregations, and DFedAvg is
DGD with decreased communication frequencies.

P.3 COMPARISON METRICS FOR EXPERIMENTS
As outlined in Sec. 5| the average total delay Tt((];)al at iteration k is defined as the sum of aver-

(k)

age processing delay TIS,’?’ZC and average transmission delay 7., up to iteration k. At each iter-

ation, depending on whether a client ¢ computed SGDs or not, i.e., vgk) € {0,1}, there will be

a processing delay incurred to finish the computation proportional to 1/ d,Ek). Similarly, depend-
ing on f)z(]k) € {0, 1}, some of the links (4, 7) in the network graph will be utilized for commu-
nications, incurring a transmission delay proportional to 1/ bgk) for that link. In order to obtain
comparable result regardless of the size, connectivity and the topology of the underlying graph,

we normalize (i.e., average) both processing and transmission delay to obtain TZE’T“Z,C, Tt(f;fm. For-

mally, these are defined as 75, = 327, (1/ING]) 32, 00 /031 /[0, (1/ING1) 32, 1/byj) and

8. = Doy v /d;)/ [>i%, 1/d;]. Finally, we define Tt((ljt)al =¥ 471 as the average total
delay as a metric to compare DSpodFL with the baselines.

Having explained the average total delay Tt(i)al = Tt(fgns + Téfgc above, we can now see what
happens to different baselines under our proposed heterogeneity framework, and how d; and b;;

translate to the speed of a client and a link, respectively. In DGD, we have that computations and
communications occur at every iteration, i.e., vgk) = ﬁl(jk) =1foralli e M, (i,j) € Eand k > 0.

Thus, we will have that 7ir),.. = [S27", (1/ING]) 32, 1/bi) /[0, (1/ING]) 32, 1/b;5] = 1 and
T,S’ﬁ?m =[>m, 1/d;i]/[>2", 1/d;] = 1, and thus each iteration of training will incur a total average
delay of Tt((i)al = 2 for this baseline. For DFedAvg, we still have TIS']:())(: = 1 as SGDs occur at

every iteration. But since aggregations occur every D iterations, i.e., clients conduct D consecutive
. . L . k
iterations of local SGD steps before communications, we will have Tt(mzns

then Tt(f (3%

= 0 for D iterations and
= 1 for the next iteration. This deterministic cycle will then continue for DFedAvg.

In RG and the Sporadic SGDs baselines, we only have one of these operations occurring at every
iteration, i.e., computations and communications, respectively. This means that in RG, we have
o® (9

7 17 . .
9i5*) = 1 but stochastic vfk). Thus, for RG we will have S R ) implied by

total — Ttrans
(k) (k) (k) _ 1.

Tproc = 1, and for Sporadic SGDs, we will have that Trotal = 1+ T,Efgc < 2 implied by 7., =

= 1 is deterministic but ©,:’ is stochastic, and for Sporadic SGDs, we have deterministic

However, note that in DSpodFL, both computation and communication operations are carried out
in a stochastic way, and thus each iteration of training requires less delay incurred on the whole
decentralized system to start the next round of training. Note however, that less computation and
communication might come at the cost of losing performance at each iteration, but our motivation in
DSpodFL was to prove that in fact if we evaluate these algorithms based on their total delay, it can
outperform existing baselines. The intuition is that due to the data distribution of clients available in
the network, their processing capabilities, the graph topology and the link bandwidth capabilities, it
is not necessary to over utilize all of these resources at every iteration for fast convergence. In fact, a
resource-aware approach like DSpodF1L, takes a step at optimally utilizing the resources to achieve
the same final solutions in a shorter amount of time.

P.4 CONVERGENCE RATE COMPARISON WITH RELATED WORK

Convergence rate in Big O notation. First, we note that as outlined in Table [I] of Sec. [I] we pro-
vide convergence for last iterates of model parameters when dealing with strongly-convex models
in our paper, in contrast to the majority of existing literature which only provide convergence for
average iterates (Koloskova et al.}[2020). Therefore when dealing with strongly-convex models, we
can compare our theoretical results only for the DGD baseline because the DGD-like algorithms
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given in|Mishchenko et al.| (2022); Maranjyan et al.|(2022) are among the few to show convergence
for the last iterates of model parameters as well. According to Theorems 3.6, 5.5, 5.7 and D.1

in|Mishchenko et al.|(2022) and Theorems 3.5, 4.5 and B.2 in|Maranjyan et al.[(2022), the conver-
gence rate of the algorithms ProxSkip, Decentralized Scaffnew, SplitSkip (Mishchenko et al.}[2022),
GradSkip, GradSkip+ and VR-GradSkip+ (Maranjyan et al., 2022) are all geometric, i.e., O(p™)
with 0 < p < 1 (note that most of these algorithms are FL algorithms, and not decentralized FL.
algorithms). This rate agrees with the rate we provide in Eq.[9]of Theorem 11|

When dealing with non-convex models, we can compare our rate with all the baselines, i.e.,
for DGD, [Koloskova et al| (2020) for RG and[Sun et al.|(2022) for DFedAvg. Since
DGD is a special case of RG with no sporadicity in aggregations, i.e., b;; = 1 for all (4,5) € &,
we will compare our work with the more recent paper [Koloskova et al.[(2020). For DGD and RG,
Lemma 17 of[Koloskova et al.| (2020) shows the convergence upper bound before tuning the constant
learning rate v, which is

E[F(0©)] — F*

a(K+1)
For DFedAvg, Theorem 1 in[Sun et al.| (2022) with a zero momentum (¢ = 0) obtains the bound
o EE@©)] P

a(K +1)

) +O(a) + O(a?).

) + O(a) + 0(a?) + O(a?).

We observe that by setting d,,;,, = 1 in Theorem of our paper, these convergence rates are
recovered. Recall that as discussed in Fig. [T of our paper, all of these baseline algorithms fit within
the general framework of DSpodFL with d; = 1 for all clients ¢« € M. That is why we can
substitute d,,;, = 1 in Theorem [.12] to compare our analytical results with the ones provided in

[Nedic & Ozdaglar| (2009)); [Koloskova et al.| (2020); [Sun et al.| (2022]).

Comparison of convergence bound for non-convex models with Koloskova et al]|(2020). Let us
examine the bound derived in the proof of Lemma 16 in |Koloskova et al.| (2020) before tuning the
learning rate, i.e.,

1

T
_ HONI&

Ef(z©) - f* L& L2262 +2(5 + M)$F7

+ —n+64 .
(T +1)n n n D n

Translating these parameters to the setup of our paper, we have
T—>Kt—-nrf—->Fz—0n—ol—56—>0on—->m1t—>1p—=>1—p M—0.

As a consequence, the bound in |[Koloskova et al.|(2020) using the notation and setup of our paper
becomes

K A 27 .2 6 2

1 _ 2 EF@©)—F* Bo? B2o* + 1567
£ <= 7 - 77 128——— == "2,
2(K+1);||v G s —k3ma T et B °

Now, we compare this with the non-asymptotic bound we obtain for non-convex models in Theo-
rem[4.12] which is

K ] =0y 112
wy o2 _FOO) —F* 1473 g2 |00 —1.mp®
> IVE@E)| < - Tl =3 ” ”
K+14&~ a(K +1) 1 - m(l-p) K+1

14+ Dy B2(161526% + 02
+ 3 ( 17 = )a2+(1+r3)(1*dmzn)62+

1

Bo*
TO[.

where we used the fact that d,,,,, < 1.

We can see how our bound compares with the one derived in |Koloskova et al.| (2020). The exact
value of w; in our paper depends on the arbitrarily chosen scalars Iy, ..., I'y, but we have in general
that wy < %. For common terms that our analysis has with [Koloskova et al,| (2020), we see how

their coefficients are also very similar. For example, for the term proportional to a®, we observe that

both our bound and the one in[Koloskova et a1.| 202OI) are proportional to 2 and (0% + 1%/362),

§=)
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with slight differences in the value of q. Furthermore, for the term proportional to «, both our bound

2
and Koloskova et a1.| (I2020l) are proportional to gim
However, we can observe that our bound consists of two extra terms compared to

14Ty B2 @@ —1md @ |® . . . .
2020). The first one, - %f (=5 ycen) , is capturing the effect of different model ini-

tializations for the clients. The second one, (1 +I'3)(1 — dy;,, )6 is capturing the effect of sporadic
SGDs in our DSpodFL framework. We observe that if all clients conduct SGDs at every iteration,

ie., dl(-k) = 1foralli € M and k > 0, this term becomes equal to zero, giving us the bound for
non-sporadic methods outlined in[Koloskova et al.|(2020). Therefore, as we have claimed in Sec. @
of our paper, our convergence bounds recover well-known results in the literature in the degenerate
case of d,;n = 1.
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