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Abstract

In self-supervised contrastive learning, a widely-adopted objective function is InfoNCE,
which uses the heuristic cosine similarity for the representation comparison, and is closely
related to maximizing the Kullback–Leibler (KL)-based mutual information. In this paper,
we aim at answering two intriguing questions: (1) Can we go beyond the KL-based objec-
tive? (2) Besides the popular cosine similarity, can we design a better similarity function?
We provide answers to both questions by generalizing the KL-based mutual information
to the f -Mutual Information in Contrastive Learning (f -MICL) using the f -divergences.
To answer the first question, we provide a wide range of f -MICL objectives which share
the nice properties of InfoNCE (e.g., alignment and uniformity), and meanwhile result in
similar or even superior performance. For the second question, assuming that the joint
feature distribution is proportional to the Gaussian kernel, we derive an f-Gaussian sim-
ilarity with better interpretability and empirical performance. Finally, we identify close
relationships between the f -MICL objective and several popular InfoNCE-based objectives.
Using benchmark tasks from both vision and natural language, we empirically evaluate f -
MICL with different f -divergences on various architectures (SimCLR, MoCo, and MoCo
v3) and datasets. We observe that f -MICL generally outperforms the benchmarks and the
best-performing f -divergence is task and dataset dependent.

1 Introduction

Recent advances in self-supervised learning aim at learning similar representations from different augmented
views of the same data sample. However, naively implementing this idea would easily make representations
converge to some trivial constant (i.e., feature collapse) in practice. To address this problem, researchers
propose new algorithms either from the model architecture perspective or the training objective perspective.
The former method (e.g., Grill et al. (2020); Chen & He (2021); Zhang et al. (2021)) applies techniques such
as stop gradient or predictor module to create asymmetry in networks, while the latter method encourages
the contrastiveness between similar (positive) and dissimilar (negative) sample pairs through the objective
design.

In this paper, we intend to deepen our understanding of contrastive learning by generalizing the current
objective design. To achieve self-supervised contrastive learning, existing objectives are proposed from dif-
ferent perspectives such as the mutual information (e.g., InfoNCE (Wu et al., 2018; van den Oord et al.,
2018; Chen et al., 2020; Hénaff et al., 2020; He et al., 2020) ), the information redundancy (e.g., Barlow
Twins (Zbontar et al., 2021)), and the regularization (e.g., VICReg (Bardes et al., 2021)). In particular, the
InfoNCE objective is widely used, which aims to maximize the probability of picking a similar sample pair
among a batch of sample pairs, and can be interpreted as a lower bound of the mutual information (MI)
between two views of samples (van den Oord et al., 2018; Bachman et al., 2019; Tian et al., 2020a; Tschannen
et al., 2020). This is consistent with the well-known “InfoMax principle" (Linsker, 1988). To measure the
similarity between sample pairs, cosine similarity is usually adopted.

To attain the aforementioned goals of better understanding and generalizing contrastive learning, we here
focus on the widely-adopted InfoNCE objective, and aim at two questions regarding it:
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(1) MI is essentially the Kullback–Leibler (KL) divergence between the joint distribution and the product
of the marginal distributions. Is this KL-based objective optimal? If not, can we go beyond the KL-based
objective?

(2) Besides the commonly used cosine similarity for measuring the distance between samples, can we provide
a better similarity function with a theoretical basis?

To answer the above two questions, we generalize the KL-based mutual information to the broader f -
divergence family (Ali & Silvey, 1966; Csiszár, 1967), and propose the benchmark of f -mutual information
in contrastive learning (f -MICL). By searching through a wide range of f -divergences, we observe that the
KL divergence is not always the best, and several other f -divergences in fact show similar or even superior
performance in practice.

For the second question, while it is challenging to provide an answer based on the InfoNCE objective, it is
possible to derive a proper similarity function under the f -MICL framework. By assuming that the joint
feature distribution is proportional to the popularly-adopted Gaussian kernel, we propose a novel f -Gaussian
similarity function that enjoys better empirical performance.

Finally, we show the generalization of f -MICL by drawing connections between the f -MICL objective and
several popular InfoNCE-based objectives (e.g., SimCLR(Chen et al., 2020), MoCo(He et al., 2020), and
Alignment and Uniformity (AU) (Wang & Isola, 2020)). We identify that those objectives are closely related
to f -MICL: Alignment and Uniformity (AU) (Wang & Isola, 2020) can be treated as a special case, and
SimCLR (Chen et al., 2020) and MoCo (He et al., 2020) are upper bounds for a transformed f -MICL. These
results provide a different angle to better understand InfoNCE. Moreover, we show both theoretically and
empirically that nice properties of InfoNCE (e.g., alignment and uniformity (Wang & Isola, 2020)) can be
naturally extended to f -MICL.

We summarize our main contributions as follows:

• Motivated by InfoNCE, we propose a general framework for contrastive learning by extending the
MI to the general f -MI, which provides a wide range of objective choices.

• Instead of using heuristic similarity functions, we provide a novel similarity function, called f -
Gaussian similarity, based on the convex conjugate and an assumption on the joint feature distri-
bution.

• We identify close relationships between our f -MICL objective and several InfoNCE-based contrastive
learning objectives.

• Empirically, we show that f -MICL achieves notable improvement over benchmarks on various
datasets, and the best-performing f -divergence depends on the specific task and dataset. In ad-
dition, our proposed f -Gaussian similarity consistently outperforms the cosine similarity.

2 f-Mutual Information

To provide answers to the above two questions regarding the InfoNCE objective, we first extend the KL-based
mutual information to the more general f -mutual information. The definition of the f -mutual information
(f -MI) is as follows:

Definition 1 (f-mutual information, Csiszár 1967). Consider a pair of random variables (X, Y ) with
the density function p(x, y). The f -mutual information If between X and Y is defined as

If (X; Y ) :=
∫

f

(
p(x, y)

p(x)p(y)

)
p(x)p(y) · dλ(x, y), (1)

where f : R+ → R is (closed) convex with f(1) = 0.

Note that the f -MI is essentially the f -divergence between the joint distribution and the product of marginal
distributions. It is well-known that the f -MI is non-negative and symmetric, and provided that f is strictly
convex, If (X; Y ) = 0 holds iff X and Y are independent (Ali & Silvey, 1966).
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Table 1: Common choices of f -divergences. KL: Kullback–Leibler; JS: Jensen–Shannon; SH: Squared
Hellinger; VLC: Vincze–Le Cam (Le Cam, 2012). For JS, we define φ(u) = −(u + 1) log 1+u

2 + u log u.
The Tsallis-α divergence is defined in Tsallis (1988). See Appendix A.1 for more details.

Divergence f(u) f∗(t) f ′(u) f∗ ◦ f ′(u)

KL u log u exp(t − 1) log u + 1 u
JS φ(u) − log(2 − et) log 2 + log u

1+u
− log 2

1+u

Pearson χ2 (u − 1)2 t2/4 + t 2(u − 1) u2 − 1
SH (

√
u − 1)2 t

1−t
1 − u−1/2 u1/2 − 1

Tsallis-α uα

α−1 ( α−1
α

t)
α

α−1 α
α−1 uα−1 uα

VLC (u−1)2

u+1 4 − t − 4
√

1 − t 1 − 4
(u+1)2 3 − 4

u+1

Since it is challenging to provide an accurate estimation of the f -divergences in high dimensions, Nguyen
et al. (2010) used the convex conjugate as a lower bound for the f -divergences. With this result we can
lower bound If (X; Y ) as follows:

If (X; Y ) ≥ sup
s∈F

(
E

(x,y)∼p(·,·)
s(x, y)− E

(x,y)∼p(·)p(·)
f∗ ◦ s(x, y)

)
, (2)

where p(·, ·) denotes the joint distribution, p(·)p(·) stands for the product of marginals, and the symbol ◦
denotes the function composition. f∗(t) := supx∈R+(xt − f(x)) refers to the convex conjugate of f and is
monotonically increasing,1 and s(·) belongs to F , which is some function class. Using results in Nguyen
et al. (2010), one can show that eq. (2) is equal to If (X; Y ) if there exists s∗ ∈ F such that for any
(x, y) ∈ supp(p(·))× supp(p(·)), where supp(·) denotes the support of a distribution, we have:

s∗(x, y) = f ′
(

p(x, y)
p(x)p(y)

)
. (3)

In other words, plugging the optimal s∗(x, y) into eq. (2) we obtain equality. In Table 1 we list common
choices of f -divergences, their conjugates, and the derivatives. We also include the composition f∗ ◦ f ′ for
later purposes (Theorem 5).

3 f-MICL

With the introduction of the more general f -MI we now proceed to the design of the objective and similarity
function. Then we will analyze the property of the proposed framework and compare it with some existing
InfoNCE-based benchmarks.

3.1 f-MICL objective

Contrastive learning is a popular self-supervised method for representation learning. In contrastive learning,
we expect similar sample pairs to be close to each other in the embedding space, while dissimilar pairs to
be far apart. Based on the f -MI introduced in § 2, we propose a general framework for contrastive learning,
coined as f -MICL.

We denote g : X → Sd−1 as the feature encoder (usually constructed by a neural network) from the input
space X to the hypersphere, and we use the shorthands xg := g(x) and yg := g(y) to represent the feature
embeddings. The notation pd stands for the data distribution, and p× := pd ⊗ pd means its self product
(product of marginals, e.g., different images). We denote p+ as the distribution of positive pairs, i.e.,
two samples with similar feature embeddings (joint distribution, e.g., the same image with different data
augmentation). Using the lower bound of the f -MI in eq. (2), we have the general f -MICL objective as
follows:

sup
s∈F

E(x,y)∼p+s(xg, yg)− E(x,y)∼p×f∗ ◦ s(xg, yg), (4)

1Note that the domain of x is non-negative.
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Figure 1: Experiment for verifying Assumption 3. Here we draw the relation between the squared distances
∥xg − yg∥2 and the averaged log likelihood log pg, with log pg estimated by the flow model RealNVP (Dinh
et al., 2017). The features are learned by SimCLR trained on CIFAR-10. See more details in Appendix D.3.

where s(xg, yg) can be understood as the similarity measurement between two feature embeddings in the
context of contrastive learning. Essentially, we are studying the variational lower bound eq. (2) in the feature
space, with the feature embeddings learnable. We can treat the first term as the similarity score between
positive pairs with similar feature embeddings, and the second term as the similarity score between two
random samples, a.k.a. negative pairs. As f∗ is an increasing function, maximizing the f -MI is equivalent
to simultaneously maximizing the similarity between positive pairs and minimizing the similarity between
negative pairs.

With eq. (4) we have answered the first question: there are a spectrum of f -MICL objectives that can be
applied in contrastive learning by using different f functions. We will discuss how to choose the best f
empirically in §4.

3.2 f-Gaussian similarity

Previous works in constrastive learning usually adopts some heuristic similarity function such as the cosine
similarity function s(xg, yg) = xg · yg. Although it shows promising performance in practice, our second
question is that, can we provide a better similarity function than the popular cosine similarity?

Note that eq. (3) is a natural choice of s(·) from the perspective of deriving the f -MI. In the context of
contrastive learning, by denoting the density functions of the marginal feature distributions as pg(xg) and
pg(yg), and the density of the joint feature distribution as pg(xg, yg), from eq. (3) we have an optimal
similarity function as follows:
Lemma 2 (e.g., Nguyen et al. 2010, Lemma 1). Suppose f is differentiable, and the embedding function g
is fixed. The similarity function s∗ maximizes eq. (4) with:

s∗(xg, yg) = f ′
(

pg(xg, yg)
pg(xg)pg(yg)

)
. (5)

Obviously, the optimal s∗ in fact gives the f -MI on the feature space, which is a low bound of the original
f -MI. Although eq. (5) provides an optimal similarity function, it nevertheless depends on the unknown
density functions. How can we implement eq. (5) in practice? Among various known density functions, it
is natural to choose a typical kernel function for structured data for validation (Balcan et al., 2008; Powell,
1987; Murphy, 2012), e.g., the Gaussian kernel.
Assumption 3 (Gaussian kernel). The joint feature distribution is proportional to a Gaussian kernel,

pg(xg, yg) ∝ Gσ(∥xg − yg∥2) = µ exp
(
−∥xg−yg∥2

2σ2

)
,

where µ is a constant left to be determined.
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Verifying Assumption 3: One may question that Assumption 3 can be too strong for practical usage. For
example, replacing the Gaussian kernel Gσ with any other decreasing function would also provide a valid
assumption. However, we found that among several popular choices only the Gaussian kernel works well in
practice. Also, we can empirically verify that Assumption 3 approximately holds. To this end, it is sufficient
to check whether the log density, i.e., log pg(xg, yg), is linear with the distance between each positive pair,
i.e., ∥xg − yg∥2. In Figure 1, we use the flow-based model RealNVP2 (Dinh et al., 2017) to estimate the
log density, and learn the feature encoder g from SimCLR (Chen et al., 2020). We observe that the linear
relationship approximately holds.

Combining equation 5 and Assumption 3, we can write the similarity function with the Gaussian kernel as
follows:

sf (xg, yg) = f ′ ◦Gσ(∥xg − yg∥2), (6)

where we have used the following lemma:
Lemma 4 (uniform marginals). Under Assumption 3, the marginal distributions pg(xg) and pg(yg) are
uniform on the hypersphere Sd−1, with d the feature dimension.

The detailed proof can be seen in Appendix A.3, and we provide a sketch here. Note that we choose xg and
yg to be both normalized such that when we marginalize either of them, the integral would be a constant
due to rotational invariance. For example, there exists constant C such that:

p(xg) =
∫
Sd−1

C exp
(
−∥x

g − yg∥2

2σ2

)
dyg = C

∫
Sd−1

exp
(
−1− xg · yg

σ2

)
dyg. (7)

Whatever the value of xg is, the marginal p(xg) remains the same, since any two xg’s on a unit sphere are
equal. Thus, the product of marginals pg(xg)pg(yg) is a constant and can be absorbed into a weighting
parameter α that we will introduce in Section 3.3. We observe that sf (·) depends on the choice of f as well,
thus we call it f-Gaussian similarity. As a result, we have provided the answer to the second question,
again from the f -MI perspective. We will empirically compare it with the cosine similarity in §4.

3.3 Implementation

With our designed f -Gaussian similarity sf we now have an implementable f -MICL objective in eq. (4).
Bringing the f -Gaussian Similarity sf in eq. (6) into our objective eq. (4) we have a specific f -MICL objective:

E
(x,y)∼p+

sf (xg, yg)− E
(x,y)∼p×

f∗ ◦ sf (xg, yg). (8)

Given a batch of N samples, its empirical estimation is as follows:

1
N

N∑
i=1

sf (xg
i , yg

i )− 1
N(N − 1)

∑
i̸=j

f∗ ◦ sf (xg
i , xg

j ), (9)

where xi and yi are two types of data augmentation of the i-th sample, and xi and xj are different samples
of independently sampled data augmentations.

With the f -MICL objective in eq. (9) we propose our algorithm for contrastive learning in Algorithm 1. To
balance the two terms in our objective, we additionally include a weighting parameter α in front of the second
term. This change can still be incorporated within our f -MICL framework, as we show in Appendix A.2.
Figure 2 gives a high-level summary of our f -MICL framework. Given a batch of samples (e.g., images) we
generate positive pairs via data augmentation and negative pairs using other augmented samples in the same
batch. This sampling method follows SimCLR (Chen et al., 2020).

2RealNVP is a flow-based model, which applies real-valued non-volume preserving transformation for log-likelihood compu-
tation.
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Algorithm 1: f -MICL
Input: batch size N , function f , weighting parameter α, constant µ (in Gσ), variance σ2

1 for each sampled mini-batch {zi}N
i=1 do

2 for k in 1, . . . , N do
3 randomly sample two augmentation functions t1 and t2
4 yk ← t1(zk), xk ← t2(zk)
5 define sf (xg, yg) = f ′ ◦Gσ(∥xg − yg∥2)
6 compute −L as

1
N

N∑
i=1

sf (xg
i , yg

i )− α

N(N − 1)
∑
i ̸=j

f∗ ◦ sf (xg
i , xg

j )

7 update g by minimizing L

Figure 2: Network architecture of f -MICL. imagei: the ith image in the current batch; f : the function used
in the f -mutual information (§2); g: feature embedding; t, t1, t2: augmentation functions drawn from the
same family T of augmentations; f ′: the derivative; f∗: the Fenchel conjugate. The symbol ◦ denotes the
function composition. The sum of the two terms gives the variational lower bound of f -mutual information.
xi and yi are two types of data augmentation of the i-th sample, and xi and xj are different samples of
independently sampled data augmentations. max stands for maximization. See eq. (9) for more details.

3.4 f-MICL family

In this section, we will deepen the understanding of f -MICL by drawing connections with some popular
constrastive learning methods.

Connection with InfoNCE: Firstly, we show that InfoNCE is an upper bound of f -MICL. Recall our
f -MICL objective in eq. (4), and the popular InfoNCE objective LInfoNCE as follows (here we take the
maximization) (van den Oord et al., 2018):

E(x,y)∼p+s(xg, yg)− Ex∼pd
logEy∼pd

exp(s(xg, yg)). (10)
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Figure 3: f -MICL generalizes InfoNCE-based objectives.

Consider that we perform a Donsker-Varadhan (DV) shift transformation v (Donsker & Varadhan, 1975;
Tsai et al., 2021) from eq. (4) such that by taking the maximum over the transformation we have:

sup
v∈R

(
E(x,y)∼p+s(xg, yg)− v − E(x,y)∼p×f∗ ◦ (s(xg, yg)− v)

)
. (11)

In practice, such a shift transformation can be approximated by a scaling factor (α in Algorithm 1) such
that eq. (4) and eq. (11) are equivalent. Given that f is the KL divergence, thus f(u) = u log u and
f∗(t) = exp(t− 1) from Table 1, the maximizer of v in eq. (11) occurs at v∗ = log(E(x,y)∼p×s(xg, yg))− 1).
With v∗ eq. (11) can be written as follows:

E(x,y)∼p+s(xg, yg)− logE(x,y)∼p× exp(s(xg, yg)). (12)

According to Jensen’s inequality we have

Ex∼p(·) logEy∼p(·) exp(s(xg, yg)) ≤ logE(x,y)∼p× exp(s(xg, yg)). (13)

Therefore,

E(x,y)∼p+s(xg, yg)− logE(x,y)∼p× exp(s(xg, yg)) ≤ LInfoNCE. (14)

The above transformation shows that the InfoNCE loss is an upper bound of the f -MICL objective. In other
words, maximizing f -MICL can potentially increase the InfoNCE objective.

Connection with Alignment and Uniformity (AU) (Wang & Isola, 2020): We further show
that the Alignment and Uniformity (AU) loss is a special cases of f -MICL. Wang & Isola (2020) shows
that InfoNCE approximately aligns positive feature embeddings while encouraging uniformly distributed
negative ones. Wang & Isola (2020) further proposes a new objective which quantifies such properties. Here
we show that this new objective is essentially a subclass of the InfoNCE loss under the f -MICL framework.
Concretely, applying the f -Gaussian similarity function for the KL divergence, we have f ′(u) = log u+1 from
Table 1 and thus sf (xg, yg) = −∥xg − yg∥2. Using sf (xg, yg) in eq. (12) we can recover the AU objective:

−E(x,y)∼p+∥x
g − yg∥2 − logE(x,y)∼p×

[
exp(−∥xg − yg∥2)

]
. (15)

Note that for KL, this is equivalent to the cosine similarity with a scaling factor: −∥xg−yg∥2 = 2(xg)⊤yg−2.

Connection with the Spectral Contrastive Loss: Here we show that f -MICL objective is closely
related to the Spectral Contrastive Loss (HaoChen et al., 2021). Recall our objective:

E(x,y)∼p+s(xg, yg)− E(x,y)∼p×f∗ ◦ s(xg, yg), (16)
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where sf (xg, yg) = f ′◦Gσ(∥xg−yg∥2). If we choose the Pearson χ2 divergence, where f(u) = (u−1)2, f ′(u) =
2(u− 1), f∗ ◦ f ′(u) = u2 − 1, we have our χ2-MICL objective:

2E(x,y)∼p+Gσ(∥xg − yg∥2)− E(x,y)∼p×Gσ(∥xg − yg∥2)2 − 3. (17)

This recovers the spectral contrastive loss exactly if we choose the proper hyperparameter and apply the
cosine similarity instead. Thus we generalize the spectral contrastive loss as a special case of χ2-MICL.

More on AU: Finally, based on our objective in eq. (8) we will show that the alignment and uniformity
(AU) property of InfoNCE also extends to the general f -MICL family: (1) Alignment: In the ideal case,
maximizing the first term of eq. (8) would yield xg = yg for all (x, y) ∼ p+, i.e., similar sample pairs should
have aligned representations. Note that the derivative f ′ is increasing since f is convex. (2) Uniformity:
We demonstrate the uniformity property by minimizing the second term of eq. (8), or more rigorously and
realistically, its empirical version in eq. (9).
Theorem 5 (Uniformity). Suppose that the batch size N satisfies 2 ≤ N ≤ d + 1, with d the dimension of
the feature space. If the real function

h(t) = f∗ ◦ f ′ ◦Gσ(t) is strictly convex on [0, 4], (18)

then all minimizers of the second term of eq. (9), i.e.,
∑

i̸=j f∗ ◦ sf (xg
i , xg

j ), satisfy the following condition:
the feature representations of all samples are distributed uniformly on the unit hypersphere Sd−1.

In Theorem 5, the assumption N ≤ d + 1 is always satisfied in our experiments in §4. For instance, on
CIFAR-10 we chose N = d = 512. Also, we claim that the samples are “distributed uniformly” if the feature
vectors form a regular simplex, and thus the distances between all sample pairs are the same. Although
minimizing the negative term gives uniformity, the positive term is also needed for aligning similar pairs, as
we observe in §4. This implies the tradeoff between alignment and uniformity.

eq. (18) in fact provides us guidance to select proper f -divergences for uniformity. In Table 1, we list some
common choices of f -divergences. By inspecting the last column and using the definition of Gσ, we can
easily verify that they all satisfy eq. (18). However, this is not true for all f -divergences. In Appendix
A.1 we also provide some counterexamples that violate eq. (18) and thus Theorem 5, such as the Reversed
Kullback–Leibler (RKL) and the Neynman χ2 divergences. Experimentally, we found that these divergences
generally result in feature collapse (i.e., all feature vectors are the same) and thus poor performance in
downstream applications.

4 Experiments

In this section, we empirically evaluate the analysis on our provided answers: (1) Can we go beyond the
KL-based objective (§4.2): we apply various f -MICL objectives to popular vision and language datasets. In
particular, we show that under the same network architecture design, f -MICL can always provide a better
choice of objective. We observe that the best-performing f -divergence is largely dataset dependent. (2)
Can we design a better similarity function (§4.3): we show that the proposed f -Gaussian similarity is more
powerful than the heuristic cosine similarity, regardless of the choice of f . Moreover, we confirm empirically
that f -MICL extends the nice property of alignment and uniformity in §4.4.

4.1 Experimental settings

Our detailed settings can be found in Appendix D. In all our experiments, we change only the objective of
different methods for fair comparison. We use the f -Gaussian similarity in f -MICL by default.

Vision task. Our vision datasets include CIFAR-10 (Krizhevsky et al., 2009), STL-10 (Coates et al.,
2011), TinyImageNet (Chrabaszcz et al., 2017), and ImageNet (Deng et al., 2009) for image classification.
After learning the feature embeddings, we evaluate the quality of representations using the test accuracy via
a linear classifier. Note that we use α = 40 across all vision experiments.
(1) Smaller datasets: For feature encoders, we use ResNet-18 (He et al., 2016) for CIFAR-10; ResNet-50 (He
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Table 2: We compare the test accuracy (%) obtained with the linear evaluation on the vision datasets. On
the Wikipedia dataset, we compare the semantic textual similarity (STS) via the Spearman’s correlation.
For each dataset and each method we take three different runs to get the mean and the standard derivation.

Dataset
Baselines f-MICL

MoCo SimCLR AU KL JS Pearson VLC

CIFAR-10 90.30±0.19 89.71±0.37 90.41 ±0.26 90.61±0.47 89.66 ±0.28 89.35 ±0.52 89.13 ±0.33
STL-10 83.69±0.22 82.97±0.32 84.44±0.19 85.33±0.39 85.94±0.17 82.64±0.37 85.94±0.72

TinyImageNet 35.72±0.17 30.56±0.28 41.20±0.19 39.46±0.20 42.98±0.18 43.45±0.54 38.65±0.45

Wikipedia 77.88±0.15 77.40 ±0.12 77.95±0.08 78.02±0.13 76.76±0.09 77.59 ±0.12 55.07±0.13

Table 3: We compare the test accuracy (%) with SOTA methods on ImageNet. We take three different runs
to get the mean, where the standard derivations are less than 0.1% for f -MICL.

Dataset
Baselines f-MICL

SwAV BYOL Barlow Twins VICReg RényiCL MoCo v3 KL JS Pearson

ImageNet 75.3 74.3 73.2 73.2 76.2 73.2 73.9 76.5 74.6

et al., 2016) for the rest. Our implementation is based on SimCLR (Chen et al., 2020), where we used the
same 3-layer projection head during training. All models are trained for 800 epochs.
(2) ImageNet: We choose Vision Transformer (ViT-S) (Dosovitskiy et al., 2020) as our feature encoder. We
choose the smaller ViT-S model with 6 blocks because larger ViT models are extremely expensive to train
on GPUs. Our implementations are based on MoCo V3 (Chen et al., 2021), where models are trained for
1000 epochs.

Language task. To show the wide applicability of our f -MICL framework, we also conduct experiments
on a natural language dataset, English Wikipedia (Gao et al., 2021). We follow the experimental setting
in (Gao et al., 2021), which applies BERT-based models to SimCLR (Devlin et al., 2019; Liu et al., 2019).
Specifically, we choose the BERTbase model due to limited computing resources. For f -MICL objectives, we
choose α = 409600. The application task is called semantic textual similarity (STS (Agirre et al., 2013))
and we report the averaged Spearman’s correlation in Table 2 for comparison.

4.2 f-MICL objectives

Smaller datasets and language task. We first compare f -MICL with several InfoNCE-based contrastive
learning algorithms (i.e., SimCLR (Chen et al., 2020), MoCo (He et al., 2020), and AU (Wang & Isola,
2020)) on smaller datasets and the language task in Table 2. Here we choose four f -divergences with the
best overall performance. See Appendix D for results on other f -divergences.

From Table 2 we observe that: (1) As we have shown in §3.4 that f -MICL generalizes InfoNCE-based
objectives, empirically KL-MICL achieves similar performance to the baselines. In practice, we can tune
the hyperparameter α such that KL-MICL outperforms the InfoNCE-based objectives. (2) KL-MICL is not
always the optimal choice. We can see that the best-performing f -MICL objectives refer to four different
f -divergences on four datasets.

The above results indicate that f -MICL can provide a wide range of objective choices for the downstream
tasks. Although how to derive an optimal f -divergence deserves more study in theory, in practice we can
select the best f among several common f -divergences on a validation set.

Besides the f -divergences in Table 1, in Theorem 5 we have identified non-satisfying f -divergences. In our
experiments, we found that applying these f -divergences such as the RKL and Neyman χ2 divergences would
result in feature collapse. For example, in Figure 4 we show that with RKL the features all collapse to a
constant.
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Table 4: Comparison between the cosine and f -Gaussian similarities on CIFAR-10 with the test accuracy
(%). For the Tsallis-α divergence we take α = 3.

Similarity KL JS Pearson SH Tsallis-α VLC

Cosine 89.95 88.06 87.79 87.06 88.55 10.00
±0.26 ±0.33 ±0.42 ±0.55 ±0.28 ±0.00

Gaussian 90.61 89.66 89.35 89.52 89.15 89.13
±0.47 ±0.28 ±0.52 ±0.25 ±0.42 ±0.33

Figure 4: (left and middle) Distances between pairs of normalized features within a batch. Green region:
similar pairs. Orange region: dissimilar pairs. f -MICL gives nearly uniform distances for dissimilar pairs
for the f -divergences in Table 1. For non-satisfying f -divergences such as the RKL, the features collapse to
a constant and thus the distances are zero. (right) The test accuracy v.s. the batch size after training 200
epochs for all algorithms.

ImageNet results: To further demonstrate the efficacy of f -MICL we then compare with several popular
self-supervised learning methods, including both contrastive-based and non contrastive-based ones. These
methods can be categorized into the ResNet-based (SwAV (Caron et al., 2020), BYOL (Huynh et al., 2020),
Barlow Twins (Zbontar et al., 2021), VICReg (Bardes et al., 2021)) and RényiCL (Lee & Shin, 2022), and
the ViT-based (Dosovitskiy et al., 2020). For the ResNet-based methods, we directly retrieve results from
(Bardes et al., 2021), which are obtained by training ResNet-50 models for 1000 epochs. Chen et al. (Chen
et al., 2021) show that these two types of methods are directly comparable in terms of the model size and
supervised learning performance. For the ViT-based method and our f -MICL, we apply ViT-S for 1000
epochs. Specifically, our f -MICL follows MoCo v3 with only the objective changed for different choices of
the f -divergence.

Results in Table 3 show that: (1) By only changing the objective function, our method improves MoCo v3
by 2.1% using JS-MICL. (2) f -MICL objectives are comparable with the ResNet-based methods (e.g., SwAV
and RényiCL).

Overall, our experiments confirm that f -MICL can provide a better choice of objective than InfoNCE on a
variety of datasets, tasks, and encoder architectures.

4.3 f-Gaussian similarity

Next, we want to examine the effect of our similarity function while fixing the f -divergences. In Table 4
we compare the cosine and f -Gaussian similarities for different f -divergences on CIFAR-10. It can be seen
that under our f -MICL framework the f -Gaussian similarity consistently outperforms the cosine similarity
for various f -divergences3. This agrees with our Theorem 2 and eq. (6), and also implies the validity
of Assumption 3. In particular, we identify that without the theoretical guarantee, the heuristic cosine
similarity would fail for certain f -MICL objectives (e.g., VLC).

3As we have shown the equivalence between cosine and Gaussian similarity on KL, the difference results on KL just show
the choice of different scaling factors.
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4.4 Alignment and uniformity test

We empirically check the properties of alignment and uniformity for f -MICL by plotting the pairwise distance
∥xg

i − xg
j∥ of the feature representations within the same batch on CIFAR-10. We compute the distances

between the normalized features of every pair from a random batch, and then sort the pairs in increasing
order. From Figure 4 we can see that f -MICL gives nearly uniform distances for dissimilar pairs (orange
regions) on both datasets with various proper f -divergences. In contrast, a random initialized model gives a
less uniform distribution for dissimilar pairs. Besides, we observe small pairwise distances for similar pairs
(green regions).

4.5 Sensitivity to batch size

Finally, we study the sensitivity to the batch size of our f -MICL framework on CIFAR-10. On the right
panel of Figure 4, we evaluate the classification accuracy by varying the batch size for different f -divergences
and SimCLR. We can see that for all different batch sizes and with the proper choice of f -divergences, our
performance is always better than SimCLR. In other words, we require fewer negative samples to achieve
the same performance.

5 Related Work

Contrastive learning. Self-supervised contrastive learning learns representations by contrasting sample
pairs. Recently it has been shown analytically that improving the contrastiveness can benefit the downstream
applications (Saunshi et al., 2019; Tosh et al., 2021). For popular contrastive learning methods such as
Contrastive Predictive Coding (CPC) (van den Oord et al., 2018), SimCLR (Chen et al., 2020), and MoCo
(He et al., 2020), their loss functions can be interpreted as a lower bound of mutual information, which is
essentially the KL divergence between the joint distribution and the product of margin distributions. Besides
the KL divergence, other statistical divergences or distances have been individually studied under the context
of contrastive learning, e.g., the Wasserstein distance (Ozair et al., 2019), Pearson χ2 divergence (Tsai et al.,
2021), and Jensen–Shannon divergence (Hjelm et al., 2018).

f-divergences have been widely used in generative models (Nowozin et al., 2016) and domain adaptation
(Acuna et al., 2021), for measuring the discrepancy of two distributions, where the variational lower bound is
often employed for estimation. Compared to f -GAN (Nowozin et al., 2016) and f -DAL (Acuna et al., 2021)
which minimize the f -divergence between two different distributions, our f -MICL objective is to maximize
the f -divergence between the joint distribution and the product of marginal distributions. This agrees with
our purpose of contrasting sample pairs. Moreover, we provide a theoretical criterion for choosing proper
f -divergences.

Mutual Information also plays an important role in the context of deep representation learning (Tian
et al., 2020a; Bachman et al., 2019; Hjelm et al., 2018; Tian et al., 2020b; Poole et al., 2019; Belghazi et al.,
2018). Loss function wise, our losses partially cover the losses in the literature and generalizes them: e.g.,
Poole et al. (2019) considers several variational lower bounds of mutual information, where we generalize
the DV objective; (b) application-wise, none of them considers contrastive learning: e.g., Poole et al. (2019)
considers mutual information estimation, Belghazi et al. (2018) improves adversarial generative models,
Hjelm et al. (2018) considers representation learning that maximizes local and global information.

Metric learning Our work is closely related to metric learning (Kaya & Bilge, 2019; Suárez-Díaz et al.,
2018), which aims to learn a distance metric bringing similar objects closer and distancing dissimilar objects
further. In contrastive learning, a pre-defined similarity metric, e.g., the cosine similarity (Chen et al., 2020;
He et al., 2020) or a bilinear function (van den Oord et al., 2018; Tian et al., 2020a; Hénaff et al., 2020)
is commonly used to measure the sample similarity. These pre-designed metrics may not necessarily lead
to satisfactory performance in practice. Comparably, the design of our similarity function is empirically
tailored for contrastive learning.
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6 Conclusion

We developed f -MICL for contrastive learning, which generalizes the KL-based mutual information to the
f -mutual information. With f -MICL we provided a broad spectrum of objective choices with better down-
stream performance. We also proposed a novel f -Gaussian similarity function, which shows superior perfor-
mance to the commonly used cosine similarity. In addition, we confirmed the generalization of f -MICL by
comparing with popular InfoNCE-based objectives. Empirically, we exhibited the efficacy of f -MICL across
a wide range of datasets from both vision and natural language.

Limitations and future work. While f -MICL provides a variety of objective functions, it is yet unclear
how to choose an optimal f based on a task and a dataset in theory, such that we usually rely on a
validation set in practice for selection. An interesting future work is to learn an optimal f -divergence using
a parametrized neural network. Moreover, Lee & Shin (2022) applies Skew Rényi divergence for contrastive
learning. However, we observe that applying Rényi-MICL naively leads to a large variance (similar to Section
4.1 in Lee & Shin (2022)), and we leave the discussion on skew divergences for future works.
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