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Abstract—Large-scale global optimization (LSGO) problem is
such a problem containing hundreds or thousands of decision
variables. Solving LSGO problems is very challenging due to
its high nonlinearity, high dimensionality and too many local
optimal solutions. LSGO algorithms typically employ a divide-
and-conquer strategy to solve the problem. This involves decom-
posing the LSGO problem into subproblems and solving them
individually. The most challenging LSGO problems are those
that cannot be divided due to interactions between variables.
We propose a decomposition method to divide variables of fully
non-separable LSGO problems into sub groups in a reasonable
way. We design a hybrid decomposition scheme by integrating
four decomposition strategies so as to get better decomposition
result. Numerical experimental results show that the proposed
decomposition method is effective and totally outperforms the
correct decomposition (non-decomposition).

Index Terms—large-scale optimization; decomposi-
tion/grouping method; dimension reduction; non-separable
problem

I. INTRODUCTION

Many optimization problems appeared in scientific and en-
gineering applications often need to deal with a large number
of decision variables, such as in network scheduling, artificial
intelligence model training and complex economic decision-
making. These optimization scenarios often entail hundreds
or even thousands of decision variables, constituting what is
commonly referred to as LSGO problems, a burgeoning area
of research interest in recent years.

LSGO problem is a kind of very complicated and hard
problems. For example, when considering the CEC’2013
large-scale benchmark suite comprising 15 test problems, the
latest algorithms can only manage to attain fewer than five
global optimal solutions with an accuracy error below 10−2.
Conversely, the remaining test problems exhibit significantly
larger accuracy errors, reaching magnitudes as high as 1010.
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Therefore, LSGO is still far from being solved and more
research and effort need to be invested in this problem.

The extreme difficulty of the problem is mainly due to three
key reasons. Firstly, the problem’s high dimensionality, with
up to 1000 decision variables, leads to an enormous search
space. Thus, for most optimization algorithms, it is impossible
to conduct a deep search, resulting in a shallow exploration
dilemma. Secondly, the problem’s unknown landscape, ir-
regularity, oscillation, and ill-conditioning pose significant
challenges to the optimization process. Additionally, large-
scale problems often have numerous local optimal solutions
that can hinder the optimization algorithms’ progress towards
the global optimal solution.

When dealing with LSGO problems, it is advisable to
use the divide-and-conquer approach. This involves breaking
down the problem into smaller sub-problems and solving them
separately. One effective framework for this is the cooperative
co-evolution (CC) framework [1]. The CC framework works
by decomposing a large-scale problem into smaller-scale sub-
problems and then optimizing each sub-problem individually
using evolutionary algorithms. To evaluate the fitness of indi-
viduals in each sub-problem, they are combined with the best
individuals from all other sub-problems to form a complete
solution.

The divide and conquer strategy is effective when large-
scale problems can be well decomposed. However, the inter-
dependencies or interactions among variables of the large-
scale problem make it hard to decompose effectively and
efficiently. To enhance optimization outcomes, it is imperative
to optimize these interacting variables as a whole. Conversely,
an incorrect decomposition of interacting variables can lead to
unsatisfactory optimization results within the CC framework.

In the context of large-scale problems, separable and non-
separable concepts is commonly utilized to characterize vari-
able interactions. Separability refers to the independence of
certain variable(s) from others, while non-separability indi-



cates the presence of variable interactions within the problem.
A problem with ‘n’ decision variables is deemed fully non-
separable when all variables are interconnected with each oth-
er. On the other hand, a separable problem denotes scenarios
where some variables are independent with other (group of)
variables. In other words, the decision variables can be divided
into sub-groups. The variables within one sub-group interact
with each other while independent with variables from other
sub-groups. Fully non-separable problems, on the other hand,
could not be decomposed conventionally since all decision
variables are interacted with each other.

To better illustrate separable and fully non-separable prob-
lems, we give two simple examples with only four variables
in equation 1 and 2.

f1(x) = x1 ∗ x2 + x3 ∗ x4 (1)

f2(x) = (x1 ∗ x2 + x3 ∗ x4)
2 (2)

Since the four variables of x1, x2, x3 and x4 in equation 1 can
be divided into two sub-groups {x1, x2} and {x3, x4} with
variables in different sub-groups have no interactions, f1 is
separable problem. Conversely, the four variables in equation
2 can not be divided because all these four variables interact
with each other, thus f2 is fully non-separable problems. Thus,
fully non-separable problems are the most challenging large-
scale problem because they can not be divided and conquered
using CC framework.

One critical challenge in CC algorithms is how to cor-
rectly and effectively identify variable interactions to ensure
accurate decomposition of the large-scale problem. Multiple
innovative approaches have been proposed to address this
issue. The differential grouping (DG) [2], global differential
grouping strategy (GDG) [3], DG2 [4], fast interdependency
identification(FII) [5], efficient recursive differential grouping
method (ERDG) [6] and merged differential grouping method
(MDG) [7] are some of them. However, these methods can
only detect and decompose separable problems. For fully non-
separable large-scale problems,effective decomposition meth-
ods are needed to reduce the dimensionality and thus to reduce
the difficulty of the problem.

We noticed that the high dimensionality is the most difficult
part for solving LSGO problems, especially for fully non-
separable large-scale problems. The extremely large search
space makes LSGO algorithms ineffective and impossible to
conduct a thorough search. By decomposing the problem,
the dimensionality and search space can be greatly reduced,
thus the efficiency of optimization algorithms can be greatly
improved. In this paper, we focus on solving fully non-
separable LSGO problems by decomposing the problem and
reducing dimensionality and the search space since for separa-
ble problems, there have been already a lot of decomposition
algorithms.

II. RELATED WORK

In recent years, LSGO has become a research hot spot
and many algorithms have been designed to solve it. Some

early work of LSGO include a variety of CC algorithms
[2], [4], [5], [8]–[11], distribution estimation algorithms [12]–
[15], memetic algorithms [16]–[18] and hybrid algorithms
[19], [20]. Large-scale optimization algorithms are common-
ly categorized into two main groups: decomposition-based
algorithms, often referred to as CC algorithms, and non-
decomposition-based algorithms.

CC algorithms are intended to divide large-scale problems
into smaller sub-problems or sub-groups, which are then
solved individually using evolutionary algorithms. A critical
challenge in CC algorithms lies in effectively identifying
variable interactions to ensure accurate decomposition of
the large-scale problem. Several innovative approaches have
been proposed to address this issue. Notable methods in-
clude Delta grouping [21], correlation identification grouping
[22], and variable interaction learning [23], [24], which focus
on measuring the impact of variable changes on function
values to facilitate decomposition. The DG [2] technique is
the first method capable of systematically and automatically
decomposing large-scale problems with high accuracy. DG
identifies pair-wise variable interactions by examining changes
in function values and thus is computationally intensive and
limited to direct variable interactions. To overcome these
limitations, enhanced versions of the DG method have been
developed. For instance, Mei et al. introduced the GDG [3] to
identify complete variable interactions. Additionally, DG2 [4],
proposed by Omidvar et al., improves the efficiency and accu-
racy of differential grouping with reduced computational costs.
Efforts to further enhance the efficiency of decomposition
methods have led to the introduction of innovative approaches
such as the FII [5] and the recursive differential grouping
method (RDG) [25]. FII compares the current variable to all
remaining variables to reduce computational costs and RDG
uses a bisection identification to gain efficiency. Building
upon these advancements, researchers have introduced more
resource-efficient techniques like the ERDG [6] and the MDG
[7].

In the realm of large-scale optimization, various decomposi-
tion strategies have been explored to break down the complex
problems into smaller and more manageable subproblems.
Fan et al. [26] introduced a kernel fuzzy C-means clustering
approach for this purpose. In another study [27] utilized a k-
means clustering method to group variables based on their
main effects on function values. Ma et al. [28]put forth a
localized control variable analysis method that involves cat-
egorizing decision variables using guiding reference vectors.
Despite these efforts, the precision of these decomposition
techniques falls short compared to the differential grouping
methodology and its derivatives.

While some researchers treat large-scale problems as black-
box, while some of them treat it as white-box because many
real-world problems come with explicit expressions that can
provide valuable information for more accurate decomposition.
The existing literature [29] proposed a formula-based grouping
(FBG) strategy that leverages problem-specific information
to identify variable interactions through pattern recognition.



However, similar to other grouping methods, FBG can not
decompose fully non-separable problems. To address this
limitation, Liu et al. [30] introduced a contribution-based
decomposition (CBD) method capable of efficiently handling
large-scale fully non-separable problems. Nevertheless, CBD’s
fixed group size approach may yield suboptimal results. In
response, in [31] authors proposed a hybrid deep grouping
(HDG) method that not only considers variable interactions but
also evaluates the essentialness of variables. HDG facilitates
profound decomposition of large-scale problems by selectively
eliminating trivial variables from subproblems. Nonetheless,
its effectiveness in capturing variable interactions within fully
non-separable problems is limited. In a another study, Liu
et al. [32] introduced a space reduction based algorithm that
employs a multi-grouping strategy tailored for addressing fully
non-separable large-scale problems. This method shed some
new insight in decomposing fully non-separable problems.

Inspired by particle swarm optimization (PSO), Cheng et
al. [33] developed the competitive swarm optimizer (CSO)
employing pairwise competition and novel update strategies
for large-scale problem solving. Literature [34] introduced
a level-based learning swarm optimizer (LLSO), which cat-
egorizes particles into distinct levels based on their fitness
values to maintain a balance between exploitation and ex-
ploration during updates. In [35] a reinforcement level-based
PSO algorithm (RLLPSO) is introduced. RLLPSO aims to
improve population diversity and enhance algorithm efficiency
by integrating reinforcement learning techniques and level
competition mechanisms. Deng et al. [36] proposed a ranking-
based biased learning swarm optimizer (RBLSO) to solve
LSGO problems in which two learning strategies are used to
increase diversity. An adaptive granularity learning distributed
PSO (AGLDPSO) is proposed in [37] to enhance search
efficiency and convergence speed. By dynamically adapting
learning granularity based on the search state, the algorithm
achieves a balance between global exploration and local opti-
mization.

Despite the numerous algorithms developed for LSGO,
the results remain unsatisfactory. The primary challenge lies
in the high dimensionality, extensive search space and the
numerous value combinations of decision variables for sam-
pling. Particularly, for fully non-separable LSGO problems,
the decision of whether to decompose them and how to
decompose them is an open problem. While theoretically
these problems should not be decomposed due to intricate
variable interactions, existing algorithms struggle to efficiently
handle these problems. Therefore, we address this issue by
proposing a dedicated decomposition method tailored for fully
non-separable problems. We believe that trade-offs should be
made to balance the non-separability characteristics and the
reduction of dimensionality and search space of fully non-
separable problems.

III. METHODOLOGY

The CC framework is widely used for tackling large-
scale optimization problems, provided that the problem can

be appropriately decomposed. However, in the case of fully
non-separable large-scale problems where all variables exhibit
interactions, the conventional notion of ‘correct’ decomposi-
tion, involving the segregation of variables, is not applicable.
In such scenarios, the optimal approach would be to treat
all variables as a whole for optimization and decomposition
should not be made. However, the high dimensionality and
expansive search space of these problems make such a strategy
inefficient and ineffective. Therefore, the challenge is to make
a balance between the notion of ‘correct’ decomposition and
effective decomposition.

Thus, in this paper we try to design some reasonable decom-
position strategies for the trade-off to make the optimization
more effective and efficient.

A. A new decomposition method of fully non-separable large-
scale problem

Literature [30] first presents the idea of decomposing fully
non-separable problems and the CBD method is proposed to
make the decomposition. However, this grouping method has
some drawbacks: firstly, the group size is fixed and thus is
not suitable for various problems; Secondly, this grouping
method only provides a single decomposition result, which
may not be appropriate for fully non-separable problems where
all variables interact with each other. Thus if we can design
a decomposition method that can provide a series of different
decomposition results, that will better fit for the characteristic
of fully non-separable problem. Enlighted by this, we design
a new decomposition method for fully non-separable problem
named k-means density-based(KDB) clustering method.

Firstly, we adopt the self-adaptive discrete scan method
in literature [30] as our line search method to gain the
improvements of all the variables. In this paper, the self-
adaptive discrete scan method is executed for 10 times and
the improvement value will be stored in a matrix named
Fm. We analyzed and noticed that the distribution of the
improvement matrix Fm is uneven. At the beginning of the
optimization process, the improvement is significant while in
the late stages, the improvement drops dramatically. Only a
few dimensions can maintain a high improvement value while
the improvement values of most dimensions are in the order
of 10−4 magnitude or even smaller. Fig 1 shows that the
distribution of improvements, X-axis is the 1000 variables of
the problem and Y-axis presents the improvement. We can
see from Fig 1 that the improvement values mainly clustered
around the 0 coordinate which makes it difficult to group them
well.

Our goal is to decompose the variables so that the ones
with similar improvement level will be grouped together
while maintain some diversity of the group at the same time.
To accomplish this objective, we have developed a novel
decomposition technique for fully non-separable problems that
can generate over 20 distinct decompositions. In this case, we
can keep a good balance and make trade-offs between the non-
separable characteristics and decomposition. In the proposed



Fig 1. Distribution of the improvement of all variables

decomposition method, four decomposition strategies are de-
signed :

1) A cluster based decomposition method named KDB
clustering

2) A cluster based decomposition method named KDB
clustering variant

3) A correlation analysis based decomposition method
4) A random grouping strategy for decomposition

For the cluster based decomposition methods, k-means [38]
and DBSCAN [39] cluster algorithms are adopted. These two
clustering algorithms have different clustering strategies and
we can use them to divide data into different clusters with
each cluster contains data at the same level. However, these
two cluster algorithms can not be applied directly. K-means
is very sensitive to the selection of initial points and is not
capable of handling noise and clusters with non-convex shapes,
thus k-means tends to see dimensions with big improvement
value as noise and ignore them. DBSCAN’s performance
in processing high-dimensional data may decrease, and its
ability to handle complex clusters is limited, resulting in a
significant increase in computational complexity. To tackle
these challenges, we design a new cluster based decomposition
method named KDB clustering. We first use the elbow method
to determine the initial number of clusters in k-means. Then,
we apply DBSCAN to only a portion of the clusters to reduce
computational costs.

Specifically, the main steps of KDB clustering method are
as follows:

• Step1: Data preprocessing: initialize the number of clus-
ters, extract the rows and dimensions of the improved
matrix, in order to prepare for the subsequent cluster
analysis.

• Step2: K-means clustering: Using k-means algorithm to
cluster the pre-processed data. K-means algorithm divides
the data by minimizing the square error within the cluster,
and is good at dealing with clusters with convex shapes.

• Step3: Low-density cluster recognition: The clustering
results of k-means are analyzed to identify low-density
clusters (or noise points), that is, those clusters that are

not accurately divided by k-means clustering algorithm.
• Step4: DBSCAN clustering: Further clustering of low-

density clusters (or noise points) is performed using
DBSCAN algorithm. DBSCAN algorithm can effectively
deal with noise points and non-convex clusters, and has
a good effect on these difficult cases.

• Step5: Clustering result merging: The clustering results
of k-means and DBSCAN are merged to obtain the final
clustering result.

The pseudocode of KDB clustering method is presented in
Algorithm 1.

Algorithm 1 Pseudo code of KDB clustering method
Require: Improvement matrix Fmat, dimension D;
Ensure: Grouping results groupi , average improvement of

each group improvei;
1: Take out the number of rows of the improvement matrix

rows;
2: for i=1:rows do
3: Extract the i-th corresponding data and dimension D of

Fmat;
4: The number of clusters K ∈ [10, 20] is generated

randomly;
5: The improvement, dimension D and K are used by k-

means to generate clustering;
6: for m=1:K do
7: The distance between data points in each cluster is

calculated, and the average distance is used as the
density measure;

8: Mark the group with less than the average density as
index;

9: end for
10: for n=1:index do
11: Initialize the neighborhood radius(ϵ = 10−12) of

DBSCAN and minimum points (MinPts = 10);
12: Call the DBSCAN clustering function to cluster the

low-density group;
13: end for
14: The clustering results of k-means and DBSCAN were

merged to get the grouping result groupi and the aver-
age improvement of each group improvei are recorded;

15: end for

The main idea is to use k-means for clustering first, and then
use DBSCAN to further partition and optimize the grouping
of low density levels from the clustering results of k-means.
This combined method can make full use of the respective
advantages of k-means and DBSCAN, so as to make up
for their shortcomings and obtain more comprehensive and
accurate clustering results.

It is important to note that in k-means, the goal is to obtain
as many diverse subgroups as possible. The optimal number
of clusters K, according to the elbow rule test, is between 10
and 20. Therefore, we randomly select a value for K within
this range to ensure diversity among the subgroups. Moreover,
given the concentrated distribution of the improvement of



decision variables, our aim is to cluster variables exhibiting
similar improvement into same groups. To avoid the scenario
where all variables are clustered together in a single subgroup,
we opt for smaller parameter values. Specifically, we set the
neighborhood radius ϵ and MinPts at 10−12 and 10 respective-
ly to facilitate effective variable grouping while maintaining
subgroup diversity.

Clustering and grouping are a relatively flexible process,
different sequences will highlight different data characteristics,
so as to get different clustering results. In order to decompose
fully separable large-scale problems and obtain various de-
composition results, it is reasonable to divide the interacting
variables into a group so as to simplify the problem and make
the optimization easier.

On this basis, we designed another variant of KDB Clus-
tering, in which we first use DBSCAN to perform on the raw
data analysis, and then use k-means to further handle the data
that do not meet the requirements. The pseudocode of KDB
clustering variant is presented in Algorithm 2.

Algorithm 2 Pseudo code of KDB clustering variant
Require: Improvement matrix Fmat;
Ensure: Grouping results groupi , average improvement of

each group improvei;
1: Take out the number of rows of the improvement matrix

rows;
2: for i=1:rows do
3: Extract the i-th corresponding data;
4: The data, neighborhood radius(ϵ = 10−12) and min-

imum points (MinPts=10) are used by DBSCAN to
generate clustering;

5: Record the clustering results and the number of clusters
K;

6: for m=1:K do
7: The distance between data points in each cluster is

calculated, and the average distance is used as the
density measure;

8: The group with less than the average density and
more than 100 elements is stored in index;

9: end for
10: for n=1:index do
11: The number of clusters K ∈ [10, 20] is generated

randomly;
12: Call the k-means clustering function to cluster the

low-density group;
13: end for
14: The clustering results of k-means and DBSCAN were

merged to get the grouping result groupi and the aver-
age improvement of each group improvei is recorded;

15: end for

Using DBSCAN first and then k-means for clustering
grouping may be more suitable for identifying clusters with
non-convex shapes and noise because DBSCAN can handle
these situations better. While using k-means first and then
using DBSCAN for clustering grouping may be more suitable

for identifying dense convex clusters. Therefore, according
to specific data characteristics and clustering purposes, the
combination of the two can complement each other, thus
improving clustering effect and obtaining better clustering
results.

The advantage of KDB clustering method and its variant is
that, it makes full use of k-means’ ability to divide convex
clusters and DBSCAN’s ability to deal with non-convex clus-
ters and noise, and it can fuse density information and distance
information, and can process clusters of various shapes and
densities to obtain more comprehensive and accurate clustering
results with better robustness and adaptability.

Besides KDB clustering method, we also designed a cor-
relation analysis based decomposition method and a random
grouping method. In correlation analysis based decomposi-
tion method the Spearman correlation coefficient is used to
decompose the large-scale problem. The random grouping
method involves partitioning the problem into subproblems,
each containing a maximum of 100 variables. The reason why
we design four different decomposition methods is that, for
fully non-separable large-scale problems, we aim to maxi-
mize the diversity of the decomposition to make up for the
‘hard decomposition’. The term ‘hard decomposition’ refers
to situations where large-scale problems cannot be divided
using traditional techniques due to the complex interactions
among variables. To make the optimization more effective
and efficient, we have to apply the decomposition strategy
to decompose these large-scale problems. Thus, having more
decomposition strategies can lead to better decomposition
diversity and result in better optimization results.

B. The overall framework for optimizing fully non-separable
large-scale problems

The overall algorithm can be described in the following
steps. Firstly, we use self-adaptive discrete scan method [30]
as a line search method and execute it for 10 times and we
can obtain the current best member and best value of the
optimization. Also, we can get the improvement matrix of each
dimension. Secondly, we use KDB clustering method and its
variant to decompose the fully non-separable problem. Third-
ly, we use correlation analysis based decomposition method
and random grouping method to decompose the fully non-
separable problem. Lastly, for all decomposition results, we
optimised each subpopulation iteratively using the adaptive DE
algorithm SaNSDE [40] and the MATLAB fmincon method
until the termination condition was met.

The overall framework can be summarized in Algorithm 3.

IV. EXPERIMENTAL SETUP AND RESULTS

In this section, numerical experiments are conducted to test
the performance and efficiency of the proposed decomposition
method for fully non-separable problems. The experiments
are carried out on 6 fully non-separable large-scale prob-
lems taken from CEC’2010 and CEC’2013 benchmark suite.
These benchmark problems are designed to simulate real-
world scenarios and are commonly used to compare algorithm



Algorithm 3 The overall framework
1: use self-adaptive discrete scan method [30] as a line search

method and run it for 10 iterations;
2: record the best value, best member, the improvement

matrix.
3: while FEs<maxFE do
4: use the four decomposition strategies proposed to divide

the problem and record the results in group;
5: sort group in descending order;
6: for all group do
7: use SaNSDE [40] to optimize this group;
8: use the matlab fmincon to optimize this group;
9: end for

10: end while

performance in LSGO algorithms. Note that, in this paper
we focus on fully non-separable large-scale problems, so only
these kinds of test problems are chosen, that is, f19 and f20
of CEC’2010 and f12- f15 of CEC’2013 benchmark suite.
Among the test problems, f19 and f20 are 1000-dimensional,
f13 and f14 are 905-dimensional, f12 and f15 are 1000-
dimensional. All the test problems have the global best func-
tion value 0. The maximum number of function evaluations
(FEs) is fixed at 3e+ 6 as required.

To test the efficiency of the proposed decomposition
method, we compare its results with that of correct decomposi-
tion which is non-decomposition because all variables of fully
non-separable problems are interacted with each other and
theoretically should not be decomposed. The algorithms were
executed 15 times for each test problem using the proposed
decomposition method and the non-decomposition. The best
function value (Best), median function value (Median), worst
function value (Worst), mean function value (Mean), and
standard deviation (Std) were recorded for each of these 15
runs. To assess the significance of the results, paired-sample
t-test is conducted at the significance level of α = 0.05 for all
comparisons and the resulting p-values are recorded and the
significantly better results are marked in bold. The comparative
results are presented in Table I and Table II, in which non-
decomposition stands for the correct decomposition and ours
stands for the decomposition method proposed in this paper.

TABLE I
EXPERIMENTAL RESULTS ON FULLY NON-SEPARABLE PROBLEMS OF

CEC’2010 BENCHMARK SUITE

non-decomposition ours p-value

f19

Best 9.90e+06 3.12e+03

1.54e-63
Median 1.11e+07 6.70e+03
Worst 1.11e+07 2.18e+04
Mean 1.08e+07 8.29e+03
Std 4.96e+05 4.80e+03

f20

Best 4.40e+02 1.33e-07

3.17e-36
Median 7.13e+02 1.36e-07
Worst 7.13e+02 1.51e-07
Mean 6.48e+02 1.37e-07
Std 1.19e+02 4.01e-09

Table I shows the experimental results of non-
decomposition and the proposed decomposition method
for the two test problems of CEC’2010 benchmark suite.
From Table I we can see that the proposed decomposition
method performs significantly better than that of non-
decomposition. For test function f19, the mean value of the
proposed decomposition method can achieve the order of 103

magnitude while that of non-decomposition is in the order of
107. The proposed method is 4 orders of magnitude better.
For test problem f20, the proposed method successfully
finds the global optimal solution (with an accuracy error
10−7) while that of non-decomposition only can get a mean
value of 6.48e + 02. The proposed decomposition method
performs much better than non-decomposition with 9 orders
of magnitude. Furthermore, the standard deviation 10−9 of
the proposed decomposition method indicates a high level
of stability of the method. So we can see that the proposed
decomposition method is effective and performs and yields
superior results for fully non-separable test problems of the
CEC’2010 benchmark suite.

TABLE II
EXPERIMENTAL RESULTS ON FULLY NON-SEPARABLE PROBLEMS OF

CEC’2013 BENCHMARK SUITE

non-decomposition ours p-value

f12

Best 4.22e+02 1.37e-07

2.76e-17
Median 4.54e+02 1.39e-07
Worst 9.32e+02 1.46e-07
Mean 5.75e+02 1.40e-07
Std 2.12e+02 2.11e-09

f13

Best 5.02e+09 1.16e+07

6.84e-04
Median 9.27e+09 3.31e+07
Worst 5.33e+10 3.87e+08
Mean 1.91e+10 7.82e+07
Std 1.94e+10 1.03e+08

f14

Best 4.41e+10 2.69e+07

9.29e-08
Median 1.54e+11 4.67e+07
Worst 2.53e+11 6.16e+07
Mean 1.33e+11 4.45e+07
Std 7.63e+10 1.18e+07

f15

Best 1.26e+09 1.55e+07

1.57e-04
Median 1.13e+10 2.24e+07
Worst 6.72e+10 3.07e+08
Mean 1.75e+10 8.28e+07
Std 2.07e+10 8.69e+07

Table II shows the comparison results of the fully non-
separable problems of CEC’2013 benchmark suite. We can
easily see that for all the 4 test problems, the proposed
decomposition method performs significantly better than non-
decomposition. Especially for f12, the proposed decomposi-
tion method gain a near-optimal mean value 1.4e− 07 which
is 9 orders of magnitude better than non-decomposition. For
test problems f13, the proposed decomposition method is 3
orders of magnitude better, for f14 4 orders and for f15 3
orders better than non-decomposition. So we can say that
the proposed decomposition method totally outperformed non-
decomposition.

Overall, the proposed decomposition method yielded superi-
or and more stable results than non-decomposition in all the six
test problems. Since the only difference of these two approach-



es is the decomposition strategy: non-decomposition presents
the correct decomposition while the proposed decomposition
method designed multiple strategy and divide the fully non-
separable problem.

To better show the performance of the proposed method,
comparisons with four well known and state-of-the-art LSGO
algorithms. DECC DG [2] and CCVIL [24] are well known
LSGO algorithms and often used for comparison, while R-
LLPSO [35] and AGLDPSO [36] are state-of-the-art LSGO
algorithms. The results of fully non-separable problems in the
CEC’2010 (f19 and f20) and CEC’2013 (f12-f15) benchmark
suites are presented in Table III.

TABLE III
EXPERIMENTAL RESULTS ON FULLY NON-SEPARABLE PROBLEMS OF

CEC’2010 AND CEC’2013 BENCHMARK SUITE

ours DECC DG CCVIL RLLPSO AGLDPSO

f12 Mean 1.40e-07 8.76e+10 3.90e+07 1.87e+03 1.53e+03
Std 2.11e-09 1.04e+10 3.28e+07 1.72e+02 2.79e+02

f13 Mean 7.82e+07 2.38e+10 8.57e+09 2.17e+08 2.12e+10
Std 1.03e+08 5.72e+09 3.15e+09 5.46e+07 3.49e+09

f14 Mean 4.45e+07 1.16e+11 5.94e+10 5.06e+07 9.46e+07
Std 1.18e+07 3.49e+10 4.05e+10 2.16e+07 5.68e+06

f15 Mean 8.28e+07 1.37e+07 6.40e+06 1.63e+06 2.73e+06
Std 8.69e+07 2.11e+06 1.37e+06 5.88e+04 1.19e+05

f19 Mean 8.29e+03 2.17e+06 3.52e+05 8.71e+05 8.43e+05
Std 4.80e+03 1.22e+05 2.04e+04 2.31e+04 4.61e+04

f20 Mean 1.37e-07 9.18e+10 1.11e+03 1.84e+03 1.44e+03
Std 4.01e-09 8.99e+09 3.04e+02 1.68e+02 1.56e+02

It is evident from the table that the proposed method
outperforms the other algorithms, achieving the best results
in 5 out of 6 test functions (f12, f13, f14, f19 and f20).
RLLPSO attains the best results in two functions (f14, f15),
while the remaining algorithms do not achieve any best results.
Notably, the proposed method outperforms other algorithms by
at least one order of magnitude for test problem f13. For test
problem f19, the proposed algorithm achieves the mean value
of 103 order, which is two-order-of-magnitude better than
other compared algorithms. For test problem f14, although
the proposed algorithm achieved the best result at the same
order-of-magnitude with RLLPSO, it exhibits lower variance,
which can lead to more stable optimal results. Moreover, the
proposed method can successfully find the global optimal
solution for test functions f12 and f20 with an accuracy error
around 10−7 while no compared algorithms can achieve this
goal. Only for f15, the proposed method performs worse than
other compared algorithms. So we can get the conclusion that
the proposed method significantly outperforming the other four
algorithms. These comparison results further demonstrate the
effectiveness of the proposed decomposition-based optimiza-
tion approach for fully non-separable large-scale problems.

The comparative analysis yields a significant finding: while
conventional wisdom suggests that decomposition should align
with variable correlations or interactions, this approach proves
ineffective when applied to fully non-separable large-scale
problems. These problems, characterized by intricate variable
interdependencies, present a formidable challenge in the realm
of optimization and remain unresolved. A reasonable decom-
position may shed some light on solving them.

V. CONCLUSIONS

In this paper, a novel decomposition method designed
for fully non-separable problems is introduced. To make
the decomposition more effective, 4 strategies are designed
which can generate more than 20 different results. Experiment
are conducted on fully non-separable problems taken from
CEC’2010 and CEC’2013 benchmark suite. The experimental
results demonstrate that the proposed decomposition method
can effectively optimize fully non-separable problems, getting
better optimization results. This indicates that, although theo-
retically decomposition should not be applied to fully non-
separable problems, optimization algorithms can get better
performance with reasonable decomposition.
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