
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ENCRYPTION-FRIENDLY LLM ARCHITECTURE

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models (LLMs) offer personalized responses based on user interac-
tions, but this use case raises serious privacy concerns. Homomorphic encryption
(HE) is a cryptographic protocol supporting arithmetic computations in encrypted
states and provides a potential solution for privacy-preserving machine learning
(PPML). However, the computational intensity of transformers poses challenges for
applying HE to LLMs. In this work, we propose a modified HE-friendly transformer
architecture with an emphasis on inference following personalized (private) fine-
tuning. Utilizing LoRA fine-tuning and Gaussian kernels, we achieve significant
computational speedups—6.94× for fine-tuning and 2.3× for inference—while
maintaining performance comparable to plaintext models. Our findings provide
a viable proof of concept for offering privacy-preserving LLM services in areas
where data protection is crucial.

1 INTRODUCTION

The advent of large language models (LLMs) such as the BERT series (Devlin et al., 2019; Liu et al.,
2019; Sanh et al., 2019; Lan et al., 2020; Clark et al., 2020; He et al., 2021), the GPT series (Radford,
2018; Radford et al., 2019; Tom B. Brown et al., 2020; OpenAI, 2023), and ChatGPT (OpenAI,
2024) kick-started a new era of natural language processing (NLP) and artificial intelligence (AI).
One of the many capabilities of LLMs that has received much attention is their ability to provide
personalized responses based on user interactions, especially with the use of fine-tuning. However,
this use case raises serious concerns about user privacy. In response, regulations such as the GDPR
(European Union, 2016) and CCPA (State of California, 2018) have been amended. In Italy, ChatGPT
was even temporarily banned (McCallum, 2023), and several major corporations, including Apple
and Samsung, have restricted its use within their companies (Mok, 2023).

Privacy-preserving machine learning (PPML) refers to methods that use machine learning while
protecting data privacy. Techniques for PPML include secure multi-party computation (MPC) (Yao,
1982), differential privacy (Dwork, 2006), and homomorphic encryption (HE) (Rivest et al., 1978;
Gentry, 2009). Among these, only MPC and HE offer provable security based on cryptographic
assumptions. MPC utilizes communications between parties, but these communications can make
it challenging to accelerate and parallelize the heavy computation of neural networks. In contrast,
HE supports arithmetic computations in encrypted states without requiring communications. Since
the pioneering work of Gentry (2009), several HE schemes have been developed (Brakerski, 2012;
Brakerski et al., 2014; Ducas & Micciancio, 2015; Chillotti et al., 2016; Cheon et al., 2017). Notably,
the CKKS (Cheon et al., 2017) scheme is particularly efficient for evaluating large-scale real-valued
(as opposed to integer-valued) data in parallel and is widely used in the PPML literature (Han et al.,
2019; Lee et al., 2022a;b;c; 2023b).

In theory, homomorphic encryption (HE) presents an elegant solution to the privacy concerns associ-
ated with LLMs. However, despite the significant recent progress in the theory and implementation
of HE operations, protecting LLMs with HE remains a challenge due to their computational scale.
Transformer models (Vaswani et al., 2017) famously rely on numerous matrix multiplications and
various non-polynomial operations, and directly adapting these operations to HE results in significant
computation time and precision loss.

In this work, we propose a modified HE-friendly transformer architecture with an emphasis on infer-
ence following personalized (private) fine-tuning. We point out that prior work on homomorphically
encrypted transformers often overlooked fine-tuning due to its complexity. Our approach has two

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

main algorithmic components: LoRA (Hu et al., 2022) fine-tuning and the replacement of softmax
in attention with Gaussian kernels (GK). We show that LoRA and GK significantly accelerate the
encrypted transformer computation under HE while maintaining performance levels comparable
to those of the plaintext model. Experimental results of our modified BERT model on encrypted
data using the CKKS scheme demonstrate its ability to securely process natural language data. Our
findings show promise for offering privacy-preserving LLM services in areas where data protection is
crucial.

Figure 1: Proposed privacy-preserving LLM under homomorphic encryption (HE). HE cryptographi-
cally protects user’s fine-tuning and inference data. We resolve two computational bottlenecks. First,
we reduce the size of ciphertext-ciphertext matrix multiplication (CCMM) using LoRA fine-tuning.
Second, we avoid the softmax computation, which is notoriously challenging to compute under HE,
and replace it with a much simpler Gaussian kernel (GK).

1.1 PRIOR WORK

Transformer-based language models and LoRA. Since the advent of attention (Vaswani et al.,
2017), the transformer has become the standard of language models. There are three types of
transformer-based language models. Encoder-only models, including BERT series (Devlin et al.,
2019; Liu et al., 2019; Sanh et al., 2019; Lan et al., 2020; Clark et al., 2020; He et al., 2021) output
embeddings for inputs that can be used for downstream tasks. Encoder-decoder models, which use
the original transformer architecture, such as MarianMT (Junczys-Dowmunt et al., 2019), T5 (Raffel
et al., 2020), BART (Lewis et al., 2020), mBART (Liu et al., 2020), and mT5 (Xue et al., 2021),
are used for translation, summarizing, etc. Decoder-only models, including GPT series (Radford,
2018; Radford et al., 2019; Tom B. Brown et al., 2020; OpenAI, 2023) and Llama series (Touvron
et al., 2023a;b; Dubey et al., 2024), generate sentences to the user’s query. These large language
models (LLMs) follow the scaling law (Kaplan et al., 2020), so the scale of LLMs tends to increase
more and more. Hence, these models require a huge amount of memory capacity for inference and
fine-tuning. To overcome this issue, LoRA (Hu et al., 2022) is mainly used to fine-tune a pre-trained
LLM. Freezing all other weights, LoRA adapters are added to important layers of the model, such as
attention layers during fine-tuning. Using LoRA, one can fine-tune LLMs, updating only less than
1% of all of the parameters.

Privacy-preserving transformer using HE. Many researchers have explored privacy-preserving
algorithms leveraging HE for transformer models. There are two main scenarios: interactive, which
combines secure MPC with HE, and non-interactive, which relies only on HE. In interactive scenarios,
encrypted computation time can be reduced through communications between parties. THE-X (Chen
et al., 2022) proposed the first protocol for BERT-tiny inference, introducing HE-friendly workflows
and non-polynomial evaluations via communications. Subsequent research (Hao et al., 2022; Li et al.,
2023; Akimoto et al., 2023; Dong et al., 2023; Pang et al., 2024) enhanced computation time and
reduced communication costs.

However, interactive approaches may struggle with large-scale communication as model size in-
creases, and they also require data owners to be online during computation. To address these,
non-interactive research is being conducted on the other side. Zimerman et al. (2024) introduced

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

the first HE-friendly transformer model, replacing the original transformer with a HE-friendly struc-
ture, minimizing the approximation domain, and obtaining pre-trained weight with the changed
structure. Using these weights, they performed inference with BERT non-interactively. NEXUS
(Zhang et al., 2024a) further proposed a non-interactive BERT inference method without re-training,
using polynomial approximations for non-polynomial operations. More recently, Park et al. (2024)
proposed Powerformer, which, like our method, proposed replacing softmax in the attention with
their BRP-max function for homomorphic inference.

Fine-tuning plays a crucial role in improving transformer models and providing more personalized
responses. However, previous works have primarily focused on secure inference, largely avoiding
the challenge of fine-tuning due to the significant computational complexity involved, especially
in non-interactive settings. Only a few attempts, such as those by Lee et al. (2022b) and HETAL
(Lee et al., 2023b), have explored fine-tuning, focusing exclusively on the classification head while
leaving other key components like attention layers and feed-forward networks untouched. P3EFT
(Li et al., 2024) also addresses fine-tuning of foundation models, but it concentrates more on energy
consumption during fine-tuning.

1.2 CONTRIBUTIONS

We propose a homomorphic encryption (HE) friendly transformer architecture with an emphasis on
inference following personalized (private) fine-tuning. We resolve two computational bottlenecks of
the HE transformer model: (i) using LoRA, we avoid large ciphertext-ciphertext matrix multiplications
(CCMMs), and (ii) we use a simpler Gaussian kernel (GK) to replace the softmax layer, which
is notoriously challenging to compute under HE. Experiments on an HE-encrypted BERT-style
transformer demonstrate a speedup of 6.94× for fine-tuning and 2.3× for inference.

2 SERVER-CLIENT COMPUTATION MODEL AND PRELIMINARIES

In this section, we first state the server-client computation model, referred to as the threat model in
the cryptography community. We then quickly review the relevant basic concepts and introduce the
notation for homomorphic encryption and large language models.

2.1 SERVER-CLIENT COMPUTATION MODEL

Our server-client computation model (threat model) involves a client with private data, outsourcing
fine-tuning and inference to the server, an LLM service provider. See Figure 1. Specifically, the client
sends encrypted token-embedded data to the server, and the server fine-tunes the model, generating
customized encrypted LoRA weights. Subsequently, the server performs inference using encrypted
inference data, plaintext pre-trained weights, and encrypted LoRA weights. The server returns the
encrypted inference results to the client. The token embedding layer weights are not encrypted and
are not updated throughout fine-tuning.

Our model is based on the semi-honest security model. The adversary adheres to the protocol but
is allowed to collect all outputs from the model. Since the client’s input data is encrypted with the
CKKS ciphertext, the entire security model relies on the semantic security of the underlying CKKS.

The user data used throughout fine-tuning and inference is cryptographically protected, even from the
LLM service provider. Both the pre-trained weights of the LLM and the fine-tuned LoRA weights
reside on the server and are not shared with the user. However, we clarify that this does not mean the
LLM weights are protected in the strict cryptographic sense, and our proposed approach does not
address the model weight stealing problem (Tramèr et al., 2016; Carlini et al., 2024).

2.2 HOMOMORPHIC ENCRYPTION AND CKKS

Homomorphic encryption (HE) is an encryption method that allows computations to be performed in
an encrypted state without decryption. CKKS (Cheon et al., 2017) is one of the HE schemes that
allows one to encrypt real or complex data as a polynomial and perform approximate arithmetic on
the encrypted data. By packing multiple real or complex data into a ciphertext, CKKS supports single
instruction multiple data (SIMD) operations in plain/ciphertexts. Plaintext denotes an unencrypted

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

polynomial containing a message vector in the context related to HE. For a more detailed description,
refer to Appendix B or the original reference Cheon et al. (2017).

• Addition (Add): Given two ciphertexts or plaintext and ciphertext, evaluate component-wise
addition.

• Multiplication (Mult): Given two ciphertexts or plaintext and ciphertext, evaluate component-wise
multiplication. We express the plaintext-ciphertext component-wise multiplcation as pMult.

• Rotation (Rot): Given a ciphertext ct encrypting message vector (m0,m1, . . . ,mN/2−1), return
ctroti encrypting message vector almost same with (mi, . . . ,mN/2−1,m0, . . . ,mi−1). We denote
Rot(·, i) for ith left rotation. We express the same operation in plaintext as pRot.

Note that Mult and Rot require an additional key-switching operation. So, both take more computation
time than other operations. For concrete time measurements, see Table 5 in Appendix E.

CKKS is one of the leveled HE schemes. A CKKS ciphertext has a restricted number of (p)Mult
operations, so-called level, which is determined at the beginning of encryption. The modulus Q,
associated with the level, is reduced after these operations. Once we exhaust the available level
budget, we cannot proceed to the next (p)Mult operation. To recover the level budget, we can use
bootstrapping (BTS) (Cheon et al., 2018). Since BTS is the most expensive HE operation, which is
over 100× slower than Mult,Rot, it is crucial to minimize its usage through effective designing of the
algorithm. In fact, the time accounted for BTS constitutes a large portion of the overall computation
time (Lee et al., 2022a; Zhang et al., 2024a).

Matrix multiplications: PCMM and CCMM. While evaluating the transformer model under HE,
we use two kinds of homomorphic matrix multiplications: plaintext-ciphertext matrix multiplication
(PCMM) and ciphertext-ciphertext matrix multiplication (CCMM). Homomprhic matrix multiplica-
tion requires numerous HE operations, such as (p)Mult, (p)Rot and Add, for each matrix, which are
slower when operating on ciphertext compared to plaintext as shown later in Table 5.
As a result, PCMM is much faster than CCMM.

There have been several studies (Jiang et al., 2018; Jang et al., 2022; Rizomiliotis & Triakosia, 2022;
Zheng et al., 2023; Bae et al., 2024) to make homomorphic matrix multiplication more efficient.
In this paper, we follow the JKLS (Jiang et al., 2018) algorithm, which provides the fastest known
HE computation algorithm when the matrix elements can be packed in a ciphertext. They also
propose parallel homomorphic matrix multiplication. We use this parallel computation to evaluate
large-size matrix multiplication, where the size is more than available ciphertext space, by repeating
block-wise matrix multiplcation. Thus, the computation time gap between PCMM and CCMM will
be proportional to the number of block matrices. For more details, refer to Appendix C.

Polynomial approximations of non-polynomial functions. Since HE can only support polynomial
operations, all non-polynomial operations (such as division, max function, etc.) must be replaced by
their polynomial approximations. The complexity of polynomial approximation highly depends on
the input range and the nature of the function being approximated.

2.3 LARGE LANGUAGE MODELS, ATTENTION LAYERS, AND LORA FINE-TUNING

Standard large language models (LLMs), such as BERT (Devlin et al., 2019), GPT-4 (OpenAI, 2023),
and Llama-3 (Dubey et al., 2024) are constructed by stacking many transformer layers. We explain
the standard attention mechanism in a transformer (Vaswani et al., 2017) layer. We do not explain the
feed-forward network (FFN), another component of the transformer, as it has not been modified in
our work. Suppose that L and n represent sequence length and embedding dimension, respectively.
Given Q,K, V ∈ RL×n, the standard attention is calculated as

Attention(Q,K, V) = Softmax

(
QK⊤
√
n

)
V ∈ RL×n. (1)

The rows of Q, K, and V are respectively referred to as query, key, and value vectors. Here, the
softmax function (Bridle, 1989) is applied row-wise, normalizing the similarity scores between each
query and key vectors into probability distributions, which serve to weigh the importance of each

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

value vector. Later in Section 4, we specifically discuss why the softmax function is numerically
challenging to compute under homomorphic encryption (HE).

Low-Rank Adaptation (LoRA) (Hu et al., 2022) of large language models has become the most
widely used parameter-efficient fine-tuning scheme for LLMs. Given a weight matrix W ∈ Rn×n

of a linear layer, LoRA updates W with an update ∆W = AB, where r ≪ n, A ∈ Rn×r, and
B ∈ Rr×n, so that the linear layer’s action becomes X 7→ X(W +AB) for an input X ∈ RL×n. In
this LoRA fine-tuning, the pre-trained weight W is frozen while only A and B are trained.

3 SPEEDUP WITH LORA: AVOIDING LARGE CCMM

Bottleneck 1: Full fine-tuning incurs large CCMM. Personalized fine-tuning data is transmitted
to the server encrypted, and the fine-tuning updates, which depend on the users’ private data, must
also be stored encrypted. Subsequently, encrypted inference data is transmitted, and the transformer
performs CCMM computations. Full fine-tuning updates all weights and, therefore, lead to many
large CCMM calculations.

Specifically, consider a pre-trained linear layer with weight matrix W ∈ Rn×n stored in plaintext. If
we update W to W +∆W where ∆W ∈ Rn×n, then evaluating the linear layer

X(W +∆W) = XW +X∆W, for X ∈ RL×n

costs O(n2) HE operations, where O(·) only considers the dependence on n. However, while XW
can be evaluated with PCMM, X∆W must be evaluated with the costly CCMM. This is because W
is not encrypted, but ∆W must be encrypted.

Accelerating homomorphic matrix-multiplication with LoRA. LoRA (Hu et al., 2022) fine-
tuning alleviates the cost of CCMM by reducing the size of CCMMs. We clarify that the primary
benefit of LoRA in the usual plaintext application is the reduced memory footprint due to having fewer
optimizer memory states. Under HE, however, the main benefit is also converting large CCMMs into
large PCMMs and reducing the computational cost.

Again, consider a pre-trained linear layer with weight matrix W ∈ Rn×n stored in plaintext. However,
consider LoRA fine-tuning updating W to W + AB, where r ≪ n, A ∈ Rn×r, and B ∈ Rr×n.
Then, evaluating the linear layer

X(W +AB) = XW + (XA)B, for X ∈ RL×n

requires an O(n2)-cost PCMM to evaluate XW and two O(nr)-cost CCMMs to evaluate (XA)B,
where O(·) only considers the dependence on n and r. See Appendix C for further details. Since A
and B are encrypted, evaluating (XA)B still requires CCMMs, but the CCMMs are smaller than
X∆W by a factor of n/r. The difference in computational cost is significant, as shown in Table 1a
and Appendix G.

Finally, we mention, but without describing the details, that an analogous consideration can be applied
to backpropagation. (We remind the readers that we also perform fine-tuning under HE.)

Reducing optimizer states and inverse square root with LoRA. We fine-tune the transformer
under HE using a variant of AdamW optimizer. The precise version of AdamW that we implement
under HE is described in Appendix 5.2. For training and fine-tuning transformers, it is well known
that adaptive optimizers like AdamW significantly outperform non-adaptive optimizers such as SGD
(Zhang et al., 2024b).

However, the inverse square root function mapping is x 7→ 1/
√
x. This is also a non-polynomial

function that tends to be difficult to use under HE. In general, due to wide input ranges for division,
BTS is required for each ciphertext containing weights during evaluation. Given the large number of
parameters in the transformer model, the optimizer step can create a computation time bottleneck. In
fact, the optimizer’s computation time exceeds that of the transformer block evaluation in our target
model under full fine-tuning, as presented in Section 5.1.

LoRA alleviates this computational cost by substantially reducing the number of parameters being
fine-tuned, thereby reducing the number of inverse square root operations needed in the AdamW
optimizer. In our target 2-layer BERT model, full fine-tuning requires 368 ciphertexts containing
weights, whereas LoRA only needs 15, offering a clear advantage in optimizer computation time.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

4 SPEEDUP WITH GAUSSIAN KERNEL: POLY-APX-FRIENDLY DESIGN

Bottleneck 2: Softmax is hard to evaluate under HE. Since HE only supports polynomial
operations, non-polynomial functions must be approximated as polynomials. Traditionally, the
softmax function is evaluated with

Softmax (x1, x2, · · · , xn)i =
exp (xi − α)∑
j exp (xj − α)

, where α = max
1≤j≤n

{xj} .

Subtracting α is crucial to avoid taking the exponential of a large positive number, which would
lead to numerical instabilities. Under HE, however, the exponential, division, and max functions are
non-polynomial functions that must be approximated. To clarify, the max function is conventionally
evaluated using comparisons and if-statements, but these are non-polynomial functions that require
polynomial approximations under HE.

While there is some recent work on efficiently approximating softmax function as polynomials
(Badawi et al., 2020; Jin et al., 2020; Hong et al., 2022; Lee et al., 2022c; 2023b), softmax is still
considered numerically challenging to evaluate under HE. In this section, we resolve this issue by
avoiding the softmax function altogether and introducing the Gaussian kernel (GK) as an alternative.

GK attention. The standard attention layer (1) obtains the attention scores using the softmax
function, which is difficult to approximate under HE. We can view the softmax as normalizing the
outputs of a scaled exponential kernel, where “kernel” is used in the sense of RKHS kernel methods
of classical machine learning (Berlinet & Thomas-Agnan, 2011). However, fundamentally, there is
no requirement to use the exponential kernel, nor is there a necessity for normalizing the scores.

We propose the alternative Gaussian kernel attention:

GK-Attention(Q,K, V) = S(Q,K)V

S(Q,K)ij = exp
(
− 1

2
√
n
∥Qi,: −Kj,:∥22

)
, i, j = 1, . . . , L,

(2)

where ∥ · ∥2 is the L2 norm, n is the hidden dimension, and Qi,: and Kj,: mean the ith and jth row
of Q and K. Compared to the standard attention, the scaled exponential kernel is replaced with a
Gaussian kernel and we do not perform normalization. The Gaussian kernel is much easier to evaluate
than the softmax function for the following reasons. First, there is no need for division. (The factor
1/(2
√
n) is fixed, so the reciprocal can be pre-computed and then multiplied.) Second, there is no

need to compute the max function, which is difficult to approximate under HE. Third, exp(x) only
needs to be approximated for x ≤ 0, the region in which exp(x) does not blow up and therefore is
much easier to approximate numerically. Specifically, we use

exp(x) ≈ pk(x) :=
(
1 +

x

2k

)2k

for k ∈ N,

which is very accurate for the range
[
−2k, 0

]
. See Appendix F for further discussions on the

polynomial approximation of exp(x).

Finally, we point out that in contexts unrelated to encryption or privacy, the prior work of Richter
& Wattenhofer (2020) made the observation that normalizations (divisions) are not necessary for
the attention layers and that the prior work of Lu et al. (2021) and Chen et al. (2021) used Gaussian
kernel in place of the softmax. Specifically, Richter & Wattenhofer (2020) removed normalizations
to improve the theoretical and practical characteristics of transformers, and Lu et al. (2021) and
Chen et al. (2021) further used a low-rank approximation to the Gaussian kernel to present a linear-
complexity attention layer accommodating long context lengths.

5 EXPERIMENTAL RESULTS

5.1 EXPERIMENTAL SETUP

In this subsection, we quickly describe some core aspects of the experimental setup. Some details,
such as the penalty training trick and hyperparameters, are deferred to Appendix E.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Implementation of homomorphic encryption (HE). Our implementation is based on the C++
HEaaN library (CryptoLab, 2022). All of our experiments used 8× Nvidia GeForce RTX 4090 24GB
GPUs. We use the FGb parameter of the HEaaN library with the specific values in Table 5 (Appendix
B). Overall, we can do L = 9 (p)Mults before BTS, which means the minimum required level for
BTS is 3. The input range of BTS is [−1, 1]. If the input range exceeds it, we need another BTS
algorithm; ExtBTS is an extended bootstrapping for having a wide input range [−220, 220], which
require at least 4 levels to operate. We usually use ExtBTS in our HE model except when the input
range is guaranteed. For the detailed parameter information and time measurement of HE operations,
refer to Table 5 in Appendix B. Note that Mult is 6× slower than pMult and Rot is 24× slower than
pRot. These are the main reasons for CCMM is much slower than PCMM.

Architecture. We use an encoder-only transformer in the style of BERT (Devlin et al., 2019) and
largely follow the setup of (Geiping & Goldstein, 2023). We remove all bias terms in the linear layers
of transformer blocks and use the same tokenization as in (Geiping & Goldstein, 2023). The hidden
dimensions of embedding, attention layers, and FFNs are 768. The number of attention heads is 12.
In FFNs, we enlarge the hidden dimension into 3072 with a dense layer and reduce that to 768 using
a gated linear unit (GLU) (Dauphin et al., 2017) and ReLU. In contrast to (Geiping & Goldstein,
2023), we modify the dense layer of the shape (768, 1024) in the classification head attached to
the BERT into the two dense blocks of the shapes (768, 32) and (32, 1024), which allows us to use
more optimized CCMMs (see Appendix D.2). We set the number of transformer layers as 2 for the
practical computation time. We apply LoRA only to the query, value, and key layers as applying
LoRA to other layers (e.g., FFN) did not give a noticeable performance gain in our experiments.
LoRA rank is 2 for all LoRA layers.

Non-polynomial approximation. Our transformer implementation under HE requires the poly-
nomial approximation of several non-polynomial functions. We use the following methods for the
approximation: Remez approximation (Remez, 1934), Newton’s method (Nocedal & Wright, 2006),
iterative method, and composition of minimax functions. Remez algorithm is computed using the
Sollya tool (Chevillard et al., 2010). For inverse square root functions, we combine Remez approxi-
mation with a few Newton’s steps. For each non-polynomial approximation method and its precision
based on input range and degree, refer to Table 13 in Appendix F. We also classify polynomials used
for each downstream task through the HE experiment in the same section.

5.2 TIME MEASURMENTS

We now present the speedups provided by our proposed methods. We use an input token length of 128.
For further details on the optimizations of homomorphic matrix multiplication and LoRA-friendly
CCMM, refer to Appendix D.1 and D.2.

CCMM vs. PCMM. As explained in Appendix C and shown by the time differences between
ciphertext and plaintext operations in Table 5 (Appendix E), CCMM is approximately 5× slower
than PCMM for the same matrix sizes evaluation (Table 1a).

Table 1: Computation time comparison for homomorphic matrix multiplication and Softmax with
GK. For matrix multiplication, we assume the evaluation of matrices for 128× 768 by 768× 768
where 128× 768 is in ciphertext, and 768× 768 is either in ciphertext or plaintext. PCMM and GK
are much faster than their respective comparison group.

(a) CCMM vs. PCMM.

Time (s) Factor

CCMM 1.259 1
PCMM 0.275 4.58

(b) Softmax vs. GK

Time (s) Factor

Softmax 8.99 1
GK 1.44 6.24

Softmax vs. GK. In Table 1b, we compare the computation time of Softmax and GK under HE,
where the input range is [−210, 0] and we evaluate 12 pairs of 128 × 128 matrices row-wise for
softmax and on matrices of the same size for GK. For the softmax function, we utilize the method of

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

HETAL (Lee et al., 2023b), which approximates the maximum function, the exponential function,
and the inverse function homomorphically. GK is much faster than the softmax function evaluation
using the HETAL (Lee et al., 2023b) approach under the same experimental setting.

Optimizer. In the experiments, we use AdamW-HE, a modified version of AdamW (Loshchilov
& Hutter, 2019) is stated in the following as Algorithm 1.

Algorithm 1 AdamW-HE

1: Initialize: m0 ← 0, v0 ← 0
2: procedure AdamW-HE(γ, β1, β2, ε > 0, λ, θt−1,mt−1, vt−1, gt)
3: θt ← θt−1 − γλθt−1

4: mt ← β1mt−1 + (1− β1) gt
5: vt ← β2vt−1 + (1− β2) g

2
t

6: m̂t ← mt/ (1− βt
1)

7: v̂t ← vt/ (1− βt
2)

8: θt ← θt − γm̂t/
√
v̂t + ε

(
In AdamW, θt ← θt − γm̂t/

(√
v̂t + ε

))
9: Return θt

10: end procedure

In the original version of AdamW, the Step 8 has the form θt ← θt − γm̂t/(
√
v̂t + ε), and this is

numerically challenging to evaluate for the following two reasons:

• To calculate 1/
(√

v̂t + ε
)
, we have to approximate

√
x and 1/x, which are delicate.

• Conventionally, ε > 0 is set to a sufficiently small value, such as 10−12. However, approxi-
mating 1/x on the large range [ε, 1] is challenging if ε is small.

Therefore, we change Step 8 in the Algorithm 1 into

θt ← θt − γm̂t/
√
v̂t + ε,

and we choose a value of ε > 0 that is not too small by considering both the performance and the
approximation accuracy. Also, we use the maximum-dividing trick as in (3). These modifications
allow AdamW-HE to be run stably under HE. Refer to Table 11 in Appendix E for hyperparameters
used in AdamW-HE for each task.

Computation time for our model and downstream tasks. Table 2 presents the execution times
of each setup. We observe a speedup of 6.94× for fine-tuning and 2.3× for inference. Table 3
compares the execution time for each downstream task with the Full+SM model. Our model
consistently achieves a 4× improvement across each downstream task. For the detailed end-to-end
time measurement for each block operation of our target model, see Table 12 in Appendix E.

Table 2: Comparison of fine-tuning and inference times for full fine-tuning with Softmax (Full+SM),
LoRA fine-tuning with Softmax (LoRA+SM), and LoRA fine-tuning with GK (LoRA+GK, Ours)
approaches under a single GPU. Our model achieves speedup in both fine-tuning and inference.

Fine-tuning Inference

Time (s) Full+SM LoRA+SM LoRA+GK (Ours) Full+SM LoRA+SM LoRA+GK (Ours)

2 layers 169.2 65.16 49.22 61.12 41.72 25.78
Class. head 1.52 1.5 1.5 0.72 0.72 0.72
Optimizer 252.83 10.31 10.31 - - -

Total 423.55 76.97 61.03 61.84 42.44 26.5

Factor 1 5.5 6.94 1 1.46 2.33

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 3: Execution time analysis of fine-tuning for each downstream task, comparing our method
with Full+SM. Our model shows the consistent 4× improvement for each downstream task.

Task RTE MRPC STS-B COLA SST-2 QNLI

Time per epoch (h) Ours 4.8 7.1 11.1 16.5 130 202
Full+SM 19.5 28.8 45.1 67.1 529 822

5.3 DOWNSTREAM TASK PERFORMANCE ON ENCRYPTED LANGUAGE MODELS

We evaluate our model on the GLUE benchmark (Wang et al., 2018). However, we exclude WMNI
(Devlin et al., 2019) as in Geiping & Goldstein (2023), and MNLI (Williams et al., 2018) and QQP
(Wang et al., 2018) due to their size and our computational constraints. We fine-tune using the
cross-entropy loss for tasks including CoLA (Warstadt et al., 2019), MRPC (Dolan & Brockett, 2005),
RTE (Giampiccolo et al., 2007), QNLI (Wang et al., 2018), and SST-2 (Socher et al., 2013), and
MSE loss for STSB (Cer et al., 2017). We fine-tune SST-2 and QNLI only for 1 epoch and 5 epochs
for others since the former are more computationally heavy. One can see the scores for Full+SM,
LoRA+GK under plaintext, and LoRA+GK under HE (ours) in Table 4. We set ε = 10−12 in the
optimizer for all plaintext settings. For plaintext experiments, we repeat 10 times for each task and
choose the best score. For experiments under HE, different ε values are chosen for each task. The
results in Table 4 indicate that using LoRA, Gaussian kernel, and homomorphic encryption results
in only a minimal reduction in model accuracy compared to using full fine-tuning, softmax, and no
encryption.

Table 4: GLUE results on our homomorphically encrypted language model. “Matthews corr.” means
Matthews correlation. “Full+GK” denotes full fine-tuning with GK. For all metrics, higher values
mean better performance. Our model performs comparably to plaintext models.

Task
Plaintext Fine-tuning LoRA+GK under HE (Ours)

Full+SM Full+GK LoRA+GK Eval under Plaintext Eval under HE

CoLA
(Matthews corr. ↑) 0.2688 0.2640 0.1883 0.1512 0.1575

MRPC
(F1 ↑) 0.8304 0.8431 0.8258 0.8147 0.8147
RTE

(Accuracy ↑) 0.5884 0.6101 0.5776 0.5957 0.5993
STSB

(Pearson ↑) 0.8164 0.8215 0.8107 0.8002 0.7997
SST-2

(Accuracy ↑) 0.8991 0.8911 0.8567 0.8188 0.8188
QNLI

(Accuracy ↑) 0.8375 0.8287 0.8040 0.7827 0.7827

Average 0.7068 0.7098 0.6772 0.6606 0.6621

6 CONCLUSION

In this work, we present a homomorphic encryption (HE) friendly transformer architecture and
experimentally demonstrate that an encrypted BERT-style transformer exhibits significant speedups
in both fine-tuning and inference under HE. Our architecture specifically resolves two computational
bottlenecks using LoRA and Gaussian kernel (GK).

The field of privacy-preserving machine learning using large neural networks will advance through
research on (i) training small, efficient language models with considerations unrelated to encryption,
(ii) improving the computational efficiency of fundamental computational primitives under HE with
considerations unrelated to machine learning, and (iii) developing machine learning models tailored
toward the encrypted usage. This work represents the first steps of progress in the direction (iii).

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

REFERENCES

Yoshimasa Akimoto, Kazuto Fukuchi, Youhei Akimoto, and Jun Sakuma. Privformer: Privacy-
preserving transformer with MPC. IEEE European Symposium on Security and Privacy, pp.
392–410, 2023.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv:1607.06450,
2016.

Ahmad Al Badawi, Louie Hoang, Chan Fook Mun, Kim Laine, and Khin Mi Mi Aung. PrivFT:
Private and fast text classification with homomorphic encryption. IEEE Access, 8:226544–226556,
2020.

Youngjin Bae, Jung Hee Cheon, Guillaume Hanrot, Jai Hyun Park, and Damien Stehlé. Plaintext-
ciphertext matrix multiplication and fhe bootstrapping: Fast and fused. CRYPTO, 2024.

Moran Baruch, Nir Drucker, Gilad Ezov, Eyal Kushnir, Jenny Lerner, Omri Soceanu, and Itamar
Zimerman. Training large scale polynomial CNNs for E2E inference over homomorphic encryption.
arXiv:2304.14836, 2023.

Alain Berlinet and Christine Thomas-Agnan. Reproducing Kernel Hilbert Spaces in Probability and
Statistics. Springer Science & Business Media, 2011.

Zvika Brakerski. Fully homomorphic encryption without modulus switching from classical GapSVP.
CRYPTO, 2012.

Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (Leveled) fully homomorphic encryption
without bootstrapping. ACM Transactions on Computation Theory, 6:1–36, 2014.

John Bridle. Training stochastic model recognition algorithms as networks can lead to maximum
mutual information estimation of parameters. Neural Information Processing Systems, 1989.

Nicholas Carlini, Daniel Paleka, Krishnamurthy Dj Dvijotham, Thomas Steinke, Jonathan Hayase,
A. Feder Cooper, Katherine Lee, Matthew Jagielski, Milad Nasr, Arthur Conmy, Eric Wallace,
David Rolnick, and Florian Tramèr. Stealing part of a production language model. International
Conference on Machine Learning, 2024.

Daniel Cer, Mona Diab, Eneko Agirre, Iñigo Lopez-Gazpio, and Lucia Specia. Semeval-2017 task
1: Semantic textual similarity multilingual and crosslingual focused evaluation. International
Workshop on Semantic Evaluation, 2017.

Tianyu Chen, Hangbo Bao, Shaohan Huang, Li Dong, Binxing Jiao, Daxin Jiang, Haoyi Zhou,
Jianxin Li, and Furu Wei. THE-X: Privacy-preserving transformer inference with homomorphic
encryption. Findings of the Association for Computational Linguistics, pp. 3510–3520, 2022.

Yifan Chen, Qi Zeng, Heng Ji, and Yun Yang. Skyformer: Remodel self-attention with gaussian
kernel and nyström method. Neural Information Processing Systems, 2021.

Jung Hee Cheon, Andrey Kim, Miran Kim, and Yong Soo Song. Homomorphic encryption for
arithmetic of approximate numbers. ASIACRYPT, 2017.

Jung Hee Cheon, Kyoohyung Han, Andrey Kim, Miran Kim, and Yongsoo Song. Bootstrapping for
approximate homomorphic encryption. EUROCRYPT, 2018.

Sylvain Chevillard, Mioara Joldeş, and Christoph Lauter. Sollya: An environment for the development
of numerical codes. International Congress on Mathematical Software, 2010.

Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachene. Faster fully homomorphic
encryption: Bootstrapping in less than 0.1 seconds. ASIACRYPT, 2016.

Kevin Clark, Minh-Thang Luong, Quoc V. Le, and Christopher D. Manning. ELECTRA: Pre-training
text encoders as discriminators rather than generators. International Conference on Learning
Representations, 2020.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

HEaaN. CryptoLab. HEaaN library. https://www.cryptolab.co.kr/en/products-e
n/heaan-he/, 2022.

Yann N Dauphin, Angela Fan, Michael Auli, and David Grangier. Language modeling with gated
convolutional networks. International Conference on Machine Learning, 2017.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understanding. Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies, 2019.

William B. Dolan and Chris Brockett. Automatically constructing a corpus of sentential paraphrases.
International Workshop on Paraphrasing, 2005.

Ye Dong, Wen jie Lu, Yancheng Zheng, Haoqi Wu, Derun Zhao, Jin Tan, Zhicong Huang, Cheng
Hong, Tao Wei, and Wenguang Chen. PUMA: Secure inference of Llama-7b in five minutes.
arXiv:2307.12533, 2023.

Abhimanyu Dubey, Abhinav Jauhri, Abhishek Kadian, et al. The Llama 3 herd of models.
arXiv:2407.21783, 2024.

Léo Ducas and Daniele Micciancio. FHEW: Bootstrapping homomorphic encryption in less than a
second. EUROCRYPT, 2015.

Cynthia Dwork. Differential privacy. International Colloquium on Automata, Languages, and
Programming, 2006.

European Union. Regulation (EU) 2016/679 of the european parliament and of the council of 27 april
2016 on the protection of natural persons with regard to the processing of personal data and on the
free movement of such data, and repealing directive 95/46/ec (general data protection regulation).
https://eur-lex.europa.eu/eli/reg/2016/679/oj, 2016.

Jonas Geiping and Tom Goldstein. Cramming: Training a language model on a single gpu in one day.
International Conference on Machine Learning, 2023.

Craig Gentry. Fully homomorphic encryption using ideal lattices. ACM Symposium on Theory of
Computing, 2009.

Danilo Giampiccolo, Bernardo Magnini, Ido Dagan, and Bill Dolan. The third pascal recognizing
textual entailment challenge. ACL-PASCAL Workshop on Textual Entailment and Paraphrasing,
2007.

Shai Halevi and Victor Shoup. Faster homomorphic linear transformations in HElib. CRYPTO, 2018.

Kyoohyung Han, Seungwan Hong, Jung Hee Cheon, and Daejun Park. Logistic regression on
homomorphic encrypted data at scale. AAAI Conference on Artificial Intelligence, 2019.

Meng Hao, Hongwei Li, Hanxiao Chen, Pengzhi Xing, Guowen Xu, and Tianwei Zhang. Iron:
Private inference on transformers. Neural Information Processing Systems, 2022.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and Weizhu Chen. DeBERTa: Decoding-enhanced
BERT with disentangled attention. International Conference on Learning Representations, 2021.

Seungwan Hong, Jai Park, Wonhee Cho, Hyeongmin Choe, and Jung Cheon. Secure tumor clas-
sification by shallow neural network using homomorphic encryption. BMC Genomics, 23:284,
2022.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. LoRA: Low-rank adaptation of large language models. International Conference
on Learning Representations, 2022.

Jaehee Jang, Younho Lee, Andrey Kim, Byunggook Na, Donggeon Yhee, Byounghan Lee, Jung Hee
Cheon, and Sungroh Yoon. Privacy-preserving deep sequential model with matrix homomorphic
encryption. ACM Asia Conference on Computer and Communications Security, 2022.

11

https://www.cryptolab.co.kr/en/products-en/heaan-he/
https://www.cryptolab.co.kr/en/products-en/heaan-he/
https://eur-lex.europa.eu/eli/reg/2016/679/oj

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Xiaoqian Jiang, Miran Kim, Kristin Lauter, and Yongsoo Song. Secure outsourced matrix computation
and application to neural networks. ACM SIGSAC Conference on Computer and Communications
Security, 2018.

Chao Jin, Mohamed Ragab, and Khin Mi Mi Aung. Secure transfer learning for machine fault
diagnosis under different operating conditions. International Conference on Provable Security,
2020.

Marcin Junczys-Dowmunt, Roman Grundkiewicz, Tomasz Dwojak, Hieu Hoang, Kenneth Heafield,
Tom Neckermann, Frank Seide, Ulrich Germann, Alham Fikri Aji, Nikolay Bogoychev, et al.
Marian: Fast neural machine translation in C++. Association for Computational Linguistics:
System Demonstrations, 2019.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models.
arXiv:2001.08361, 2020.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, and Radu Soricut.
ALBERT: A lite BERT for self-supervised learning of language representations. International
Conference on Learning Representations, 2020.

Eunsang Lee, Joon-Woo Lee, Junghyun Lee, Young-Sik Kim, Yongjune Kim, Jong-Seon No, and
Woosuk Choi. Low-complexity deep convolutional neural networks on fully homomorphic en-
cryption using multiplexed parallel convolutions. International Conference on Machine Learning,
2022a.

Garam Lee, Minsoo Kim, Jai Hyun Park, Seung-won Hwang, and Jung Hee Cheon. Privacy-
preserving text classification on BERT embeddings with homomorphic encryption. Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, 2022b.

Joon-Woo Lee, HyungChul Kang, Yongwoo Lee, Woosuk Choi, Jieun Eom, Maxim Deryabin,
Eunsang Lee, Junghyun Lee, Donghoon Yoo, Young-Sik Kim, and Jong-Seon No. Privacy-
preserving machine learning with fully homomorphic encryption for deep neural network. IEEE
Access, 10:30039–30054, 2022c.

Junghyun Lee, Eunsang Lee, Joon-Woo Lee, Yongjune Kim, Young-Sik Kim, and Jong-Seon No.
Precise approximation of convolutional neural networks for homomorphically encrypted data.
IEEE Access, 11:62062–62076, 2023a.

Seewoo Lee, Garam Lee, Jung Woo Kim, Junbum Shin, and Mun-Kyu Lee. HETAL: Efficient
privacy-preserving transfer learning with homomorphic encryption. International Conference on
Machine Learning, 2023b.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. BART: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and comprehension. Association for Computational
Linguistics, 2020.

Dacheng Li, Rulin Shao, Hongyi Wang, Han Guo, Eric P Xing, and Hao Zhang. MPCFormer: Fast,
performant and private transformer inference with MPC. International Conference on Learning
Representations, 2023.

Yang Li, Wenhan Yu, and Jun Zhao. Privtuner with homomorphic encryption and lora: A p3eft scheme
for privacy-preserving parameter-efficient fine-tuning of ai foundation models. arXiv:2410.00433,
2024.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. RoBERTa: A robustly optimized BERT pretraining
approach. arXiv:1907.11692, 2019.

Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey Edunov, Marjan Ghazvininejad, Mike
Lewis, and Luke Zettlemoyer. Multilingual denoising pre-training for neural machine translation.
Transactions of the Association for Computational Linguistics, 8:726–742, 2020.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. International Conference
on Learning Representations, 2019.

Jiachen Lu, Jinghan Yao, Junge Zhang, Xiatian Zhu, Hang Xu, Weiguo Gao, Chunjing Xu, Tao
Xiang, and Li Zhang. SOFT: Softmax-free transformer with linear complexity. Neural Information
Processing Systems, 2021.

Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and learning with errors over
rings. EUROCRYPT, 2010.

Shiona McCallum. ChatGPT banned in Italy over privacy concerns. https://www.bbc.com/
news/technology-65139406, 2023.

Aaron Mok. Amazon, Apple, and 12 other major companies that have restricted employees from
using ChatGPT. https://www.businessinsider.com/chatgpt-companies-iss
ued-bans-restrictions-openai-ai-amazon-apple-2023-7, 2023.

Jorge Nocedal and Stephen J. Wright. Numerical Optimization. Springer Series in Operations
Research and Financial Engineering. Springer, 2006.

OpenAI. GPT-4 technical report. arXiv:2303.08774, 2023.

OpenAI. ChatGPT. https://www.openai.com/chatgpt, 2024.

Qi Pang, Jinhao Zhu, Helen Möllering, Wenting Zheng, and Thomas Schneider. BOLT: Privacy-
preserving, accurate and efficient inference for transformers. IEEE Symposium on Security and
Privacy, 2024.

Dongjin Park, Eunsang Lee, and Joon-Woo Lee. Powerformer: Efficient privacy-preserving trans-
former with batch rectifier-power max function and optimized homomorphic attention. Cryptology
ePrint Archive, 2024.

Alec Radford. Improving language understanding by generative pre-training. OpenAI blog, 2018.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. OpenAI blog, 2019.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research, 21:1–67, 2020.

Eugene Y Remez. Sur la détermination des polynômes d’approximation de degré donnée. Communi-
cations of the Mathematical Society of Kharkov, 10:41–63, 1934.

Oliver Richter and Roger Wattenhofer. Normalized attention without probability cage.
arXiv:2005.09561, 2020.

Ronald L Rivest, Len Adleman, and Michael L Dertouzos. On data banks and privacy homomor-
phisms. Foundations of Secure Computation, 4:169–180, 1978.

Panagiotis Rizomiliotis and Aikaterini Triakosia. On matrix multiplication with homomorphic
encryption. Cloud Computing Security Workshop, 2022.

Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. DistilBERT, a distilled version
of BERT: Smaller, faster, cheaper and lighter. NeurIPS Workshop on Energy Efficient Machine
Learning and Cognitive Computing, 2019.

Richard Socher, Alex Perelygin, Jean Y Wu, Jason Chuang, Christopher D Manning, Andrew Y Ng,
and Christopher Potts. Recursive deep models for semantic compositionality over a sentiment
treebank. Conference on Empirical Methods in Natural Language Processing, 2013.

State of California. California consumer privacy act of 2018. https://oag.ca.gov/privacy
/ccpa, 2018.

13

https://www.bbc.com/news/technology-65139406
https://www.bbc.com/news/technology-65139406
https://www.businessinsider.com/chatgpt-companies-issued-bans-restrictions-openai-ai-amazon-apple-2023-7
https://www.businessinsider.com/chatgpt-companies-issued-bans-restrictions-openai-ai-amazon-apple-2023-7
https://www.openai.com/chatgpt
https://oag.ca.gov/privacy/ccpa
https://oag.ca.gov/privacy/ccpa

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Damien Stehlé, Ron Steinfeld, Keisuke Tanaka, and Keita Xagawa. Efficient public key encryption
based on ideal lattices. ASIACRYPT, 2009.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler,
Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott
Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. Language models are few-shot learners. Neural Information
Processing Systems, 2020.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv:2302.13971, 2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv:2307.09288, 2023b.

Florian Tramèr, Fan Zhang, Ari Juels, Michael K. Reiter, and Thomas Ristenpart. Stealing machine
learning models via prediction APIs. USENIX Security Symposium, 2016.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Neural Information Processing Systems,
2017.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel Bowman. GLUE:
A multi-task benchmark and analysis platform for natural language understanding. EMNLP
Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP, 2018.

Alex Warstadt, Amanpreet Singh, and Samuel R. Bowman. Neural network acceptability judgments.
Transactions of the Association for Computational Linguistics, 7:625–641, 2019.

Adina Williams, Nikita Nangia, and Samuel R Bowman. A broad-coverage challenge corpus for
sentence understanding through inference. Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, 2018.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Remi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick
von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger,
Mariama Drame, Quentin Lhoest, and Alexander M. Rush. Transformers: State-of-the-art natural
language processing. Conference on Empirical Methods in Natural Language Processing: System
Demonstrations, 2020.

Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya
Barua, and Colin Raffel. mT5: A massively multilingual pre-trained text-to-text transformer.
Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, 2021.

Andrew C. Yao. Protocols for secure computations. IEEE Annual Symposium on Foundations of
Computer Science, 1982.

Jiawen Zhang, Jian Liu, Xinpeng Yang, Yinghao Wang, Kejia Chen, Xiaoyang Hou, Kui Ren, and
Xiaohu Yang. Secure transformer inference made non-interactive. Cryptology ePrint Archive,
2024a.

Yushun Zhang, Congliang Chen, Tian Ding, Ziniu Li, Ruoyu Sun, and Zhi-Quan Luo. Why trans-
formers need Adam: A Hessian perspective. Workshop on Efficient Systems for Foundation Models
at ICML, 2024b.

Xiaopeng Zheng, Hongbo Li, and Dingkang Wang. A new framework for fast homomorphic matrix
multiplication. Cryptology ePrint Archive, 2023.

Itamar Zimerman, Moran Baruch, Nir Drucker, Gilad Ezov, Omri Soceanu, and Lior Wolf. Converting
transformers to polynomial form for secure inference over homomorphic encryption. International
Conference on Machine Learning, 2024.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A DIAGRAM: FULL FINE-TUNING VS. LORA FINE-TUNING IN BERT

Figure 2, 3 illustrate the complete diagram of our target model with respect to full fine-tuning and
LoRA fine-tuning, respectively. Orange boxes indicate where updates occur during fine-tuning, and c
in the classification head layer denotes the number of classes. In full fine-tuning, large-size weight
matrices are updated and transformed from plaintexts to ciphertexts, which means the large-size
CCMMs must be processed during both fine-tuning and inference. In contrast, only small-size weight
matrices are transformed into ciphertexts in LoRA fine-tuning.

Figure 2: Full fine-tuning. Figure 3: LoRA fine-tuning.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

B CKKS FUNCTIONALITES

The CKKS (Cheon et al., 2017) is a homomorphic encryption scheme that allows one to encrypt
real or complex data as a message polynomial and perform approximate arithmetic on the encrypted
message. More precisely, CKKS scheme supports a single-instruction-multiple-data (SIMD) property
from encoding (Ecd)/decoding (Dcd) map: given a power-of-two positive integer ring degree N ,
encoding map is defined as Ecd : CN/2 → RQ = ZQ[x]/(x

N + 1), where Q is a positive integer.
The decoding map Dcd can be interpreted as an inverse process of Ecd. Ecd/Dcd represents a
conversion between (CN/2,⊕,⊙) and (RQ,+, ·), where ⊕ and ⊙ are component-wise addition
and multiplication, respectively. In the CKKS scheme, each of Ecd and Dcd is processed before
encryption or after decryption, respectively. Encryption (Encpk) and Decryption (Decsk) are a
ring learning with errors (RLWE) (Stehlé et al., 2009; Lyubashevsky et al., 2010) encryption and
decryption, respectively. We can operate addition/multiplication on those vectors via polynomial
operations from the ring isomorphism. Here, we use ≈ notation to indicate approximate equality, as
the CKKS scheme evaluates approximately (for more details, refer to Cheon et al. (2017));

• Key generation: Given a security parameter λ and a subset S ⊂ {1, 2, · · · , N/2}, return a public
key pk, a secret key sk, a relinearization key rlk, and rotation keys {rki}i∈S .

• Encryption: Given pk and a message m, return a ciphertext ct = Encpk(m) = Enc(Ecd(m), pk).

• Decryption: Given sk and a ciphertext ct, return a message m′ = Decsk(ct) = Dcd(Dec(ct, sk)),
where m′ ≈m.

• Addition: Given two ciphertexts ct1 and ct2, return ctadd = Add(ct1, ct2), satisfying
Decsk(ctadd) ≈ Decsk(ct1) ⊕ Decsk(ct2). Addition also can be evaluated between plaintext
and ciphertext.

• Multiplication: Given two ciphertexts ct1 and ct2 and a linearization key rlk, return ctmult =
Mult(ct1, ct2), satisfying Decsk(ctmult) ≈ Decsk(ct1)⊙ Decsk(ct2).

• Multiplication by Plaintext: Given a plaintext pt and a ciphertext ct, return ctpmult =
pMult(pt, ct), satisfying Decsk(ctpmult) ≈ Dcd(pt)⊙ Decsk(ctpmult).

• Rotation: Given a rotation key rki for i ∈ S and a ciphertext ct with Decsk(ct) ≈
(m0,m1, . . . ,mN/2−1), return a ciphertext ctroti = Rot(ct, i) satisfying Decsk(ctroti) ≈
(mi, . . . ,mN/2−1,m0, . . . ,mi−1). The rotation index i acts modulo N/2, so Rot(·,−i) =
Rot(·, N/2− i). pRot is the same operation on the plaintext side.

HE parameter and its time measurement. During HE implementation, we use the FGb parameter,
one of the HEaaN-providing parameters. For the detailed value of the FGb parameter, refer to Table 5.
We also list the time measurement of HE operations under a single GPU. We know that Mult and Rot,
operated in ciphertext, are slower than pMult and pRot, which are related to plaintext operations,
respectively.

Table 5: The FGb parameter and time measurement for each HE operation under the single GPU.
The terms log(QP), N, L, λ denote the bit lengths of the largest modulus, ring degree, multiplicative
depth, and security parameter.

FGb parameter Time measurement of each homomorphic operation (ms)

log(QP) N L h λ Add pRot Rot BTS ExtBTS pMult Mult
1555 216 9 192 128 0.02 0.02 0.49 60 137 0.1 0.6

C HOMOMORPHIC MATRIX MULTIPLICATION ALGORITHM

Consider d× d homomorphic matrix multiplication. JKLS (Jiang et al., 2018) suggests the fastest
known HE square matrix multiplication algorithm withO(d) HE computational complexity (for more
precise number of each operation, refer to Table 6) when the matrix elements can be packed in a cipher-
text, specifically when d2 ≤ N/2. The required HE operations include Add, (p)Rot, and (p)Mult.
The computation time of Rot and Mult operations differ between plaintext and ciphertext (see Table

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

5), with operations in ciphertext being significantly slower. Consequently, CCMM is much slower
than PCMM; the number of different message space operations is exactly d+ 2

√
d for one homomor-

phic matrix multiplication. For precise time difference between two kinds of homomorphic matrix
multiplication, see Section 5.2.

When d2 > N/2, where we cannot encrypt the matrix into one ciphertext, we can also utilize the
JKLS algorithm by computing block-wise matrix multiplication. For example, if we take N = 216

for the base ring degree, we can pack two 128× 128 matrices into one ciphertext. When d = 768,
we require 18 ciphertexts to pack d× d matrix. After packing each block matrices into ciphertexts,
we repeat the corresponding block-wise matrix multiplication to all the weights. Thus, for large-size
matrix multiplications, the computation time gap between CCMM and PCMM will be proportional
to the number of ciphertexts required for packing.

In addition, JKLS introduced a homomorphic rectangular matrix multiplcation of size ℓ× d by d× d
or vice-versa, with ℓ < d and ℓd ≤ N/2. We can use this method to evaluate LoRA CCMMs,
where we need to evaluate the homomorphic rectangular matrix multiplication sequentially. For more
detailed HE operations numbers, see Table 7.

Table 6: The number of each HE operation for one d×d homomorphic matrix multiplication required
by JKLS (Jiang et al., 2018) algorithm.

Operations Add pMult Rot Mult Depth

JKLS (Jiang et al., 2018) 6d 4d 3d+ 5
√
d d 3

Table 7: The number of each HE operation for rectangular homomorphic matrix multiplication ℓ× d
by d× d required by JKLS (Jiang et al., 2018) rectangular matrix algorithm.

Operations Add pMult Rot Mult Depth

JKLS (Jiang et al., 2018) 3d+ 2ℓ+ log(d/ℓ) 3d+ 2ℓ 3ℓ+ 5
√
d+ log(d/ℓ) ℓ 3

D OPTIMIZATIONS FOR HOMOMORPHIC MATRIX MULTIPLICATION

The CKKS scheme packs all input data into a polynomial from encoding (Ecd). The packed data are
assigned to fixed positions within the polynomial, and to change these positions, we have to use the
(p)Rot operation. In the homomorphic matrix multiplication algorithm, several (p)Rot operations
are required. Our target model has sequential matrix multiplications, so it is more efficient to fix the
packing structure. Among various packing methods, we use row-wise packing (see Figure 4a) for all
packed data except for LoRA weights, which will be explained in the next subsection. Because using
the FGb parameter can pack a total 215 data in one message space, we consider one plain/ciphertext
having 215 data, which corresponds to the size either 128× 256 or 256× 128 in our implementation.
Thus, during our model computation, we will assume one plain/ciphertext is packed 128×256 matrix
row-wise.

D.1 HOMOMORPHIC MATRIX MULTIPLICATION

Here, we introduce the optimization techniques used in our homomorphic matrix multiplication
implementation. We adopt three optimization techniques to improve the speed of homomorphic
matrix multiplication:

• Evalation in lower level: Because homomorphic matrix multiplication contains numerous HE
operations and its speed depends on the current level, the ciphertexts containing matrix values
are brought down to the minimum required level before performing the evaluation (Bae et al.,
2024; Park et al., 2024), even if BTS may be needed for the next block evaluation. We adhere to
this strategy in our homomorphic matrix multiplication by taking the JLKS (Jiang et al., 2018)
algorithm, which requires 3 levels. Consequently, evaluating the bottom-level (7 level) PCMM is

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

2.35× faster than the top-level (12 level) PCMM (refer to Table 8) of size 128× 256 by 256× 128.
This difference is even more pronounced in CCMM.

• Pre-computation and reuse for left-matrix: When we perform homomorphic matrix multi-
plication of size 128 × 768 by 768 × 768, we need to split the matrices as three and eighteen
block matrices (see Figure 4c), respectively. And we go through each block matrix multiplication
to get a corresponding result. From the property of block matrix multiplication, we know the
same left matrices are used several times to multiply by the right block matrices. Thus, we do
pre-computation using JKLS (Jiang et al., 2018) and save these objects for left-matrices. Using
this strategy, we can reduce the total number of JKLS algorithm calls, which require numerous
HE operations (as shown in Table 6), from 36 to 21. This is a trade-off between memory and
computation time.

• Lazy key-switching/rescaling: When a ciphertext is evaluated by an automorphism, we need to do
a key-switching operation. This is an expensive process. If the result ciphertext is made from several
ciphertexts resulting in the same automorphism, we are used to take lazy key-switching (hoisting)
(Halevi & Shoup, 2018); that is, we go through only one key-switching after collecting all results
instead of doing key-switching for each automorphism. By taking lazy key-switching, we can speed
up the required computation time. Lazy rescaling is also a similar strategy for reducing computation
time and added errors when doing a rescaling operation, which is an operation contained in Mult.

Table 8: Computation time comparison between PCMMs according to the different levels. The
lower-level homomorphic matrix multiplcation is faster than the top-level evaluation.

PCMM Time (s) Factor

12 level 0.242 1
7 level 0.103 2.35

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16

1 2 3 14 15 16· · ·

(a) Row-wise packing

(c) Block-wise matrix multiplication

768

768

768128

768

128

128

· · ·

256

25
6 · · ·

· · ·

· · ·

A B C

W11

W21

W31

W16

128

W26

W36

res1 res6

res1 = A×W11 + B ×W21 + C ×W31

res6 = A×W16 + B ×W26 + C ×W36

× =

···

128

1 2 0 0
5 6 0 0
9 10 0 0
13 14 0 0

1 2 0 14 0 0· · ·

(b) Zero-padding packing

Figure 4: Row-wise packing method for matrix representation, utilizing zero-padding for non-square
matrices, followed by block-wise matrix multiplication for efficient processing of large matrices.

D.2 LORA STYLE CCMM

LoRA fine-tuning consists of two CCMMs. Because the LoRA weights are rectangular matrices, we
need to do zero-padding (see Figure 4b) for the second weight to make it a square matrix. After that,
we can follow the optimized homomorphic rectangular matrix multiplication algorithm sequentially,
which we call the Rectangular MM algorithm in the following. However, when we consider that our

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

target LoRA rank(=2) is quite small, this Rectangular MM approach generates an inefficiency since
there are many non-usable spaces in the ciphertext from zero-padding. Thus, we make a more efficient
algorithm for LoRA CCMMs than following the Rectangular MM. Our optimized algorithm can be
applied in cases similar to LoRA CCMMs, which involve sequential matrix multiplication where one
dimension is significantly smaller than the other. In our model, we also use these optimized CCMMs
during classification head layer evaluation, where we have to perform homomorphic rectangular
matrix multiplications of size 1× 768 by 768× 32 and 1× 32 by 32× 1024. For convenience, this
subsection will describe the case regarding LoRA CCMMs with rank 2: 128× 768 by 768× 2 and
128× 2 by 2× 768, sequentially.

rank
128

rank

128

128 128

128

128

128

a b f

a b
c d
e f

a1 b1

e1 f1 er fr

128 128128

ar br 128

ct11 ct1r

ct31 ct3r

· · ·

· · ·

···

···

rank
128

128

a b
c d
e f

b1

b1
b1a1

a1

a1

(a) LoRA-friendly packing

(b) Split & repeat row-wise

768

Figure 5: LoRA-friendly packing is used when the given matrix has one long and one short size. Split
& repeat row-wise divides and copies each row into ciphertexts, which is used during LoRA CCMMs
and ai denotes i-th row of matrix a. The shaded block matrices represent zero-padded blocks.

D.2.1 LORA-FRIENDLY PACKING

In our target model, the LoRA weights are either 768× rank or rank× 768. Both weights have one
long and one short dimension. Instead of directly following row-wise packing used in entire message
packing, we pack LoRA weights with another approach. Figure 5a represents the packing method,
called LoRA-friendly packing, used in LoRA weights. Even if 768× rank is a column rectangular
matrix shape, we follow the LoRA-friendly packing by considering the transposed column rectangular
matrix. This does not mean we evaluate homomorphic transposition, where we use an algorithm in
JKLS (Jiang et al., 2018) that also has numerous HE operations. But treat its column rectangular
matrix with the corresponding order in a row-wise packed structure:

{Aij}1≤i≤768,1≤j≤rank 7→ {Bk}1≤k≤N/2 =

{
Aij if k = i+ 768 ∗ (j − 1)

0 otherwise

By following this, we can remove the required evaluations of transposition during backpropagation
computation.

D.2.2 OPTIMIZED HOMOMORPHIC LORA MATRIX MULTIPLICATION ALGORITHM

We optimize the sequential LoRA CCMMs in Algorithm 5. This algorithm consists of several HE
operations and three operation blocks: (i) Split & repeat row-wise (Algorithm 2) for weights, (ii)
repeat column-wise (Algorithm 3), and (iii) collect into the first column (Algorithm 4).

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Algorithm 2 Split & repeat row-wise (Figure 5b)

1: Input: A ciphertext ctw having LoRA weight, LoRA rank r, plaintext Mrow encoding 128×256
matrix where all entries are zero except for the first row, which is entirely ones.

2: Output: Ciphertexts {ctij}i∈{1,2,3},j∈{1,··· ,r}.
3: procedure SplitRepeat(ctw, r,Mrow)
4: for i ∈ {1, 2, 3} do
5: tmp← ctw
6: if i is not 1 then
7: tmp← Rot(tmp, (i− 1)× r × 256)
8: end if
9: for j ∈ {1, · · · , r} do

10: if j is not 1 then
11: tmp← Rot(tmp, (j − 1)× 256)
12: end if
13: ctij ← pMult(Mrow, tmp)
14: for k ∈ {0, · · · , log2(128)− 1} do
15: tmp← Rot(ctij ,−2k × 256)
16: ctij ← Add(ctij , tmp)
17: end for
18: end for
19: end for
20: Return {ctij}i∈{1,2,3},j∈{1,··· ,r}
21: end procedure

Algorithm 3 Repeat column-wise

1: Input: Ciphertexts {cti}i∈{1,··· ,r}, LoRA rank r.
2: Output: Ciphertexts {cti}i∈{1,··· ,r}.
3: procedure RepeatCol({cti}i∈{1,··· ,r}, r)
4: for i ∈ {1, · · · , r} do
5: for k ∈ {0, · · · , log2(256)− 1} do
6: tmp← Rot(cti,−2k)
7: cti ← Add(cti, tmp)
8: end for
9: end for

10: Return {cti}i∈{1,··· ,r}
11: end procedure

Algorithm 4 Collect into the first column

1: Input: A ciphertext {aij}i∈{1,2,3},j∈{1,··· ,r}, LoRA rank r, plaintext Mcol, encoding 128× 256
matrix where all entries are zero except for the first column, which is entirely ones.

2: Output: Ciphertexts {ctj}j∈{1,··· ,r}.
3: procedure CollectFirstCol(ctij , r,Mcol)
4: for j ∈ {1, · · · , r} do
5: ctj ← a1j
6: for i ∈ {2, 3} do
7: ctj ← Add(ctj , aij)
8: end for
9: for k ∈ {0, · · · , log2(256)− 1} do

10: tmp← Rot(ctj , 2
k)

11: ctj ← Add(ctj , tmp)
12: end for
13: ctj ← pMult(Mcol, ctj)
14: end for
15: Return {ctj}j∈{1,··· ,r}
16: end procedure

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Algorithm 5 LoRA CCMMs

1: Input: Ciphertexts {cti}i∈{1,2,3}, LoRA weight ciphertexts ctA and ctB , LoRA rank r, plain-
texts Mrow,Mcol.

2: Output: Result ciphertexts {resi}i∈{1,2,3} of LoRA CCMMs.
3: procedure LORA CCMMS({cti}i∈{1,2,3}, ctA, ctB , r,Mrow,Mcol)
4: {Aij} ← SplitRepeat(ctA, r,Mrow)
5: for i ∈ {1, 2, 3} do
6: for j ∈ {1, · · · , r} do
7: Wij ← Mult(Aij , cti)
8: end for
9: end for

10: {tmpk} ← CollectFirstCol({Wij}, r,Mcol)
11: {tmpk} ← RepeatCol({tmpk}, r)
12: {Bij} ← SplitRepeat(ctB , r,Mrow)
13: for i ∈ {1, 2, 3} do
14: resi ← Mult(Bi1, tmp1)
15: for j ∈ {2, · · · , r} do
16: Bij ← Mult(Bij , tmpj)
17: resi ← Add(Bij , resi)
18: end for
19: end for
20: Return {resi}i∈{1,2,3}
21: end procedure

D.2.3 COMPARISON RECTANGULAR MM AND OPTIMIZED LORA CCMMS

We compare two approaches, Rectangular MM and our optimized LoRA CCMMs (Algorithm 5).
We list up the required number of each HE operation for each method (Table 9) based on the given
number of JKLS (Jiang et al., 2018) algorithm (Table 7) and the computation time comparison in
implementation (Table 10). Our optimized LoRA CCMMs are 4.45× faster than Rectangular MM.
In addition, using LoRA-friendly packing, we can reduce the required number of homomorphic
transposition evaluations.

Table 9: The total required number of HE operations for 128 × d by d × r and 128 × r by r × d
homomorphic matrix multiplications where r denotes the LoRA rank. Rectangular MM denote a
method that takes homomorphic rectangular matrix multiplication sequentially. Algorithm 5 requires
much smaller HE operations than following Rectangular MM algorithms.

Operations Add pMult Rot Mult Depth

Rectangular MM 18d+ 12r + 6 log(d/r) 18d+ 12r 18r + 30
√
d+ 6 log(d/r) 6r 6

Algorithm 5 42r − 3 4r 40r − 1 6r 3

Table 10: Comparison of execution times between Rectangular MM and Algorithm 5. In the figure,
MM denotes implementing our homomorphic matrix multiplication, and Tr denotes homomorphic
transpose. Algorithm 5 is about 4.45× faster than Rectangular MM.

Forward eval. Backprop.

MM BTS MM BTS Tr Total Factor

Rectangular MM (s) 0.65 1.3 2.84 0.42 0.71 5.92 1
Algorithm 5 (s) 0.12 0.76 0.29 0 0.16 1.33 4.45

E EXPERIMENTAL DETAILS UNDER HE

In this section, we provide experimental details used in our experiments under HE.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Penalty training In the experiments, we approximate non-polynomials such as inverse square root
in LayerNorm (Ba et al., 2016). However, we cannot assure that the inputs of each non-polynomial
lie in the approximation domain. To address this, we charge a penalty as in Baruch et al. (2023) in
the pre-training stage. For example, when we approximate ReLU in the ith transformer layer on
[−50, 50], for an input X of our model, let the input of this ReLU be Xi,ReLU. Then we add the term
1{∥Xi,ReLU∥∞>50} to the pre-training loss Lpre where λ > 0. If we let

F =
{
(f, Lf)

∣∣ The approximation range of f is [−Lf , Lf]
}

be the set of all non-polynomials and their approximation domains in our model, then the original
loss function is modified into

Lpenalty(X; θ) = Lpre(X; θ) + λ
∑

(f,Lf)∈F

1{∥Xf∥∞>Lf}(X)

where X is the input of the model, θ is the parameters of the model, and Xf is the input of f ∈ F for
the initial input X . We change the original Lpre to Lpenalty in the last k (100 in our setting) steps of
the pre-training. In this way, we can narrow the input range of non-polynomial functions and are able
to approximate them.

Hyperparameters. We summarize the hyperparameters used in HE experiments. We first experi-
mented on the plaintext and chose the best hyperparameters for HE experiments.

Table 11: Hyperparameters used for HE experiments. Epsilon means ε of AdamW-HE in section
5.1. Warmup steps, Number of cycles are used in transformers (Wolf et al., 2020) cosine scheduler,
and betas are used in AdamW-HE.

Learning Rate Epsilon Warmup Steps Number of Cycles Betas

CoLA 4.0e− 3 8.0e− 3

0 0.5 [0.9, 0.999]

MRPC 5.0e− 4 6.0e− 4
RTE 2.0e− 4 2.0e− 4

STSB 2.5e− 2 4.0e− 1
SST-2 8.5e− 3 8.0e− 4
QNLI 6.5e− 3 8.0e− 4

End-to-end runtime of 1 layer forward evaluation and backpropagation. Here, we list all the
required block operations runtime in 1 layer case with respect to forward evaluation and backpropa-
gation of LoAR fine-tuning in Table 12. In forward evaluation, the softmax function evaluation is the
most time-consuming part in LoRA with Softmax, on the other hand, BTS is the part in LoRA with
GK. In both cases of backpropagation, the matrix multiplication time is the most time-consuming
part. Thus, replacing the softmax function efficiently and reducing the required number of CCMM
are key factors, so we adopt LoRA fine-tuning and the Gaussian Kernel.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Table 12: Lists the end-to-end runtime for each individual operation using single GPU. Tr denotes
transposition, and Save is the saving time for backpropagation or optimizer. Softmax evaluation
occupies 43%, which is the most time-consuming in forward evaluation; however, GK is just 8%.

Forward eval. Time (s) Ratio (%)

PCMM 1.35 6.47
CCMM 1.87 8.96

LayerNorm 0.48 2.3
BTS 5.74 27.53

Softmax 8.99 43.1
ReLU 1.35 6.47
LoRA 0.85 4.07

Tr & Save 0.23 1.1

Total 20.86 100

Backprop. Time (s) Ratio (%)

PCMM 2.29 19.54
CCMM 3.79 32.34

LayerNorm 0.32 2.73
BTS 4.45 37.97

Softmax 0.02 0.17
ReLU 0.02 0.17
LoRA 0.26 2.22

Tr & Save 0.57 4.86

total 11.72 100

Forward eval. Time (s) Ratio (%)

PCMM 1.35 10.47
CCMM 1.87 14.51

LayerNorm 0.48 3.72
BTS 5.74 44.53
GK 1.02 7.91

ReLU 1.35 10.47
LoRA 0.85 6.59

Tr & Save 0.23 1.78

Total 12.89 100

Backprop. Time (s) Ratio (%)

PCMM 2.29 19.54
CCMM 3.79 32.34

LayerNorm 0.32 2.73
BTS 4.45 37.97
GK 0.02 0.17

ReLU 0.02 0.17
LoRA 0.26 2.22

Tr & Save 0.57 4.86

total 11.72 100

Multi-GPU implementation that simulates a batch scenario. For the LoRA fine-tuning for the
downstream tasks, we use 8 GPUs. We follow the same plain model parameters (refer to Appendix
E), where the batch size is 16. Because packing multiple datasets to mimic the batch scenario itself
has some restrictions (such as large-size weights, long token lengths, and restricted message spaces),
we get to use multiple GPUs to make our algorithm keep following batch scenarios. Here, we assign
one datum to one GPU. When the weights are updated, the communications between GPUs are raised,
and an average of each gradient can be obtained. This speeds up the runtime per epoch, even with a
slight communication delay, which is negligible compared to the overall runtime.

F UTILIZED POLYNOMIALS FOR EACH DOWNSTREAM TASK

F.1 OVERVIEW OF POLYNOMIAL APPROXIMATIONS USED IN OUR TARGET MODEL.

Table 13 shows the overview of polynomial approximation utilized in our target model experiments.
According to the input range, the optimized approximation method is different. For the inverse
square root, we additionally employ a few iterations of Newton’s method for the following reason.
While minimax approximation optimizes multiplicative depth in polynomial evaluation, it requires
numerous multiplications. To mitigate this, we integrate a few Newton iterations, which provide a
faster approximation of the inverse square root, though at the cost of additional multiplicative depth.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Table 13: Overview of polynomial approximation methods for various non-polynomial functions
with specific usages. “Worst prec.” refers to the maximum value of ∥f(x)− poly(x)∥∞ across the
input range, while “Avg prec.” denotes the average (mean) value. Although we replace the softmax
with the Gaussian kernel in attention layers, the softmax function is still used once in computing the
cross-entropy loss. Non-polynomials require different polynomial approximations according to the
input range.

1/
√
x 1/x tanh exp ReLU

Input range [0.0005, 1] [0.04,1] [0.8,3.0] [-5,5] [-16,16] [-2,2] [-13,1] [−214,0] [-1,1]
Degree 127 63 15 63 127 15 15 - 15/15/27

Worst prec. (bits) 11.1 19.8 23.7 24.7 18.6 21.2 21.2 15 10
Avg prec. (bits) 24.6 24.6 26.5 26.6 19.6 25.8 22.9 17.4 16.4

Method Remez + Newton Remez Remez Remez Iter. Minimax composition
(Lee et al., 2023a)

Usage LayerNorm,
AdamW-HE Loss (Softmax) Classification

head Loss (Softmax) GK FFN

F.2 POLYNOMIALS FOR EACH DOWNSTREAM TASK

In the previous subsection F.1, we give our polynomial approximation of each non-polynomial. Since
the input ranges for non-polynomial functions vary across downstream tasks, appropriate polynomial
approximations are required for each task. Below, we list the polynomials used for each task, with
Table 14 categorizing them based on their input domains.

• Inverse square root with additional three Netwon steps: sqrtInv ([0.0005, 1])

• Inverse: inv1 ([0.04, 1]), inv2 ([0.8, 3.0])

• Exponential: exp1 ([-2, 2]), exp2 ([-13, 1])

• Exponential with iterative algorithm: expIter ([−214,0]) (p14 in section 4)

• ReLU: relu ([-50, 50])

• Tanh: tanh1 ([-5, 5]), tanh2 ([-16, 16])

Table 14: Types of polynomials used in the block operations for each task.

LayerNorm Attn FFN Class. head Loss (Softmax) AdamW-HE

CoLA

sqrtInv expIter relu
tanh1 exp1, inv1

sqrtInv

MRPC
RTE

STSB

tanh2 exp2, inv2SST-2
QNLI

We plot some core polynomial functions used in our work: expIter, sqrtInv, and relu. See Figure 6
and 7. For ReLU and 1/

√
x, we slightly modify to use approximations of these functions in the fixed

input range. When we approximate 1/
√
x, if the input range lies outside the interval [0.0005, 1], we

divide a predetermined number M for the inputs to belong in [0.0005, 1]; for an input x, we calculate
as

1√
x
=

1√
x/M

× 1√
M

. (3)

For ReLU, we set K > 0 and for an input x calculate as

ReLU(x) = KReLU
(x

K

)
.

using the homogeneity of ReLU. In the experiments, we set K = 50. You can see in Figure 7 the
comparison of these functions and their approximations.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Figure 6: The graph of approximation p14(= expIter) on
[
−214, 0

]
of the exponential.

Figure 7: The graphs of approximated inverse square root and ReLU on [0.0005, 1] and [−1, 1],
respectively.

G COMPUTATION ADVANTAGE OF LORA AND GAUSSIAN KERNEL FOR
LARGER MODELS

In section 5.2, we saw that CCMM is approximately 4.58 × slower than PCMM when performing
matrix multiplication with dimensions 128×768 and 768×768, where 768 is the embedding size.
Also, calculating attention scores using softmax is approximately 6.24 × slower than using GK.
However, when the embedding dimension and sequence length become larger, as in GPT-4 (OpenAI,
2023), the gain in computational time by LoRA and GK is amplified. In this section, we calculate the
time required to perform PCMM and CCMM and to obtain attention score through softmax and GK
as the embedding dimension and the sequence length increase. See the Table 15 for the results.

Table 15: Computation times for performing PCMM and CCMM with 128× n by n× n matrices,
and evaluating Softmax and GK on a n-dimensional input. Factor in each table represents the ratio of
computation times between two operations. As the dimension n increases, the performance gains
become larger.

(a) Comp. time for PCMM vs. CCMM.

Dim. (n) 256 512 768

PCMM (s) 0.138 0.139 0.275
CCMM (s) 0.297 0.463 1.259

Factor 2.15 3.33 4.58

(b) Comp. time for GK vs. Softmax.

Dim. (n) 128 256 512

GK (s) 0.17 0.34 1.36
Softmax (s) 1.3 2.86 13.04

Factor 7.65 8.41 9.59

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Figure 8: Computation time comparison between PCMM with CCMM for 128× n matrix by n× n
matrix multiplications according to input dimension n. As the input dimension increases, CCMM
becomes progressively slower compared to PCMM.

Figure 9: Computation time comparison between Softmax and GK according to input dimension n.
As the input dimension increases, Softmax becomes progressively slower compared to GK.

H CLASSIFICATION ACCURACY AND PRECISION

Here, we present the classification accuracy and average precision of our HE model during inference
with fine-tuned weights, comparing the results with evaluation under plaintext. Based on these figures,
we can conclude that the inference results under HE are closely aligned with those in plaintext.

Table 16: Classification accuracy and average precision, compared with plaintext inference results.
Since STSB is not a classification task, we could not calculate the precision. Acc indicates how
closely the class obtained from HE evaluation matches the class predicted in plaintext evaluation. HE
inference results are similar to the results in plaintext inference.

COLA RTE MRPC STSB SST2 QNLI

Acc 0.99 0.99 1.00 - 1.00 0.99
Avg prec. (bits) -9.32 -13.48 -10.97 -8.03 -11.15 -9.59

26

	Introduction
	Prior work
	Contributions

	Server-client computation model and preliminaries
	Server-client computation model
	Homomorphic encryption and CKKS
	Large language models, attention layers, and LoRA fine-tuning

	Speedup with LoRA: Avoiding large CCMM
	Speedup with Gaussian kernel: Poly-apx-friendly design
	Experimental results
	Experimental setup
	Time measurments
	Downstream task performance on encrypted language models

	Conclusion
	Diagram: Full fine-tuning vs. LoRA fine-tuning in BERT
	CKKS functionalites
	Homomorphic matrix multiplication algorithm
	Optimizations for homomorphic matrix multiplication
	Homomorphic matrix multiplication
	LoRA style CCMM
	LoRA-friendly packing
	Optimized homomorphic LoRA matrix multiplication algorithm
	Comparison Rectangular MM and optimized LoRA CCMMs

	Experimental details under HE
	Utilized polynomials for each downstream task
	Overview of polynomial approximations used in our target model.
	Polynomials for each downstream task

	Computation advantage of LoRA and Gaussian kernel for larger models
	Classification accuracy and precision

