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ABSTRACT

Prompt engineering and finetuning aim to maximize language model performance
on a given metric (like toxicity reduction). However, these methods do not fully
elicit a model’s capabilities. To reduce this gap, we introduce a form of activation
engineering: the inference-time modification of activations in order to control (or
steer) model outputs. Specifically, we introduce the Activation Addition (ActAdd)
technique, which contrasts the intermediate activations on prompt pairs (such as
“Love” versus “Hate”) to compute a steering vector (Subramani et al., 2022). By
tactically adding in e.g. the “Love” — “Hate” steering vector during the forward
pass, we achieve SOTA on negative-to-positive sentiment shift and detoxification
using models including LLaMA-3 and OPT. ActAdd yields inference-time control
over high-level output properties (like topic and sentiment) while preserving perfor-
mance on off-target tasks. ActAdd is lightweight: it does not require any machine
optimization and works with a single pair of data points, which enables rapid
iteration over steering. ActAdd demonstrates the power of activation engineering.

1 INTRODUCTION

LLMs contain hidden capabilities we do not know how to fully elicit (Korinek, 2023). Naively
prompting a model with a question does not maximize the probability of the correct response. For
example, consider how prompting a model to think “step-by-step” (Wei et al., 2022) massively
improves performance on a range of benchmarks. Similarly, “few-shot” prompting a model with
correct answers to unrelated in-distribution questions allows “in-context learning” for e.g. stronger
performance on NLP tasks (Brown et al., 2020). Importantly, these interventions do not supply
the LLM with extra task-relevant information or update the algorithm implemented by the LLM’s
computational graph. Even though the model is initially able to score higher on these benchmarks,
those capabilities do not emerge without a specific intervention. We therefore hypothesize an
elicitation overhang: we do not know how to elicit all relevant abilities and information from models.

Prompt engineering is the most obvious way to steer a model, but prompting has limited reliability
(Ye & Durrett, 2022; Wang et al., 2024). Therefore, to reduce the elicitation overhang, we explore a
new modality for steering language model outputs. By strategically perturbing activations during the
forward pass, we hope to more reliably and effectively steer models compared to prompt engineering.
This is a form ofactivation engineering.

We suspect that compared to prompt engineering, activation engineering can elicit a wider range of
model capabilities. Consider, for example, a model optimized to imitate the text outputs of eloquent
poets and awkward mathematicians. The model may contain the internal mechanisms required to
output text which is both eloquent and mathematical. However, if the model is an accurate estimator
of the training distribution, it will (correctly) assign low probability to eloquent mathematical prose.
Because nothing in the training data was both eloquent and mathematical, there may exist no prompt
which elicits mathematical prose. In contrast, activation engineering might be able to simultaneously
activate the circuitry for eloquent speech and for mathematical content.

To demonstrate the power of activation engineering, we introduce Activation Addition (ActAdd).
Suppose we want to achieve negative-to-positive sentiment control (Li et al., 2018; Dathathri et al.,
2020). To achieve this, ActAdd first compares the model’s activations on a contrast pair of prompts,
such as the prompts “Love” and “Hate.” The otherwise-similar prompts differ along the target
dimension of sentiment. ActAdd then computes the difference of these activations in order to



compute steering vectors. These vectors act like “virtual bias terms” because ActAdd directly adds
the steering vectors to the forward pass at inference time. By shifting the inference-time activations
along the direction of the steering vector, ActAdd steers the model towards text with the vector’s
meaning (Table 1).

Table 1: The impact of ActAdd. The steering vectors are computed from (“Love” - “Hate”) and (“I
talk about weddings constantly” - “I do not talk about weddings constantly””). Appendix Table 6
shows more examples.

Prompt + steering = completion

[None] ...you are the most disgusting thing I have ever seen.
I hate you because...

A(;:(t)‘égd ...you are so beautiful and I want to be with you forever.
...“I'm sorry, I can’t help you.”
[None] “No,” he said. “You’re not.”

I went up to my

friend and said... ...“I’'m going to talk about the wedding in this episode of
ActAdd . P .
(weddings) Wedding Season. I think it’s a really good episode.
It’s about how you’re supposed to talk about weddings.”

Contributions. We unify past literature on related topics to introduce activation engineering. To
better elicit the full capabilities of models, we introduce the ActAdd steering method, which achieves
SOTA on toxicity reduction and sentiment control. We thoroughly test the steered models to verify the
preservation of their general capabilities. We therefore show the promise of ActAdd as an effective
and cheap method for steering LLM outputs.

2 RELATED WORK

Latent space arithmetic. Computer vision researchers have long demonstrated the ability to steer
image generation using derived vectors, including steering latent variables — most famously, shifting
activations along a direction that corresponds to smiling in images (Larsen et al. 2016; White 2016).
Similarly, in the text domain, classic results on the word2vec embedding show that arithmetic on
word vectors can capture some parts of semantic reasoning (for instance, analogies: Mikolov et al.
2013b;a). Our work focuses on steering generative language models.

LLM steering. Many approaches attempt to affect the output of a pretrained LLM, whether:

* Intervening on weights, as with supervised finetuning, RLHF, steerable layers, and weight editing
(that is, targeted fine-tuning) (Ranzato et al. 2016; Ziegler et al. 2019; Dathathri et al. 2020; Meng
et al. 2023; Ilharco et al. 2023). However, naive RLHF, finetuning, and weight editing have known
side-effects on overall model performance (Hase et al. 2023; Qi et al. 2023; Brown et al. 2023);

o Intervening at decoding, as with guided or trainable decoding (Gu et al. 2017; Grover et al. 2019;
see Zhang et al. 2022a for an overview of controlled generation and Jin et al. 2022 for textual style
transfer);

e Intervening on the prompt, as with automated prompt engineering (Shin et al. 2020; Zhou et al.
2022);

* Intervening on token embeddings, as with ‘soft prompting’ (Li & Liang 2021; Lester et al. 2021;
Khashabi et al. 2022);



* Intervening on activations, for instance by freezing the weights of the LLM and searching for a
‘steering vector’ of activations, e.g. using gradient descent (Subramani et al. 2022; Hernandez
et al. 2023). These optimized extraction methods, which search for a steering vector, differ from
extraction methods which directly compute it (present work and Li et al. 2023b). In our work, we
do not use gradient descent or other optimization methods.

Table 2: Locating our work in the steering literature.

Vector intervenes on model ...

Intervention vectors obtained via ... Weights ... activations
Differences after fine-tuning Ilharco 2023 N/A
Dathathri 2020
) Meng 2022, )
Per-query gradient-based search Subramani 2022
Orgad 2023
Hernandez 2023

ActAdd (present work),

Differences between prompt pairs N/A
Liet al., 2023b

Activation engineering. Activation engineering involves creating vectors of activations which
cause desired changes to output text when added to the forward passes of a frozen LLM (Dathathri
et al. 2020). Table 2 organizes prior work by intervention type.

An early antecedent is the Plug-and-Play Language Model of Dathathri et al. 2020. This uses a
separate classifier (one classifier per attribute to steer towards) to perturb the model’s activations to
generate text that accords more closely with the classifier’s target. Subramani et al. 2022 extract latent
steering vectors from a frozen LLM, successfully discovering sentence-specific vectors which steer
completions to near-perfect BLEU scores (i.e, control of the LLM’s generation) and unsupervised
style transfer. However, the method requires running gradient descent for each new steering vector.
Hernandez et al. 2023 locate and edit an LLM’s knowledge through learning an encoding of facts in
its activation space. Ablating attention heads can also be seen as activation engineering, though the
technique is mostly used for model interpretation rather than steering (Michel et al. 2019; Olsson
et al. 2022).

Independently, Li et al. 2023b developed a similar method (ITT) which computes steering vectors
which are selectively applied according to trained linear probes. They use these probes to find
attention heads with different activation distributions for true and false statements. They steer the
model toward truthful outputs, where our experiments cover a range of goals. In addition, ITI adds
the same steering vector at all sequence positions during inference and ITI requires dozens of samples.
In contrast, ActAdd we add steering vectors to a subset of sequence positions and require as few as 2
samples. Similar work on ‘in-context vectors’ also followed ours (Liu et al. 2023). Lastly, Zou et al.
2023’s “representation engineering” also followed our work. They develop a range of techniques for
deriving steering vectors and for steering models using activation-space edits and optimization. In
comparison to Zou et al. 2023, we steer different models (LLaMA-3, OPT, GPT-2, and GPT-J) on
different tasks (detoxification and sentiment control).

By contrast, the interpretability technique activation patching involves replacing some activations
instead of adding a vector (Heimersheim & Nanda 2024). Vig et al., 2020 use a related method,
causal mediation analysis to locate the components of a trained model that mediate gender bias.

3 HOW ACTIVATION ADDITION WORKS

We use decoder-only Transformer neural networks (Vaswani et al. 2017). The LLMs in this work con-
tain a stack of Transformer layers, each consisting of multi-head attention (MHA) and a feedforward
network (FFN). We focus on its “residual streams” (Elhage et al. 2021), the sequences (X, ..., X, )
of intermediate activation vectors processed by each layer. ActAdd manipulates the residual stream
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Figure 1: Schematic of the Activation Addition (ActAdd) method. (D = natural language text;
@ = vectors of activations just before a specified layer. In this example, the output is heavily biased
towards discussing weddings, regardless of the topic of the user prompt. (See Algorithm 1 for the
method’s parameters: intervention strength, intervention layer, and sequence alignment.)

values h' input to layer . Each layer performs MHA and FFN computations on x;, adding x; 1 to
the stream. The final vector x,, in the stream can then be decoded into the next-token prediction. At
inference time, the residual stream is initialized h' with the embedding of the tokenized prompt.

Activation addition. Our method takes a pair of natural-language prompts (p4, p—_), where p
represents the property we wish output text to emphasise (e.g. love) and p_ represents its opposite
(e.g. hate or indifference). hﬁr is the activation vector for the prompt p, at layer [. The difference
hi —h' is a new activation vector which (intuitively) captures the difference between a prompt with
the target property, and a prompt without it. The steering vector is computed before inference time.

Algorithm 1 ActAdd, optimization-free activation addition

Input: (py,p_) = steering prompt pair, tokenized
p* = user prompt
[ = target layer
¢ = injection coefficient
a = sequence position to align h4 and h,,-
M = pretrained language model

Output: S = steered output

(P/y,p") + pad_right_same_token_len(py,p-)
hl, «+ M.forward (p’ i i l
Y . P, ).activations [[]
h! « M.forward (p_).activations [l]
hY, « h!, —h’
h! « M .forward (p*).activations [l
S < M .continue_forward (chy, + h'[a])

To obtain a steering vector, we perform a forward pass on each prompt, record the activations at the
given location in each pass, take the difference hl+ — h! , and then finally rescale this difference in
activations by an ‘injection coefficient’ c. To steer, we add the resulting activation vector to the input
of layer [ and allow the forward pass to continue, and so obtain our steered output. ¢ represents the
intervention strength, since it multiplies the steering vector’s contribution to the residual stream.!
We perform hyperparameter tuning to select c and also the injection layer [. As expected from past
work (Subramani et al. 2022; Mini et al. 2023), intervening at the middle layers is most effective. See
Appendix C for more details.

Algorithm 1 and Figure 1 depict the resulting ActAdd method. In the appendix, Figure 6 illustrates
a figurative example of steering a model with ActAdd if that model had one-dimensional residual

'Tt’s typical for the intervention strength c to have a magnitude less than 15.



streams (rather than e.g. GPT-2-XL’s 1600 dimensions). A runnable notebook can be found at
tinyurl.com/actadd.

We test whether 1) steering vectors are effective at eliciting the desired behavioral shift, and 2)
whether they preserve the general capabilities of the model. We run perplexity-based experiments on
GPT-2-XL (1.5B parameters, Radford et al. 2019). We then run toxicity and sentiment experiments
on OPT (Zhang et al. 2022b) and LLaMA-3 (Meta 2024).

4 RESULTS: ACTIVATION ADDITION WORKS
A summary of all experiments can be found in Table 5.2

4.1 ACTADD INTUITIVELY MODIFIES NEXT-TOKEN PROBABILITIES

We consider the OpenWebText corpus (Peterson et al. 2018). Our running example is the “wedding”
topic vector produced by setting p; = weddings,p_ = ', =16,c=1.

4.1.1 ACTADD REDUCES PERPLEXITY ON A TARGET TOPIC

For each document d; € D in OpenWebText Figure 2: The perplexity ratio compares the rel-
(Peterson et al. 2018), we first calculate the fre- ative predictive performance of ActAdd and an
quency of wedding-related words.> If a doc- unmodified model. Lower is better. Adding the
ument contains one of these words, the docu- wedding steering vector improves performance on
ment is considered wedding-related. We ran- wedding-related text while preserving performance
domly sample 300k documents, half of which on unrelated text.

are wedding-related.

We split the documents into sentences and 100.0%
measure GPT-2-XL'’s perplexity on both the
wedding-related and wedding-unrelated sen-
tences. If the model is effectively steered to gen-
erate wedding-related text, it should assign that
text higher probability (and thus achieve lower
perplexity). For more details, see Appendix C.3.

99.5%
99.0%
98.5%
98.0%
97.5%

Figure 2 shows the ActAdd perplexity relative 97.0%

to the unmodified model. In sentences where
the injected topic (weddings) is more relevant,
ActAdd’s perplexity is lower and predictive per- 0.0% 1.0% 2.0% 3.0%
formance increases. Wedding word frequency

96.5%

Perplexity ratio (act-add / baseline)

96.0%

4.1.2 ACTADD’S IMPACT ON TOKEN PROBABILITIES

To test if the intervention is affecting relevant tokens or reducing perplexity in some spurious way,
we observe the shift in the distribution of token log probabilities. We do this by randomly sampling
500 documents from the above OpenWebText sample and recording the log-probabilities assigned
by the baseline and steered models. This results in a dataset of about 500k tokens, of which 29k are
unique. We then group by token, filter for tokens with >20 instances in the dataset, and calculate the
mean perplexity difference between the ActAdd and baseline models. By displaying these as a Q-Q
plot (Gnanadesikan & Wilk 1968), we can inspect outlier shifts in token probability.

Appendix Figure 9 shows the resulting mean log-probability difference distribution. We see that
is approximately normal for the bulk of the tokens but with clearly heavy tails. The positive tail is
significantly heavier than the negative tail, suggesting that one set of tokens are reliably increased
in probability, with a smaller set of tokens reliably decreased to a lesser extent. Outlier tokens
can be found in Appendix Table 11. The probabilities most increased on average are primarily
wedding-related. The bottom tokens share no obvious theme and show a significantly lower absolute
change in probability.

2Code repository for our experiments: https://zenodo.org/records/14177088.

wedding, weddings, wed, marry, married, marriage, bride, groom, and honeymoon.



4.1.3 ACTADD STEERS THE MODEL TO DISCUSS WEDDINGS

At what layer are steering vectors most effective? Sweeping over GPT-2-XL injection layers for the
wedding vector, we measure the average count of wedding-related words given a steering vector
injected at each layer.

The intervention is already effective at the very
first layer, rises in effectiveness until layer 6, and
then declines. For the optimal injection site, we
see >90% success in topic steering (compared
to a ~2% baseline). Figure 3 shows the results
of the layer sweep.

0.8

0.6

0.4

4.2 ACTADD CAN

CONTROL WHAT THE MODEL TALKS ABOUT 02

baseline
0
0 10 20 30 40

Layer

Non-zero wedding word count fraction

Method. Steering vectors can elicit generations
on arange of topics — not just weddings. Starting
from a generic prompt, we use GPT-40-mini to
score whether the generations are about a target
topic. Specifically, we generate 1000 comple-
tions from the unsteered model and 1000 for
each target single-token ActAdd intervention
(where each token is about a different topic).
Compared to the baseline generations, we record
how much more frequently the steered model
discusses the target topic. See Appendix C.2 for
full details.

Figure 3: P(steered completion contains wedding-
related words) as a function of injection layer; i.e.
the fraction of completions that contain at least
one of the hand-picked words wedding, weddings,
wed, marry, married, marriage, bride, groom, and
honeymoon.

Results. Figure 4 records a large boost in relevance (5-20%) on all topics at injection coefficient
¢ = 2 (with the exception of “art”).

gpt-4o-mini scored relevance of ActAdd completions on generic topics

A% Topic Relevance (vs Unedited)

art finance music politics science weddings
Topic

Figure 4: GPT-40-mini scored relevance of ActAdd completions on a range of generic topics.

4.3 ACTADD CAN REDUCE TOXICITY

Method. We benchmark toxicity reduction by generating steered continuations from RealToxici-
tyPrompts (Gehman et al., 2020). Following Pei et al. 2023 we use a random subset n = 1, 000. We
repeat this sampling 5 times to obtain p-values (¢-test against SOTA), bolding rows which are better
with p < 0.05. For each continuation, we use the Perspective API to score toxicity.



Results. To establish a common scale, we reused the baselines and PREADD results from Pei
et al. 2023, adding Air-Decoding Zhong et al. 2023 and FUDGE Yang & Klein 2021. This yields
6 baselines to compare ActAdd against. (We also considered Gu et al. 2022 (which reported 0.043
toxicity), but we could not reproduce the results; also, their disfluency (54.6) is too high for practical
use.) We compare to ActAdd using OPT (Zhang et al. 2022b) and LLaMA-3 (Meta 2024).4

As shown in Table 3, ActAdd-OPT has 8% lower toxicity than the second-best, PREADD-D-OPT,
and ActAdd-LLaMA-3 gives a 5% drop over LLaMA-3 with a very small fluency penalty.

Table 3: Results on RealToxicityPrompts (random n=1000). The OPT used is 6.7B parameters,
LLaMA-3-8B. Bold is p < 0.05 against second-best. Gray text denotes numbers reported by Pei et al.
2023 (PREADD), Yang & Klein 2021 (FUDGE), or Zhong et al. 2023 (Air-Decoding). More recent
models are less toxic by default. However, ActAdd-OPT is the least toxic of the OPT interventions
and even outperforms an unsteered LLaMA-3.

Control Type Method Model Toxicity | (Dis)Fluency | Relevance 1

Unsteered baseline OPT 134 8.9 .369

Prompting baseline OPT .200 543 294

Steering vector ActAdd OPT 112 13.8 .329
Controlled gen. FUDGE GPT-2-M 128 22.1 329
Contrast. decoding PREADD-S OPT 134 51.7 290
Contrast. decoding PREADD-D OPT 122 56.6 326

Gradient-guided gen.  Air-Decoding  GPT-2-L 185 48.3 -

Unsteered baseline LLaMA3 .114 6.3 391

Steering vector ActAdd LLaMA3 .108 6.7 .365

4.4 ACTADD CAN CONTROL SENTIMENT

Method. To evaluate sentiment, we use the Stanford IMDb dataset (Maas et al., 2011). Our goal is
for the model to continue each review but with the opposite sentiment. We compute the proportion of
generated outputs with the desired sentiment, as classified by a model finetuned on sentiment data,
SiEBERT (Hartmann et al. 2023). For quality controls, we follow the conventional use of conditional
perplexity to mark (dis)fluency, obtained using GPT-3 davinci-002 logprobs. We use cosine
similarity between the prompt and continuation sentence embeddings to gauge the relevance of text
in [0, 1]. We evaluate sentiment changes from positive to negative and vice versa on a random subset
of n = 1,000 and repeat to obtain p-values.

Table 4: Results on IMDb sentiment. “Steering” denotes the probability of changing sentiment
classification (called “success” in the baselines’ papers). Bold results represent p < 0.05 compared
to the second-best. Gray text denotes numbers reported by Pei et al. 2023. Underline denotes best
steered result. Fluency is worse under all steering methods; 1.5x to 3x worse for ActAdd, 7x worse
for PREADD.

positive to negative negative to positive
Method Steering T Disfluency | Relevance{ Steer. T Disflu.| Rel. 7
ActAdd-OPT 0432 24.2 0.387 0.564 20.95 0.363
ActAdd-LLaMA3  0.268 8.6 0.354 0.669 15.2 0.275
OPT-Baseline 0.175 8.95 0.430 0.445 9.38 0.423
LLaMA3-Baseline 0.138 5.8 0.437 0.417 6.09 0.426
OPT-Prompt  0.307 53.5 0.298 0.365 50.9 0.287
FUDGE 0.532 25.1 0.311 0.551 22.7 0.320
PREADD-S-OPT 0.631 68.4 0.253 0.624 67.1 0.258

“We do not compare against finetuning because we wish to consider lighter-weight interventions which
require minimal gradient updates.



Results. Table 4 shows that our method is competitive on a conventional measure of sentiment
control (Maas et al. 2011). We obtain state of the art success at steering from negative to positive
sentiment. While. The only method which outperforms ActAdd in the positive to negative direction
incurs a large penalty to fluency (68.4 vs 24.2, when matching methods on the same pretrained model)
and relevance.

4.5 ACTADD PRESERVES THE MODEL’S GENERAL KNOWLEDGE

Method. We use ConceptNet from the LAMA benchmark, a general knowledge dataset (Petroni et al.
2019, n = 29, 774 sentences, see Appendix Table 10). The model is given a prompt and then has
to predict a factual completion. The task is intended for both causal and masked models, so some
examples are difficult for causal-attention models (like GPT-2) due to the extremely limited context.

For each sentence, we run the model on its prompt with and without the wedding activation
addition. PQK is the probability that the expected label is among the model’s top-K predicted
tokens, conditioned on the prompt. We score the baseline and modified models by calculating mean
PQK values for a range of K. Finally we plot these for both modified and unmodified models over
arange of K values.

Results. Figure 5 shows that on the ConceptNet benchmark of factual questions, our method has a
negligible impact on off-target answer probabilities (i.e. where the domain is unrelated to the steering
vector).

0.5 model

045 baseline

— with act-add

0.4
0.35
0.3

mean P@K

0.25

Figure 5: Testing side effects ofActAdd with the ConceptNet benchmark (Petroni et al. 2019).
‘PQK is the probability of the correct answer being in the model’s top K answers. Our method has
a negligible impact on off-target probabilities across a range of top-K values.

5 DISCUSSION

Algebraic combination of forward passes ActAdd can be viewed as composition of separate
forward passes. For example, we compose h, h_ and h* to produce steered output. We were
surprised that forward passes can “compose” in this way, despite the model not being trained to
allow this operation. The composability of forward passes is itself evidence for compositional
representations (Olah 2023), independent of the evidence from task-composition arithmetic on
weights (Ilharco et al. 2023).

Limitations To steer the model using an ActAdd vector, the user supplies the injection coefficient
c and the intervention layer [. So far we have had success with fixing the sequence alignment a = 1.
Overall, these free hyperparameters make ActAdd less user-friendly than simple prompt engineering.
Thankfully, the user does not have to perform a fresh hyperparameter sweep for each use case; in
practice, intervention hyperparameters are stable. We include examples of failed steering vectors
in Appendix Table 7. We also have not examined ActAdd’s potential impact on reasoning. ActAdd
is not immediately applicable given only API access to a model. The model must both cache and
expose intermediate activations at the given layer (Bloom & Nanda 2022). Currently, APIs generally
do not allow for this.



Activation engineering vs finetuning Finetuning is better understood and more flexible — we doubt
that activation engineering can e.g. teach a model a new skill. However, finetuning is significantly
more costly and may not be able to elicit the same kinds of capabilities which activation engineering
can elicit. The first advantage of ActAdd is efficiency: the method requires no backward passes and
can thus run on any machine that can perform inference rather than training. Implementation effort
is also greatly reduced; only forward passes are required to find a suitable (p, p—) and minimal
labelled data is required - just the steering prompt pair. We discovered most of the example contrast
pairs in Appendix Table 6 in minutes. All things considered, even nontechnical users can benefit
from rapid feedback and relatively easy iteration

Activation engineering vs prompt engineering Activation additions can be continuously weighted,
while prompts are discrete — a token is either present, or not. To more intensely steer the model
to generate wedding-related text, our method does not require any edit to the prompt, but instead
just increasing the injection coefficient. See Appendix B for suggestive experiments on ActAdd vs
prompting. Unlike system prompts, activation additions do not take up token space in the model’s
context window, although this is a small benefit in the era of multi-million token context windows.
While prompting is more flexible and even cheaper than ActAdd, activation additions may elicit
capabilities which prompting cannot (as evidenced by our superior results over prompting; see also
the speculation in Section 1).

Interpretability of LLMs In most programs, adding values to imprecisely targeted intermediate
memory locations would not yield sensible results. Why expect this from Transformers? A growing
consensus is that the activation space of an LLM contains directions which represent high-level
latents causally involved in what is generated (Burns et al. 2022; Moschella et al. 2023; Li et al.
2023a; Nanda 2023; Li et al. 2023b). Our hypothesis, following Elhage et al. 2022, is more specific:
that neural networks represent features of the input as directions in activation space, that is, with a
linear representation (Park et al. 2023). Moreover, the direction in activation space that corresponds
to (say) a love-hate latent variable stays approximately the same across a broad class of inputs. Alain
& Bengio 2018 use linear probes on residual streams to infer that LLM representations are at least
partially linear; if a linear probe can predict some feature of text output from the residuals with
high accuracy, this forms evidence that the feature is represented linearly (i.e. as a simple direction)
(Nanda 2023). The success of activation addition gives stronger, experimental evidence of feature
linearity, demonstrating that models use feature-related information. Consider the central Love -
Hate vector example: we add it to the forward pass and so increase love-related completions. On the
examined prompts, this direction is responsible for steering the rest of the model towards love-related
completions. In general, steering vectors establish causality, at least in the limited set of contexts
examined.

Value alignment of LLMs Activation engineering is a promising way to control LLMs. Successor
methods may be able to provide general steering methods (e.g. through some analogue of a Be
helpful vector). Alongside contemporaneous work (Li et al. 2023b; Liu et al. 2023), our exper-
iments suggest that activation engineering can flexibly retarget LLM behavior without damaging
general performance. We speculate that ActAdd changes the model’s currently active mixture of
goals and priorities. Suitably developed, the activation engineering approach could enable safety
progress while preserving overall capabilities

6 CONCLUSION

While methods like prompt engineering, controlled decoding, and finetuning have benefits, they
fail to elicit full capabilities from language models. To more reliably elicit these abilities, activa-
tion engineering strategically perturbs activations at inference time. In particular, we introduced
Activation Addition to steer models by shifting their inference-time activations along a certain direc-
tion (like the “Love”-“Hate” vector). ActAdd is lightweight and effective, achieving SOTA on toxicity
reduction and sentiment shift while retaining overall model capabilities. ActAdd demonstrates the
promise of activation engineering. We look forward to future work realizing this promise.



REPRODUCIBILITY STATEMENT

Our code is available here: https://zenodo.org/records/14177088. The following is
an exhaustive list of models used, sampling strategies used, and searches run:

Data processing To curate a wedding-related subset of OpenWebText, we retained documents
with wedding-related words (see Section 4.1.1). The only pre-processing performed is to remove
sequences of null characters. Each document is split into sentences s; € d; using the Punkt tokenizer
(Strunk 2013).

Models After observing success with GPT-2-XL, to replicate our results, we subsequently repeated
the same experiments with Llama-1-13B (Touvron et al. 2023) and GPT-J-6B (Wang & Komatsuzaki
2021). Our toxicity and sentiment experiments use OPT (Zhang et al. 2022b) and LLaMA-3-8B Meta
2024. See Appendix E for details. We use a11-MiniLM-L6-v2 (Reimers & Gurevych 2019) to
compute sentence embeddings to calculate relevance using cosine similarity. For the success score,
we use the SIEBERT (Hartmann et al. 2023) sentiment classifier. We perform sentiment classificaton
with the SiIEBERT classifier (Hartmann et al., 2023).

APIs For scoring toxicity, we use https://www.perspectiveapi.com/. For scoring
fluency, we use OpenAl davinci-002. The PREADD baseline instead used the discontinued
davinci-001 model.

Seed We ran all generations on seed 0. After collecting all other data, we validated that our
qualitative results transfer to seeds 1 and 2.

Sampling hyperparameters We precommitted to fixed sampling hyperparameters, selected before
experiments began. We held them fixed throughout our data collection. Those sampling hyperpa-
rameters were temperature= 1.0, freq_penalty= 1.0, and top_p=0.3. Since this top_p
value seemed a bit unusual to us in retrospect, we invited an external researcher to reproduce this
process with an unmodified GPT-2-XL and report the best sampling hyperparameters they found.
This second experiment was blinded, as they did not know the values we used. They found that
temperature= (0.6 and top_p= 0.5 produced better GPT-2-XL capabilities. We reran all our
qualitative results at this setting, and they all reproduced (subjectively, more impressively).

We use the same sampling hyperparameters for the toxicity and sentiment experiments. Numbers
reported by the other authors were obtained with freq_penalty= 0.0, and top_p=1.0.

In replicating the unsteered OPT sentiment baseline, we find that the NegToPos direction is consis-
tently higher success than PosToNeg. This holds across different combinations of model hyperparam-
eters, including those in Pei et al. 2023. However, PREADD Pei et al., 2023 reports similar success
results for both (i.e. a much lower NegToPos success). The OPT results use our calculated values.

Reporting the best of K completions We generated K = 3 completions for each qualitative
demonstration, for both normal and steered forward-passes. Appendix Table 6, shows the subjectively
most compelling completion pair out of the first three seed-0 completion-pairs. You can see all top-3
completions for the entries in this notebook: tinyurl.com/actadd3. We share activation additions
which work well. We iterated over contrast pairs to get these to work, although several striking
results were generated within [first author’s] first hour of using the technique. Out of the 12 activation
additions we thought demonstrated a distinct ability of the method, we decided not to include 1
because its first three seed-0 completions were unusually unimpressive. We include the remaining 11
in Table 6.

ActAdd hyperparameters (I, c) This section does not have complete statistics. We perform simple
grid search, usually between ¢ € [3,20] and [ € [6, 24].

Hardware: GPU: Nvidia RTX A5000, CPU: Intel Core i9-10900X CPU @ 3.70GHz. 24GB GPU
RAM, 32GB system RAM
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Relevant libraries and frameworks: Operating system: Ubuntu 22.04.1 LTS, numpy: 1.24.3,
pandas: 2.0.1, torch: 1.13.1, transformer—-lens: 1.4.0.
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