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ABSTRACT

We present ALLaM: Arabic Large Language Model, a series of large language
models to support the ecosystem of Arabic Language Technologies (ALT). ALLaM
is carefully trained considering the values of language alignment and knowledge
transfer at scale. Our autoregressive decoder-only architecture models demon-
strate how second-language acquisition via vocabulary expansion and pretraining
on a mixture of Arabic and English text can steer a model towards a new language
(Arabic) without any catastrophic forgetting in the original language (English).
Furthermore, we highlight the effectiveness of using parallel/translated data to aid
the process of knowledge alignment between languages. Finally, we show that
extensive alignment with human preferences can significantly enhance the per-
formance of a language model compared to models of a larger scale with lower
quality alignment. ALLaM achieves state-of-the-art performance in various Arabic
benchmarks, including MMLU Arabic, ACVA, and Arabic Exams. Our aligned
models improve both in Arabic and English from their base aligned models. Ara-
bic assets are released in Hugging Face. 1

1 INTRODUCTION

Language modeling has significantly progressed from its humble origins, transitioning from funda-
mental probabilistic methods to complex neural priors. The foundational work by Shannon (1951) on
the information theory of language laid the groundwork for predicting the next word in a sequence,
which was subsequently tackled by Bengio et al. (2003) in neural networks. The field experienced
a substantial leap with the introduction of LSTMs (Hochreiter & Schmidhuber, 1997) in language
models (LM) (Peters et al., 2018b), which could capture longer dependencies in LMs but proved dif-
ficult to scale. The emergence of scalable and distributed architectures like Transformers (Vaswani
et al., 2017) and the potential for precisely (Kaplan et al., 2020; Hoffmann et al., 2022) compress-
ing web-scale data has resonated in recent years with the advancements of Generative Pretraining
(Radford et al., 2018; Brown et al., 2020a; Anil et al., 2023).

With the release of ChatGPT (OpenAI, 2022), followed by the introduction of more frontier class
models Gemini (Google, 2024), Claude (Anthropic, 2022), Reka (Ormazabal et al., 2024),
Mistral (Mistral, 2024), Llama-3 (Meta, 2024) and recently released Qwen-2 (Yang et al.,
2024), large language models have demonstrated significant leaps over each generation of models
(Laskar et al., 2023). This exponential growth in performance has raised hope in the possibility of
achieving Artificial General Intelligence (Hendrycks & Mazeika, 2022; Marcus, 2022). This rapid
advancement has spurred discussions across various fields, including ethics, economics, and technol-
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Figure 1: Performance on Arabic (Koto et al., 2024) and English (Hendrycks et al., 2020) MMLU Benchmarks.
ALLaM (red line) shows impressive improvement from its base model Llama-2 (yellow line). All evaluations
were done on the latest version of the fine-tuned (chat or instruct) models. The ALLaM 7B from scratch model
also shows significant improvement over the ALLaM 7B continued pretraining model.

ogy (Weidinger et al., 2021). Judging from the initial capabilities (Bubeck et al., 2023), the potential
of these frontier models are reinventing the way humans interact with machines, impacting social
norms, productivity, trends, and culture on a broader scale (Zhou et al., 2024). However, most of
these frontier-class models are primarily trained on English and often lack a connection to localized
regional cultures and norms (Naous et al., 2024). This gap has the potential to result in slow and
irreversible manipulation of regional identities and lead to cultural homogenization.

The natural course to reverse this trend is to invest resources in curating data and building models
to support the diversity of languages and cultures represented in the modern world. While this is
possible, the significant training costs of LLMs and their environmental impact have become major
concerns in recent years (Strubell et al., 2019). The vast computational resources required to train
LLMs contribute to substantial carbon emissions (Luccioni & Hernandez-Garcia, 2023). Govern-
ments 2 and non/for-profit organizations (Dodge et al., 2022; Google, 2021; Amazon, 2021), are
increasingly aware of these issues. This awareness has led to discussions about the ethical implica-
tions of AI development and the need for sustainable practices concerning “When and how to scale
the training of these models”. In addition, curating data for each language/region at pretraining scale
is also a difficult task, since most available data comes from a few high-resource languages.
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Figure 2: Comparison of tokenizer fertility scores.
The chart illustrates the fertility scores across four
tokenizers: Llama-2, ALLaM Arabic only, ALLaM
merged with Llama-2, and ALLaM Arabic/English
(from scratch model). We calculate the fertility over a
random subsample of the entire English, Arabic, and
code training corpus.

To address these concerns, we consider the
problem of adapting strong, but potentially
under-trained, open pretrained models, rather
than starting from a randomly initialized model.
Technically, this involves continuing training of
a model in a new language to facilitate Second
Language Acquisition (SLA) (Swain & Lapkin,
1995), popularized by Bari et al. (2020) in NLP
and recently adapted to LLMs by Nguyen et al.
(2023). This process involves the challenging
task of incorporating an additional language
distribution without compromising the source
language(s). For instance, if a pretrained model
was initially trained in English, expanding to an
additional language presents challenges related
to tokenization. Figure 2 gives an overview of
ALLaM’s tokenizers compared to a tokenizer primarily trained on English.

There are various Arabic LLMs that have been developed, such as Jais (Sengupta et al., 2023)
and AceGPT (Huang et al., 2023), which trained from scratch or continued training Llama-2,
respectively. A more detailed description and other relevant works can be found in Appendix C.

Our approach to building ALLaM, large language models developed specifically for fluency and un-
derstanding in Arabic and English, can be outlined as follows. We first demonstrate the feasibility

2
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Figure 3: Measuring the effect of adding machine translated Arabic data to pretraining. Although the
two loss curves look normal (left), adding the translated Arabic reduced the frequency of gradient
spikes during training (center). Adding translated Arabic data also clearly helps align the Arabic and
English capabilities of the model and reduce catastrophic forgetting (right).

of adapting an existing pretrained English model (Llama-2 (Touvron et al., 2023a)) to fluency in
both Arabic and English through tokenizer and vocabulary expansion. Then, we apply our learnings
to train a stronger model from scratch (random initialization) in a similar fashion, i.e., pretraining on
English followed by training in mixed Arabic and English. The resulting model exhibits impressive
performance and has favorable tokenization properties compared to other models. This approach
aligns with both our technical goals and our commitment to sustainable practices. Our overall con-
tributions are summarized below:

1. The ALLaM model series, with the goal of supporting the cultural values of the Arabic-
speaking world. We train four models at four different scales: 7B, 13B, 34B and 70B models
initialized by Llama-2 weights along with 7B and 34B models trained from scratch.

2. Our model achieves state-of-the-art results in Arabic, as well as improving overall English
performance of the original Llama-2 model. Refer to Figure 1 for an overview.

3. We demonstrate that it is possible to train highly-performant models in low-resource lan-
guages from publicly available model weights using our continued pretraining recipe with
tokenizer expansion, presenting a path for better representation of low-resource languages.

4. The training methodology and decision-making involved in training the LLM. We provide
necessary ablation studies for most crucial decisions.

2 PRETRAINING
Pretraining language models on trillions of natural language tokens represents the bulk of the cost
required to build an effective language model. This large investment of time and compute precludes
experimentation or ablation for every decision. Thus, before starting to train ALLaM from random
initialization, or “scratch”, we experiment in the continue-pretraining regime. As the name implies,
continue-pretraining is the practice of warm-starting an experiment from an already pretrained LM.

We begin by discussing our entire pretraining corpus, describe experiments conducted with continue-
pretraining, and finally describe pretraining from scratch.

2.1 PRETRAINING DATA

For English, many high quality and large scale datasets are available for pretraining (Together Com-
puter, 2023; Soldaini et al., 2024; Gao et al., 2021; Penedo et al., 2023). We harnessed subsets from
RedPajama (Together Computer, 2023), FineWeb (Penedo et al., 2024), Dolma-v1 (Soldaini et al.,
2024) and Pile (Gao et al., 2021) datasets e.g., Dolma-CC, The Stack (Kocetkov et al., 2022), PeS2o,
PubMed, DM-Math (Saxton et al., 2019) and StackExchange (Soboleva et al., 2023). In total, we
had access to 4T high to medium quality English tokens for pretraining. For our 30B pre-training
we sample 5.2T tokens from the RedPajamaV2 (Together Computer, 2023). We provide detailed
description of our data filtering method in the Appendix G.

Pretraining data in the Arabic language is much more limited, thus we undertook large scale col-
lection and curation of Arabic language data. This includes in-house crawled sources covering Web
documents, news articles, books (literature, religion, law and culture, among others), Wikipedia
(over 1M articles), and audio transcripts (books and news). To ensure high quality Web data, we
applied the following processing steps: (i) drop documents with language identification score be-
low 95%, (ii) drop short documents that are less than 30 words, (iii) drop documents with duplicate
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URLs or high ratio of spam and stop words, and (iv) drop duplicate documents using exact match-
ing. We experimented with fuzzy matching but opted against using it, as it was too restrictive given
the scarcity of Arabic data. During Arabic data processing, no standardizing or normalization of
characters was performed. For language identification, we used fastText embeddings. For spam and
stop words selection, we used Mubarak et al. (2020). The majority of the Arabic data is from the
web, which naturally contains Arabic varieties; however, no specific Dialectal Arabic (DA) datasets
were intentionally included in the corpus. Knowledge of the distribution of Arabic varieties would
require the data to be classified into DA, and since, to the best of our knowledge, DA identification
is a hard task that is still under research. According to Abdul-Mageed et al. (2024); Bouamor et al.
(2019); Abdelali et al. (2021), classifying the data to DA is difficult. Nonetheless, for future work,
we plan to evaluate ALLaM’s ability to understand and generate DA via ALDi (Keleg et al., 2023).
For Audio transcription, we used the SauTech ASR system.
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Figure 4: We determine the optimal Arabic/English
language mixture that balances between acquiring Ara-
bic understanding while retaining English proficiency
by conducting ablations over 6 Arabic/English ratios
(trained up to 20B tokens). We found that a 45/55
Arabic/English ratio achieves the best performance, as
measured by English and translated Arabic MMLU.

Additionally, we extended our Arabic data with
translated English content using an in-house
machine translation system. We translated
the following English datasets from Dolma:
Wikipedia, books, C4 and peS2o, which also
are part of our English data. The hypothesis is
that this will improve Arabic-English language
alignment, leading to a better Arabic model.
Figure 3 demonstrates the impact of Arabic
translated datasets in the pretraining data mix-
ture 3. While models trained without translated
data exhibit lower training loss, those trained
with translated data show more stable training,
as evidenced by fewer spikes in gradient norms.
Incorporating Arabic translated data in the pre-
training dataset mitigates catastrophic forget-
ting in English. In total, we curate 540B Ara-
bic tokens4 of which 270B are natural Arabic
tokens and 270B are translated Arabic tokens.
For Arabic, we have a total of ∼540B tokens, and for English, we have a total of ∼660B distinct
tokens. Based on the sampling ratio from Table 1, we collected the training data from the corpus.

Table 1: ALLaM’s pretraining data mixtures. The first four columns
summarize the distribution of the continued pretraining mixed Ara-
bic/English data. The English only pretraining from scratch mixture
is shown in the last column. We upsample data to match the mixture
rates when needed. Mixed English is a subset of English only.

Domain
Mixed Arabic & English

English Only
English Arabic Mixed

Natural Translated
Web 31% 71% 65% 48% 71%
Books 9% 13% 12% 11% 3%
Wiki — 0.70% 0.61% 0.3% 0.1%
News — 14% — 3% —
Science 16% — 22% 14% 6%
Code 39% — — 21% 17%
Math 5% — — 2.5% 0.9%
Other — 1.3% 0.39% 0.2% 2%

Lang Mix 55% 22.5% 22.5% 100% 100%

Tokens 660B 270B 270B 1.2T 4T

Data Mixture To build
a performant model in both
Arabic and English, we
conducted experiments
to determine the optimal
language mix. Figure 4
gives an overview of data-
mixture experiments on
our curated Arabic-English
corpus. We conducted the
experiments with the same
sampling ratio (Table 1)
and data order. We observe
best trend in performance
with 45/55 Arabic/English
data mix.

Table 1 shows the language
and category mixing distri-
butions for English, Ara-
bic natural, Arabic trans-
lated and final mix. Following mainstream work (Touvron et al., 2023b; Chowdhery et al., 2022;
Rae et al., 2021), web data constitutes the highest ratio with 71%, 65% and 48% of the Arabic nat-

3Our in-house translation system’s BLEU score is around 25.23 on IWSLT test set.
4Tokens counted by our merged tokenizer.
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ural, Arabic translated and overall mix, respectively. We limited the contribution of English web
data to 31%, as the Llama-2 base model was trained on a significant amount of English web data
already, and we expected that increasing its ratio might degrade performance. We ensured that high
quality sources, such as books, news, code etc. are well represented in our mixture.

2.2 CONTINUED PRETRAINING

Open source and open weight models present an attractive option to conduct pretraining experiments
cheaply. However, they also present challenges, since most such models do not natively support Ara-
bic or other languages. We develop a simple approach to enhance any language model with capa-
bilities in new languages (i.e., language expansion). The approach relies on two steps: (i) tokenizer
augmentation, and (ii) expanded vocabulary learning. We demonstrate that this approach leads to
minimal degradation of capabilities in the original language.

Tokenizer Augmentation Existing open weight language models (e.g., Llama-2) tokenize Ara-
bic (and other languages) poorly, often splitting words down to the character level or even relying
on byte-fallback mechanisms for tokenization. This results in: (i) inefficient training, as the pretrain-
ing corpus size is inflated, (ii) unoptimized inference, since the model must generate more tokens
per word, and (iii) the effective context length is reduced, because it is based on a fixed number of
tokens. To address these issues, we use a corpus of text in the target language to train a tokenizer
specialized in that language. We then merge the original tokenizer with the language-specific tok-
enizer. Merging is accomplished by adding all tokens from the language-specific tokenizer that do
not exist in the original tokenizer. As shown in Figure 2, this effectively reduces the fertility score
in the target language of the merged tokenizer to the level of the language-specific tokenizer. We
expanded Llama-2’s 32,000 token vocabulary to 61,568 tokens.

Expanded Vocabulary Learning Newly added tokens in the merged tokenizer have no associ-
ated embedding representations in the pretrained language model’s weights. To learn these repre-
sentations, we experiment with two approaches: (i) random initialization and (ii) initialization from
combined representations of tokens in the original tokenizer. Approach (ii) is accomplished by tok-
enizing each token in the vocabulary of the new tokenizer using the original tokenizer. The associated
embedding representations of this tokenization are then averaged and assigned as the vector repre-
sentation of the new token. Since we work with tokenizers with byte-fallback, such a tokenization is
guaranteed to exist. Figure 5 provides an overview of our initialization method. Initializing the new
embeddings from the combination of previously learned embeddings gives a significant boost to the
learning of a new language.

Experiment Details Starting from Llama-2 pretrained model weights, we continue pretraining
the ALLaM-7B and ALLaM-13B models on 1.2T tokens, covering both English and Arabic lan-
guages. For the ALLaM-70B model, we only train up to 600B tokens (using the same data mixture).
In all of our continued pretraining experiments, we used the final learning rate of the pretrained lan-
guage model (usually 3×10−5). We experimented with approaches to gradually increase and decay
the learning rate with limited success, as such models typically exhibited catastrophic forgetting, in-
dicated by significant drops in performance in the original language. We also considered optimizer
state warm up, as open-weight models typically do not include the optimizer states, but found this
had little effect on performance. Figure 6 provides an overview of adding dropout during continued
pretraining. We observe that adding dropout helps the Arabic language, as it acts as a regularizer
for the new distribution. However, Llama-2 was pretrained on 2T tokens without any dropout, and
adding dropout negatively impacts the source language performance. Considering this trade-off, we
decided not to add dropout in the continued pretraining stage. For Vocabulary expanded model with
LLaMa-2 (7B, 13B, 70B models), unlike recent trends (AI2, 2024), we did not add any alignment
data in this stage of training.

2.3 PRETRAINING FROM SCRATCH

Following (Hoffmann et al., 2022; Touvron et al., 2023a), training a high-quality model from scratch
requires a substantial amount of tokens. Even when pretraining from random initialization, we find
it beneficial to train with a high-resource language for trillions of tokens (English) and then con-
tinue training with a mixture of Arabic and English tokens. On small scale experiments (with 1B
parameter models) we find that beginning training with two languages can sometimes degrade the
performance in English or result in slow learning of both language distributions. From this, we hy-
pothesize that low-resource languages are diluted in the large volume of high-resource language data
when pretraining from scratch, even with upsampling and careful tuning.
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Figure 5: Effect of random initialization vs. em-
bedding initialization during the start of con-
tinued pretraining. We find that initializing the
embeddings for new tokens from combinations
of existing embeddings speeds up learning dra-
matically.
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Figure 6: Effect of dropout during the start of
continued pretraining experiments. While in-
troducing dropout can marginally improve the
second language acquisition, it negatively im-
pacts the model’s capabilities in the original
language.

Training Recipe Our pretraining from scratch recipe consists of two steps: training on 4T English
tokens followed by training on 1.2T mixed Arabic/English tokens. This retains the English capa-
bilities of the model without catastrophic forgetting, effectively transferring knowledge from one
language distribution to another. The only difference between pretraining from scratch and contin-
ued pretraining from an existing model is that vocabulary expansion is not required.

We match hyperparameters and architecture for pretraining from scratch with Touvron et al. (2023a),
including 4M tokens per batch and max LR 3×10−4 decayed to 3×10−5 with a cosine schedule.

During the training of the 7B model (from scratch and vocab expanded models), we found that
reducing the learning rate made it difficult to recover without hurting knowledge retrieval/retention
capability of the model. To address this, we maintained a constant learning rate during the initial
English training phase for the 30B model. In the second stage, we applied a cosine decay learning
rate to fine-tune on a mix of English, Arabic, and SFT data. This approach allows for potential
extended training with a constant learning rate, followed by shorter but reasonably large-scale cross-
lingual alignment using high-quality English, Arabic, and SFT data.

Data Mixture The last column of Table 1 shows the domain mix of ALLaM-7B of the English only
pretraining data. For ALLaM-34B, we made slight changes to the domain distribution and improved
the quality of the Web data by deploying more aggressive filtering. As expected, web data represent
the bulk of the mixture, followed by code and scientific articles.

While our 7B model followed the Arabic-English data mix depicted in Table 1, we made the follow-
ing changes in ALLaM-34B. We introduced English and Arabic instruction data in our mix (12%).
Additionally, we reduced Arabic translated content to 16% from 22.5%. Domain distribution re-
mains close to the one shown in the table. Refer to Appendix H.4 for the training details.

For our 7B model, we adhered to the Arabic-English data mix as outlined in Table 1. However, in
ALLaM-34B, we made several adjustments. Specifically, we introduced 12% English and Arabic
instruction data into the mix and reduced the proportion of Arabic translated content from 22.5%
to 16%. The domain distribution remains largely consistent with what is presented in the table. For
further details on the training process, please refer to Appendix H.4.

3 ALIGNMENT

Building useful LLMs requires ensuring they are able to follow instructions while adhering to ethical
standards and user expectations. This alignment process is especially crucial for models used in
diverse linguistic and cultural contexts. In our setting, this means aligning models to the Arabic
language and cultural context while also supporting English.

Supervised Fine-Tuning (SFT) (Section 3.1) refines a pretrained model using a carefully selected
dataset relevant to specific tasks and domains. Preference training (Section 3.2), on the other hand,
aligns the model’s outputs with human values and preferences by prioritizing responses that meet
user expectations and ethical guidelines. These methods work together to create reliable and ethically
sound LLMs for real-world use.
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Figure 7: Word count and turn distributions of SFT data. There are two main differences in our
Arabic and English SFT datasets: shorter responses are more frequent in our Arabic SFT dataset,
while our English SFT dataset contains more dialogues with more than 8 turns.

3.1 SUPERVISED FINE-TUNING

Data Our SFT data is curated from a diverse array of sources. Given a piece of context from a
source, we utilize humans and/or generative models (Ding et al., 2023) to identify if the text can be
considered suitable for supervised fine-tuning or if we can generate instructions to create an SFT
example from the context. For English, we primarily use public web content as our main source,
offering a broad range of high-quality and especially diverse prompts. In contrast, our Arabic data
comes from a combination of public and proprietary sources to ensure comprehensive coverage and
relevance. To gather data from the source, we collect seed websites or data sources, which involves
utilizing domain experts, prompt librarians, local institutes specializing in areas such as Arabic lan-
guage, history, and politics, the use of commercially permissible licensed LLMs to generate data,
and machine translation models to convert rich English SFT data into Arabic. Our datasets cover
various domains and capabilities, ensuring the model’s proficiency in handling tasks across edu-
cation, history, Arabic linguistics, politics, religion, computer science, and other fields. The entire
Arabic/English collection is called Ultra-Instinct, which is not human generated, but rather,
human driven.

Table 2: Comparison of average word length and
lexical diversity of prompts and responses.

Quality Metric Ultra-Instinct v1 Ultra-Instinct v2

Prompt Response Prompt Response

Avg # of Word 146.94 97.19 60.81 136.47
Lexical diversity 76.34 75.25 85.29 69.53

Quality Filtering Unlike Zhou et al. (2023);
AI et al. (2024), we hypothesized that scal-
ing SFT data can unlock diverse capabil-
ity, as well as improve responsiveness to the
prompts. Initially, we crawled the public web
for SFT samples. The first version (v1) of
Ultra-Instinct includes 12M samples
evenly split between English and Arabic, while the second version (v2), is a reduced version with
half the samples. Compared to v1, v2 underwent strict quality checks and human assessments of
random subsamples. Our quality checks for v2 included (i) assessments based on instruction/re-
sponse word length, (ii) lexical 5 and semantic diversity, exact and near-exact lexical deduplication,
(iii) removal of low quality machine-translated Arabic data from English sources, and (iv) ensuring
diversity in questions and commands. For detailed metrics on instruction and response lengths and
lexical diversity, see Table 2.

Figures 7a and 7b show the distribution of the prompts and responses in v2, respectively. We fo-
cused on maximizing the number of multi-turn conversations in our dataset. Figure 7c shows the
distribution of conversation turns from Ultra-Instinct.

Table 3: Comparative results of Ultra
Instinct v1 and v2, across various evalu-
ation datasets.

Version MMLU Exams (ar) ACVA ETEC
Huang et al. (2023) Koto et al. (2024) en

Ultra-Instinct v1 51.0 68.0 63.8 56.8 79.8 66.8
Ultra-Instinct v2 51.4 68.5 63.3 56.8 76.7 65.9

To extrinsically evaluate the impact of higher
quality SFT data, we trained two 13B models
using our v1 and v2 SFT datasets. Even though
v2 has half as many samples and v1, both ver-
sions performed equally well on English and
Arabic evaluation benchmarks, as shown in Ta-
ble 3. This reduction in data volume led to faster
training times and reduced costs without compromising performance. It also clearly demonstrates
the value of quality filtering for alignment.

5Lexical diversity is calculated by taking the ratio of the total number of unique words to the total number
of words across all samples, excluding stop words.
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Figure 8: Selected benchmark evaluated through ALLaM’s training. Using HellaSwag as a proxy for language
understanding, the performance of smaller models degrades when introducing Arabic, while larger models
(70B) have enough capacity to improve simultaneously in English and Arabic. Arabic language acquisition is
rapid in all models, as indicated by Arabic MMLU.

3.2 PREFERENCE TRAINING

After SFT, models are able to converse in multi-turn conversations. However, they are not fully
aligned with human preferences. For example, our SFT models were terse and had limited guardrails.
To circumvent these issues, we performed preference tuning with human verified samples via Direct
Preference Optimization (DPO) (Rafailov et al., 2024).
Data The inputs were sourced from early model testers and a manually curated selection of
prompts from various domains or attack vectors. These include ethical dilemmas, middle eastern
culture, religions, illegal activities, human rights, locale awareness, and personality.

Preference training necessitates both negative and positive outputs for each input. We relied on the
testers’ feedback to identify the positive outputs. In the absence of positive outputs, we used a model
to generate an output and manually verified that the output was aligned. While (Tunstall et al., 2023)
utilized preference data from AI Feedback (AIF) at scale, we adopt a more cautious approach in
creating preference data. We generate a smaller volume of data, ensuring it is fully reviewed, edited,
and verified by humans.

There are two approaches for generating negative outputs: (i) on-policy: use the generations of the
model we are tuning as negative outputs, and (ii) off-policy: use another similar model to generate the
negative outputs. We did not verify that the negative outputs were worse than the positive. However,
we ensured that the positive outputs were of the highest quality, such that they were almost always
better than the negative outputs.

Khan et al. (2023) demonstrated that model outputs can vary significantly depending on the sam-
pling mechanism used. Building on this insight, we generate additional samples for each instance
by varying temperature and nucleus sampling techniques. These additional samples are utilized to
produce rejected samples, ensuring that ALLaM provides more grounded responses and generalizes
well across various sampling mechanisms.

In total, we collected 25,854 samples (triplets of {prompt, accepted, rejected}) in English and Arabic
language. Using the technique mentioned above, we sample 10 different response from the model
to generate additional rejected responses for each sample. This results in a dataset of 245K samples
(after filtering) for preference training.

4 EVALUATION

In this section, we describe the evaluation of our model and report the results of ALLaM 7B, 13B,
34B, and 70B models, as well as other relevant models, such as GPT-4, Command-R+ (Gomez,
2024), and Jais-30B (Sengupta et al., 2023). Our evaluations encompass three main types: (i)
automatic evaluations, (ii) LLM-based evaluations, and (iii) human evaluations.

Limitations Recently, (Alzahrani et al., 2024) showed that multiple choice or cloze test based
evaluation may not be robust. In addition, MT-Bench uses an LLM as a judge, and has likely leaked
into training datasets. Unfortunately, human evaluation is time-consuming and requires well-trained
human evaluators. In this work, we try to ensure robust evaluation and train a balanced assessment of
the quantitative metrics and qualitative effectiveness of models in various applications and domains.
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Table 4: Arabic benchmark results for instruction tuned models. Follow Table 11 for detailed results.

araSwag ACVA MMLU (ar) Exams (ar) ETEC araTruthfulQA araMath
Koto et al. (2024) Huang et al. (2023)

10-shot 5-shot 0-shot 0-shot 5-shot 0-shot 0-shot 5-shot

ALLaM-Instruct 7B 49.28 80.33 66.9 49.6 52.7 62.95 36.4 36.5
AceGPT-Chat 7B 43.4 59.35 45.8 33.58 35.57 36.05 37.9 22.5
Llama 2-Chat 7B 24.44 52.46 33.33 26.45 25.33 26.69 29.9 21.5
Mistral-Instruct-v0.3 7B 30.59 60.7 44.3 34.06 31.1 34.41 30.3 26.0
Llama 3-Instruct 8B 33.99 75.21 53.98 41.49 44.32 49.42 34.0 38.3
ALLaM-Instruct 13B 54.77 78.59 68.11 51.03 54.93 65.59 37.5 46.8
Llama 2-Chat 13B 25.75 60.14 35.84 28.73 22.91 30.44 31.4 22.3
Jais-Chat 13B 77.12 70.68 54.8 41.43 46.93 48.68 31.6 25.3

ALLaM-Instruct 34B 59.74 81.00 75.98 60.2 58.66 74.26 35.49 46.5
Jais-Chat-v3 30B 88.37 70.05 62.37 30.15 51.21 38.53 37.3 32.5

ALLaM-Instruct 70B 57.91 79.01 75.92 62.23 58.47 78.38 38.4 56.8
Llama 2-Chat 70B 30.72 59.49 40.77 32.86 28.68 30.6 32.3 25.5
Llama 3-Instruct 70B 45.75 80.26 36.27 60.11 58.47 71.41 37.7 59.70

4.1 AUTOMATIC EVALUATIONS
The automatic evaluations cover Arabic and English benchmarks grouped into many categories.
Detailed description of the evaluation dataset and benchmark can be found in Appendix I.1.

While serving as a good test bench, observing the dynamics of automatic evaluations during training
is also interesting. Figure 8 shows the behavior of selected benchmarks during mixed Arabic/English
pretraining while scaling up model size. In particular, we observe that smaller models tradeoff be-
tween capability in the new and original languages. However, larger models can simultaneously
improve in both languages.

Another observation from automatic evaluations is that some evaluations provide more signal for
training decisions than others, e.g., Hellaswag smoothly improves during training while improve-
ments in GSM8k occur in discontinuous jumps. Other benchmarks show no improvement until 1.5T
tokens have been seen (i.e., grokking) making them unreliable for early training decisions. Tables 4
and 6 give an overview of the performance of ALLaM instruct models.

Table 5: MT-Bench scores for Arabic and English.
Each score is an average over 80 samples of the
score ranging from 0 to 10 returned by the judge
(GPT-4).

Model English Arabic

Avg. Turn 1 Turn 2 Avg. Turn 1 Turn 2

AceGPT 13B-chat 5.44 6.76 4.12 6.33 7.01 5.64
ALLaM 13B Instruct 7.34 7.67 7.01 7.57 7.9 7.23
ALLaM 70B Instruct 7.44 7.91 6.96 8.19 8.4 7.97
Jais 13B Chat 4.18 4.39 3.96 4.72 5.07 4.36
Jais 30B Chat v1 3.89 4.13 3.64 3.54 4.13 2.95
Jais 30B Chat v3 5.86 6.25 5.47 6.28 6.78 5.78
Cohere Command R+ 7.41 7.63 7.18 7.97 8.28 7.65
Cohere Command R 6.99 7.19 6.79 7.47 7.82 7.12
DBRX Instruct 7.16 7.33 6.98 7.83 8.19 7.46
GPT 3.5 Turbo 7.55 7.79 7.31 8.12 8.39 7.84

In Arabic benchmarks, we can see that ALLaM-
70B scores are the best in five (MMLU Ara-
bic (natural and translated), Exams, ETEC,
araTruthfulQA) out of the eight benchmark
sets. On English, ALLaM is the second-best
model in the majority of cases, following
Llama 3-Instruct. We highlight the ex-
cellent performance of ALLaM on benchmarks
released after training was completed (MMLU-
Pro, MixEval) and benchmarks the training
team did not have access to (ETEC), since they
provide a clean evaluation signal. Table 11 and
Table 12 in the appendix contain more detailed
evaluation results for Arabic and English.

4.2 LLM-BASED EVALUATIONS

MT-Bench (Zheng et al., 2024) consists of 80 multi-turn questions to evaluate models’ capabilities
on complex instruction-following. In addition to the English version, MT-Bench Arabic was created
using GPT-4 to translate the original dataset and human annotators to review and align the prompts
to Arabic culture. GPT-4 serves as the LLM judge, scoring responses as recommended in (Zheng
et al., 2024). Model performance is compared turn by turn, with results shown in Table 5, where
ALLaM-70B achieves the best Arabic performance.

4.3 HUMAN EVALUATION
We developed an Arabic multi-turn dataset spanning seven domains: linguistics, history, health, pol-
itics, coding, entertainment, and ethics, with each domain featuring ten two-turn questions. Human
evaluators compared the responses from two models and were asked to choose the winning response
with the following instructions:
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Table 6: English benchmark results for instruction tuned models. (Follow Table 12 for detailed results.)

AGIEval MMLU MMLU-Pro Ethics TruthfulQA ARC HellaSwag MixEval

Average Challenge Hard Standard

0-shot 0-shot CoT 5-shot 0-shot 0-shot 0-shot 0-shot 5/0-shot (base/ft) 5/0-shot (base/ft)

ALLaM-Instruct 7B 47.09 58.31 27.78 69.8 42.11 51.45 75.2 28.9 67.6
AceGPT-Chat 7B 26.33 44.53 — 53.38 49.34 42.32 70.92 — —
Llama 2-Chat 7B 35.55 46.4 22.87 58.88 45.32 44.28 75.52 30.8 61.7
Mistral-Instruct-v0.3 7B 42.22 59.75 36.33 73.59 59.65 58.7 82.88 36.2 70.0
Llama 3-Instruct 8B 44.35 63.82 41.32 68.07 51.72 56.83 75.81 45.6 75.0
ALLaM-Instruct 13B 48.42 61.8 34.05 76.47 57.69 55.89 81.14 37.2 72.8
Llama 2-Chat 13B 37.73 53.3 27.19 70.52 43.95 50.17 79.66 — —
Jais-Chat 13B 31.45 49.46 — 64.92 39.66 46.84 77.6 — —

ALLaM-Instruct 34B 52.47 71.24 43.61 72.84 56.27 60.15 81.25 — —
Jais-Chat-v3 30B 36.78 57.57 26.45 68.03 42.34 51.02 78.91 — —

ALLaM-Instruct 70B 65.67 75.43 48.61 76.16 58.78 59.56 84.97 51.60 83.5
Llama 2-Chat 70B 46.0 61.15 35.16 68.5 52.77 54.27 82.14 38.0 74.6
Llama 3-Instruct 70B 63.78 78.38 59.52 77.09 61.79 64.33 82.49 55.90 84.00

ALLaM-13B vs
jais-30b-chat-v3

ALLaM-13B vs GPT-4

ALLaM-13B vs
CommandR+

ALLaM-13B vs
CommandR

33.6% 25.0% 17.9% 23.6%

12.1% 39.3% 40.7% 7.9%

38.6% 34.3% 18.6% 8.6%

43.6% 17.9% 27.1% 11.4%

ALLaM-13B Human Evalaution 

win loss tie both-bad

Figure 9: Pairwise win rates as judged by
human evaluators. ALLaM-13B wins against
many much larger models.
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Figure 10: ELO scores from human eval-
uator preferences. ALLaM is tied with
Command-R+ and lags only behind GPT-4.

• Choose a response as the winner if it is the best, tie if both responses are equally good, and
both-bad if both responses are not good.

• A response is considered good if it is coherent, grammatically correct, and is a reasonable
response to the question or previous turn in the conversation.

• Good responses should be in the correct language (the response should be in the same
language as the previous turn, unless another language was requested).

• Good responses should not contain toxicity, hate speech, or bias.

Each pair of responses was inspected by three evaluators, and the winner was determined by majority
voting. In case of a tie, a fourth evaluator was used to break the tie. Figure 9 presents the human eval-
uation results of the pair-wise comparisons of these models: ALLaM-13b, Jais-30b-chat-v3,
Command-R-plus, and Command-R-v01. ALLaM-13b’s win rate was always higher than its
loss rate compared with other models.

Finally, we gather votes from the human evaluators and calculated ELO scores for each model. ELO
scoring had two configurations, the default scoring rewards the model for good responses with 1
point, tied responses (good and both-bad) with 0.5 points, and penalizes for bad responses with
0 point. The custom configuration penalizes the model with the bad response and both models if
both provided bad responses with 0 point. Figure 10 shows the ELO scores based on the human
evaluations. From the figure, GPT-4 achieved the highest score, followed by ALLaM-13b with the
second-highest score, outperforming (or matching) larger models such as CommandR+.

5 CONCLUSION
The ALLaM model series marks a significant advancement in Arabic Language Technologies,
achieving state-of-the-art performance across various Arabic benchmarks while maintaining or en-
hancing English performance. Through careful training that emphasizes language alignment and
transferability, our models demonstrate effective second-language acquisition without catastrophic
forgetting. The strategic use of translated data, knowledge encoding, and alignment with human
preferences have been crucial in this success.
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B FREQUENTLY ASKED QUESTION

What is the difference between Alignment at Scale vs. Post-training ALLaM is trained from a
pretrained English language model (LLM). In a pretrained English-only language model, the lan-
guage alignment between English and Arabic isn’t sufficient. By the phrase“... language alignment
and transferability of knowledge at scale...” we mean that we focused on English and Arabic co-
learning (alignment and knowledge transfer) during the pretraining stage by jointly training both
languages together. Note that when we mention “language alignment at scale” here, it refers to the
pretraining stage, not the post-pretraining stage (fine-tuning or preference tuning).

Why did we change the training data distribution for 30B experiments Not all the training was
done at the same time. As the training progressed, we gained more knowledge about our process,
data, and the entire ecosystem of our training engine. Iterating over a single training run incurred
significant costs, so we always prioritized quality over ablations for large-scale training runs. Given
the available compute and deadline, we were able to conduct only one training run of the 34B model.
We discovered that we could apply custom filters to a large data collection based on our use cases
and preferences. In the first phase, we used an open-source data collection, and in the second phase,
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Downtime due to cancellation: 55 days, 16:49:02.618551
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Figure 11: Annotated training log for ALLaM-30B showing uptime and downtime. Downtime due
to cancellation indicates the training was paused to accommodate other jobs. Failures are marked in
red. The model recovered from several loss spikes through the course of training without degrading
performance.

we filtered a collection of 84 CC snapshots down to approximately 30T tokens. After filtering, we
performed a manual check to verify the data quality.

What was the uptime of the cluster We didn’t log the uptime of the cluster for all training runs,
but we tracked the uptime for our 34B training runs. Figure 11 shows the cluster’s uptime.

Will you opensource/openweight our models? We released our 13B model on the IBM WatsonX
platform in May 2024. Our 7B model, pretrained from scratch, is now available on Microsoft Azure.
As time progresses and we build more risk assessment tools with scalable oversight pipeline, we
will open up more models to the community.

Why did we report Instruct model result instead of base model result in the main paper?

• Blurred distinction between base and instruct models: Modern pretraining often incorpo-
rates supervised fine-tuning (SFT) data, including alignment data aimed at improving user
interactions. As a result, the clear separation between the base model and the instruct model
has become less distinct. Many models today are pre-trained with some degree of align-
ment, making it difficult to evaluate them purely as base models.
For instance, as shown in Table 12, the Qwen2-7B-base achieves a score of 77.94 on
GSM8k, while ALLaM-7B-base (trained from scratch) achieves 16.98, with a significant
delta of 60.96. After supervised fine-tuning, ALLaM-7B-instruct (from scratch) scores
53.6, while Qwen2-7B-instruct scores 77.86, reducing the delta to 24.26. Although AL-
LaM shows an improvement of 36.62 points during SFT, Qwen2 experiences no notable
gain in performance in this phase. We suspect this is due to the inclusion of alignment data
during Qwen2’s pretraining phase. Thus, while Qwen2 models are inherently better than
ALLaM, the performance gap between Qwen2 and ALLaM at the base level does not nec-
essarily reflect true model capabilities due to the suspected presence of alignment data in
the base model.

• Focus on user interaction: The primary goal of building these models is to optimize them
for user interaction. Since users will interact with the instruct version of the model, it makes
sense to report the results of the model in its instruct phase. This ensures that the reported
performance is reflective of the actual experience users will have, making the results more
relevant and impactful for the paper’s audience.
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What is a fair comparison of different models? Many models are released without information
on the training dataset size, and of those that do, most do not provide a breakdown of tokens per
language. Additionally, it is not clear how we should categorize models, based on (i) training FLOPs,
(ii) model size, (iii) inference FLOPs, (iv) number of training tokens, or (v) quality of training tokens.
Therefore, it is extremely difficult to control for all these factors. Instead, we opted to ensure a fair
assessment by comparing our 13B models to larger models, such as Jais (30B), Command R+
(104B), and GPT-4 (unknown, but almost certainly larger than 13B), which actually puts our model
at a disadvantage (see Figure 9).

What are failure cases of ALLaM? We identified several patterns where the model’s performance
could be refined through extensive human evaluation. These observations can be summarized as
follows:

1. Repetition Issues: In certain versions, the model exhibited a tendency to overgenerate or
repeat content. This behavior varied with temperature settings. After extensive testing, we
found that a temperature of 0.6 yielded the most balanced outputs.

2. Translation Challenges: The model sometimes regenerates the translation instruction within
the translated output, or attempts to summarize the shared context while translating it, rather
than focusing solely on the translation itself.

3. Variation in Outputs: When tasked with summarization or translation, the model provides
multiple outputs.

4. Precise Instruction Following: The model does not always adhere to specified output length
or structure. For instance, when requested to summarize a text in 100 words, it might exceed
this limit or produce a summary longer than the input text.

5. Complex Arabic Proofreading: The model faces challenges with certain Arabic-language
tasks, such as applying proper punctuation, grammar, and diacritics. While it may provide
partially correct answers, it often fails to deliver fully accurate or comprehensive outputs in
these areas.

Table 7: ALLaM failure examples. For brevity, we omitted parts of the questions/answers with “[...]”
to focus on the failure cases

How many Arabic tokens were in Llama 2, and how many did you add to ALLaM? We
expanded Llama 2’s vocabulary from 32,000 to 61,586 tokens with all the added tokens being
Arabic. We define an Arabic token as any token that contains at least one Arabic letter by using the
regular expression “^(?=.*\p{Arabic}).*$”. Llama 2 contained 46 Arabic Tokens (mostly
single Arabic characters), while ALLaM contained 29,552 Arabic tokens post-expansion.
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Note that Llama 2’s tokenizer does not include all Arabic letters, and thus has to rely on byte fallback
for less common Arabic letters. For instance, it tokenizes the letter “<U+0624>” as two bytes
[‘<0xD8>’, ‘<0xA4>’].

C RELATED WORK

Our work sits at the cross-section of research building language models that support multiple lan-
guages and scaling such techniques in terms of size and data. To successfully train a large language
model in a language other than English requires a complete understanding of cross-lingual transfer-
ability between languages and a good understanding of scaling laws, as well as the fundamentals
of training large language models. In this section, we discuss work on language modeling from the
perspectives of cross-lingual alignment, multitask learning, and Arabic specialization.

C.1 LANGUAGE MODELING AND CROSS-LINGUAL REPRESENTATIONS

In early work, word representations were derived using basic forms of the skip-gram model (Mikolov
et al., 2013), wherein each word is assigned a representation that does not account for varying
contexts (Grave et al., 2018; Pennington et al., 2014). Further work in this area developed word
representations that are adaptive to the context surrounding the words (McCann et al., 2017; Peters
et al., 2018a; Howard & Ruder, 2018; Devlin et al., 2019; Yang et al., 2019; Radford et al., 2019).

Peters et al. (2018a) introduced ELMo, a model built with a bidirectional LSTM-based language
model (LM) for pretraining to obtain contextualized word representations. This technique combines
the outputs from all layers linearly when targeting specific tasks. Nonetheless, the sequential nature
of LSTM-based LM pretraining presents challenges in scaling training efficiently. Concurrently,
Vaswani et al. (2017) developed the Transformer architecture, which leverages multi-headed self-
attention and positional encoding to handle long-range dependencies and enable parallel processing.
Following that Radford et al. (2019) introduced GPT, a model that pretrains a Transformer decoder
using a conditional language model objective, with subsequent fine-tuning requiring only minimal
modifications. Similarly, Devlin et al. (2019) unveiled BERT, which uses a Transformer encoder
pretrained via a masked language modeling (MLM) objective. This approach excelled at task adap-
tation and benefited from the MLM’s ability to encode context bidirectionally, unlike the traditional
unidirectional (conditional) LM that processes either the left or right context. Later Raffel et al.
(2020) proposed a detailed hybrid encoder-decoder architecture based LLM with an implementation
of many objective functions via autoregressive structure.

During the release of BERT, mBERT, a multilingual version of BERT is trained on 102 languages
using a shared vocabulary of 110K subword tokens.6. Despite the lack of explicit cross-lingual su-
pervision, mBERT has demonstrated the ability to learn cross-lingual representations that generalize
well across languages. Wu & Dredze (2019); Pires et al. (2019) evaluated the zero-shot cross-lingual
transferability of mBERT on several NLP tasks and attributed its generalization capability to shared
subword units. Pires et al. (2019) additionally identified structural similarity (e.g., word order) as
another crucial factor for successful cross-lingual transfer. K et al. (2020), however, argued that
shared subwords contribute minimally, and instead, structural similarity between languages is more
critical for effective transfer. Artetxe et al. (2019) further showed that joint training might not be
necessary and proposed an alternative method to transfer a monolingual model to a bilingual model
by learning only the word embeddings in the target language. They also highlighted the vocabulary
size per language as an important factor. Finally, Xue et al. (2021) showed that joint training on
a large multilingual vocabulary can robustly map multilingual language models to the same latent
space.

In the early days, Cross-lingual alignment from mono-lingual embeddings was tricky and often re-
quired complex adversarial training (Conneau et al., 2017), careful orthogonal mapping (Artetxe
et al., 2018) or semi-supervised learning (Mohiuddin et al., 2020; Bari et al., 2020). With the in-
troduction of mBERT, it became evident that learning joint distribution makes it easier for LLM to
achieve cross-lingual alignment at scale. Lample & Conneau (2019) enhanced mBERT by incorporat-
ing a conditional LM and a translation LM (leveraging parallel data) objective along with a language
embedding layer and trained a larger model utilizing more monolingual data. Huang et al. (2019)

6https://github.com/google-research/bert/blob/master/multilingual.md
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suggested employing auxiliary tasks like cross-lingual word recovery and paraphrase detection for
pretraining. Subsequent work by Conneau et al. (2019) and Soltan et al. (2022) scaled up the train-
ing of multilingual language models. As well, Xue et al. (2021) scale the size and languages in the
T5 architecture. In an effort to reproduce GPT-3, Scao et al. (2023) trained the first auto-regressive
multilingual LLM.

C.2 MULTITASK LEARNING AND ALIGNMENT

Early work has demonstrated that multitask learning can enhance the performance of NLP models
(Collobert & Weston, 2008). In explicit multitask learning, augmenting all samples during train-
ing may introduce noise due to differing output distributions in a traditional full-model fine-tuning
setup (Weller et al., 2022; Bari et al., 2021). For implicit multitask learning, Radford et al. (2019)
showed that a language model can begin to learn downstream tasks without explicit supervision
by pretraining alone. Large language models (Brown et al., 2020b; Smith et al., 2022; Chowdh-
ery et al., 2022) at scale can perform few-shot in-context learning, making them effective multitask
models. Additionally, Sanh et al. (2021); Wei et al. (2021); Muennighoff et al. (2022); Chung et al.
(2022) found that these implicitly learned language models could be further improved by explicitly
fine-tuning them with human instructions and prompts (Bach et al., 2022; Wang et al., 2022) in a
multitask fashion. Unlike previous template-based prompting approaches, Ouyang et al. (2022) ap-
plied preference tuning with reinforcement learning (Stiennon et al., 2020) using naturally written
prompts. Subsequently, Bai et al. (2022) introduced Constitutional AI to automate alignment using
AI feedback. Recently, following the work of Rafailov et al. (2023), various efforts (Azar et al.,
2023; Ethayarajh et al., 2024; Hong et al., 2024; Park et al., 2024; Meng et al., 2024) have been
directed towards preference tuning without explicit reward models.

C.3 LANGUAGE MODELS FOR ARABIC

As of the time of writing, the most prominent Arabic-focused LLMs are:

1. Jais (Sengupta et al., 2023): 13B and 30B base and chat models trained from scratch
using a combination of natural and translated Arabic data along with English and code
data.

2. AceGPT (Huang et al., 2023): 7B and 13B base and chat models trained from Llama-2
without vocabulary expansion.

While Jais and AceGPT are currently the most prominent models, early open models such as
AraGPT (Antoun et al., 2020), AraT5 (Elmadany et al., 2022), AraBART (Eddine et al., 2022), and
Noon (Lakim et al., 2022) 7 pioneered the area with models developed with limited resources to
serve Arabic.

Other models such as Jasmine (Abdul-Mageed et al., 2023) and Aramus (Alghamdi et al., 2023)
also showed the need for building a language model for over 400 million speakers worldwide.

In addition to the language adaptation of models and multilingual models reviewed above, recent
work has focused on building multilingual/bilingual language models from open weight language
models. For example, Ruciński (2024) adapted Mistral 7B for the Polish without vocabulary expan-
sion. Mala-500 is another effort to expand to 534 languages by expanding the vocabulary to 260K
tokens and further pretrained Llama-2 using LoRA adaptors (Lin et al., 2024). Due to the number
of languages they aimed to support, a small amount of data was included for each language and the
evaluation of the approach was limited to measuring perplexity and automatic classification bench-
marks. (Cui et al., 2023) introduced a Chinese Language adaptation of Llama and Alpacamodels,
where the vocabulary was increased to 50K tokens, then continued to pretrain the models and finally
fine-tune them.

D LIMITATIONS

ALLaM was trained on data that may potentially include toxic language, unsafe content, and societal
biases originally sourced from the internet, leading to the possible amplification of these biases and

7https://huggingface.co/Naseej/noon-7b
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toxic responses. Although ALLaM underwent comprehensive safety training during the alignment
phase, more community feedback is needed to iteratively improve ALLaM. Additionally, inherent
uncertainties in generative models mean that trials cannot encompass every possible use case, mak-
ing it impossible to predict the model’s responses in all contexts. This can occasionally result in
inaccurate, biased, or socially unacceptable outputs, even if the prompt itself is not explicitly offen-
sive. Developers must conduct thorough safety evaluations and make specific adjustments to ensure
that ALLaM is suitable for their intended purposes. Furthermore, the output generated by ALLaM
should not be considered a statement from ALLaM’s creators or any affiliated organization.

E ETHICAL STATEMENT

While conducting and presenting this research, we are committed to upholding the highest ethical
standards. We recognize the potential impact of large language models on society and the impor-
tance of ensuring their responsible development and deployment. Our work adheres to principles of
fairness, transparency, and inclusivity, striving to mitigate biases and ensure diverse representation
in our training data. We are mindful of privacy concerns and have taken steps to anonymize and
secure data used in our research. Additionally, we acknowledge the potential for misuse of language
technologies and advocate for their ethical application, promoting beneficial use cases while being
vigilant about unintended consequences. ALLaM models are made openly available to foster collab-
oration and further research, with the aim of contributing positively to the advancement of language
technologies and supporting the cultural and technological growth of the Arabic-speaking world.

F RISK STATEMENT

The deployment and use of LLMs in various applications poses significant risks, including data
privacy and security concerns due to the inadvertent inclusion of sensitive information in training
datasets. LLMs can perpetuate or amplify biases, resulting in unfair treatment and discrimination
in critical decision-making processes. They can also generate convincing but inaccurate content,
spreading misinformation and potentially influencing public opinion negatively. Over-reliance on
LLMs may diminish human judgment, and the models’ susceptibility to adversarial attacks can com-
promise system integrity. To mitigate these risks, we follow robust governance, continuous moni-
toring, and iterative improvements. We also adhere to best practices in data handling and model
training, fostering transparency and accountability in LLM development.

G PROCESSING OF ENGLISH DATA FOR 30B PARAMETER MODEL

The RedPajama V2 8 (RpV2) dataset is a large resource for training large language models:

Size and Composition: RpV2 is an open dataset that includes over 100B text documents sourced
from 84 CommonCrawl snapshots. These documents have been processed using the CCNet Wenzek
et al. (2019) pipeline, which is known for preparing web-crawled data. The dataset encompasses a
massive 30T tokens, making it, to the best of current knowledge, the largest public dataset released
specifically for training language models.

Quality Signals and Deduplication: Of the documents included, 30B comes with 40+ pre-
computed quality signals, and 20B documents are deduplicated. This ensures that the data is not
only vast but also of high quality and relevance for training purposes, reducing redundancy, and
improving the efficiency of learning.

Please refer to https://www.together.ai/blog/redpajama-data-v2 for the com-
plete list of existing quality signals.

Multilingual Coverage: The dataset includes documents in multiple languages, although the pri-
mary focus seems to be on English. The other languages are German (DE), French (FR), Spanish
(ES), and Italian (IT). Table Appendix G shows detailed statistics of the multilingual breakdown of
RpV2 dataset.

8https://github.com/togethercomputer/RedPajama-Data
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Table 8: Document and token counts for different languages

Language Document count Estimated token count (deduped)

English 14.5B 20.5T
German 1.9B 3.0T
French 1.6B 2.7T
French 1.8B 2.8T
Italian 0.9B 1.5T

Total 20.8B 30.4T

Processing Steps Applied:

Out of the 40+ pre-computed quality signals, we applied the following to create a high-quality
subset. Note that we focused on English only.

Table 9: Preprocessing steps to filter high-quality data from the Red-Pajama V2 dataset.

Annotation Tag Description Threshold
ccnet_language_
score Language identification model score. Keep ≥ 0.6
ccnet_length Number of characters in the document. Drop < 150 characters
ccnet_nlines Number of lines in the document. Drop < 3 lines
rps_doc_ml_
palm_score FastText classifier prediction for doc-

ument classification as Wikipedia,
OpenWebText, or RedPajama-V1 book
(English only).

Sample according to dis-
tribution

rps_doc_frac_lines_
end_with_ellipsis Fraction of lines ending with an ellipsis

(“...” or “..”).
Drop ≥ 0.8

rps_doc_frac_no_
alph_words Fraction of words without any alpha-

betical characters.
Drop ≥ 0.9

rps_doc_lorem_ipsum Ratio of occurrences of “lorem ipsum”
to total characters in content (after nor-
malization).

Drop ≥ 0.5

rps_doc_stop_word_
fraction Ratio of stop words to total words in the

document, using stop words from here.
Drop ≥ 0.9

rps_doc_symbol_to_
word_ratio Ratio of symbols (“#”, “...” or “..”) to

words in content.
Drop ≥ 0.9

rps_doc_ldnoobw
_words Count of sequences from the List-

of-Dirty-Naughty-Obscene-and-
Otherwise-Bad-Words blocklist (see
here).

Drop ≥ 0.9
(ldnoobw_words/total_words)

minhash_signature Minhash signature for fuzzy deduplica-
tion at Jaccard similarity of 0.7, based
on 128 hash functions grouped into 14
bands of 9 rows for LSH.

0.7
(ldnoobw_words/total_words)

Stats of the filtered data: Applying all the steps above removed 85.9% of the documents, and 80%
of the words.

In addition to the above steps, the CC-NET pipeline, which was used to download CC snapshots,
applied language detection and exact-match paragraph deduplication.
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Table 10: Document and word counts after each data processing Step

Step Input Output Removal Ratio Input Output Removal Ratio
(#docs) (#docs) doc level (%) (#words) (#words) word level (%)

minhash_signature_0.7 24.38B 24.36B 0.11 2.31T 2.30T 0.07
doc_level_exact_duplicates 24.36B 14.49B 40.5 2.30T 1.30T 43.51
ccnet_language_score 14.49B 14.30B 1.3 1.30T 1.30T 0.44
ccnet_length 14.30B 13.80B 3.51 1.30T 1.30T 0.05
ccnet_nlines 13.80B 12.87B 6.79 1.30T 1.28T 1.37
rps_doc_frac_lines_end_with_ellipsis 12.87B 12.87B 0 1.28T 1.28T 0
rps_doc_frac_no_alph_words 12.87B 12.87B 0 1.28T 1.28T 0
rps_doc_lorem_ipsum 12.87B 12.87B 0 1.28T 1.28T 0
rps_doc_stop_word_fraction 12.87B 12.87B 0 1.28T 1.28T 0
rps_doc_symbol_to_word_ratio 12.87B 12.87B 0 1.28T 1.28T 0
rps_doc_ldnoob_w_words 12.84B 12.84B 0 1.28T 1.28T 0
rps_doc_ml_pal_m_score 12.84B 343.12M 73.29 1.28T 459B 64.03

After applying all processing steps outlined above, we ended up with:

3,431,217,579 (4.3B) total documents, with a total of 4,587,781,981,546 (4.5T) words, and 5.2T
tokens.

The average doc length is X words and Y characters.

H TRAINING DETAILS

H.1 COMPUTE AND TRAINING INFRASTRUCTURE

Over the course of our development of ALLaM, we had access to 128-1024 A100 GPUs. Our GPU
cluster was equipped with InfiniBand connections to enable high-speed communication between
nodes. The all-reduce test on the cluster ranges around 1200-1400 Gbps (node-node interconnect
(RoCE)). The entire training period of the models is estimated to be 5M GPU hours.

At the start of the project, we forked Megatron-LM9 and applied our own customizations (including
improving data iterators, adding metadata in the checkpoints, and custom data pipelines). We uti-
lized data, tensor, and pipeline parallelism supported by Megatron-LM to efficiently train at a large
scale as well as FlashAttention (Dao et al., 2022; Dao, 2024). By leveraging these techniques, we
achieved significant improvements in training speed. The throughput per GPU varied from 135 to
167 TFlop/s/GPU depending on the number of GPUs, number of nodes, batch size, and parallelism
strategy. We trained ALLaM with bf16 mixed-precision.

H.2 PRETRAINING DETAILS

We fine-tune our base model, which was trained on 3.2 trillion (2T Llama-2 + 1.2T ALLaM)
tokens, for 3 epochs using Ultra-Instinct-v2 with a learning rate of 5× 10−6 and a batch
size of 1024. The model is not trained to generate the prompt, as we mask out our prompt tokens
when calculating the loss. Ultra-Instinct-v2 contains a substantial number of multi-turn
conversations. To train on these multi-turn conversations, we performed turn-augmentation.
Figure 12 visually explains the process of turn augmentation.

While training the SFT model, we encountered tokenization issues. Specifically, Llama-2’s tok-
enizer was trained using sentencepiece10, which breaks the beginning and end of sequence
tokens into multiple tokens and adversely affects long multi-turn conversations. To address this is-
sue, we patched sentencepiece using the HuggingFace LlamaTokenizer wrapper (Wolf
et al., 2020). Over many iterations of training, we saw that even having 1% noisy samples (e.g.,
empty responses or formatting issues) in alignment data can noticeably affect model quality.

9https://github.com/NVIDIA/Megatron-LM
10https://github.com/google/sentencepiece
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H.3 ALIGNMENT TRAINING DETAILS

For DPO, we used a batch size of 512 with KLpenalty = 0.1 and a learning rate of 9×10−7 decayed to
5×10−7 using a cosine annealing learning rate schedule. We train ALLaM for a single epoch using
all the preference data.

From our initial experiments with small datasets, we observed issues with model quality even when
a small fraction (0.1%) of the data was noisy. In this context, noise can be improper labeling of
positive/negative pairs or low quality positive outputs. It is not clear, however, if after scaling up the
DPO data whether the model can ignore this type of noise. In early DPO models, trained on data
where we did not verify all the samples, we found that even a few moderately noisy samples resulted
in broken models that repeatedly generate the same text or output incoherent text.

H.4 DPO VS. PPO

Conversation

User prompt 1

Assistant reply 1

User prompt 2

Assistant reply 2

User prompt 3

Assistant reply 3

Augmented Turn 1

User prompt 1

Assistant reply 1

Augmented Turn 2

User prompt 1

Assistant reply 1

User prompt 2

Assistant reply 2

Augmented Turn 3

User prompt 1

Assistant reply 1

User prompt 2

Assistant reply 2

User prompt 3

Assistant reply 3

Applied loss Masked loss

Figure 12: Augmentation process for conversa-
tions. The original conversation (left) is expanded
into one sample per turn (right), with user prompts
and assistant replies marked for training (red) and
masking (orange) to enhance ALLaM’s language
understanding and multi-turn response generation
capabilities.

One of the fundamental differences between
DPO and PPO is that PPO is always on-policy
with an external reward model. In our experi-
ence with DPO, we did not encounter any sig-
nificant issues with off-policy experiments. Ad-
ditionally, DPO allows for faster iteration and
easier understanding of the training dynamics.
The decision to use DPO over PPO was based
on logistical constraints rather than a perfor-
mance comparison of the algorithms. Given our
compute setup and time constraints, we chose
to proceed with DPO. We plan to explore PPO
in the future for alignment.

I EVALUATION

Evaluation Framework All evaluations
were completed using the Language Model
Evaluation Harness (Gao et al., 2023) with
the following exceptions: HumanEval was
evaluated using BigCode Evaluation Harness
(Ben Allal et al., 2022). MMLU-Pro, MixEval,
and Arabic MMLU (Koto et al., 2024) were evaluated using the repositories of the dataset creators.

I.1 DETAILS OF THE EVALUATION DATASETS

The automatic evaluations cover Arabic and English benchmarks grouped into the categories listed
below:

1. Multi-domain: MixEval (Ni et al., 2024), MMLU-Pro (Wang et al., 2024), and BBH (Suz-
gun et al., 2022).

2. Reasoning and Commonsense: HellaSwag (Zellers et al., 2019), PIQA (Bisk et al., 2020),
WinoGrande (Sakaguchi et al., 2019), and AraSwag (Nagoudi et al., 2022).

3. World Knowledge and Language Understanding: MMLU (Hendrycks et al., 2020),ARC
Easy and Challenge (Clark et al., 2018), TriviaQA (Joshi et al., 2017), BoolQ (Clark et al.,
2019), NQ Open (Kwiatkowski et al., 2019), AGIEval (Zhong et al., 2023), Exams-Ar
(Hardalov et al., 2020), MMLU Arabic (tr) (Huang et al., 2023), MMLU Arabic (MBZU)
(Koto et al., 2024) , and ETEC (in-house curated).

4. Safety and Alignment: Hendrycks Ethics (Hendrycks et al., 2021a), ACVA (Huang et al.,
2023), TruthfulQA (Lin et al., 2022), and AraTruthfulQA (in-house curated).

5. Conversation: MT-Bench (Zheng et al., 2024), and Arabic domain capability dataset (in-
house curated).
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Figure 13: Example of Arabic cultural alignment between ALLaM and GPT-4.

6. Math: Minerva MATH (Lewkowycz et al., 2022; Hendrycks et al., 2021b), GSM8K (Cobbe
et al., 2021) and AraMath (in-house curated).

7. Coding: HumanEval (THUDM, 2022)

The following benchmarks were curated and developed in-house:

• ETEC: a collection of 1891 multiple choice questions covering different exams performed
by the Education and Training Evaluation Commission in Saudi Arabia11.

• AraMath: a set of 600 test samples that were post-processed and prepared from the Ara-
Math (Alghamdi et al., 2022) dataset. These samples focus on testing the models’ perfor-
mance on Arabic math problems.

• AraTruthfulQA: a dataset created using similar methodology to the TruthfulQA (Lin et al.,
2021) dataset. It comprises a total of 541 samples, 285 samples were translated directly
from TruthfulQA using GPT-4 and carefully validated and localized by human verifiers.
Additionally, 256 questions were curated by humans to ensure their contextual relevance
and cultural appropriateness.

I.2 DETAILED ARABIC EVALUATION

Follow the Table 11 for details.

I.3 DETAILED ENGLISH EVALUATION

Follow the Table 12 for details.

I.4 EXAMPLES

An example of Arabic culture alignment improvements is illustrated in Figure 13.

11https://etec.gov.sa/home
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Table 11: Comprehensive Arabic benchmark results.

araSwag ACVA
MMLU (ar)

Exams (ar) ETEC araTruthfulQA araMath
Koto et al. (2024) Huang et al. (2023)

10-shot 5-shot 0-shot 0-shot 5-shot 0-shot 0-shot 5-shot

Pre-trained

ALLaM-Base (from scratch) 7B 52.68 68.46 44.45 36.28 42.09 41.7 29.4 25.5
ALLaM-Base 7B 51.63 66.18 41.52 34.42 38.55 36.58 29.9 11.5
AceGPT 7B 46.8 59.54 36.33 27.18 32.22 25.42 30.1 19.3
Llama 2 7B 25.62 62.93 33.61 26.64 23.09 27.85 25.7 24.8
Mistral-v0.3 7B 30.33 53.81 40.81 32.1 31.47 32.45 27.0 16.3
OLMo-1.7 7B 24.44 57.8 30.97 25.7 25.7 27.17 23.5 16.8
OLMo 7B 22.09 56.07 31.41 24.98 28.31 23.1 26.2 31.7
Qwen2 7B 40.26 78.74 52.91 47.16 46.0 55.23 29.9 51.2
Gemma 7B 25.36 54.82 46.33 26.04 22.91 25.48 24.0 39.3
Llama 3 8B 38.95 71.54 47.62 38.88 44.69 42.86 29.9 43.8

ALLaM-Base 13B 54.9 77.81 51.48 40.29 47.3 44.4 28.5 17.3
Yi-1.5 9B 28.76 61.19 46.36 34.11 34.82 40.01 24.0 44.8
AceGPT-v1.5 13B 48.89 73.47 42.24 33.18 40.6 33.56 30.3 18.8
Llama 2 13B 28.63 64.52 35.83 30.0 28.86 31.13 26.2 13.8
Jais 13B 49.28 60.76 32.2 29.23 33.33 27.96 28.7 28.5

ALLaM-Base 70B 59.35 79.67 59.21 49.34 53.82 55.97 33.5 38.7
Jais-v1 30B 54.51 68.25 37.6 32.94 43.39 34.04 29.6 19.3
Jais-v3 30B 53.86 70.49 45.19 38.31 50.28 45.61 30.5 25.2
Qwen1.5 32B 37.78 73.63 55.94 48.67 49.53 57.4 34.0 45.3
Yi-1.5 34B 32.16 65.25 42.93 36.26 33.71 36.21 23.7 52.0
Mixtral-8x7B-v0.1 47B 38.43 75.64 51.25 39.74 44.32 44.61 25.5 39.8
Llama 2 70B 34.38 51.16 44.79 37.1 37.99 39.38 26.6 32.3
Llama 3 70B 54.51 74.17 36.67 59.39 55.31 64.27 31.4 53.7
Qwen1.5 72B 44.84 76.0 61.38 54.44 54.0 62.84 34.9 51.8
Qwen2 72B 51.76 68.7 69.94 65.0 56.98 75.16 36.0 62.3
DBRX 132B 47.58 72.38 53.24 47.2 47.11 51.96 26.8 49.3
Mixtral-8x22B-v0.1 141B 45.1 77.21 53.6 45.92 48.42 53.96 29.8 51.0

Fine-tuned

ALLaM-Instruct (from scratch) 7B 50.98 79.59 69.16 51.38 52.89 67.34 30.7 42.2
ALLaM-Instruct 7B 49.28 80.33 66.9 49.6 52.7 62.95 36.4 36.5
AceGPT-Chat 7B 43.4 59.35 45.8 33.58 35.57 36.05 37.9 22.5
Llama 2-Chat 7B 24.44 52.46 33.33 26.45 25.33 26.69 29.9 21.5
Mistral-Instruct-v0.3 7B 30.59 60.7 44.3 34.06 31.1 34.41 30.3 26.0
OLMo-Instruct 7B 25.36 58.74 32.74 26.5 24.77 27.33 29.6 36.5
Qwen2-Instruct 7B 37.78 79.3 49.82 48.07 47.3 56.18 35.1 51.3
Gemma-it 7B 25.62 58.03 41.48 23.15 22.91 23.73 34.8 37.0
Llama 3-Instruct 8B 33.99 75.21 53.98 41.49 44.32 49.42 34.0 38.3
Aya-23 8B 51.11 73.65 54.37 36.39 43.76 42.28 31.6 32.0

ALLaM-Instruct 13B 54.77 78.59 68.11 51.03 54.93 65.59 37.5 46.8
SILMA-Instruct-v1.0 9B 38.2 64.4 60.5 31.2 43.4 36.7 29.8 42.2
Yi-1.5-Chat 9B 29.8 67.57 45.5 36.02 31.47 43.6 28.7 47.8
AceGPT-Chat-v1.5 13B 49.41 64.93 60.7 37.92 40.04 42.81 36.4 22.5
Llama 2-Chat 13B 25.75 60.14 35.84 28.73 22.91 30.44 31.4 22.3
Jais-Chat 13B 77.12 70.68 54.8 41.43 46.93 48.68 31.6 25.3

ALLaM-Instruct 70B 57.91 79.01 75.92 62.23 58.47 78.38 38.4 56.8
Jais-Chat-v1 30B 80.52 71.14 60.4 43.99 48.6 48.52 32.9 26.0
Jais-Chat-v3 30B 88.37 70.05 62.37 30.15 51.21 38.53 37.3 32.5
Qwen1.5-Chat 32B 37.39 78.86 57.25 50.62 48.23 59.73 39.0 43.0
Yi-1.5-Chat 34B 30.85 65.96 45.6 35.47 35.2 40.22 25.3 49.8
CommandR 35B 55.42 78.34 60.19 48.38 50.65 55.44 33.8 47.2
Aya-23 35B 55.56 79.69 57.71 47.78 51.77 56.18 33.8 43.8
Mixtral-8x7B-Instruct-v0.1 47B 37.91 77.27 52.66 41.09 42.64 49.37 32.5 39.7
Llama 2-Chat 70B 30.72 59.49 40.77 32.86 28.68 30.6 32.3 25.5
Llama 3-Instruct 70B 45.75 80.26 36.27 60.11 58.47 71.41 37.7 59.7
Qwen1.5-Chat 72B 46.8 80.49 64.99 54.32 53.26 62.32 42.3 45.7
Qwen2-Instruct 72B 51.9 79.98 71.51 66.18 58.66 75.16 47.7 61.7
CommandR+ 104B 59.35 80.37 66.33 52.98 52.89 62.1 37.0 50.2
DBRX-instruct 132B 45.75 76.46 56.6 46.73 48.79 53.17 30.5 48.8
Mixtral-8x22B-Instruct-v0.1 141B 43.79 76.45 58.92 46.74 49.72 55.55 35.1 46.0
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Table 12: Comprehensive English benchmark results.
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