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Abstract

As large language models (LLMs) continue to advance, many existing benchmarks1

designed to evaluate their reasoning capabilities are becoming saturated. Therefore,2

we present the Putnam-AXIOM Original benchmark consisting of 236 mathemati-3

cal problems from the William Lowell Putnam Mathematical Competition, along4

with detailed step-by-step solutions. To preserve the Putnam-AXIOM benchmark’s5

validity and mitigate potential data contamination, we created the Putnam-AXIOM6

Variation benchmark with functional variations of 52 problems. By programmat-7

ically altering problem elements like variables and constants, we can generate8

unlimited novel, equally challenging problems not found online. We see that al-9

most all models have significantly lower accuracy in the variations than the original10

problems. Our results reveal that OpenAI’s o1-preview, the best performing model,11

achieves merely 41.95% accuracy on the Putnam-AXIOM Original but experiences12

around a 30% reduction in accuracy on the variations’ dataset when compared to13

corresponding original problems. Moreover, we explore metrics beyond boxed14

accuracy to assess models on complex tasks like natural language theorem proving,15

crucial for evaluating reasoning capabilities in depth, opening the possibility for16

open-ended evaluation of reasoning strings. The data and the evaluation code are17

available at https://anonymous.4open.science/r/putnam-axiom-B57C/.18

1 Introduction19

The ability for Large Language Models (LLMs) to reason about complex problems has a plethora20

of applications in many fields such as economics [Zhang et al., 2024], drug discovery [Bran et al.,21

2023], and even simulations of human behavior and society [Park et al., 2023]. The prominence22

of this ability has led to significant development in the performance of LLMs on many reasoning23

benchmarks.24
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AI.
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Outpacing Current Evaluations. Indeed, advanced models like GPT-4 [OpenAI, 2023] and Gemini25

Ultra [Team, 2023] have even surpassed human-level performance on many benchmarks like MMLU26

[Hendrycks et al., 2020] and MMMU [Yue et al., 2023]. Similarly, LLMs have seen astonishing27

progress in other challenging benchmarks like GSM8K [Chen et al., 2022] and MATH [Hendrycks28

et al., 2021], with SOTA models attaining nearly 90% accuracy on MATH [Lei, 2024] and nearly29

perfect accuracy on GSM8K [Zhong et al., 2024]. Though this progress is a testament to the rapidly30

evolving ability and utility of LLMs, it also presents a large problem: Existing datasets are no longer31

sufficient to evaluate the reasoning abilities of LLMs.32

Data Contamination. Compounding this issue is one of the most significant problems facing33

evaluation datasets today, i.e., data contamination. As LLMs are increasingly trained on more of34

the internet, an increasing number of the open-source problems used in evaluation benchmarks are35

incorporated in the training data of these models. A model can therefore display artificially high36

“reasoning ability” by simply memorizing the answers it has seen undermining evaluation integrity.37

To address these limitations, we introduce the Putnam-AXIOM (Advanced eXamination of38

Intelligence in Operational Mathematics) dataset, a novel and challenging compilation of high-39

level mathematics problems sourced from the prestigious William Lowell Putnam Mathematical40

Competition, an annual mathematics competition for undergraduate college students in North Amer-41

ica which requires advanced mathematical reasoning and covers a wide range of university-level42

mathematical concepts. Further, we also introduce functional variations of this AXIOM dataset to43

combat data contamination taking inspiration from the solution employed by Srivastava et al. [2024].44

These are small variations of questions on the Putnam that are equally difficult as the Putnam but45

unavailable anywhere on the internet. AXIOM enables fully automated evaluations by requiring46

models to provide final answers within “\boxed{}” brackets which can then be extracted and com-47

pared to the ground truth final solution using an equivalence function1. This approach eliminates the48

need for human evaluation, allows for complex open-ended answers, and avoids the limitations of49

multiple-choice formats, thus maintaining rigor while enabling scalability.50

Initial evaluations on Putnam-AXIOM demonstrate its difficulty with OpenAI o1-preview scoring51

less than half at 41.95%, while GPT-4o achieves only 17.80%. Even math-specialized models52

such as Qwen2-Math-7B and Qwen2-Math-7B-Instruct perform poorly, scoring 5.51% and 11.8%53

respectively. Performance further declines on functional variations of Putnam-AXIOM, which include54

significant drops for most models, decreasing by 20-30% in relative performance. These low scores55

underscore Putnam-AXIOM’s utility for measuring LLMs’ advanced reasoning capabilities, while56

the variations scrutinize true reasoning skills by exposing the models’ reliance on memorization.57

2 Methods58

2.1 Putnam-AXIOM Original Dataset59

Dataset. The Putnam-AXIOM Original Dataset contains 236 problems curated from the William60

Lowell Putnam Mathematical Competition posed between 1985 and 2023. These problems were61

selected based on their ability to yield final “\boxed{}” solutions ensuring compatibility with our62

automated evaluation. The dataset encompasses various subjects within university-level mathematics63

categorized into 11 distinct domains - Geometry, Algebra, Trigonometry, Calculus, Linear algebra,64

Combinatorics, Probability, Number theory, Complex numbers, Differential equations and Analysis.65

To maintain a consistent and rigorous evaluation, each problem retains its original exam ID, which66

indicates its difficulty level (A or B for sitting, 1-6 for increasing complexity). This categorization67

helps in evaluating subject-specific understanding and overall problem-solving skills at different levels68

of complexity. The dataset is formatted using LATEX to accurately capture the complex equations69

and symbols the problems employ. Additionally, we utilize Asymptote vector graphics for encoding70

mathematical figures and diagrams to ensure language models can process visual elements directly.71

Further, we standardized the placement of boxed answers by relocating them to the end of each72

solution string to minimize unintended emergent behaviors leading to evaluations that are less "harsh"73

or prone to penalizing the model for formatting deviations rather than actual comprehension.74

1For instance, the equivalence function would evaluate the answers 0.5, 1/2, and \frac{1}{2} as equal
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Model Assessment. Drawing inspiration from the MATH dataset by [Hendrycks et al., 2021], which75

demonstrated the effectiveness of using boxed answers for evaluating mathematical understanding76

in LLMs, we similarly create a dataset with final solutions being wrapped in \boxed{} commands.77

Boxed answers allow for an exact match criterion rather than relying on approximate heuristics by78

simply parsing the LLM generated string solution for the value within the box, thereby enhancing79

reliability and consistency of the evaluation process while being quick and cost-effective. To further80

ensure fair evaluation, we implemented an equivalence function that homogenizes similar answers,81

addressing both simple string inconsistencies and complex mathematical equivalences like (x+ 1)282

and x2 + 2x+ 1 or numerical expressions such as \frac{1}{2}, 1/2, and 0.5 and equating them.83

Modified Boxing. Given the complex nature of certain Putnam questions, some problems do not84

lend themselves to simple, singular boxed answers. Instead, they often include conditions, multiple85

possible answers, varied answer formats and elaborate proofs. These original questions would86

have necessitated costly and difficult human evaluations which we seek to avoid. To address this,87

we modified these questions by adding a trivial next step to the original questions, changing the88

solution accordingly. This additional step was designed so as to ensure that solvers reached the89

same conclusions and insights necessary to solve the problem, but then needed to perform a simpler90

computation to get a simplified, boxable answer. We provide an example of such a change in Figure91

3. By incorporating this minor modification, we preserved the inherent difficulty and complexity of92

the original problems while making the answers suitable for our boxed answer evaluation criteria.93

2.2 Putnam-AXIOM Variation Dataset94

Models trained on snapshots of the internet have likely encountered Putnam questions, potentially95

inflating their performance on the Putnam-AXIOM Original dataset. Therefore, drawing inspiration96

from Srivastava et al. [2024], we introduce functional variations of select problems from Putnam-97

AXIOM Original providing an effective way of evaluating models that have been trained on the entire98

internet by taking advantage of weaknesses in model memorization. These variations are classified99

into two types.100

1. Variable Change. The simplest variation is a variable change, where variable names are101

altered and the final answer is unvaried. Variable changes slightly modify the problem from102

its original statement, which models could have trained on.103

2. Constant Change. Constant changes modify numeric properties of the question, altering104

constants within the step-by-step solution and the final answer. Constant changes signifi-105

cantly transform the problem from its original statement, challenging models to perform106

complex reasoning on how the changes affect the solution and final answer, as in the example107

from Figure 4.108

Variational Dataset Description. We created functional variations for 52 Putnam-AXIOM questions,109

considering limitations such as problem-specific constants, non-generalizable solutions, and questions110

lacking constants or boxable answers. The dataset includes 26 constant+variable and 26 variable-111

only changes. We rephrased problem statements while maintaining the core task to prevent pattern112

recognition by LLMs. Each variation can generate infinite unique, equally difficult snapshots,113

offering a sustainable evaluation method. To evaluate various SOTA models, evaluators are expected114

to generate snapshots (instances of the infinite potential variations) of the variation dataset by running115

the generation code.116

2.3 Model Evaluations117

Using the LM Harness Evaluation framework [Gao et al., 2024], we evaluated several open-source118

and proprietary SOTA LLMs. Models were prompted to provide answers in \boxed format, which119

were then compared to Putnam ground truths with an exact final answer match. We evaluated the120

236-question Putnam-AXIOM Original dataset once. For the variation dataset, we conducted five121

trials, each using a randomly selected variation snapshot and its corresponding 52 original questions.122

We then calculated mean accuracy and 95% confidence intervals.123
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3 Results and Analysis124

3.1 Putnam-AXIOM Model Performance125

Table 1 presents Putnam-AXIOM Original dataset accuracies. Most models score below 10%, with126

even NuminaMath, the AI Mathematics Olympiad winner [Investments, 2024], achieving only 4.66%.127

These low accuracies underscore AXIOM’s difficulty. Figure 1 contrasts Putnam-AXIOM Variation128

dataset mean accuracies with the 52 corresponding original questions, along with the confidence129

intervals across the five variation snapshots with the average accuracies in Table 2. Original accuracies130

typically surpass variation accuracies. For models like o1-preview, GPT-4o, Claude-3.5 Sonnet and131

NuminaMath-7B-TIR, non-overlapping confidence intervals reveal statistically significant differences,132

indicating artificially inflated performance on original questions due to data contamination. Looking133

at the numbers highlights significant accuracy declines across models: GPT-4o shows the steepest134

drop at 44%, followed by o1-preview at 30%, GPT-4 at 29%, and Claude-3.5 Sonnet at 28.5%.135

Model
Original (Final Accuracy)
Score Percentage (%)

Gemma-2B-Base 7/236 2.97
Gemma-7B-Base 9/236 3.81

DeepSeek-Math-7B-Base 14/236 5.93
Qwen2-Math-7B-Base 13/236 5.51
NuminaMath-7B-Base 11/236 4.66
Mistral-7B-v0.3-Base 7/236 2.97

Llama-3-8B-Base 9/236 3.81

Gemma-2B-Instruct 2/236 0.85
Gemma-7B-Instruct 8/236 3.38

Qwen2-Math-7B-Instruct 28/236 11.86
DeepSeek-Math-7B-Instruct 12/236 5.08

Mistral-7B-Instruct-v0.3 8/236 3.38
Llama-3-8b Instruct 10/236 4.23

DeepSeek-Math-7B-RL 19/236 8.05

Claude-3.5 Sonnet 38/236 15.96

GPT-4 22/236 9.32
GPT-4o 42/236 17.80

o1-preview 99/236 41.94
Table 1: Putnam-AXIOM Original Results.

3.2 LLM Error Analysis136

Though we used automated evaluations for efficiency, a manual review of model responses on137

Putnam-AXIOM Original provides deeper insights into models’ reasoning and errors. We selected138

the two best-performing models, GPT-4o and OpenAI o1-preview, as they likely exhibit the strongest139

reasoning abilities. Our goal is to analyze this reasoning in greater depth.140

OpenAI o1-preview Performance: Out of all models, we see that OpenAI o1-preview performed141

the best on Putnam-AXIOM Original, receiving 41.9% boxed accuracy (99/236) while other models142

received less than 20%. Analyzing the answers, we see that most of the OpenAI o1-preview responses143

followed generally the same logical path as the ground truth solution. However, several of these144

questions contained logical mistakes and inconsistencies. The biggest discrepancy between model145

responses and the ground-truth solution was a general lack of mathematical rigor. Whereas the146

ground truth solution will make claims to advance its solution then prove those claims step-by-step,147

o1-preview will often make and use claims without justification. While this does succeed in getting148

to the correct boxed final answer, these unjustified claims would receive little credit when marked by149

a human grader. A large part of the difficulty of mathematical reasoning is being logically airtight150

throughout the entire solution; thus, though o1-preview shows promise, there are still evident flaws151
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Figure 1: Drop in accuracies on Putnam-AXIOM Variation vs Original questions is statistically
significant for nearly all models. Figure shows mean accuracies with 95% confidence intervals.

in its mathematical reasoning abilities. In several solutions like Figure 7, for instance, o1-preview152

correctly identified the maximal or minimal value of a variable, but failed to provide sufficient proof153

that the value it provided was indeed the maximum or minimum.154

GPT-4o Performance: Like the o1-preview, GPT-4o mostly followed correct logical reasoning155

for most of its solutions. For GPT-4o, the biggest discrepancy between model responses and the156

ground-truth solution is the same general lack of mathematical rigor throughout most of the solutions.157

An example of this lack of rigor is shown in Figure 8, where GPT-4o makes the claim that a rectangle158

gives the minimal area subject to a set of constraints without any justification. In addition to issues159

with rigor, GPT-4o also displayed logical leaps and incoherent reasoning, as displayed in Figure 9160

where the model simply assumes that an answer is correct. These logical leaps are symptomatic of161

an issue in the GPT-4o’s CoT reasoning, as the model prioritizes reaching the final answer rather162

providing a rigorous logical output.163

General Analysis: Beyond GPT-4o and the o1-preview, we wanted a general overview of the164

reasoning behaviors of models. To do so, we chose the best-performing open-source models,165

DeepSeek-Math-7B-RL, Qwen2-Math-7B, and NuminaMath-7B. We tend to see that open-source166

models are much more error-prone than the proprietary models we evaluated earlier. In general,167

we notice that open-source models are subject to the same lack of mathematical rigor. However,168

this rigor issue is overshadowed by major calculation errors, hallucinated/irrelevant information,169

misunderstandings of the problem, and logical jumps. For instance, in Figure 10, NuminaMath170

simultaneously makes a calculation, irrelevancy, and misunderstanding error when writing the last171

step of its solution; in Figure 11, the model makes false assumptions about functions defined in the172

problem; in Figure 12, the model completely removes a crucial part of the problem and proceeds to173

an incorrect final solution.174

4 Conclusion175

In this paper, we present Putnam-AXIOM, a novel challenging benchmark of 236 problems from176

the Putnam examination for evaluating reasoning capabilities of large language models. Our dataset177

allows for automated evaluations with an equivalence function. While SOTA LLMs already have178

saturated performance on benchmarks like MATH, they still struggle with successfully answering179

questions in Putnam-AXIOM. To address potential data contamination issues, we introduce Putnam-180

AXIOM Variations, altering the variable names, constant values, or the phrasing of the question to181

create a potentially infinite number of problems not found anywhere on the internet. We notice that182

for most problems, models get significantly worse on the variations than they do the corresponding183

original questions. Our dataset fills the void opened by rapid progress in model reasoning capabilities.184

We hope that our benchmark will accelerate future research into artificial reasoning.185
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A Appendix / supplemental material265

A.1 Legal Compliance266

We collect and modify various problems from the William Lowell Putnam Competition to create the267

original and variation datasets of Putnam-AXIOM. Putnam problems are created by the Mathematical268

Association of America (MAA), which is also the source of the AMC and AIME problems used in269

the MATH dataset [Hendrycks et al., 2021]. Like Hendrycks et al. [2021], we do not in any form270

seek to monetize or commercialize Putnam problems—only to utilize them for academic purposes.271

Our use of the Putnam problems to create an evaluation dataset completely falls under the “research”272

section of Fair Use. Indeed, according to Section 107, of the U.S. Copyright Act [USC, 1976], our273

work certainly qualifies as Fair Use for the following reasons:274

1. Our use of MAA problems is only for academic research purposes. We do not monetize or275

commercialize the problems.276

2. Our use of Putnam problems as a reasoning evaluation benchmark for large language models277

is significantly different from their original use as competition problems.278
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3. Our use of Putnam problems is transformative. As detailed in Section 2 above, we have279

transformed the questions to be answered with a single numerical or algebraic “boxed280

answer” We have altered all of the solutions so that the final boxed answer lies at the281

end of the solution (so as to encourage models to explain their rationale before outputting282

a solution). We have also standardized the solutions: If there are many solutions given,283

we only use the first; if there are any references irrelevant to mathematics necessary to284

understand and solve the problem (such as comments like “Communicated by ...”), we have285

removed those.286

4. Our use of Putnam problems to construct a benchmark has no effect on the demand for or287

supply of Putnam problems in the William Lowell Putnam Competition. The existence of288

our dataset does not alter the value of the original problems—as those are already freely289

available online—nor does it influence the market of future competitors/problem writers.290

Problem: Let Fm be the mth Fibonacci number, defined by F1 = F2 = 1 and Fm =
Fm−1 + Fm−2 for all m ≥ 3. Let p(x) be the polynomial of degree 1008 such that
p(2n+ 1) = F2n+1 for n = 0, 1, 2, . . . , 1008. Find integers j and k such that p(2019) =
Fj − Fk and give the answer in the form j/k.

Solution: More generally, let p(x) be the polynomial of degree N such that p(2n+ 1) =
F2n+1 for 0 ≤ n ≤ N . We will show that p(2N + 3) = F2N+3 − FN+2.
Define a sequence of polynomials p0(x), . . . , pN (x) by p0(x) = p(x) and pk(x) =
pk−1(x) − pk−1(x + 2) for k ≥ 1. Then by induction on k, it is the case that
pk(2n + 1) = F2n+1+k for 0 ≤ n ≤ N − k, and also that pk has degree (at most)
N − k for k ≥ 1. Thus pN (x) = FN+1 since pN (1) = FN+1 and pN is constant.
We now claim that for 0 ≤ k ≤ N , pN−k(2k + 3) =

∑k
j=0 FN+1+j . We prove this again

by induction on k: for the induction step, we have

pN−k(2k + 3) = pN−k(2k + 1) + pN−k+1(2k + 1)

= FN+1+k +

k−1∑
j=0

FN+1+j .

Thus we have

p(2N + 3) = p0(2N + 3) =

N∑
j=0

FN+1+j .

Now one final induction shows that
∑m

j=1 Fj = Fm+2 − 1, and so p(2N + 3) = F2N+3 −
FN+2, as claimed. In the case N = 1008, we thus have p(2019) = F2019 − F1010. We
thus prove that (j, k) = (2019, 1010) is a valid solution with the final answer thus being
2019/1010 .

Year: 2017 ID: A6 Final Answer: 2019/1010

Figure 2: An example problem in Putnam-AXIOM. Solving this problem requires non-trivial con-
structions and multiple advanced reasoning chains. The format of the final answer is specified in the
problem statement to make comparison simpler.
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Problem: Determine which positive integers
n have the following property: For all inte-
gers m that are relatively prime to n, there
exists a permutation π : {1, 2, . . . , n} →
{1, 2, . . . , n} such that π(π(k)) ≡ mk
(mod n) for all k ∈ {1, 2, . . . , n}.

Solution: The desired property holds if
and only if n = 1 or n ≡ 2 (mod 4) . Let
σn,m be the permutation of Z/nZ induced
by multiplication by m; the original problem
asks for which n does σn,m always have a
square root.

· · ·
By Lemma 1, σn,m does not have a square
root.

Year: 2016 ID: A1 Final Answer: ??

Problem: Determine the sum of the first k
positive integers n (in terms of k) which have
the following property: For all integers m that
are relatively prime to n, there exists a per-
mutation π : {1, 2, . . . , n} → {1, 2, . . . , n}
such that π(π(k)) ≡ mk (mod n) for all
k ∈ {1, 2, . . . , n}.

Solution: Let σn,m be the permutation of
Z/nZ induced by multiplication by m; the
original problem asks for which n does σn,m

always have a square root.

· · ·

The desired property holds if and only if
n = 1 or n ≡ 2 (mod 4), hence making

the required sum 2k2 − 4k + 3 .

Year: 2016 ID: A1 Final Answer:
2k2 − 4k + 3

Figure 3: A modified boxing example in Putnam-MATH. Here we see that the original problem holds
true for a number of values of n conditioned on a specific property making it hard to find a boxable
expression. We thus modify the solution to still require the solver to get to that conclusion and add
a further computation of summing up the first k such values of n giving a boxable solution while
keeping the core of the problem the same.
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Problem: Define a growing spiral in the
plane to be a sequence of points with integer
coordinates P 0 = (0, 0), P 1, . . . , Pn such
that n ≥ 2 and:

· · ·
How many of the points (x, y) with integer
coordinates 0 ≤ x ≤ 2011, 0 ≤ y ≤ 2011
cannot be the last point, Pn of any growing
spiral?

Solution: We claim that the set of points
with 0 ≤ x ≤ 2011 and 0 ≤ y ≤ 2011 that
cannot be the last point of a growing spiral
are as follows: (0, y) for 0 ≤ y ≤ 2011;
(x, 0) and (x, 1) for 1 ≤ x ≤ 2011; (x, 2) for
2 ≤ x ≤ 2011; and (x, 3) for 3 ≤ x ≤ 2011.

· · ·

This gives a total of

2012 + 2011 + 2011

+2010 + 2009 = 10053

excluded points.

Year: 2011 ID: A1 Final Answer: 10053

Problem: Define a growing spiral in the
plane to be a sequence of points with integer
coordinates L0 = (0, 0), L1, . . . , Ln such
that n ≥ 2 and:

· · ·
How many of the points (w, v) with integer
coordinates 0 ≤ w ≤ 4680, 0 ≤ v ≤ 4680
cannot be the last point, Ln of any growing
spiral?

Solution: We claim that the set of points
with 0 ≤ w ≤ 4680 and 0 ≤ v ≤ 4680 that
cannot be the last point of a growing spiral are
as follows: (0, v) for 0 ≤ v ≤ 4680; (w, 0)
and (w, 1) for 1 ≤ w ≤ 4680; (w, 2) for 2 ≤
w ≤ 4680; and (w, 3) for 3 ≤ w ≤ 4680.

· · ·

This gives a total of

4681 + 4680 + 4680

+4679 + 4678 = 23398

excluded points.

Year: 2011 ID: A1 Final Answer: 23398

Figure 4: A constant change and variable change in Putnam-AXIOM. Here, we perform a variable
change on the original problem/solution on the left by changing variables ‘x’ to ‘w,’ ‘y’ to ‘v,’ and
‘P ’ to ‘L.’ We also perform a constant change by altering the constant ‘2011’ to ‘4680’. The constant
change affects the final answer, changing it from 10053 to 23398.

Problem: Determine the greatest possi-
ble value of

∑10
i=1 cos(3xi) for real numbers

x1, x2, . . . , x10 satisfying
∑10

i=1 cos(xi) =
0.

Solution: Since cos(3xi) = 4cos(xi)
3 −

3cos(xi), it is equivalent to maximize
4
∑10

i=1 y
3
i for y1, . . . , y10 ∈ [−1, 1] with∑10

i=1 yi = 0; note that this domain is com-
pact, so the maximum value is guaranteed to
exist.

· · ·
The maximum value is 480/49 .

Year: 2018 ID: A3 Final Answer: 480/49

Problem: Determine the least possible
value of

∑10
i=1 sin(3ci) for real numbers

c1, c2, . . . , c10 satisfying
∑10

i=1 sin(ci) = 0.

Solution: Since sin(3ci) = 3sin(ci) −
4sin(ci)

3, it is equivalent to minimize
4
∑10

i=1 y
3
i for y1, . . . , y10 ∈ [−1, 1] with∑10

i=1 yi = 0; note that this domain is com-
pact, so the minimum value is guaranteed to
exist.

· · ·
The minimum value is −480/49 .

Year: 2018 ID: A3 Final Answer: −480/49

Figure 5: A significant change to a question in Putnam-MATH. Here, we change the variable ‘x’ to
‘c.’ Notably, we also change cos to sin, and “greatest” to “least.” This constitutes a significant change
to the structure of the problem.
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Figure 6: Putnam-AXIOM v.s. Putnam-AXIOM with only complex questions

A.2 Binary and Complex Questions291

Several questions in Putnam-AXIOM are binary, meaning that the question inherently has two292

possible answers. These include true/false questions, questions about divergence or convergence, or293

questions about the winner of a two-player game. These questions make up 26 of the 262 question in294

Putnam-AXIOM Original; of the 59 questions of Putnam-AXIOM Variations, binary questions make295

up 7. We refer to all questions that are not binary as “complex” questions.296

Given the guessable nature of these questions and our answer-matching evaluation method, models297

have a much higher chance of randomly guessing the right answer on these questions.298

To discern whether the inclusion of these guessable questions significantly affects the overall difficulty299

of Putnam-AXIOM, we conducted an analysis of the accuracy of various models with and without300

the binary questions, with the overall accuracies in Figure 6.301

We see that, with the exception of Qwen2 Math 7B, almost all models have a higher accuracy on302

Putnam-AXIOM with its binary questions than without, meaning that guessing is contributing to their303

success to some extent. However, we see that on the more advanced models—Qwen2 Math 7B, GPT304

4, and Claude Sonnet 3.5—the gap between the accuracies on the entire dataset and the accuracies305

on only complex questions is much smaller. This is likely because these models are capable enough306

that they successfully answer a similar percentage of complex questions and binary questions; less307

advanced models get significantly fewer complex questions correct than binary questions, so we see a308

large accuracy gap.309

Based on the results of this experiment, we’ve decided to use only the complex questions for most of310

our evaluations such as in Table 1 and Figure 1.311
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A.3 Accuracies for Putnam-AXIOM Variation and corresponding Original questions312

Model
Original Variation

Score Percentage (%) Score Percentage (%)
Gemma-2B-Base 1.4 / 52 2.63 1.2 / 52 2.26
Gemma-7B-Base 1.6 / 52 3.01 1.7 / 52 3.39

DeepSeek-Math-7B-Base 3.2 / 52 6.03 2.4 / 52 4.52
Qwen2-Math-7B-Base 5.2 / 52 9.81 4.8 / 52 9.05
NuminaMath-7B-Base 5.6 / 52 10.56 2.8 / 52 5.28
Mistral-7B-v0.3-Base 3.5 / 52 6.78 2.6 / 52 4.90

Llama-3-8B 2 / 52 3.77 2 / 52 3.77

Gemma-2B-Instruct 1.8 / 52 3.39 1.4 / 52 2.64
Gemma-7B-Instruct 1.8 / 52 3.39 2.8 / 52 5.28

Qwen2-Math-7B-Instruct 5.4 / 52 10.19 4 / 52 7.54
DeepSeek-Math-7B-Instruct 4.2 / 52 7.92 2.4 / 52 4.52

Mistral-7B-Instruct-v0.3 1.2 / 52 2.26 2.4 / 52 4.52
Llama-3-8b Instruct 4 / 52 7.69 2 / 52 3.84

DeepSeek-Math-RL 5.6 / 52 10.56 4.4 / 52 8.29

Claude-3.5 Sonnet 14 / 52 26.40 10 / 52 18.86

GPT-4 7 / 52 13.20 5 / 52 9.43
GPT-4o 9 / 52 16.98 5 / 52 9.43

o1-preview 26 / 52 50.0 18 / 52 33.96

Table 2: Accuracy drops significantly on Putnam-AXIOM Variation compared to corresponding
Original questions for nearly all models. These are mean accuracies over five trials.
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A.4 Model Analysis Examples313

Problem: Let n be a positive integer. Determine, in terms of n, the largest integer m with
the following property: There exist real numbers x1, . . . , x2n with −1 < x1 < x2 < · · · <
x2n < 1 such that the sum of the lengths of the n intervals

[x2k−1
1 , x2k−1

2 ], [x2k−1
3 , x2k−1

4 ], . . . , [x2k−1
2n−1, x

2k−1
2n ]

is equal to 1 for all integers k with 1 ≤ k ≤ m.

Model’s Response: We are given n positive integers and need to determine the largest
integer m, in terms of n, such that there exist real numbers x1, x2, . . . , x2n satisfying:
1. The xi are strictly increasing between −1 and 1:

−1 < x1 < x2 < · · · < x2n < 1

2. For each integer k with 1 ≤ k ≤ m, the sum of the lengths of n intervals is equal to 1:
n∑

i=1

(
x2k−1
2i − x2k−1

2i−1

)
= 1

Our goal is to find the largest integer m (in terms of n) satisfying these conditions.

. . .

**General Case:** We have 2n variables and m equations.
- Each equation is independent due to the distinct exponents.
- To have a solution, we must have at least as many variables as equations.

- **Therefore, the maximum number m is bounded by 2n.**

- However, since we have 2n variables but they are constrained by the ordering and
the interval (−1, 1), the effective degrees of freedom are less than 2n.

*Conclusion:**

Given the constraints and the increasing number of equations with m, the largest in-
teger m for which the conditions can be satisfied is:

m = n

**Final Answer:**

The final answer is n . I hope it is correct.

Year: 2022 ID: A6 Final Answer: n

Figure 7: An example response where OpenAI o1-preview gets the final answer correct, but
made an unjustified claim. OpenAI o1-preview claims that the largest possible value for m is n.
However, its only justification for this claim is that m is bounded by 2n. OpenAI o1-preview does
not justify why a value of m between n and 2n cannot work.
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Problem: Find the least possible area of a convex set in the plane that intersects both
branches of the hyperbola xy = 1 and both branches of the hyperbola xy = −1. (A set S
in the plane is called convex if for any two points in S the line segment connecting them is
contained in S.)

Model’s Response: To find the least possible area of a convex set in the plane that intersects
both branches of the hyperbolas xy = 1 and xy = −1, we need to consider the geometric
constraints. Let’s start by visualizing these hyperbolas:

The hyperbola xy = 1 consists of two branches in the first and third quadrants:

y =
1

x
.

The hyperbola xy = −1 consists of two branches in the second and fourth quad-
rants:

y = − 1

x
.

We aim to place a convex set that intersects both branches of each hyperbola. One
useful geometric figure for this is a rectangle aligned along the hyperbolic axes. We can
guarantee that the rectangle will intersect both branches of xy = 1 and xy = −1 by making
its sides tangent to the hyperbolas.

. . .

The geometric configuration simplifies the calculation:
The minimum enclosing convex area tangency ideally is of square structure, yielding the unit
hyperbola intersection:

area = 4 (Since side 2 · 2 = 4formation in closed square).

This geometric construction ensures least, minimum convex interaction:

Final Answer: The final answer is 4 . I hope it is correct.

Year: 2007 ID: A2 Final Answer: 4

Figure 8: An example response where GPT-4o gets the final answer correct, but made an
unjustified logical step, resulting in a non-rigorous solution. OpenAI o1-preview logically jumps
to the idea that the geometric shape that minimizes the area is a rectangle. However, it does not
attempt to justify this claim in any way, and proceeds as though this is obvious.
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Problem: Given
11z10 + 10iz9 + 10iz − 11 = 0,

find the value of |z|. (Here z is a complex number and i2 = −1.)

Model’s Response: To solve the equation

11z10 + 10iz9 + 10iz − 11 = 0

and find the value of |z|, where z is a complex number, we’ll proceed step by step.

. . .

**Step 2: Assume |z| = 1**
Let’s assume that |z| = 1, which means z = eiθ for some real number θ.
*Step 3: Substitute z = eiθ into the Equation**
Substituting z = eiθ into the equation, we get:

11(eiθ)10 + 10i(eiθ)9 + 10ieiθ − 11 = 0

Simplify each term:
- (eiθ)10 = e10iθ

- (eiθ)9 = e9iθ

So the equation becomes:

11e10iθ + 10ie9iθ + 10ieiθ − 11 = 0

. . .

**Step 6: Analyze the Equations**
The trigonometric equations are complex and difficult to solve directly. However, notice that
if |z| = 1, then z = eiθ lies on the unit circle, and its magnitude is indeed 1.
Moreover, since we couldn’t find any specific θ that satisfies both equations simultaneously
(as shown by trying several angles), this suggests that no specific angle θ other than those
corresponding to |z| = 1 satisfy the equation.
**Conclusion:**
Since our manipulations suggest that |z| = 1 is necessary (and given the nature of complex
numbers and the unit circle), we conclude that:
*Final Answer:** The final answer is 1 . I hope it is correct.

Year: 1989 ID: A3 Final Answer: 1

Figure 9: An example response where GPT-4o make a logical leap and is completely incoherent.
In this solution, the model jumps to assume that |z| = 1 and performs a series of calculations. Then,
it concludes that the final answer is 1 simply because the equations it made were too “complex and
difficult” to solve.
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Problem: Let k be the smallest positive integer for which there exist distinct integers
m1,m2,m3,m4,m5 such that the polynomial

p(x) = (x−m1)(x−m2)(x−m3)(x−m4)(x−m5)

has exactly k nonzero coefficients. Find a set of integers m1,m2,m3,m4,m5 for which
this minimum k is achieved and given the sum k +m1 +m2 +m3 +m4 +m5 as the final
answer.

Model’s Response: The polynomial p(x) = (x−m1)(x−m2)(x−m3)(x−m4)(x−m5)
has exactly k nonzero coefficients when the values of mi are distinct integers. We want to
minimize k and find a set of values for mi that achieves this minimum.
The expansion of p(x) will include all possible products of the differences (x−mi). For
each term of the form (x− a), this generates a coefficient for that term, and this will happen
for each combination of i and j, including when i = j.
The minimum possible value for k can be calculated by considering the sparsity of nonzero
coefficients in the polynomial’s expansion. This is achieved when the polynomial is written
in the form that it eliminates as many terms as possible, leading to a minimal number of
nonzero coefficients.
For (x−m1)(x−m2)(x−m3)(x−m4)(x−m5), it can be achieved if the differences
(x −mi) produce terms that include maximal cancellation. The problem becomes one of
determining the minimal degree of the polynomial that includes maximal cancellation.
The key observation here is that the minimal nonzero coefficients are achieved when the
polynomial is arranged in such a way that most coefficients are zero due to symmetry and
cancellation properties.
The smallest positive integer k for such polynomials happens at k = 2, for instance,
(x− 1)(x− 2)(x− 3)(x− 4)(x− 5) results in a polynomial with precisely coefficients as
follows:

p(x) = x5 − (1 + 2 + 3 + 4 + 5)x4

+(sum of products of each combination of 2 distinct elements)x3 etc...

Since the polynomial in this problem demands exactly k nonzero coefficients, the product of
differences can lead to cancellations resulting in minimal terms.
Let’s consider the initial observation:

m1 = 1,m2 = 2,m3 = 3,m4 = 4,m5 = 5

The resulting polynomial, (x− 1)(x− 2)(x− 3)(x− 4)(x− 5)

Final answer: 15

Year: 1985 ID: B1 Final Answer: 3

Figure 10: An example response where NuminaMath makes a calculation error, includes
irrelevant information, and misunderstands the problem. In this solution, we see that the final
answer is obtained by adding k + m1 + m2 + m3 + m4 + m5. In the model’s final solution, its
value of k is 2, so its final answer should be 2 + 1 + 2 + 3 + 4 + 5 = 17, not 15; this is due a
misunderstanding of the problem and/or a calculation error. Furthermore, the model includes the
expression of the “resulting polynomial,” which is completely irrelevant to the problem it’s attempting
to solve.
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Problem: If p(x) = a0 + a1x+ · · ·+ amxm is a polynomial with real coefficients ai, then
set

Γ(p(x)) = a2
0 + a2

1 + · · ·+ a2
m.

Let f(x) = 3x2 + 7x+ 2. Find, with proof, a polynomial g(x) with real coefficients such
that

(i) g(0) = 1, and

(ii) Γ(f(x)n) = Γ(g(x)n)

for every integer n ≥ 1.

Model’s Response: We have that F (x) = 3x2 + 7x + 2 and thus Γ(F (x)) = 32 +
72 + 22 = 9 + 49 + 4 = 62. We want to find a polynomial g(x) such that g(0) = 1 and
Γ(F (x)n) = Γ(g(x)n) for every integer n ≥ 1. Suppose g(x) = x2 + bx + 1. Then
Γ(g(x)) = 1+ b2 +1 = b2 +2. If we can find a value for b such that b2 +2 = 62, then we
have Γ(g(x)n) = Γ(F (x)n). Solving b2 + 2 = 62 gives b2 = 60, so b =

√
60 = 2

√
15.

Therefore, we can take g(x) = x2 + 2
√
15x + 1. Since g(0) = 1, g(x) satisfies both

conditions.
Final Answer: The final answer is x2 + 2

√
15x+ 1 . I hope it is correct.

Year: 1985 ID: A6 Final Answer: 6x2 + 5x+ 1

Figure 11: An example response where Qwen2-Math-7B hallucinates and misunderstands
the problem. First, Qwen misunderstands that the polynomial is quadratic—which is not stated
anywhere in the problem statement. Then, Qwen falsely states assumes that if Γ(g(x)) = Γ(f(x)),
then Γ(g(x)n) = Γ(f(x))n for all n. These mistakes lead Qwen to the wrong solution.
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Problem: Let x0 = 1 and for n ≥ 0, let xn+1 = 3xn + ⌊xn

√
5⌋. In particular, x1 = 5,

x2 = 26, x3 = 136, x4 = 712. Find a closed-form expression for x2007. (⌊a⌋ means the
largest integer ≤ a.)

Model’s Response:

xn+1 = 3xn + ⌊xn

√
5⌋

= 3xn + ⌊xn(
√
5− 2) + 2xn⌋

= 3xn + xn(
√
5− 2) + 2xn

= 5xn + xn(
√
5− 2)

= xn(2 +
√
5).

If we let yn = xn(2 +
√
5), then xn = yn/(2 +

√
5), so

yn+1 = yn · 2 +
√
5

2 +
√
5
= yn.

Thus, yn = y0 for all n ≥ 1, so

xn =
y0

2 +
√
5
=

1

2 +
√
5
=

2−
√
5

(−2 +
√
5)(2 +

√
5)

=
2−

√
5

5− 2
= 2−

√
5.

Final Answer: The final answer is 2−
√
5 . I hope it is correct.

Year: 2007 ID: A5 Final Answer: 22006√
5

((
1+

√
5

2

)3997

−
(

1+
√
5

2

)−3997
)

Figure 12: An example response where DeepSeek-Math-7B-RL makes an incorrect logical jump.
In the series of equalities in the beginning, DeepSeek simply removes the floor function and proceeds.
However, the floor function is an integral part of the problem, and without it, DeepSeek is unable to
come to the right solution.

18



B Related Work314

B.1 Mathematics benchmarks315

Numerous benchmarks exist to assess the mathematical capabilities of models, each typically focusing316

on a specific task. Two notable examples are MATH [Hendrycks et al., 2021] and GSM8K [Cobbe317

et al., 2021]. The MATH dataset contains questions sourced from American high school mathematics318

competitions such as the AMC 10, AMC 12, and AIME [Hendrycks et al., 2021], while the GSM8K319

dataset contains 8.5K handwritten elementary school level questions Cobbe et al. [2021]. Both320

contain questions and answers with detailed rationale explanations.321

As models have become larger and more powerful, even the most difficult existing benchmarks have322

become less challenging. For instance, while the MATH dataset saw 6.9% accuracy on its release,323

it now sees 87.92% accuracy with GPT-4 MACM [Lei, 2024]. Similarly, GPT4 has attained 97.1%324

accuracy on the GSM8K [Zhong et al., 2024]. This saturation necessitates the development of more325

challenging benchmarks.326

Many contemporary data sets have been created to combat the saturation of existing benchmarks. For327

instance, the ARB dataset includes hundreds of challenging problems in high school and college-level328

math, physics, and chemistry Sawada et al. [2023]. Similarly OlympiadBench contains nearly 9,000329

problems from the International Mathematics Olympiad (IMO), the Chinese GaoKao, and more330

He et al. [2024]. Finally, SciBench is a similar reasoning benchmark that includes hundreds of331

college-level scientific reasoning questions from instructional textbooks Wang et al. [2023].332

Although these datasets alleviate the saturation problem, they come with many limitations. For333

instance, ARB Sawada et al. [2023] and OlympiadBench He et al. [2024] both contain several334

symbolic and proof-based questions which cannot be graded automatically and require a costly335

and lengthy human evaluation process. Though ARB attempts to utilize LLMs to grade their own336

responses with a rubric, this process is often unreliable and self-referential. Our Putnam-AXIOM337

dataset addresses these limitations by offering challenging Putnam problems with fully-written338

solutions and easily evaluable answers. It enables efficient automated assessment via frameworks339

like LM Harness [Gao et al., 2024], avoiding costly human evaluation or unreliable self-grading.340

PutnamBench [Tsoukalas et al., 2024] is a related benchmark that primarily focuses on formal theorem341

proving. Its main objective is to derive formalized proofs of mathematical statements and it provides342

formalizations in systems such as Lean, Isabelle, and Coq, all sourced from the prestigious Putnam343

competition. PutnamBench also includes 640 natural language statements and their corresponding344

answers where applicable. While both benchmarks draw from the same competition, Putnam-345

AXIOM focuses on the curation of natural language problems for final answer verification and346

introduces automatic functional variations to generate additional benchmarks addressing potential347

data contamination. Further we focus on assessing true mathematical reasoning ability and hence348

take measures to remove easily guessable answers.349

B.2 Functional Benchmarks350

Data contamination is a significant problem in creating evaluation benchmarks, as many of these351

problems are openly available on the Internet and are likely included in the training data for large352

models [Schaeffer, 2023, Sainz et al., 2023]. Thus, the MATH [Hendrycks et al., 2021], AGIEval353

[Zhong et al., 2023], OlympiadBench [He et al., 2024], and ARB [Sawada et al., 2023] benchmarks354

(which are all sourced from problems on the Internet) could potentially be contaminated. Therefore,355

models may achieve artificially high performance on an evaluation benchmark by memorizing the356

answers to the problems Magar and Schwartz [2022], Ranaldi et al. [2023].357

A straightforward way of avoiding data contamination issues is to utilize problems unavailable on the358

Internet. However, even if problems are not currently part of model training data, it is unrealistic to359

expect them to remain inaccessible. At the same time, it is costly to rely on the continuous human360

development of new datasets.361

Srivastava et al. [2024] attempts to alleviate this data contamination issue by creating functional362

variations of the MATH dataset, where new problems can be generated simply by changing numeric363

parameters, yielding different solutions. They observe a significant discrepancy in models’ perfor-364

mance between standard benchmarks and these new variations. We recognize the potential of this365
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idea and have adapted it to our more challenging dataset. We have altered the variables, constants,366

and phrasing of many Putnam questions while preserving their overall difficulty and requirements for367

logical and mathematical reasoning.368
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