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ABSTRACT

Large Language Models (LLMs) have demonstrated improved generation per-
formance by incorporating externally retrieved knowledge, a process known as
retrieval-augmented generation (RAG). Despite the potential of this approach, ex-
isting studies evaluate RAG effectiveness by 1) assessing retrieval and generation
components jointly, which obscures retrieval’s distinct contribution, or 2) exam-
ining retrievers using traditional metrics such as NDCG, which creates a gap in
understanding retrieval’s true utility in the overall generation process. To address
the above limitations, in this work, we introduce an automatic evaluation method
that measures retrieval quality through the lens of information gain within the
RAG framework. Specifically, we propose Semantic Perplexity (SePer), a metric
that captures the LLM’s internal belief about the correctness of the retrieved in-
formation. We quantify the utility of retrieval by the extent to which it reduces
semantic perplexity post-retrieval. Extensive experiments demonstrate that SePer
not only aligns closely with human preferences but also offers a more precise and
efficient evaluation of retrieval utility across diverse RAG scenarios.

1 INTRODUCTION

Retrieval plays a crucial role in satisfying information needs across various interactive systems. With
the rapid advancement of Large Language Models (LLMs), retrieval has become deeply interwoven
with generation processes Lewis et al. (2020); Guu et al. (2020). This integration not only enhances
the accuracy and faithfulness of generated content Chen et al. (2017) but also enables handling more
complex applications such as multi-hop reasoning Trivedi et al. (2022a), information seeking Hu
et al. (2024), and task completion Yao et al. (2023).

To evaluate and enhance these retrieval-augmented systems Salemi & Zamani (2024), a key chal-
lenge lies in measuring the contribution of retrieved information to the overall performance, i.e., the
utility of retrieval. For instance, a reasoning process may require different pieces of information at
different steps to infer the final answer Yang et al. (2018); Talmor & Berant (2018); Gu et al. (2024)
as shown in Figure 1. However, most evaluation methods fail to respond to middle-step information,
which may not directly match the ground truth text span. Besides, while a RAG workflow or agent
task might trigger retrieval multiple times within a single interaction cycle Asai et al. (2023); Jiang
et al. (2023b), it’s difficult to quantify which retrieval effort brings in the most rewards. The lack of
evaluator’s sensitivity to partial information also results in discontinuous scoring of retrieved infor-
mation Schaeffer et al. (2023), hampering the development of more efficient retrieval mechanisms.

Unlike the independent evaluation of retrievers, the utility of information retrieval (IR) hinges not
only on the quality of the information but also on the prior knowledge of the recipient (e.g., LLM or
human), their capacity to integrate external inputs and the way it interacts with the retriever Yoran
et al. (2024b); Shi et al. (2024). For example, a widely-known fact would bring no knowledge
gain in LLMs while it is both relevant and correct. An irrelevant long document may undermine
LLM performance even though it does not contain false facts and is harmless in general. Therefore,
traditional IR metrics that evaluate the retriever as an independent module cannot reflect its actual
helpfulness from a systemic perspective. Recent works also use well-trained LLMs such as GPT-4
as generalizable judges to evaluate different aspects of RAG systems, such as relevancy, correct-
ness, and faithfulness Es et al. (2024). However, these methods are often expensive and inefficient,
especially for large-scale datasets and complex RAG workflows.
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In this work, we propose the perspective to measure retrieval utility based on the knowledge gain of
LLMs Belkin (1980); Belkin et al. (1982a;b). Ideally, an effective measure of information retrieval
utility should reflect the satisfaction of the recipient Cooper (1973).

Figure 1: An illustration of retrieval utility in the
multi-step RAG process. Unlike previous methods that
only evaluate the final retrieval outcome, our approach
assesses the utility of intermediate retrieval steps, even
when the information retrieved is insufficient to fully
answer the query.

Historically, this approach has been hypotheti-
cal because the knowledge gain in real humans
is intangible in computation. However, when
LLMs act as information recipients, it is pos-
sible to estimate the shift in the LLM’s knowl-
edge distribution and use it as an indicator of re-
trieval effectiveness. Along this line, we define
Semantic Perplexity (SePer), a sampling-based
method to estimate LLM’s belief conditioned
on an input query. Specifically, we first sample
multiple responses and cluster them based on
their semantic meanings and re-aggregate their
likelihoods following the concept of semantic
entropy Kuhn et al. (2023). In this way, we can
compute probabilities in the semantic meaning
space to obtain a more accurate estimation of
the belief distribution, as opposed to vocabulary
space. We then compute the cross-entropy be-
tween the estimated semantic distribution and
ground truth distribution, the exponential form of which is defined as Semantic Perplexity (SePer).
By doing so, we make it tangible to estimate the knowledge distribution shift of LLMs and use it to
quantify retrieval utility.

In summary, our contributions are three-fold:

• We introduce SePer, an assessment method for evaluating retrieval utility based on shifts in
LLMs’ knowledge distributions. This approach not only aligns closer with human annotations
but also is more consistent with inference-time situations.

• We conduct theoretical analysis and extensive experiments to demonstrate that SePer provides a
more accurate, fine-grained, and efficient evaluation of retrieval utility. It is also generalizable
across a broad range of RAG scenarios. Furthermore, we augment the evaluation of various
RAG systems with our SePer metric for the reference of future research, which is maintained in
an anonymous repo in https://anonymous.4open.science/r/SePer/ at review.

• By utilizing SePer, we quantify the retrieval needs across different scenarios. Our findings offer
valuable insights for data selection and budget allocation in practical RAG systems.

2 RELATED WORKS

Evaluation of Information Retrieval. Current evaluation of retrieval can be divided into two ma-
jor categories: Direct content evaluation, which scrutinizes the relevance of the retrieved content
itself, and response-based evaluation, which gauges the quality of the responses to reflect on the
effectiveness of in-the-middle modules Salemi & Zamani (2024). However, current methods suffer
from several short-comings individually. Direct context evaluation treats retrieval as an independent
module, which cannot reflect the utility of the receiver model. Response-based methods can be fur-
ther divided into two categories: model-based and reference-based methods. model-based methods
require a knowledgable model, such as human and GPT-4 Liu et al. (2023), to evaluate whether the
LLM output is a desired response to a given query. reference-based methods require a reference an-
swer and evaluate the LLM outputs by their matching score to the reference, such as BLEU Papineni
et al. (2002), ROUGE Lin (2004), and BERTScore Zhang et al. (2020). However, these methods
mainly reflect lexical information and cannot capture the nuanced relationship in semantic meaning.
More recent works also leverage LLM judges Saad-Falcon et al. (2024); Kim et al. (2024); Li et al.
(2024) to assess the distance between reference and output. These LLM-based methods are often
more accurate due to the language understanding ability and comprehensive world knowledge of
LLMs. However, they are often slow and expensive.

Knowledge Estimation in LLMs. There is a view regarding LLM as a knowledge base Petroni
et al. (2019); Geva et al. (2021), and generation can be viewed as retrieval from internal parametric
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memory Jiang et al. (2020). From this perspective, injecting external knowledge into latent knowl-
edge of LLM via in-context learning is equivalent to fine-tuning Dai et al. (2023). Xie et al. (2022)
also explain in-context learning in a Bayesian inference framework and show that prompt influences
LLM output by shifting its latent concept distribution. While the internal knowledge latent distri-
bution is unobservable, many research works have managed to estimate from other signals, such
as probing model internal states Ribeiro et al. (2016); Adi et al. (2017); Meng et al. (2022) and
prompted responses Zhong et al. (2021). Studies also find that uncertainty in LLM is highly corre-
lated with knowledge correctness, i.e., hallucinationKuhn et al. (2023); Cheng et al. (2024), which
provides an informative analysis of how knowledgeable LLM is.

3 QUANTIFY RETRIEVAL UTILITY

In this section, we justify our quantification of retrieval utility as a computable belief distribution
shift in the information recipient model. This approach is grounded in the Bayesian framework,
where new evidence updates prior beliefs. However, unlike traditional Bayesian updating that aims
to learn model parameters, our focus is on evaluating the utility of the retrieved information in terms
of its impact on the model’s existing belief. We begin by envisioning several properties that retrieval
utility should possess. We then formally define retrieval utility as reducing belief in ground-truth
answers and proving it satisfies the desirable properties. Finally, we instantiate this formulation in
the RAG scenario and introduce the algorithm details to compute SePer and retrieval utility.

3.1 NOTATIONS

Throughout this paper, we use the following notations. Let M denote a well-trained language model
(the information receiver) capable of generating answers to queries q. The correct answer set to the
query q is denoted by A = {a∗}. The retrieved result is denoted by D, where D is a set of n atomic
information di, i.e., D={d1, d2, ..., dn}. We denote by PM (a) the likelihood model M assigns to
answer a without retrieval, and by PM (a | D) the likelihood after incorporating D.

3.2 RETRIEVAL UTILITY AS BELIEF REVISION

To align with cognitive intuitions and provide a robust foundation for our conceptualization of re-
trieval utility U(M,d), we incorporate insights from cognitive information retrieval theories. These
theories emphasize the dynamic interplay between information, the user’s knowledge state, and the
context of information retrieval. Consequently, we envision that an effective retrieval utility metric
U(M,d) should satisfy the following properties:
Property 1. The retrieval utility U(M,d) depends on both the retrieved information d and the
information receiver M .
According to Cooper (1971; 1973); Dervin (1999); Ingwersen (1996), the effectiveness of a retrieval
system is contingent upon the user’s existing knowledge and the relevance of the retrieved informa-
tion. This perspective necessitates the introduction of dependence property, which considers both
the information receiver and the retrieved content in evaluation.
Property 2 (Zero Utility). For a given query q, the retrieval utility U(M,d) is zero if the information
d retrieved is either irrelevant to q or if the model M already possesses the requisite knowledge to
address q effectively without d.
Belkin et al. (1982a) posits that information is sought to resolve an anomaly in the user’s knowledge
state. Thus, if the retrieved information does not address this anomaly or if the user’s knowledge is
already sufficient, the information holds no utility, thereby justifying the zero utility property.
Property 3 (Monotonicity). Given an information receiver M and an unsatisfied information need
q, the retrieval utility U(M,d) is a monotonically increasing function of the relevance of the re-
trieved information d to q.
According to Ingwersen (1996), U(M,d) depends on information relevance and the user’s cognitive
space. With cognitive space fixed, increasing the relevance of retrieved information enhances utility,
supporting the Monotonicity property that U(M,d) increases with the relevance of d to q.

Intuitively, the retrieval utility quantifies how much the retrieved information d shifts the model’s
belief toward the correct answer a∗. Accordingly, we define the retrieval utility as follows:
Definition 1 (Retrieval Utility). The retrieval utility is defined as the change in the model’s belief
about the correct answer a∗ due to the retrieved information d:

U(M,d) = PM (a∗ | d)− PM (a∗). (1)
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We demonstrate that Definition 1 satisfies the properties listed above.

Proof of Property 1. The retrieval utility U(M,d) depends explicitly on both d and M through the
probabilities PM (a∗ | d) and PM (a∗).

Proof of Property 2. We discuss the two distinct scenarios in the property separately:

1) Irrelevance of d to q: When d is irrelevant, it fails to contribute any new information relevant
to the correct answer a∗. Consequently, the conditional probability of a∗ given d equals the prior
probability, PM (a∗ | d) = PM (a∗). Thus, the utility U(M,d) = PM (a∗ | d)− PM (a∗) = 0.

2) Redundancy of d for M : If M already knows a∗, the probability PM (a∗) is 1. Since probabilities
cannot exceed 1, PM (a∗ | d) also cannot exceed 1, implying U(M,d) = PM (a∗ | d) − 1 = 0.
Here, since d adds no value, PM (a∗ | d) = PM (a∗), and thus U(M,d) remains 0.

Proof of Property 3. Following Dai et al. (2024), we define the relevance of the retrieved informa-
tion d to the query q as:

Rel(d, q) =

{
1, if d ⊢ a∗,

0, otherwise,
(2)

where d ⊢ a∗ denotes that d entails a∗.

When Rel(d, q) = 0, according to Property 2, the retrieval utility U(M,d) = 0.

When Rel(d, q) = 1, since d ⊢ a∗, assuming the receiver M can effectively utilize d, we have
PM (a∗ | d) > PM (a∗). Therefore, the retrieval utility is positive:

U(M,d) = PM (a∗ | d)− PM (a∗) > 0. (3)

Thus, as Rel(d, q) increases from 0 to 1, U(M,d) increases from 0 to a positive value, demonstrating
the monotonicity property under this binary definition of relevance.

For more general cases where Rel(d, q) is ordinal or continuous — for example, in multi-step rea-
soning where d partially contributes to a∗ and 0 < Rel(d, q) < 1 — we empirically demonstrate
that our belief change based utility metric exhibits a significantly higher correlation with human-
annotated context utility compared to other methods in Table 2.

Q #1: 
Who did Albert 
Einstein work with in 
1933? 

Doc #1: 
… Albert Einstein 
joined Princeton's 
Institute in 1933. ...
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Figure 2: SePer: Estimating retrieval utility in multi-step retrieval-augmented generation (RAG) processes by
measuring changes in model belief. SePer consists of four key steps: ① Probing the model’s belief through
Monte-Carlo Sampling, where the LM generates N responses to the query using a temperature parameter. ②
Estimating the belief distribution over possible answers using semantic clustering. ③ Calculating the model’s
semantic perplexity by comparing the estimated belief distribution with the ground truth distribution. ④ As-
sessing the unity of partial retrieval by measuring the change in semantic perplexity before and after retrieval.

3.3 BELIEF ESTIMATION THROUGH SAMPLING

Estimating model belief PM (a) is challenging due to the vast output space of the language model.
Moreover, the model’s outputs are in the vocabulary space, whereas our belief probabilities are
defined over the semantic space. For example, “Peter”, “Peter Bergmann” and “Ludwig Planck”
are equally correct answers to the question “Who did Einstein work with in 1933?” and should be
considered the same event in the probabilistic space Kuhn et al. (2023).
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Extending semantic entropy Farquhar et al. (2024), we calculate the model’s likelihood on a∗ based
on the distribution of semantic meanings.
Definition 2 (Semantic Equivalence). Two texts x and y are semantically equivalent, denoted x ≡ y,
if x ⊢ y and y ⊢ x, where ⊢ means entailment.

Practically, the entailment relationship is computed from a function E : X × X → [0, 1], where
X is the set of all possible texts. Given two texts x and y, E(x, y) outputs a score representing
the degree to which x entails y. The entailment relation holds if E(x, y) exceeds a predefined
threshold τ . We also experimentally demonstrate that using the entailment model to define semantic
equivalence Yao & Barbosa (2024) aligns much more accurately with human-annotated semantic
equivalence, compared to traditional lexical-matching methods and trained LLM-judges, almost on
par with GPT-4 evaluation. Results are shown in Figure 2.

Given a set of responses {ri}, semantic clustering is the process of grouping responses into clusters
C = {Ck} such that all responses within a cluster are semantically equivalent:

Ck = {ri | ri ≡ rj ,∀rj ∈ Ck}. (4)

The original semantic entropy makes the entropy computable in the sampled distribution:

SE(q) = −
∑
c

((∑
r∈c

p(r | q)
)
log

[∑
r∈c

p(r | q)

])
≈

|C|∑
i=1

−|Ci|−1 log p(Ci | q). (5)

Since the first equation is not computable due to infinite sentence space, the expectation is estimated
using Monte-Carlo integration over sampled semantic cluster C. By the Law of Large Numbers, as
the number of samples N → ∞, the frequency of responses converges to the model’s belief distri-
bution. We use similar approximation in make SePer computable. But unlike Farquhar et al. (2024),
we estimate model belief shift on the reference answer instead of estimating the output uncertainty
in LLM for the original uses, such as hallucination detection. We will detail the computation of
SePer in the following part.

3.4 ∆SePer: SEMANTIC PERPLEXITY REDUCTION IN RAG

To estimate model belief on reference answers P ({a∗}), instead of computing the entropy of se-
mantic clusters, we further determine which clusters are semantically equivalent to any of the a in
{a∗}. For clarity, we begin with the special case where there is only one a∗.

Thus, P (a∗) is calculated by:

P (a∗ | q) =
∑
c

k(c, a∗)
∑
r∈c

p(r | q), (6)

where r = {t1, t2, . . . , ti−1} and p(r | q) is the output sequence likelihood from M :

p(r | q) =
|r|∏
i=1

p(ti | t1, t2, . . . , ti−1, q). (7)

k(c, a∗) is a kernel function to measure the distance between the semantic meaning of c and a∗.
We tested two different implementations of k(c, a∗): entailment model score E(x, y) and Indicator
function I(c, a∗):

I(c, a∗) =

{
1, if c ≡ a∗,

0, otherwise.
(8)

Finally, the SePer score is calculated by:

SePerM (q, a∗) = PM (a∗ | q) ≈
∑
Ci∈C

k(c, a∗)p(Ci | q). (9)

Similar to 5, the right approximate equation is an unbiased estimator of the left one. This naturally
extends to the general cases where there are multiple ground-truth a∗ provided:

SePerM (q,A) ≈ 1

|A|
∑
a∗∈A

[∑
Ci∈C

k(c, a∗)p(Ci | q)

]
. (10)
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Algorithm 1 SePer & ∆SePer

Require: Model M , reference answer a∗, entailment model E, threshold τ , number of samples N .
1: Sample responses: ri ∼ PM (r), for i = 1, . . . , N.
2: Compute likelihoods: ℓi = PM (ri).
3: SePer-H:

1. Semantic clustering: Group responses rj into clusters
C = {Ck} such that E(ri, rj) ≥ τ within each cluster.

2. Identify Ca∗ : matching reference answer with semantic
cluster, where ∀r ∈ Ca∗ , r ≡ a∗.

3. Compute semantic perplexity: PM (a∗) =
∑

ri∈Ca∗ ℓi.

SePer-S:
1. Compute entailment scores:

ki = E(ri, a
∗).

2. Compute soft belief:
PM (a∗) =

∑N
i=1 ℓi · ki.

4: Repeat steps with retrieved information C to obtain PM (a∗ | C).
5: Compute utility: U(M,C) = ∆SePer = PM (a∗ | C)− PM (a∗).

Lastly, retrieval utility U(M,C) is calculated by ∆SePer, i.e., semantic perplexity reduction:

U(M,C) = ∆SePer = PM (a∗ | q, d)− PM (a∗ | q). (11)

Through Monte-Carlo sampling and semantic clustering, ∆SePer quantifies the extent to which
receiver M ’s belief shifts towards ground-truth answer after retrieval, i.e., how much beneficial in-
formation gain the information piece d brought to the model. Based on two different kernel function
choices, we implemented SePer-S and SePer-H separately. The incorporation of kernel-based soft
matching provides a more nuanced and continuous evaluation Nikitin et al. (2024). The SePer and
∆SePer algorithms are fully described in Algorithm 1.

4 EVALUATION OF SePer

In this section, we conducted experiments to prove the validity and reliability of the proposed SePer
metric Xiao et al. (2023b); Jacobs & Wallach (2021); Wagner et al. (2021). For validity testing,
we first show experiments in Section 3.4 to prove that SePer is a more reliable and fine-grained
indicator for reference-based response evaluation and then demonstrate its better correlation and
alignments with human judgments about retrieval utility in Section 3.4. For reliability testing, we
test the robustness of the performance of SePer on different aspects, including varying datasets,
repeated computation, and the number of samples used. Results in Section 4.2 show that under our
default setting, SePer achieved high reliability and stability with less cost in time and money. We
also add ablation results about more hyperparameters in A.1 to prove the robustness of SePer.

4.1 VALIDITY OF SePer

4.1.1 VALIDITY OF SEMANTIC-BASED ANSWER SCORING

First, we evaluate the basic component of computing SePer, i.e., using the entailment model to
calculate the semantic similarity between the generated answer and the ground-truth answer.

Datasets. We use EVOUNA Wang et al. (2024), a Question Answering (QA) benchmark, to evaluate
the reliability of QA evaluators. Based on Natural Questions (NQ) Kwiatkowski et al. (2019) and
TriviaQA Joshi et al. (2017), EVOUNA augmented the datasets with LLM-generated responses and
asked humans to annotate whether a response is semantically equivalent to the golden answer.

Baselines. We include two types of baselines: Matching-based evaluation, such as lexical match
and BERTScore, and LLM judge evaluators, such as Auto-J Li et al. (2024) and Prometheus Kim
et al. (2024).

Model. We use the deberta-v2-xlarge-mnli He et al. (2021) model fine-tuned on the MNLI
dataset to assess the entailment relationship between two text pairs following the setting of Kuhn
et al. (2023), which is far more efficient than API-based entailment judgment Yao & Barbosa (2024)
without a significant performance drop. In our implementation, we further leverage the entailment
score to get a probabilistic estimation of the likelihood of semantic equivalence.

Results. As shown in Table 1, the NLI-based module in SePer demonstrates significantly higher
alignment with human judgment compared to traditional matching-based response evaluation by
surpassing the baselines by 2% ∼ 6% F1-score across various generators and datasets. Notably, it
is close to or minorly surpasses the response evaluation performance of GPT-4 in this benchmark.
BERTScore, while capturing semantic meaning, may fail to capture the relationships in QA tasks.
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At the same time, trained LLM judges did not demonstrate an edge over traditional methods on this
benchmark, with reference-free judges falling far behind reference-based methods. These results
show that computing the semantic-equivalence score based on the entailment model is both an effi-
cient and reliable method. Its high correlation score in matching responses and answers also set a
solid step for the next stage of computation of SePer.

Evaluator
Natural Questions TriviaQA

DPR-FiD InstructGPT ChatGPT GPT-4 BingChat DPR-FiD InstructGPT ChatGPT GPT-4 BingChat
F1/Acc F1/Acc F1/Acc F1/Acc F1/Acc F1/Acc F1/Acc F1/Acc F1/Acc F1/Acc

Matching-based
Lexical Match 92.0/89.7 86.9/84.8 85.0/80.3 87.6/82.5 87.8/82.3 91.8/94.7 94.8/92.3 95.2/92.3 94.8/91.1 94.1/89.8

BERTScore 83.5/75.1 77.6/69.5 81.2/72.8 84.3/76.0 77.5/67.5 75.1/65.5 84.1/75.7 88.4/80.8 90.5/93.5 88.3/80.4

Entail (SePer) 96.6/95.3 92.0/90.1 91.2/87.8 93.1/89.7 91.4/87.0 97.6/96.1 97.5/96.0 97.9/96.4 98.5/97.2 96.2/93.2

LLM-as-a-Judge
Auto-J 57.8/54.2 71.9/62.1 76.4/66.5 75.4/65.1 72.8/62.2 76.3/66.7 80.8/71.5 81.4/71.3 80.4/68.7 83.0/73.0

Prometheus 83.8/77.8 81.1/70.5 86.4/77.7 89.3/81.5 89.5/82.3 89.4/83.1 90.0/83.2 93.0/87.7 94.7/90.2 95.4/91.8

Human-level
GPT-4 96.0/94.5 93.2/91.0 93.7/90.6 95.1/92.0 94.7/91.4 98.3/97.3 98.4/97.5 98.5/97.5 98.8/97.8 98.1/96.5

Human 97.4/96.3 97.8/96.8 96.5/95.6 97.9/96.6 97.2/95.5 100/100 99.6/99.4 99.2/98.8 99.2/99.8 99.9/99.8

Table 1: Correlation of entailment-based answer scoring (SePer) with human answer scoring. We use the F1-
score and Acc to measure the degree of correlation. As shown in the table, SePer achieves the highest accuracy
in answer scoring and is on par with human-level judgments.

4.1.2 VALIDITY OF SePer ON QUANTIFYING RETRIEVAL UTILITY

Secondly, we prove that using ∆SePer in measuring retrieval utility is highly correlated with hu-
man annotations with a larger margin than baseline methods. We test our method in two different
settings: 1) Simple question-answering tasks, which generally require a single document for answer
generation, and 2) reasoning-involved question answering, which requires collecting and integrating
several steps of partial information to correctly solve a problem.

Datasets. In the simple open QA setting, we use three representative datasets: NQ, MS MARCO Ba-
jaj et al. (2016), and SQuAD Rajpurkar et al. (2016). Each of these datasets has annotations of
questions, golden answers, and human-annotated positive/negative passages. Since answering the
question requires only one passage, we first attach the positive passages with a utility score of 1
and the negative passages with a utility score of 0. Since positive passages can not bring utility to
LLMs based on their known knowledge, we then filter out those cases in which LLM has already
succeeded in each dataset to eliminate the baseline effect. Through this preprocessing, we got the
utility label on passages from real-human annotations. In the reasoning-involved QA setting, we
use four typical Multihop-QA datasets, 2WikiMultihopQA Ho et al. (2020), HotpotQA Yang et al.
(2018), IIRC Ferguson et al. (2020), and MuSiQue Trivedi et al. (2022b), which contains annota-
tions of positive passages in the middle steps of a reasoning chain. Since each step only contains
in-complete information pieces, we make a natural assumption that the overall information utility
is uniformly assigned to each step and thus attach a ground-truth utility score of 1/nsteps for each
middle-step passage. While not perfect, we find this assumption reasonable since these datasets are
mostly collected by means of question composition, as detailed in Appendix A.

Metrics. We use the Pearson correlation score to measure the correlation between our ∆SePer Score
and Ground-Truth utility score. We use t-test to assess the significance of the observed correlation
coefficient, with statistic t computed with t = r×

√
(n− 2)/ (1− r2). We then map the t to p-value

using the Student’s t-distribution table. As a result, all the Pearson correlation coefficients in Table 2
have corresponding p-values less than 0.01, providing strong evidence against the null hypothesis
and indicating a high level of statistical significance.

Baselines. We choose various methods that can be used to estimate the LLM’s knowledge of a
question. Lexical-matching-based methods include EM, ROUGE, and BLEU, which measure the
response correctness score through matching text spans. BERTScore matches predicted answers
and ground truth through embedding similarity. Another category of baselines is uncertainty mea-
sures, such as perplexity, entropy, and semantic entropy. Unlike the matching-based method, these
uncertainty measures do not require golden answers in computation. While they are not directly
defined on the correctness dimension, we include them because recent literature also shows that in
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calibrated LLMs, uncertainty is correlated with knowledge capabilitiesFarquhar et al. (2024); Cheng
et al. (2024). We also included LLM-judges similar to Table 1.

Implementation details. We use the same semantic equivalence scoring algorithm as tested in 1.
For each query, we sample k = 10 times and obtain the response along with sequence likelihood. All
baseline methods are sampled at the same time, and the final score comes from mean aggregation.
In Table 2, we use Llama-2-7b-chat as the generator LLMs. We also tested other sizes and
showed a tendency results in Figure 4.

Results. We show the result in Table 2. ∆SePer scores show significant improvement on other met-
rics. Specifically, SePer-S has a marginal improvement on SePer-H across different datasets, which
may indicate that soft probability mass assignment can capture more nuanced meanings, especially
in free-formgenerations. Comparing Simple and Reasoning QA tasks, the scores of almost differ-
ent metrics are all lower by ∼10%, indicating the challenging nature of reasoning-based QA. Even
though SePer can achieve a Pearson correlation score greater than 0.5 across almost all datasets,
Showing its great potential to act as an automatic evaluation metric for retrieval utility.

Method Simple Reasoning

NQ MS MARCO SQuAD 2WikiMHQA HotpotQA IIRC MuSiQue

Exact Match 0.454 0.197 0.422 0.307 0.392 0.303 0.298

ROUGE 0.691 0.443 0.808 0.482 0.578 0.399 0.489

BLEU 0.188 0.353 0.298 0.197 0.206 0.126 0.163

BERTScore 0.592 0.322 0.564 0.361 0.451 0.197 0.392

Perplexity 0.008 0.005 0.024 0.005 0.013 0.009 0.011

Entropy 0.431 0.142 0.557 0.226 0.276 0.292 0.203

Semantic Entropy 0.491 0.171 0.621 0.262 0.339 0.342 0.258

Auto-J 0.421 0.022 0.406 0.243 0.183 0.096 0.169

Prometheus 0.639 0.307 0.707 0.502 0.508 0.383 0.464

∆SePerH 0.752 0.512 0.904 0.559 0.634 0.446 0.543

∆SePerS 0.769 0.533 0.905 0.584 0.660 0.461 0.559

Table 2: Pearson correlation between different evaluation metrics and ground-truth retrieval utility with p-
value < 0.01 for ∆SePer. As shown in the table, both the hard and soft versions of ∆SePer significantly
outperform other baselines in measuring retrieval utility in both simple and reasoning-type tasks, with the soft
version leading an edge.

4.2 RELIABILITY OF SePer
We further test the reliability of SePer from different aspects, i.e., whether SePer produces consistent
and stable evaluation across different datasets, random repetitions, and number of samples.

Figure 3: Influence of the number of samples and re-
peated calculation of SePer on four datasets.

We tested SePer-H and SePer-S with differ-
ent numbers of samples across four datasets:
NQ, HotpotQA, MS MARCO, and SQuAD,
and the results are shown in Figure 3. We
choose the number of sampled responses n ∈
{1, 5, 10, 15, 20} for ablation purposes, extend-
ing the default choice of n = 10. We find
that the conclusion is consistent in different
datasets: As n increases, the correlation of
SePer with ground truth also increases, indi-
cating better accuracy. Besides, the variance
generally becomes smaller as n increases, in-
dicating better robustness. Generally, the el-
bow point appears at n = 5 to n = 10, with
n = 10 having less than 1% performance drop
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compared to n = 20. Thus, using n = 10 in
SePer computation would be an effective choice. The shadow area and error bar in Fig.3 shows
that the fluctuation of SePer’s quality among repeated calculations is less than 1%, indicating high
stability according to measurement theory. More experiments and ablation about the robustness of
SePer can be found in Appendix A.1.

5 FINDINGS BASED ON SePer
In this section, we apply SePer to different modules in the RAG pipeline and exhibit our findings
through the new lens of SePer. In general, RAG pipelines use techniques such as reranker, refiner,
and control flow to improve generation quality. Through the unique lens of SePer, we can get a
more fine-grained and accurate view of how these factors affect the overall performance of RAG. A
brief introduction of these components in RAG can be found in Appendix A.4. We also benchmark
current RAG workflows in Appendix A.3.
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Figure 4: Results about applying SePer on different RAG settings. The and areas represent the positive
and negative differences between SePer for generation w/ and w/o retrieval, respectively. The solid blue line
indicates ∆SePer, i.e., the utility of retrieval. The red dashed line indicates the zero point of the differences.

5.1 EXPERIMENT GOALS

We aim to address the following main research questions (RQs) through the lens of SePer. RQ1-
4 aims to observe the utility of RAG components on the final performance, including retrieval,
reranker, and prompt compression. Specifically, RQ1 and RQ2 look closer at the retrieval utility
and what impact on RAG can be brought by varying numbers of retrieved items and the choice of
generator models of different sizes. These RQs are all designed to provide evidence and guidance
on designing more efficient and effective RAG pipelines:

• RQ1: What is the utility of retrieval on LLMs of different sizes?
• RQ2: How does the number of retrieved items influence overall RAG performance?
• RQ3: How do different prompt compression methods influence the overall RAG performance?
• RQ4: How does the reranking phase influence the overall RAG performance?

5.2 RETRIEVAL UTILITY FOR GENERATOR MODELS OF VARYING SIZES (RQ1)

In figure 4, we evaluate how LLMs of different sizes can benefit from retrieval. Our experiments are
conducted on both simple QA and multi-hop QA datasets, and more implementation details can be
found in Appendix A.4.

We observed that 1) for both scenarios of QA tasks, models of different sizes generally make pos-
itive use of retrieved information to produce better answers for most datasets. An exception is MS
MARCO, which we attribute to its corpus inconsistency with the Wikipedia corpus we used. 2) Ac-
cording to our experiments, medium-size models benefit the most from retrieved information. This
could be due to 1. its weaker initial knowledge without retrieval and 2. its better ability to absorb
retrieved in-context information as compared to smaller models.

5.3 UTILITY OF DIFFERENT NUMBERS OF RETRIEVED ITEMS (RQ2)

The number of in-context retrieved items used in prompts, noted as k, can significantly impact the
model’s generation results. Figure 5(a) shows the experiments about the impact of k on the overall
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Effect of Prompt Compression Methods on SePer and Prompt Token Length
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Effect of Rerankers on SePer
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Figure 5: Differences in SePer under various retrieval and generation settings. Panel (a) shows the differences
in SePer for generation w/ and w/o retrieval under different retrieved items. Panel (b) illustrates the impact of
using prompt compression and which compression method on the differences in SePer compared to generation
without retrieval. Panel (c) demonstrates the reranker’s effect on SePer differences compared to generation
without retrieval.

RAG performance, with k set at {1, 5, 10}. For most datasets, retrieving more information pro-
gressively positively affects answering questions. However, increasing the number of in-context
items from 5 to 10 only brings marginal improvement and sometimes even slightly hurts the gener-
ation performance, as in the AmbigQA dataset. This might be due to the extra noise brought by an
increasing number of retrieved documents.

5.4 UTILITY OF PROMPT COMPRESSION METHODS (RQ3)

The prompt compression module is used to reduce the prompt length to lower the inference cost
while preserving or facilitating the RAG performance.

Figure 5 (b) illustrates the results of our experiments. We test the utility of two major prompt
compression works, selective-context Li et al. (2023) and LongLLMLingua Jiang et al. (2023a).
Although both prompt compression methods slightly reduce SePer compared to no compression,
both methods can reduce the prompt by about 40%, thus lowering the inference costs to about one-
third of the original. Additionally, we note that the LongLLMLingua maintains a relatively higher
SePer than selective-context, becoming a preferred choice for balancing performance and inference
cost. More details about prompt compression methods can be found in Appendix A.4.

5.5 UTILITY OF RERANKER (RQ4)

While retrieval can quickly gather candidate items from large document collections to aid genera-
tion, it often lacks precision in small k, which leaves out important information and brings in many
noises. To this end, the reranker module is introduced to the RAG pipeline, which not only se-
lects relevant documents into prompt contexts with better accuracy but also re-arranges them in the
best order for overall generation quality Liu et al. (2024). More details about the lines of work on
reranker can be found in Appendix A.4.

Figure 5 (c) shows experimental results comparing ∆SePer with and without rerankers from the
implementation of bge-reranker-large Xiao et al. (2023a). We set top-k values of 20 for
retrieved items and 5 for reranked items in reranked scenarios while keeping a constant top-k of 5
in non-reranked scenarios. Results from ∆ SePer are consistent with the conclusions of works in
the field that reranker, in general, brings significant improvement to the RAG pipeline by removing
noises and reordering contexts. However, in NQ and AmbigQA (which are also derived from NQ),
it seems that the reranking process has a negative impact on answer quality. This might indicate that
simply putting more relevant contexts at an earlier position may not be the best strategy. How the
ordering of contexts influences the final generation results is open for exploration.

6 DISCUSSION

This study introduces Semantic Perplexity (SePer) and then ∆SePer, a novel metric that evalu-
ates the utility of information retrieval by measuring the knowledge gain in large language models
(LLMs). SePer provides a more nuanced understanding of retrieval effectiveness beyond mere ac-
curacy, aligning closer with real-world inference needs.

Our findings demonstrate that ∆SePer can effectively quantify retrieval needs across various sce-
narios, aiding in data selection and resource allocation in RAG systems. This metric can enhance
the optimization of RAG systems for both efficiency and effectiveness, promising improved perfor-
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mance in complex AI applications. Future work will focus on extending SePer’s applicability to
more diverse and challenging datasets.
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A APPENDIX

The Appendix includes details of the experiments, an extensive introduction to the datasets used in
the experiments, case studies, a specific analysis of negative utility, an evaluation of the effectiveness
of different retrievers and workflows, and various other details.

A.1 DETAILS OF EXPERIMENTS

A.1.1 DATASET STATISTICS

This section presents the datasets used in our experiments, detailing their names, sizes, sources, and
key characteristics.

Dataset Size Source Key Characteristics

Single QA

MS MARCO Bajaj et al. (2016) 101,093 Bing Search engine queries, web passages
SQuAD Rajpurkar et al. (2016) 10,570 Wikipedia Standard reading comprehension
BoolQ Clark et al. (2019) 3,270 Wikipedia Yes/No questions, requires inference
Fermi Kalyan et al. (2021) 1,000 Wikipedia Estimation-based reasoning

Multi-hop QA

HotpotQA Yang et al. (2018) 7,405 Wikipedia Requires multi-hop reasoning
2WikiMultihopQA Ho et al. (2020) 12,576 Wikipedia Cross-document multi-hop reasoning
MuSiQue Trivedi et al. (2022b) 2,417 Wikipedia Multi-hop reasoning, complex questions

Fact Verification

FEVER Thorne et al. (2018) 10,444 Wikipedia Fact verification

Multiple-choice QA

MMLU Hendrycks et al. (2021) 14,042 N/A Multiple-choice, general knowledge

Summarization

WikiASP Hayashi et al. (2021) 37,368 Wikipedia Open-domain summarization

Table 3: Dataset Details

A.1.2 ROBUSTNESS OF SePer IN REPEATED TESTS

Dataset # Repetition # Samples
σ Coefficient Variance

SePer Correlation SePer Correlation

NQ Kwiatkowski et al. (2019) 5 10 0.053 0.002 0.028 0.002
MS MARCO Bajaj et al. (2016) 5 10 0.055 0.003 0.003 0.005
HotpotQA Yang et al. (2018) 5 10 0.045 0.001 0.037 0.001
SQuAD Rajpurkar et al. (2016) 5 10 0.056 0.004 0.063 0.004

Table 4: Extended experimental details on the robustness test of SePer. As shown in the table, SePer
demonstrates stability upon repeated testing in our default choice of ten samples.

Table 4 shows that the standard deviation(σ) and coefficient variation in calculating SePer is less
than 10%, which means that SePer produces the result of low variance in repeated tests. We also
calculated the variation in the degree of correlation with human judgments in repeated tests. Results
show that the fluctuation of the correlation score is less than 1%. All these experimental signs prove
that the proposed SePer is a reliable and stable measurement according to the theory of statistics.
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A.2 EXTENDED RESULTS

A.2.1 QUALITATIVE ANALYSIS

In this section, we analyze two RAG cases qualitatively to demonstrate the effectiveness of the
proposed ∆SePer in measuring retrieval utility.

We use two cases from two typical scenarios: one for simple RAG, in which the answer is contained
in a single document, and another for reasoning-intensive RAG, in which the answer should be
reasoned over multiple documents.

Question: Who sings does he love me with reba?

Reference Docs: Doc1: ”Does He Love You” is a song written by Sandy Knox and Billy Stritch,
and recorded as a duet by American country music artists Reba McEntire and
Linda Davis. It was released in August 1993 as the first single from Rebaś
album ”Greatest Hits Volume Two”. It is one of country musicś several songs
about a love triangle. ”Does He Love You” was written in 1982 by Billy Stritch.
He recorded it with a trio in which he performed at the time, because he wanted
a song that could be sung by the other two members.

Ground Truth Answer Linda Davis.

Retrieved Docs Model Answer (x10) GT Answer ∆SePer Amount of informationDoc1

× Reba McEntire: 10 Linda Davis 0 0
✓ Linda Davis: 10 1.0 1

Table 5: Case #1 of simple RAG task: ∆SePer on single retrieved doc. ∆SePer accurately reflects
the utility of retrieved documents.

Results Analysis of Case #1: Results in Table 5 shows that when no useful document is provided
(the ✓ means the retrieved document is irrelevant), the model consistently fails to answer the ques-
tion correctly, even with ten times’ sampling. At this time, the calculated ∆SePer is 0, accurately
indicating the zero utility of irrelevant information. When a positive document is retrieved, the
model successfully generates the correct answer. At this time, the calculated ∆SePer is 1, accu-
rately indicating the utility of useful information.

Question: Are the Laleli Mosque and Esma Sultan Mansion located in the same neighbor-
hood?

Reference Docs: Doc1: The Laleli Mosque (Turkish: ’Laleli Camii’, or Tulip Mosque) is
an 18th-century Ottoman imperial mosque located in Laleli, Fatih, Istanbul,
Turkey.
Doc2: The Esma Sultan Mansion (Turkish: ’Esma Sultan Yalısı’), a histori-
cal yalı (English: waterside mansion) located on the Bosphorus in the Ortaköy
neighborhood of Istanbul, Turkey, named after its original owner, Esma Sultan,
is now used as a cultural center after redevelopment.

Ground Truth Answer No.

Retrieved Docs Model Answer (x10) GT Answer ∆SePer Amount of informationDoc1 Doc2

× × Yes: 10, No: 0

No

0 0
× ✓ Yes: 7, No: 3 0.15 1/2
✓ × Yes: 8, No: 2 0.1 1/2
✓ ✓ Yes: 3, No: 7 0.7 1

Table 6: Case #2 of reasoning-based RAG task: ∆SePer on multiple retrieved docs. ∆SePer reflects
the utility of retrieved information in a fine-grained way, successfully responding to partial informa-
tion.
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Results Analysis of Case #2: Results in Table 6 demonstrate that when no relevant retrieval is
provided, the model consistently gives the incorrect answer, ”Yes,” which indicates it is unable to
infer the relationship between the two locations. When only one piece of contextual information is
made available, the model’s answers begin to vary. This outcome suggests that partial information,
although not sufficient for producing the correct answer consistently, causes the model to reconsider
its initially confident but incorrect response. Traditional evaluation methods often assess retrieval
utility based solely on whether the retrieved information directly enables the model to provide a
correct answer and overlook the intermediate benefits that partial information can offer. In contrast,
our ∆SePer successfully responds to even partial information, providing a fine-grained evaluation
of information utility.

A.2.2 EFFICIENCY ANALYSIS

We conduct a latency and cost analysis using widely available commercial LLM APIs. Specifi-
cally, we evaluate multiple APIs with varying pricing structures from providers, including OpenAI,
Anthropic, Google, and Deepseek.

In the Direct Evaluation setting, we prompt the LLM with a given question, context, and answer
and request the model to assess the contribution of the context to the overall response by assigning
an integer score between 1 and 10. While in the Reduction Evaluation setting, we first query the
LLM with the combination of query, context, and answer to evaluate the correctness of the answer.
Subsequently, we query the LLM with only the query and answer to assess the correctness without
the context. The difference between these two scores is computed to determine the ∆SePer.

For our experiments, we utilize the Natural Questions Kwiatkowski et al. (2019) dataset, selecting 10
questions with corresponding references collected from passages in the Wikipedia corpus using the
E5 Wang et al. (2022) model. We report the average prompt length and the average time consumed
across the ten questions. We list the user prompts used in the experiment as follows:

Prompt for Direct Evaluation in LLM APIs

Evaluate the contribution of the given context to the provided answer for the specified ques-
tion.
Your evaluation should be based on how effectively the context supports or justifies the
answer.
Provide your assessment using an integer rating between 1 (minimal or no contribution) and
10 (critical or complete contribution).
Do not output any other information or context.
- Question: {question}
- Context: {context}
- Answer: {answer}
Your evaluation:

Prompt for Reduction Evaluation in LLM APIs with context

Evaluate the correctness of the given answer based on the question and the provided context.
Rate correctness using an integer between 1 (completely incorrect) and 10 (completely cor-
rect).
Only provide the rating as your output.
- Question: {question}
- Context: {context}
- Answer: {answer}
Your rating:
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Prompt for Reduction Evaluation in LLM APIs without context

Evaluate the correctness of the given answer based solely on the question.
Ignore any external information and rate correctness using an integer between 1 (completely
incorrect) and 10 (completely correct).
Only provide the rating as your output.
- Question: {question}
- Answer: {answer}
Your rating:

Table 7 summarizes the average time latencies and costs across different API providers. We checked
the latest pricing on the official websites of each API and did not enable any potential batching
mechanisms. Additionally, it demonstrates the advantages of our proposed SePer and ∆SePer in
terms of time and economic costs.

Models Company Direct Evaluation Reduction Evaluation

Time (s) Cost ($) Time (s) Cost ($)

chatgpt-4o-latest OpenAI1 4.22 0.0077 6.13 0.0080
gpt-4-turbo OpenAI1 2.01 0.0155 3.80 0.0163
gpt-3.5-turbo OpenAI1 3.34 0.0008 3.89 0.0008
claude-3-5-sonnet-nx Anthropic2 7.45 0.0046 30.30 0.0052
claude-3-haiku-nx Anthropic2 5.63 0.0003 19.21 0.0004
gemini-1.5-pro Google3 3.29 0.0192 6.97 0.0203
gemini-1.5-flash Google3 3.56 0.0001 6.26 0.0001
deepseek-chat Deepseek4 0.88 0.0000 1.68 0.0000
SePer & ∆SePer N/A 0.12 Free 0.24 Free

Table 7: Latency (↓) and Cost (↓) Comparison of Various LLM Models in Direct and Reduction
Evaluation Settings. The table shows the average response time (in seconds) and cost (in USD) for
each model in Direct and Reduction evaluation tasks.

A.2.3 CIRCUMSTANCES OF NEGATIVE UTILITY

Additionally, our experiments, conducted according to the settings outlined in Figure 6, revealed that
some retrieved items negatively impact question-answering performance. We extended our tests to
additional datasets to further investigate this phenomenon, and the datasets involved are listed in
Table 3.

We first observed that in certain datasets, the retrieved items hindered the model’s question-
answering ability. For instance, in the MMLU dataset, which is a multiple-choice dataset with
relatively straightforward questions, the model can often rely on its own knowledge to answer cor-
rectly. In such cases, the retrieved items proved detrimental. For the MS MARCO dataset, we
attributed this issue to distribution shifts, as the corpus differs from the one used during training.
For more complex datasets like MuSiQue, 2WikiMultihopQA, and Fermi, which require multi-step
reasoning and logical chains, a small number of retrieved items could not provide all the necessary
information. However, when enough items were retrieved, they offered a more comprehensive infor-
mation set, thereby assisting the model in making correct inferences. In the FEVER dataset, focused
on Fact Verification, an excessive number of retrieved items disrupted the model’s ability to verify
facts effectively.

Regarding prompt compression methods, excluding the datasets that already exhibited negative ef-
fects without compression (as discussed in the previous paragraph), the Fermi dataset, which in-

1https://openai.com/api/pricing/
2https://www.anthropic.com/pricing#anthropic-api
3https://ai.google.dev/pricing
4https://api-docs.deepseek.com/quick_start/pricing
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volves numerous mathematical logits, was particularly impacted by incorrect token compression,
leading to errors. Similarly, in the 2WikiMultihopQA dataset, incorrect compression of logical
chains was identified as a key issue.

Despite these challenges, we still found that the use of the reranker consistently improved perfor-
mance across these datasets, further validating its robustness.
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Figure 6: Differences in SePer under various retrieval and generation settings. Same as Figure 5,
Panel (a) shows the differences in SePer for generation with and without retrieval under different
numbers of retrieved information. Panel (b) illustrates the impact of using prompt compression and
which compression method on the differences in SePer compared to generation without retrieval.
Panel (c) demonstrates the reranker’s effect compared to generation without retrieval.

A.2.4 ABLATION OF THE CONSISTENCY OF SePer WITH DIFFERENT ENTAILMENT MODELS

In this paper, we choose deberta-v2-xlarge-mnli He et al. (2021) following Farquhar et al.
(2024) for deciding the entailment relationship, which strikes a balance between accuracy and effi-
ciency. For the sake of the ablation study, we tested the influence of the choice of entailment models
on the result of SePer in Figure 7. We choose seven mainstream models used for NLI classification
tasks with varying sizes and architectures and compute the Pearson correlation of SePer produced
from these models. Specifically, the entailment models we used are listed as follows:

Model Developer Size (Parameters) # of Layers Hidden Size Architecture

DeBERTa-Base-MNLI Microsoft 86M 12 768 Encoder-only
DeBERTa-Large-MNLI Microsoft 350M 24 1024 Encoder-only
DeBERTa-XLarge-MNLI Microsoft 700M 48 1024 Encoder-only
DeBERTa-V2-XLarge-MNLI Microsoft 710M 24 1536 Encoder-only
DeBERTa-V2-XXLarge-MNLI Microsoft 1.3B 48 1536 Encoder-only
RoBERTa-Large-MNLI Facebook 355M 24 1024 Encoder-only
BART-Large-MNLI Facebook 406M 12+12 1024 Encoder-Decoder

Table 8: Details of different entailment models for ablation study on the robustness of SePer. We
choose main-stream models used in the field of NLI, covering different sizes and architectures.

We tested 7 NLI models on 9 datasets and 3 different choices for k (number of items retrieved and
used in in-context prompting) in computing SePer.

According to the results in Figure 7, all of the Pearson correlation scores between the results of
model pairs are above 0.7. Specifically, for simple-type QA tasks (NQ, AmbigQA, MSMARCO,
SQuAD, TriviaQA, PopQA), the entailment judgments are even more consistent, with all scores
above 0.85 and most scores above 0.9. For reasoning-type QA tasks (HotpotQA, 2WikiMultihopQA,
MuSiQue), the entailment scores are all above 0.7, with most scores above 0.9.

Based on these high correlation scores among different entailment models, we can safely draw the
conclusion that SePer is robust in computation in terms of entailment model choice, and it is still
effective and reliable on small models (86M) when high efficiency is required.

A.3 BENCHMARKING RETRIEVER AND WORKFLOW

For more detailed information on benchmarking the retriever and the entire workflow, please visit
the following link: SePer Benchmarks.
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Figure 7: Consistency of SePer computation among different entailment models.
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A.3.1 BENCHMARKING RETRIEVER QUALITY AND UTILITY

The majority of dense retrievers in dense retrieval paradigms are based on transformer architectures
such as BERT. This opens the possibility for further fine-tuning with more extensive and higher-
quality datasets, as well as more advanced algorithms. Consequently, a wide variety of retrievers
have emerged in the community. To evaluate their performance, we present benchmarks based on
multiple datasets (described in Table 3) and multiple retrievers, utilizing SePer as the evaluation
framework. These benchmarks aim to assess both the quality and utility of different retrievers.

For quality evaluation, we provide a benchmark comparing the performance of retrievers on stan-
dard retrieval tasks with various numbers of retrieved items. For utility evaluation, we propose a
∆SePer-based benchmark. In this setup, the ∆SePer is computed by taking the difference between
the SePer scores achieved using question-answer pairs and those obtained using question-retrieval
context-answer pairs.

We evaluate six dense retrievers: AARANCE Yu et al. (2023), AARContriever Yu et al. (2023), BGE Xiao
et al. (2023a), Contriever Izacard et al. (2021), DPR Karpukhin et al. (2020), and E5 Wang et al.
(2022), alongside the classical sparse retriever BM25 Robertson et al. (1995). The results of the
quality and utility benchmarks are presented in Tables 10 and 11, respectively.

A.3.2 BENCHMARKING WORKFLOW UTILITY

Naive RAG strictly follows the retrieval-generation paradigm, which limits its ability to utilize
retrieved information for further retrieval. This limitation is critical for complex reasoning tasks,
such as multi-hop question answering. Therefore, recent research has proposed several workflows
that enable the entire RAG pipeline to perform multiple retrievals and integrate information, which
may enhance the reasoning ability of large language models.

We benchmarked four RAG workflows—RetRobust Yoran et al. (2024a), FLARE Jiang et al.
(2023b), IRCoT Trivedi et al. (2022a), and Iter-RetGen Shao et al. (2023)—on multiple datasets
using varying numbers of retrieved items. Since these methods may involve multiple rounds of re-
trieval, existing retrieval metrics, such as retrieval recall, are no longer suitable. Thus, we only report
the SePer 2 metric. Additionally, RetRobust only provides LoRA checkpoints for Llama 2 Touvron
et al. (2023) 13B, so results for the 7B model are marked as ”N/A.” The results of the benchmark
are shown in Table 12.

A.4 EXPERIMENT DETAILS IN SECTION 5

To demonstrate that our proposed SePer and ∆SePer effectively integrate with various RAG
pipelines, we conduct extensive experiments in Section 5. We also aim to show that SePer and
∆SePer are module-agnostic within RAG pipelines.

Following the taxonomy proposed by Jin et al. (2024); Gao et al. (2023), modern modular RAG
systems consist of various interchangeable and combinable modules, including refiner and reranker.
These modules can be adapted or replaced to better target specific downstream tasks, providing
greater flexibility and task-specific optimization. We additionally selected the prompt compression
(a kind of refiner) and reranker modules for benchmarking and aim to provide a detailed explanation
of their mechanisms and roles here.

A.4.1 PROMPT COMPRESSION

Prompt compression shortens the prompt by filtering redundant and low-value content while ensur-
ing the context fits within the model’s context length.

Given a large language model (LLM) and an input prompt x, let the response generated by the model
be denoted as LLM(x). The goal of prompt compression is to find a compressed prompt x′ such
that:

D
(
PLLM(x),PLLM(x′)

)
< ϵ, (12)

where PLLM(x) and PLLM(x′) represent the distributions over the model’s responses when prompted
with x and x′, respectively. These distributions reflect the stochasticity introduced by sampling
methods (e.g., temperature scaling, top-k, or nucleus sampling) during text generation.
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Here, D(·, ·) denotes a divergence metric, such as KL divergence, computed in a semantically mean-
ingful space. Since the responses are text, we embed them in a suitable representation space (e.g.,
sentence embeddings) where these metrics can effectively measure differences in meaning and style.

The compression requirement is formalized as:

len(x′) < len(x). (13)

This ensures that x′ retains the semantic and functional equivalence of x, while reducing token
length.

We will also present the technical details of the two prompt compression methods we employed.

Selective Context Li et al. (2023) ranks and filters lexical units (e.g., tokens, phrases, or sentences)
based on their informativeness. Informativeness is measured using self-information, defined for a
token xt as:

I(xt) = − log2 P (xt|x0, . . . , xt−1). (14)

In practice, self-information is calculated with smaller models for efficiency. Tokens with higher
self-information are considered more informative, while redundant tokens have lower scores. To
avoid disjoint filtering, tokens are grouped into larger lexical units (e.g., noun phrases or sentences).
The self-information of each unit is computed by summing the scores of its tokens. Units are ranked
by their scores, and a percentile-based threshold of p is applied to retain the most informative con-
tent.

LongLLMLingua Jiang et al. (2023a) aligns closely with RAG use cases, decomposing prompt
compression into modular steps:

• Coarse-Grained Compression: Documents are ranked by relevance using perplexity condi-
tioned on the question: rk = − 1

Nc

∑Nc

i=1 log p(x
que, restrict
i |xdoc

k ), where higher rk values priori-
tize relevant documents.

• Fine-Grained Compression: Token-level relevance is evaluated with contrastive perplexity:
si = perplexity(xi|x<i)− perplexity(xi|xque, x<i), highlighting critical tokens based on their
importance to the query.

• Adaptive Compression Ratio: Compression budgets are dynamically allocated using: τ doc
k =

max
(
min

(
(1− 2I(rk)

K′ )δτ + τ doc, 1
)
, 0
)
, where higher-ranked documents (I(rk)) receive

lower compression ratios.

• Subsequence Recovery: Ensures content integrity by 1) identifying the longest matching sub-
string ỹkey,l in the LLM’s response, 2) matching it with the maximum common subsequence
xi,j in the original prompt, and 3) replacing response tokens with the original prompt’s subse-
quence.

• Optimization Objective: The overall objective balances output accuracy and compression:
minx̃ Dϕ (y, ỹ) + λ∥x̃∥0, where Dϕ measures the divergence between the original and com-
pressed prompts’ outputs, and λ controls the compression tradeoff.

This approach ensures compressed prompts remain concise and informative, optimizing both effi-
ciency and effectiveness for long-context scenarios.

A.4.2 RERANKERS

To improve the precision and relevance of retrieved results, our pipeline employs rerankers to reorder
coarse retrieval outputs. Below, we describe the underlying mechanisms of rerankers and their role
in our system. To ensure clarity, we also briefly outline the retriever’s principle and contrast it with
the reranker.

Retriever We only consider dense retrieval here. The retriever uses a dual-tower architecture,
wherein:

• Query Encoder: Encodes the query into a dense embedding q ∈ Rd.
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• Document Encoder: Encodes each document into a corresponding dense embedding d ∈ Rd.

The similarity between a query q and a document di is computed using a dot product:

score(q,di) = q⊤di, i = 1, . . . , N. (15)

The retriever selects the top-k documents with the highest scores as candidates. This coarse retrieval
process is efficient and scalable because document embeddings can be pre-computed independently
and stored, allowing for rapid approximate nearest neighbor (ANN) searches in vector space Douze
et al. (2024); Johnson et al. (2019); Malkov & Yashunin (2018), which is ideal for large-scale re-
trieval. However, this independence of query and document encoding also makes the retriever less
sensitive to context, as it cannot fully capture the nuanced interactions between queries and docu-
ments.

Reranker Rerankers are employed to refine the results of coarse retrieval by reordering and filtering
the candidate documents based on relevance. To overcome the drawbacks stated above, rerankers use
a cross-encoder architecture to jointly encode the query and document, capturing their semantic
interactions.

The reranker operates as follows:

• Input Preparation: Each query-document pair (q, di) is concatenated into a single sequence,
i.e.: {[CLS], q, [SEP], di, [SEP]}, where [CLS] and [SEP] are special tokens for encoding in
Transformer-based models. This is a typical setup for cross-encoder architectures.

• Contextual Encoding: The concatenated sequence is input into a transformer (e.g., BERT),
which computes a joint representation of the query and document. This step enables the model
to capture rich contextual interactions, which are absent in retrievers due to their independent
encoding process.

• Relevance Scoring: A relevance score is computed to quantify the alignment between the
query and the document. In a standard cross-encoder setup, the output corresponding to the
[CLS] token is passed through a scoring head (e.g., a linear layer):

score(q, di) = f
(
h[CLS]

)
, (16)

where h[CLS] represents the contextual representation of the [CLS] token. Alternatively, some
architectures may use pooling methods (e.g., mean or max pooling) overall token representa-
tions or token-level interactions to derive the relevance score.

• Reordering and Selection: Based on the computed relevance scores, the candidate documents
are reordered, and the top-k items are selected for downstream processing.

The key differences between retrievers and rerankers are summarized in Table 9. While retrievers
are efficient and suitable for coarse retrieval over large document collections, rerankers excel in
precision by capturing query-document interactions.

Module Retriever Reranker

Architecture Dual-tower (independent encoding) Cross-encoder (joint encoding)

Input Separate query and document inputs Concatenated query-document pair

Output Dot-product score for similarity Relevance score for each pair

Efficiency High efficiency, scalable to corpus Costly, only for candidate sets

Interaction No interaction between pairs Captures rich semantic interactions

Use Case Coarse-grained candidate selection Fine-grained reordering and filtering

Table 9: Comparison between retriever and reranker mechanisms.
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A.4.3 DATASET SELECTION

We select commonly used Single QA and Multi-hop QA datasets for inference to evaluate the per-
formance of SePer in different scenarios. The dataset selection is guided by the need to cover a
variety of QA tasks, ensuring a more comprehensive evaluation. Wherever possible, we perform
inference on the test set; if the test set is unavailable, we use the dev set instead. We re-sample
the datasets, and for datasets with more than 1000 instances, we randomly select 1000 examples for
inference. Figure 3 in the appendix presents the basic information of our utilized datasets.

A.4.4 HYPERPARAMETER SETTING

We conduct experiments using the Llama 2 model series Touvron et al. (2023) from the
Meta Llama family, specifically Llama-2-7b-chat-hf, Llama-2-13b-chat-hf, and
Llama-2-70b-chat-hf. Considering that the task involves instruction-following generation,
we choose the chat versions of these models. To generate various and complete answers of vari-
ous kinds for SePer computation, we set the temperature parameter of each model to 1.0, enabled
do sample, and set the maximum tokens for generation to 512. For the retrieval corpus, we use the
DPR version of the Wikipedia December 2018 dataset as our retrieval corpus, following the config-
uration we utilize in the RAG framework FlashRAG Jin et al. (2024). We experiment with the set of
top-k values for retrieval being {1, 5, 10}, and follow each method’s official implementation for the
hyper-parameters of different prompt compression methods. For reranker usage, we set the reranker
model as BAAI/bge-reranker-large. We set the initial top-k value for retrieval to 20 and
then apply the set as {1, 5, 10} for the reranker to choose items, leveraging the reranker’s ability to
both rank and filter out irrelevant content. We enable mix precision when calculating SePer.

A.4.5 PROMPT DESIGN AND IMPLEMENTATION

The selection of prompts is crucial for enabling large language models (LLMs) to understand tasks
and produce responses that align with the desired style and requirements. In this work, we present
two types of prompts: those that generate responses directly without retrieval and those that include
references for retrieval-augmented generation. Specifically, we leverage the prompts introduced in
Jin et al. (2024), which are listed as follows:

Prompt for naive generation

Answer the question based on your own knowledge. Only give me the answer and do not
output any other words.
Question: {question}

Prompt for RAG

Answer the question based on the given document. Only give me the answer and do not
output any other words.
The following are given documents.{reference}
Question: {question}

A.4.6 SYSTEM SPECIFICATIONS FOR REPRODUCTIVITY

Our experiments were conducted on high-performance machines, each equipped with either an In-
tel(R) Xeon(R) Platinum 8378A CPU @ 3.00GHz or an Intel(R) Xeon(R) Platinum 8358P CPU @
2.60GHz, 1TB of RAM, and 4/6 NVIDIA A800 GPUs with 80GB memory. Machines with 4 GPUs
are configured with the SXM4 version, while those with 6 GPUs use the PCIe version. The software
environment included Python 3.11, PyTorch 2.4, and NCCL 2.21.5 for reproductivity.

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

M
et

ri
c

Se
Pe

r
R

et
ri

ev
al

R
ec

al
l

To
p-
k

1
5

10
1

5
10

D
at

as
et

na
m

e
R

et
ri

ev
er

7B
13

B
70

B
7B

13
B

70
B

7B
13

B
70

B
N

/A
A

A
R

-A
N

C
E

0.
32

3
0.

32
1

0.
38

3
0.

41
3

0.
42

4
0.

49
3

0.
44

6
0.

46
1

0.
53

3
0.

33
1

0.
57

4
0.

64
7

A
A

R
-c

on
tr

ie
ve

r
0.

38
5

0.
37

6
0.

44
5

0.
48

1
0.

49
6

0.
56

3
0.

49
7

0.
51

6
0.

59
3

0.
39

1
0.

67
0

0.
75

4
bg

e
0.

46
4

0.
44

9
0.

51
7

0.
53

0
0.

53
7

0.
59

8
0.

53
5

0.
55

1
0.

60
9

0.
50

7
0.

74
0

0.
80

0
bm

25
0.

28
2

0.
27

0
0.

34
7

0.
36

7
0.

37
7

0.
45

7
0.

40
9

0.
43

1
0.

50
5

0.
24

8
0.

46
3

0.
56

2
co

nt
ri

ev
er

0.
30

1
0.

30
9

0.
36

8
0.

40
9

0.
42

1
0.

50
1

0.
44

8
0.

47
2

0.
54

4
0.

27
2

0.
53

9
0.

63
2

dp
r

0.
40

3
0.

38
9

0.
44

8
0.

46
9

0.
48

2
0.

56
0

0.
49

0
0.

51
0

0.
58

6
0.

42
4

0.
66

2
0.

72
2

N
Q

e5
0.

50
4

0.
48

9
0.

55
5

0.
55

7
0.

56
3

0.
62

0
0.

56
0

0.
56

5
0.

62
1

0.
57

0
0.

77
4

0.
83

3

A
A

R
-A

N
C

E
0.

55
0

0.
57

7
0.

64
0

0.
60

5
0.

63
5

0.
70

8
0.

62
6

0.
67

1
0.

70
8

0.
44

4
0.

63
2

0.
69

8
A

A
R

-c
on

tr
ie

ve
r

0.
62

7
0.

62
9

0.
68

9
0.

68
4

0.
69

9
0.

76
1

0.
70

2
0.

72
3

0.
76

1
0.

54
8

0.
72

5
0.

77
6

bg
e

0.
62

9
0.

62
4

0.
68

4
0.

67
5

0.
69

0
0.

75
0

0.
69

7
0.

71
1

0.
75

0
0.

58
0

0.
73

8
0.

79
5

bm
25

0.
60

6
0.

60
7

0.
68

4
0.

63
2

0.
66

2
0.

72
9

0.
65

9
0.

68
8

0.
72

9
0.

50
8

0.
68

8
0.

73
9

co
nt

ri
ev

er
0.

55
4

0.
57

9
0.

65
6

0.
63

4
0.

65
6

0.
72

0
0.

65
9

0.
68

8
0.

72
0

0.
42

7
0.

65
9

0.
73

4
dp

r
0.

58
7

0.
60

7
0.

66
7

0.
66

7
0.

68
8

0.
74

5
0.

68
2

0.
70

9
0.

74
5

0.
55

5
0.

74
0

0.
78

6

Tr
iv

ia
Q

A

e5
0.

67
7

0.
66

7
0.

73
6

0.
71

4
0.

72
7

0.
78

3
0.

73
0

0.
73

9
0.

78
3

0.
63

5
0.

77
9

0.
81

8

A
A

R
-A

N
C

E
0.

34
8

0.
34

1
0.

34
4

0.
37

1
0.

35
8

0.
40

4
0.

38
0

0.
40

3
0.

42
9

0.
17

5
0.

30
0

0.
34

8
A

A
R

-c
on

tr
ie

ve
r

0.
35

7
0.

34
9

0.
34

8
0.

38
3

0.
37

5
0.

41
2

0.
39

8
0.

41
4

0.
45

2
0.

18
9

0.
33

6
0.

41
9

bg
e

0.
36

8
0.

35
0

0.
37

1
0.

40
3

0.
39

1
0.

43
1

0.
40

8
0.

42
0

0.
45

3
0.

21
6

0.
40

5
0.

46
7

bm
25

0.
37

4
0.

36
7

0.
37

8
0.

39
2

0.
39

8
0.

42
8

0.
40

3
0.

43
4

0.
46

0
0.

24
4

0.
39

0
0.

45
7

co
nt

ri
ev

er
0.

35
3

0.
34

9
0.

35
3

0.
37

3
0.

38
0

0.
40

3
0.

38
5

0.
40

7
0.

43
5

0.
15

4
0.

27
3

0.
33

5
dp

r
0.

32
6

0.
32

2
0.

30
9

0.
35

2
0.

34
1

0.
37

0
0.

36
2

0.
36

8
0.

39
9

0.
15

0
0.

24
4

0.
29

9

2W
ik

iM
ul

tih
op

Q
A

e5
0.

36
6

0.
35

4
0.

36
1

0.
38

9
0.

39
3

0.
42

7
0.

40
2

0.
42

4
0.

46
5

0.
22

3
0.

38
4

0.
46

7

A
A

R
-A

N
C

E
0.

29
7

0.
29

5
0.

36
5

0.
33

9
0.

34
5

0.
44

4
0.

34
7

0.
36

4
0.

47
4

0.
20

5
0.

36
7

0.
42

8
A

A
R

-c
on

tr
ie

ve
r

0.
37

6
0.

35
1

0.
44

5
0.

40
2

0.
39

4
0.

50
7

0.
40

9
0.

40
9

0.
51

9
0.

28
7

0.
46

5
0.

53
8

bg
e

0.
39

2
0.

37
8

0.
46

4
0.

42
3

0.
42

3
0.

53
7

0.
43

6
0.

44
8

0.
54

3
0.

32
6

0.
57

3
0.

63
9

bm
25

0.
38

3
0.

36
1

0.
46

8
0.

42
2

0.
42

7
0.

53
5

0.
43

0
0.

44
0

0.
53

5
0.

31
1

0.
49

6
0.

56
4

co
nt

ri
ev

er
0.

30
9

0.
30

5
0.

38
0

0.
35

2
0.

34
1

0.
45

7
0.

36
9

0.
37

6
0.

47
9

0.
19

8
0.

35
9

0.
44

0
dp

r
0.

31
4

0.
30

1
0.

36
0

0.
33

5
0.

34
0

0.
44

0
0.

35
0

0.
36

1
0.

45
4

0.
22

9
0.

37
6

0.
43

8

H
ot

po
tQ

A

e5
0.

37
8

0.
37

3
0.

46
0

0.
42

1
0.

41
4

0.
52

7
0.

42
8

0.
44

2
0.

54
5

0.
30

7
0.

53
4

0.
61

0

A
A

R
-A

N
C

E
0.

39
5

0.
39

4
0.

41
5

0.
46

7
0.

48
0

0.
51

3
0.

47
8

0.
49

0
0.

55
1

0.
43

1
0.

66
2

0.
72

6
A

A
R

-c
on

tr
ie

ve
r

0.
37

5
0.

37
2

0.
39

4
0.

41
8

0.
43

5
0.

47
7

0.
43

1
0.

45
2

0.
50

4
0.

40
3

0.
57

9
0.

64
5

bg
e

0.
45

6
0.

45
4

0.
47

4
0.

48
9

0.
51

3
0.

55
0

0.
47

7
0.

51
5

0.
56

6
0.

51
0

0.
70

4
0.

76
6

bm
25

0.
28

7
0.

28
2

0.
30

1
0.

33
4

0.
33

9
0.

37
9

0.
35

8
0.

36
6

0.
42

7
0.

28
6

0.
43

7
0.

48
8

co
nt

ri
ev

er
0.

29
7

0.
29

1
0.

32
5

0.
35

6
0.

36
7

0.
40

8
0.

38
2

0.
38

6
0.

44
2

0.
28

1
0.

44
6

0.
50

8
dp

r
0.

33
0

0.
32

1
0.

34
4

0.
39

6
0.

40
9

0.
44

5
0.

39
7

0.
42

5
0.

46
5

0.
35

5
0.

53
2

0.
59

3

Po
pQ

A

e5
0.

47
4

0.
46

6
0.

48
6

0.
51

2
0.

52
8

0.
57

1
0.

51
2

0.
53

5
0.

59
0

0.
52

8
0.

72
9

0.
79

0

Ta
bl

e
10

:S
eP

er
B

en
ch

m
ar

k
A

cr
os

s
R

et
ri

ev
er

s
an

d
Pa

ra
m

et
er

Si
ze

s.
T

he
co

lo
rs

hi
gh

lig
ht

th
e

be
st

-p
er

fo
rm

in
g

re
tr

ie
ve

rs
un

de
re

ac
h

da
ta

se
t.

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

M
et

ri
c

∆
Se

Pe
r

R
et

ri
ev

al
R

ec
al

l
To

p-
k

1
5

10
1

5
10

D
at

as
et

na
m

e
R

et
ri

ev
er

7B
13

B
70

B
7B

13
B

70
B

7B
13

B
70

B
N

/A
A

A
R

-A
N

C
E

-0
.0

33
-0

.0
68

-0
.1

01
0.

05
7

0.
03

6
0.

00
9

0.
09

0
0.

07
2

0.
04

9
0.

33
1

0.
57

4
0.

64
7

A
A

R
-c

on
tr

ie
ve

r
0.

02
9

-0
.0

12
-0

.0
39

0.
12

5
0.

10
8

0.
07

9
0.

14
1

0.
12

7
0.

10
9

0.
39

1
0.

67
0

0.
75

4
bg

e
0.

10
8

0.
06

0
0.

03
3

0.
17

4
0.

14
9

0.
11

4
0.

17
8

0.
16

2
0.

12
5

0.
50

7
0.

74
0

0.
80

0
bm

25
-0

.0
74

-0
.1

18
-0

.1
37

0.
01

0
-0

.0
12

-0
.0

27
0.

05
3

0.
04

2
0.

02
1

0.
24

8
0.

46
3

0.
56

2
co

nt
ri

ev
er

-0
.0

55
-0

.0
79

-0
.1

16
0.

05
3

0.
03

3
0.

01
7

0.
09

1
0.

08
3

0.
06

0
0.

27
2

0.
53

9
0.

63
2

dp
r

0.
04

7
0.

00
0

-0
.0

36
0.

11
3

0.
09

3
0.

07
6

0.
13

4
0.

12
1

0.
10

2
0.

42
4

0.
66

2
0.

72
2

N
Q

e5
0.

14
8

0.
10

0
0.

07
1

0.
20

1
0.

17
4

0.
13

6
0.

20
4

0.
17

6
0.

13
7

0.
57

0
0.

77
4

0.
83

3

A
A

R
-A

N
C

E
-0

.0
31

-0
.0

59
-0

.1
16

0.
02

5
-0

.0
01

-0
.0

48
0.

01
7

0.
03

5
-0

.0
25

0.
44

4
0.

63
2

0.
69

8
A

A
R

-c
on

tr
ie

ve
r

0.
04

6
-0

.0
07

-0
.0

67
0.

10
4

0.
06

3
0.

00
6

0.
03

5
0.

08
7

0.
01

9
0.

54
8

0.
72

5
0.

77
6

bg
e

0.
04

9
-0

.0
12

-0
.0

71
0.

09
5

0.
05

4
-0

.0
05

0.
04

5
0.

07
5

0.
01

5
0.

58
0

0.
73

8
0.

79
5

bm
25

0.
02

5
-0

.0
29

-0
.0

72
0.

05
2

0.
02

5
-0

.0
27

0.
04

0
0.

05
1

-0
.0

05
0.

50
8

0.
68

8
0.

73
9

co
nt

ri
ev

er
-0

.0
26

-0
.0

57
-0

.0
99

0.
05

3
0.

02
0

-0
.0

36
0.

02
2

0.
05

1
-0

.0
08

0.
42

7
0.

65
9

0.
73

4
dp

r
0.

00
7

-0
.0

29
-0

.0
88

0.
08

6
0.

05
2

-0
.0

11
-0

.0
01

0.
07

3
0.

01
0

0.
55

5
0.

74
0

0.
78

6

Tr
iv

ia
Q

A

e5
0.

09
7

0.
03

1
-0

.0
20

0.
13

3
0.

09
1

0.
02

8
0.

03
9

0.
10

3
0.

03
4

0.
63

5
0.

77
9

0.
81

8

A
A

R
-A

N
C

E
-0

.0
15

0.
00

8
-0

.0
21

0.
00

8
0.

02
5

0.
03

9
0.

01
7

0.
07

0
0.

06
3

0.
17

5
0.

30
0

0.
34

8
A

A
R

-c
on

tr
ie

ve
r

-0
.0

06
0.

01
5

-0
.0

17
0.

02
0

0.
04

2
0.

04
7

0.
03

5
0.

08
1

0.
08

7
0.

18
9

0.
33

6
0.

41
9

bg
e

0.
00

5
0.

01
6

0.
00

6
0.

04
0

0.
05

8
0.

06
5

0.
04

5
0.

08
7

0.
08

8
0.

21
6

0.
40

5
0.

46
7

bm
25

0.
01

1
0.

03
4

0.
01

3
0.

03
0

0.
06

5
0.

06
2

0.
04

0
0.

10
1

0.
09

5
0.

24
4

0.
39

0
0.

45
7

co
nt

ri
ev

er
-0

.0
09

0.
01

6
-0

.0
13

0.
01

0
0.

04
7

0.
03

8
0.

02
2

0.
07

4
0.

07
0

0.
15

4
0.

27
3

0.
33

5
dp

r
-0

.0
37

-0
.0

11
-0

.0
56

-0
.0

11
0.

00
8

0.
00

5
-0

.0
01

0.
03

5
0.

03
3

0.
15

0
0.

24
4

0.
29

9

2W
ik

iM
ul

tih
op

Q
A

e5
0.

00
3

0.
02

1
-0

.0
04

0.
02

7
0.

06
0

0.
06

2
0.

03
9

0.
09

1
0.

10
0

0.
22

3
0.

38
4

0.
46

7

A
A

R
-A

N
C

E
0.

00
3

-0
.0

02
-0

.0
39

0.
04

5
0.

04
8

0.
04

0
0.

05
3

0.
06

7
0.

07
0

0.
20

5
0.

36
7

0.
42

8
A

A
R

-c
on

tr
ie

ve
r

0.
08

3
0.

05
4

0.
04

1
0.

10
8

0.
09

7
0.

10
3

0.
11

5
0.

11
2

0.
11

5
0.

28
7

0.
46

5
0.

53
8

bg
e

0.
09

8
0.

08
1

0.
06

0
0.

12
9

0.
12

6
0.

13
2

0.
14

2
0.

15
1

0.
13

8
0.

32
6

0.
57

3
0.

63
9

bm
25

0.
08

9
0.

06
4

0.
06

4
0.

12
9

0.
13

0
0.

13
0

0.
13

6
0.

14
3

0.
13

1
0.

31
1

0.
49

6
0.

56
4

co
nt

ri
ev

er
0.

01
5

0.
00

9
-0

.0
24

0.
05

8
0.

04
4

0.
05

3
0.

07
5

0.
07

9
0.

07
5

0.
19

8
0.

35
9

0.
44

0
dp

r
0.

02
0

0.
00

4
-0

.0
44

0.
04

1
0.

04
3

0.
03

5
0.

05
6

0.
06

4
0.

05
0

0.
22

9
0.

37
6

0.
43

8

H
ot

po
tQ

A

e5
0.

08
4

0.
07

6
0.

05
6

0.
12

7
0.

11
7

0.
12

2
0.

13
4

0.
14

5
0.

14
0

0.
30

7
0.

53
4

0.
61

0

A
A

R
-A

N
C

E
0.

12
4

0.
11

0
0.

05
8

0.
19

6
0.

19
6

0.
15

6
0.

20
7

0.
20

6
0.

19
4

0.
43

1
0.

66
2

0.
72

6
A

A
R

-c
on

tr
ie

ve
r

0.
10

4
0.

08
8

0.
03

7
0.

14
7

0.
15

1
0.

11
9

0.
16

0
0.

16
8

0.
14

7
0.

40
3

0.
57

9
0.

64
5

bg
e

0.
18

5
0.

17
0

0.
11

7
0.

21
8

0.
22

9
0.

19
3

0.
20

6
0.

23
1

0.
20

9
0.

51
0

0.
70

4
0.

76
6

bm
25

0.
01

6
-0

.0
02

-0
.0

57
0.

06
3

0.
05

5
0.

02
2

0.
08

7
0.

08
2

0.
06

9
0.

28
6

0.
43

7
0.

48
8

co
nt

ri
ev

er
0.

02
6

0.
00

7
-0

.0
32

0.
08

6
0.

08
3

0.
05

1
0.

11
1

0.
10

2
0.

08
5

0.
28

1
0.

44
6

0.
50

8
dp

r
0.

05
9

0.
03

7
-0

.0
13

0.
12

5
0.

12
5

0.
08

7
0.

12
7

0.
14

1
0.

10
8

0.
35

5
0.

53
2

0.
59

3

Po
pQ

A

e5
0.

20
3

0.
18

2
0.

12
8

0.
24

1
0.

24
4

0.
21

4
0.

24
1

0.
25

1
0.

23
3

0.
52

8
0.

72
9

0.
79

0

Ta
bl

e
11

:∆
Se

Pe
r

B
en

ch
m

ar
k

A
cr

os
s

R
et

ri
ev

er
s

an
d

Pa
ra

m
et

er
Si

ze
s.

T
he

co
lo

rs
hi

gh
lig

ht
th

e
be

st
-p

er
fo

rm
in

g
re

tr
ie

ve
rs

un
de

re
ac

h
da

ta
se

t.

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Metric ∆SePer
Top-k 1 5 10

Dataset name Workflow 7B 13B 7B 13B 7B 13B

2WikiMultihopQA

Naive 0.366 0.354 0.389 0.393 0.402 0.424
RetRobust N/A 0.623 N/A 0.644 N/A 0.700

FLARE 0.360 0.358 0.369 0.336 0.374 0.344
IRCoT 0.339 0.365 0.364 0.388 0.386 0.405

Iter-RetGen 0.371 0.346 0.420 0.413 0.435 0.446

HotpotQA

Naive 0.378 0.373 0.421 0.414 0.428 0.442
RetRobust N/A 0.537 N/A 0.575 N/A 0.589

FLARE 0.283 0.286 0.290 0.271 0.299 0.277
IRCoT 0.362 0.418 0.409 0.452 0.442 0.466

Iter-RetGen 0.396 0.380 0.447 0.447 0.465 0.486

MuSiQue

Naive 0.087 0.089 0.116 0.125 0.128 0.137
RetRobust N/A 0.456 N/A 0.464 N/A 0.485

FLARE 0.110 0.140 0.113 0.133 0.115 0.135
IRCoT 0.143 0.131 0.161 0.157 0.176 0.164

Iter-RetGen 0.109 0.106 0.143 0.159 0.156 0.178

NQ

Naive 0.504 0.489 0.557 0.563 0.560 0.565
RetRobust N/A 0.580 N/A 0.605 N/A 0.594

FLARE 0.333 0.234 0.343 0.222 0.340 0.235
IRCoT 0.457 0.500 0.493 0.534 0.510 0.515

Iter-RetGen 0.497 0.476 0.540 0.547 0.561 0.559

PopQA

Naive 0.474 0.466 0.512 0.528 0.512 0.535
RetRobust N/A 0.493 N/A 0.553 N/A 0.521

FLARE 0.328 0.248 0.347 0.244 0.343 0.247
IRCoT 0.426 0.451 0.478 0.496 0.483 0.493

Iter-RetGen 0.462 0.447 0.499 0.512 0.486 0.523

TriviaQA

Naive 0.677 0.667 0.714 0.727 0.730 0.739
RetRobust N/A 0.778 N/A 0.815 N/A 0.811

FLARE 0.555 0.504 0.558 0.486 0.568 0.490
IRCoT 0.597 0.688 0.671 0.722 0.704 0.730

Iter-RetGen 0.688 0.677 0.730 0.734 0.740 0.751

Table 12: ∆SePer Benchmark Across Workflow and Parameter Sizes. The colors highlight the best-
performing retrievers under each dataset.
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