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Abstract

Large language models (LLMs) show remarkable capabilities across a variety of tasks. De-
spite the models only seeing text in training, several recent studies suggest that LLM repre-
sentations implicitly capture aspects of the underlying grounded concepts. Here, we explore
LLM representations of a particularly salient kind of grounded knowledge — spatial rela-
tionships. We design natural-language navigation tasks and evaluate the ability of LLMs,
in particular GPT-3.5-turbo, GPT-4, and Llama2 series models, to represent and reason
about spatial structures. These tasks reveal substantial variability in LLM performance
across different spatial structures, including square, hexagonal, and triangular grids, rings,
and trees. We also discover that, similar to humans, LLMs utilize object names as land-
marks for maintaining spatial maps. Finally, in extensive error analysis, we find that LLMs’
mistakes reflect both spatial and non-spatial factors. These findings suggest that LLMs
appear to capture certain aspects of spatial structure implicitly, but room for improvement
remains.

1 Introduction

Large language models (LLMs) show remarkable capabilities in language, and also hints of implicitly learning
about the grounded concepts beyond language. For example, language models can develop semantically-
organized internal representations for basic concepts like color and direction Abdou et al. (2021); Patel &
Pavlick (2022) — which can allow grounding the models with only a few examples. Furthermore Li et al.
(2021) demonstrate that internal representations of language models can dynamically track the states of
entities and their relations during discourse. Human language use manifests the semantics of the world from
which it originates, and thereby might allow LLMs to implicitly learn something about the entities and
processes that exist in the physical world.

Natural intelligences extract and use such knowledge of the physical world – often referred to as world
models. A particularly salient example is the ability of humans and animals to create and manipulate
mental maps, which serves as a fundamental prerequisite for flexibly navigating and interacting with their
environments. Cognitive maps Tolman (1948) were suggested as a metaphor for mental representations
that enable adaptable behavior such as planning routes or finding shortcuts. The quest to uncover how the
brain represents such maps has led to significant discoveries about the neural mechanisms underlying such
maps, such as place cells O’Keefe & Dostrovsky (1971), grid cells Hafting et al. (2005), and boundary cells
Lever et al. (2009). While navigation generally involves active, grounded experience, some studies suggest
that humans use similar representational structures for abstract knowledge as well (e.g. Whittington et al.,
2020). Furthermore, cognitive and neural evidence suggests that humans and animals can learn spatial
structure solely from sequences of observations Whittington et al. (2022); Garvert et al. (2017). This raises
an intriguing possibility – that LLMs might also be capable of inferring sophisticated spatial relations from
their sequential, text-based inputs.

In this paper, we examine the spatial understanding capabilities of LLMs – in particular OpenAI’s GPT-
3.5-turbo, GPT-4 models as well as Llama2-7B, Llama2-13B, Llama2-70B, CodeLlama-34B models Touvron
et al. (2023). We designed a broad set of navigation tasks rendered in natural language such that successfully
solving these tasks requires accurately representing the underlying spatial relations. These relations include
grids with square, hexagonal, and triangular topologies, in addition to rings and trees. Our study reveals
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Figure 1: The spatial structures we examine for the underlying maps include squares, triangles, hexagons
and rings. Additionally, we analyze a tree structure to explore its relational nature.

that LLMs exhibit varying performance when the underlying spatial structures differ (§3.1). We also observe
that presenting the global map upfront actually makes the task more challenging compared to providing local
navigational instructions only (§3.2). Moreover, we investigate the effect of the spatial patterns (e.g., random
order, row-major) by which global map is expressed on the performance of LLMs (§3.3). We also provide
evidence that LLMs spontaneously utilize object information as landmarks for constructing spatial maps
(§3.5), much like humans and animals. Finally, detailed error analyses (§4) confirm that in spatial structures
that LLMs perform well, their mistakes manifest the underlying spatial topology, as well as non-spatial
factors. These error distributions suggest that GPT-4, which often substantially outperforms GPT-3.5,
seems to implicitly grasp certain elements of spatial structure, but there is still room for improvement.

We believe gaining insights into the spatial comprehension abilities of LLMs is valuable in enhancing our
understanding of how these models acquire and grasp grounded concepts.

2 Spatial Understanding Task

How can we evaluate the text-only models’ understanding of spatial information? With human participants,
we could have them explore the environment and then ask them to draw a map. However, for text-in, text-out
models like LLMs, formalizing the task of spatial reasoning is difficult because these models lack the capability
to directly interact with the physical world or visually draw the entire map. However, some studies in human
cognition Garvert et al. (2017) have presented participants with sequential data that is sampled from an
underlying spatial structure. These studies suggest that humans implicitly acquire knowledge and learn
representations that mirror the spatial structure that is latent in the data. This motivates the hypothesis
that presenting sequential transitions might be enough for LLMs to achieve spatial understanding.

For example, if a model comprehends a square map’s structure, it should be able to answer the following
question: “You start at a spot where you find an apple. You move up and find a banana. Then you move
right and find an orange. Next, you move down and find a grape. Now, you move left. What do you find?”
Answering this question correctly demonstrates an understanding of loop closure, which is a fundamental
aspect of this spatial structure. That is, if we have a square grid and an initial location, we can allow the
model to take a random walk until it reaches a location it has already visited before. At each newly visited
location, we inform the model about the objects it perceives, and then we ask the model which object it
would have seen just before reaching the already visited location. By generating such questions synthetically,
we can systematically evaluate the spatial understanding of LLMs. For each question, we randomly select the
object names from the ImageNet-1k labels to fill every location of the spatial grid to create the underlying
map.
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Question: "You have been given a 2 by 2 square grid. Starting from a vertex, you will
move along the edges of the grid. Initially, you are positioned at the bottom left corner of
the grid, where you find a box turtle. You move right by one step, where you find a table
lamp. You move up by one step, where you find an American black bear. You move left
by one step, where you find a hand plane. You move down by one step. What will you
find?"
Answer: "box turtle"

Question: "You have been given a circular grid consisting of 4 connected dots. Starting
from a vertex, you will move along the edges of the circular grid. Initially, you are
positioned on the dot that's located at the top of the grid, where you find a palace. You
move around the ring by 1 step in a clockwise direction, where you find a gong. You
move around the ring by 2 steps in a clockwise direction, where you find a shopping
basket. You move around the ring by 2 steps in a clockwise direction. What will you
find?"
Answer: "gong"

Question: "You have been given a pointy-topped regular hexagonal tile map consisting
of 1 tile. Starting from a vertex, you will move along the edges of the tile. Initially, you
are positioned at the top corner of the map, where you find an ice pop. You move down-
right by one step, where you find a Boxer. You move down by one step, where you find a
poke bonnet. You move down-left by one step, where you find a combination lock. You
move up-left by one step, where you find a spotlight. You move up by one step, where
you find a gibbon. You move up-right by one step. What will you find?"
Answer: "ice pop"

(a) Square

(c) Hexagon

(b) Triangle

(d) Ring

Question: "You have been given an equilateral triangular tile map consisting of 2 rows,
where the first row has one tile and the second row has three tiles. Starting from a
vertex, you will move along the edges of these tiles. Initially, you are positioned at the
bottom left corner of the map, where you find a box turtle. You move right by one step,
where you find a hand plane. You move up-right by one step, where you find a
guacamole. You move down-right by one step, where you find a table lamp. You move
left by one step. What will you find?"
Answer: "hand plane"

Figure 2: Example question and its answer for square, triangle, hexagon and ring structure.

2.1 Models and evaluation metrics

We test GPT-3.5 (gpt-3.5-turbo-0301), GPT-4 (gpt-4-0314), Llama2-7B, Llama2-13B, Llama2-70B, and
CodeLlama-34B. All Llama models are Llama-Chat models and the CodeLlama model is the Instruct variant.
The context window sizes for these models are 4,096 tokens except for GPT-4, which has 8,192 tokens. We
focus on zero-shot experiments, where we used the following system prompt: “You are given a task to solve.
Make sure to output an answer after "Answer:" without any explanation.”

To ensure consistent evaluation, we utilize the following protocol: We first check if the generated text contains
the keyword “Answer:”. If present, we consider the subsequent text as the model’s prediction. In situations
where there are multiple ground-truth answers, we store the answers as a set using “,” as the separator. We
consider the prediction correct only when the generated set of answers matched the ground-truth set exactly.

3 Results

3.1 Do different spatial structures affect model performance?

In Section 2, we provide an example that utilizes a square grid to assess the understanding of spatial
structures in LLMs. In the example, we exploit the concept of loop closure within the square grid for this
purpose. Since loop closure also exists in other spatial structures like rings, hexagons, and triangles, we can
evaluate how the model’s performance on spatial understanding is influenced by different spatial structures.
As for our choice of spatial structures, we begin with squares because they are the most straightforward 2D
structure. We have also included triangles and hexagons to explore how well LLMs comprehend less common
2D structures.

To ensure a fair comparison across these structures, we generate synthetic text prompts similar to the square
grid scenario and keep the number of steps to be 8. We use a 3 by 3 square grid, size 2 hexagonal grid, size
3 triangular grid, and size 12 ring grid as the underlying maps. Example prompts are shown in Figure 2.

The results are shown in Figure 3. When comparing GPT-3.5-turbo and GPT-4, we find that GPT-3.5-turbo
performs poorly across all spatial structures, while GPT-4 shows higher variation in performance. GPT-4
excels on the Square structure, ranks second best on the Ring and Triangle structures, and performs the
worst on the Hexagon structure. Llama2-70B and CodeLlama-34B, while generally performing worse than
GPT-4, exhibit a similar pattern of performance to GPT-4. We omit Llama2-7B and 13B from our discussion
because they achieve zero (or very close to zero) accuracy across all structures. This indicates that tackling
zero-shot spatial reasoning tasks may necessitate larger models.

Of particular interest is LLM’s proficiency in handling square structures compared to other types. Is this
phenomenon explainable by low-level graph features such as the number of edges and vertices? To see this,
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we run a logistic regression analysis to examine what influences the binary prediction outcomes. Specifically,
using the square type as the reference level for graph types, we analyze the prediction outcomes via the
following model: Prediction correctness ∼ intercept + 1(graph type == hexagon) + 1(graph type ==
triangle) + 1(graph type == ring)+ number of edges + number of steps. We only pick the number of
edges as our low-level graph feature because the correlation between the number of edges and the number of
vertices is very high (correlation coefficient was 0.998). We collect 6,100 prediction results of GPT-4 varying
the structure type, the number of steps, and the number of edges (i.e. hexagon: 1400 samples, ring: 1500
samples, square: 1800 samples, and triangle: 1400 samples). The summarized results are presented in Table
1. We observe that the accuracy of predictions is not significantly influenced by the lower-level graph feature
(i.e. the number of edges). However, it does depend on higher-level graph structure. Furthermore, we note
that the accuracy is heavily influenced by the number of exploration steps (p value < 2e-16). This finding
aligns with our intuition, as longer navigation poses greater challenges in tracking objects in a spatial map.

The relative ease of the square grid in comparison to other grid types could be attributed to factors such
as the prevalence of tabular data and city grid navigation within the model’s training data. In addition,
coding problems related to maze exploration often involve navigating a two-dimensional square grid, while
triangular and hexagonal grids are less commonly encountered. Thus, it is conceivable that such exposure
during pre-training makes GPT-4 possess an enhanced understanding of 2D square grids. Analogously, for
humans, individuals who grow up in cities with a more grid-like structure may exhibit greater difficulty in
navigating through less organized environments, such as older European cities, and vice versa Coutrot et al.
(2022). Additionally, we perform an experiment using the rhombus grid, which was achieved by rotating the
square grid 90 degrees. Under the same experimental condition, we find that GPT-4 maintains an accuracy
of 0.66, which is slightly lower than the original square-grid accuracy of 0.71 but still significantly higher
than other structures. This outcome provides further confirmation that the specific grid structure with two
axes contributes to its strong performance.

Estimate Std. Error z value Pr(>|z|)
(Intercept) 3.448 0.142 24.273 <2e-16 (***)

type.hexagon -2.327 0.091 -25.595 <2e-16 (***)
type.triangle -1.820 0.082 -22.199 <2e-16 (***)

type.ring -2.117 0.103 -20.616 <2e-16 (***)
number of edges -0.002 0.002 -1.062 0.288
number of steps -0.345 0.018 -18.924 <2e-16 (***)

Table 1: Logistic regression results. We see that the number of edges (an example of lower-level features)
is not a significant predictor variable for prediction correctness (p value = 0.288). However, the higher-level
graph structure (e.g. square or hexagon) is a significant predictor of correctness (all p values < 2e-16).

3.2 Is building a local map more difficult than building a full map and retrieving a path?

In the previous section, LLMs were tasked with constructing a local map gradually as they received new
information, one step at a time, which we refer to as the “local” setting. Alternatively, we can provide LLMs
with the complete map from the start and instruct them to begin exploration from a randomly selected
initial location for a specific number of steps, which we refer to as the “global” setting. On one hand, local
exploration may be deemed easier as it requires retaining less information. On the other hand, presenting
the global map upfront could potentially aid in more accurate map navigation. To address this question,
we compare the local and global settings in our spatial understanding task. For this comparison, we use
Square and Ring structures since there are widely accepted methods of specifying global coordinates, making
it easier to specify paths from a randomly selected initial position. In particular, we provide the global map
information in the following manner: For the square structure, we list the object names row by row. As
for the ring structure, we list the object names starting from the top and proceed clockwise. We then
have the model follow a fixed number of navigation instructions, just like the local setting. An example
prompt is given in Appendix. The results in Figure 4 show that the global setting is slightly harder than
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Figure 3: We compare the accuracy of the models across the different spatial structures. The random
guessing accuracy is 1/8 since the predictions from random guessing are uniformly selected from the nodes
encountered by the models, which corresponds to the local path with 8 navigation steps. GPT-4 have higher
prediction accuracy than random guessing in square, ring and triangle structures, but worse in hexagon.
ChatGPT exhibits lower prediction accuracy than random guessing across all of these structures. Llama2-
70B and CodeLlama-34B shows a similar pattern to GPT-4.
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Figure 4: Performance is evaluated on GPT-4, Llama2-70B, and CodeLlama-34B. For both square and ring
structures, we observe that the prediction accuracy of GPT-4 using the local map is higher compared to the
global map. Llama2-70B and CodeLlama-34B show a similar pattern for Square, while the pattern is less
clear for Ring.

the local setting for both Square and Ring structures, except when the performance is already low for the
ring structure for Llama2 models, which shows a less clear pattern as such.

The results presented in Figure 4 show that, in general, the global setting is more challenging than the local
setting for both Square and Ring structures. However, this trend becomes less evident when considering the
already low performance of Llama2 models on the Ring structure, leading to a less clear pattern in this case.

3.3 The order of presenting the map impacts spatial understanding

In the previous section, our approach to providing complete map information upfront to the model has
involved a specific method. We describe the items in the map row by row, indicating their positions from
left to right. For example, in the first row, we have item A, item B, and item C. In the second row, we
have item D, item E, and item F from left to right, and so on. However, there exist multiple ways to convey
the same information. Here, we explore different approaches to feeding data into the model. In addition to
the aforementioned method, we examine two alternative techniques: random and snake order. The random
approach involves placing items in the map at random positions using the global coordinate system. On
the other hand, the snake order method follows a specific pattern. In the first row, items are fed from left
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to right as before. However, when transitioning to the second row, we introduce the instruction “you move
down by one step” to indicate the change in row. In the second row, items are then fed from right to left.
By investigating these alternative data feeding methods, we aim to understand their implications and assess
their impact on the model’s performance.

The results are shown in Table 2. Although the GPT-4’s accuracy degrades for Random and Snake, it is
noteworthy that Random is better than Snake. We note that we omit the results for Llama-2 models because
even Llama2-70B’s performance was already very low (e.g. row-by-row’s accuracy is 0.04 for Llama2-70B
whereas GPT-4 achieves 0.55.)

Row-by-row Random Snake Snake+Coord
GPT-4 Acc 0.55 0.485 0.4 0.56

Table 2: The order of presenting the map impacts spatial understanding accuracy. Snake+Coord refers to
the setting where we append the global coordinates of the location after each step.

What could potentially explain these phenomena? It is reasonable to speculate that different methods of
inputting data could influence how LLMs internally represent spatial relations. For instance, when utilizing
the row-by-row approach, the LLM can register these items in a key-value dictionary, where the row id serves
as the key and a list of objects represents the corresponding value. The ‘random’ approach also enables the
LLM to store a key-value dictionary where the key denotes the location address and the value denotes a
single item, which can be leveraged for navigation purposes later on. On the other hand, the ‘snake’ order
approach necessitates the LLM to simultaneously handle the storage of object item information and spatial
relational understanding. This added complexity potentially complicates the task.

To investigate whether or not such a key-value data structure plays a role, we perform an additional ex-
periment where we add the global coordinate information to the snake order approach. We see that this
approach indeed increases the accuracy from 0.4 to 0.56, corroborating our hypothesis.

3.4 Relational structure: Tree

In addition to spatial structures, relational structures can also be represented using connected graphs. In
this section, we examine a tree structure. Unlike spatial structures, the hierarchical structure of a tree is
more naturally presented in a global setting, where all objects are provided at the beginning, and relational
questions can be asked subsequently.

To ensure comparability with the square and ring structures, we set the number of nodes in each tree to
be 9. For comparison, we also included a 3 by 3 square grid and a 9-node ring in this experiment. The
exploration steps are set to 4 for all structures. For the tree structure, we utilize the same ImageNet object
labels, but focus on relational questions that involve 4 steps, such as “What is the cousin of A?”, “What
is the great-great-grandparent of A?”, and “What is/are the great-great-grandchild/children of A?”. An
illustrative example question and its corresponding answer can be found in Figure 5.

The results are depicted in Figure 6. We observe that for GPT-4, while the tree structure performs worse
than the square structure, it outperforms the ring structure. On the other hand, for GPT-3.5-turbo, the tree
structure exhibits better performance compared to the square structure. We observe that just like GPT-3.5-
turbo, Tree performs better than Square for all Llama-2 models. The only exception is GPT-4; this further
demonstrates that GPT-4’s exception ability to comprehend the square structure. We also note that Ring
is harder than Square for all Llama models and GPT-4. Further investigation into how relational structure,
spatial structure, and model size impact performance would be an intriguing topic for future research.

3.5 Grid size inference from sequences of navigational instructions

In the preceding sections, we examined the capability of LLMs to understand the spatial and relational
structure of a map. In this section, our focus shifts to investigating whether LLMs can infer the global
size of a map based solely on a sequence of local navigational actions. Specifically, we provide navigational
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Question: "You have been given a tree structure with 9 nodes. The root node is a
great white shark. The great white shark has 2 children: a garter snake and a Gila
monster. The garter snake has 2 children: a jigsaw puzzle and a moped. The jigsaw
puzzle has a child: a Tibetan Terrier. The Tibetan Terrier has no children. The moped
has a child: an umbrella. The umbrella has no children. The Gila monster has 2
children: a Christmas stocking and a horse-drawn vehicle. The Christmas stocking
has no children. The horse-drawn vehicle has no children. What is the cousin of the
moped? "
Answer: "Christmas stocking, horse-drawn vehicle"

Figure 5: Example prompt for tree structure.
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Figure 6: We evaluate the prediction accuracy of the models on a 9-node tree, a 3 by 3 square, and a 9-node
ring structure with 4 exploration steps in the global setting. Comparing the performance of GPT-4 and
random guessing, GPT-4 outperforms random guessing with higher prediction accuracy, with the order of
accuracy being square > tree > ring. GPT-3.5-turbo also performs better than random guessing on the
tree structure, but worse on the square and ring structures, with the order of accuracy being tree > ring >
square. Just like GPT-3.5-turbo, Tree performs better than Square for all Llama-2 models.

instructions that guide the exploration of all locations within a rectangle. As before, we also provide what
item the agent finds at each step. Then we ask LLMs about the height and width of the rectangle. This
task necessitates LLMs to maintain the entire path in order to accurately deduce the overall dimensions of
the rectangle.

Table 3 illustrates the accuracy comparison of GPT-4 for different size configurations of the same area (e.g.,
2 by 6, 3 by 4 for an area of 12). We prepare 100 samples for each area. We observe a general trend where
accuracy decreases as the length of the sides increases and as the area size of the rectangular grid increases.
We omit the results for GPT-3.5-turbo, Llama-2-70B and CodeLlama-34B because these models were not
able to infer the size of rectangle.

3x4 or 4x3 2x6 or 6x2 4x6 or 6x4 3x8 or 8x3 2x12 or 12x2
GPT-4 Acc 0.63 0.22 0.18 0.04 0.01

Table 3: Grid size inference performance of GPT-4.

Additionally, we evaluate the same setup but exclude object item information during navigation. In this
case, GPT-4 relies solely on directional information (e.g., “you go up by one step, then you go down by one
step, etc.”). To our surprise, we consistently find that the setting with directional information alone performs
worse than the setting that incorporates both directional and item information, as shown in Figure 7. This
might suggest that object items play a role in serving as anchors for improved spatial understanding.
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Figure 7: Using only directional information yields poorer performance compared to the approach that
combines both directional and object item information at each step.

4 Error analysis

In this section, we perform a detailed analysis of the errors produced by GPT-4, to assess whether it is
modelling the correct topology. In our error analysis, we focus on GPT-4 because of its relatively strong
performance, which reveals intriguing error patterns.

To study the extent to which LLM understands the topology of a given spatial structure, we examine
what types of mistakes it makes. In our spatial understanding task, when LLM makes a mistake, in the
overwhelming majority of cases, it provides the name of an object at a different location (rather than naming
an object that did not appear at all in the prompt). Therefore, we can measure the distance between the
correct location and the location of the predicted object with respect to the underlying topology. If the
LLM represents the spatial structure of the map, the distribution of these distances will tend to cluster at
small values, which we call spatial-topology bias. That is, if the LLM represents spatial structure, we should
expect more mistakes for objects topologically close to the correct location, and fewer mistakes for objects
farther away. A natural choice for measuring distances in grids is the shortest distance between two vertices
in the grid.

A B C

D E F

G H I

B

F

Figure 8: An example of two distance metrics in 3 × 3 square grid in the local setting. If the path in the
local setting starts at node A and follows through B, C, F, I, H, E, and finally ends at B, and if the LLM
predicts F instead of B, then the temporal distance between B and F is 4, while the spatial distance is 2.

LLMs may also show non-topological biases in their predictions, an instance of which is the temporal bias
– an inclination to predict objects that are observed in the textual vicinity of the ground truth item in the
given prompt. To investigate the presence of this bias, we measure the temporal distance as the number of
objects between the first occurrence of the ground truth in the prompt and the predicted item (including the
predicted item). An illustrative example of the temporal and spatial distances in the local setting is shown
in Figure 8.

In the following, we examine the error distributions of GPT-4 in square, triangular, and hexagonal grids.
For each experiment, we collect 1000 predictions from GPT-4, and analyze them along with their corre-
sponding prompts and ground-truth correct answers. Out of the 1000 prompts, we only consider the subset
of predictions in which the model was wrong. We compare GPT-4’s errors with the random distributions
of spatial and temporal distances with respect to a uniform baseline. To do this, we randomly pick one of
the prompts the model is tested with. Next, we record the location of the ground truth object based on the
prompt. Then, for the global setting prompts, we at random select a location from the entire grid; for the
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(a) Square (b) Hexagon (c) Triangle

Figure 9: The spatial and temporal distance (SD, TD, respectively) histograms for square, hexagonal, and
triangular grids under the local setting. Blue histograms show random baselines. Orange histograms show
the observed distribution of errors as the spatial (left) and temporal (right) distances between the ground
truth and GPT-4’s predicted locations. (a) In grids with square topology, GPT-4 makes more errors both
when SD is 1 and TD is 1, compared to the uniform baseline, meaning that both spatial and temporal biases
contribute to GPT-4’s errors. (b) In grids with hexagonal topology, we do not observe spatial nor temporal
bias. (c) The simultaneous lack of spatial bias and the presence of temporal bias indicate that GPT-4 was
not able to accurately construct the triangular grid.

local setting prompts, we at random select one of the visited nodes along the path. We then calculate both
the spatial or temporal distances between this randomly selected location and the ground truth location.
We repeat this procedure for 100,000 times to generate the error distribution for the uniform baselines.

4.1 Comparing error distributions of square, triangular, and hexagonal grids

In our analysis, we used a 3 by 3 square grid, a triangular grid with a size of 3, and a hexagonal grid with
a size of 2. We chose these grid configurations to ensure a fair comparison across different grid structures,
allowing for prompts conducting 8 navigation steps in each grid. The precise shape of the size-3 triangular
grid is shown in Appendix. The size-2 hexagonal grid is shown in Figure 1.

The results for the local setting are shown in Figure 9.

For the square grid, GPT-4 tends to make more errors at spatial distances of 1 relative to random baseline,
indicating a spatial-topology bias (Fig. 9a, left). However, temporal distance also shows a stronger peak
at the value of 1 (relative to the uniform baseline; Fig. 9a, right) indicating that having two items more
closely located in the prompt is also an effective predictor of GPT-4’s errors. In Appendix, we also plot the
conditional distribution of TD when SD=1 to further validate the temporal bias.

In the case of the hexagonal grid (Fig. 9b), we see a lack of spatial-topology bias, with the distribution of
distances peaking at 2 (instead of 1). We also do not see a temporal bias in GPT-4’s behavior, again with
a distribution peaked at the temporal distance of 2. This indicates the presence of some other source of
non-spatial bias besides the temporal bias. Closer inspection revealed that whenever GPT-4 makes an error
in hexagonal grids, these errors are often due to the model predicting the very first object on the path, which
often ends up having spatial and temporal distances of 2 from the ground truth correct answer.

For the triangular grid (Fig. 9c), the distribution of SD from GPT-4 and random guessing is almost the
same, suggesting that there is almost no spatial bias. However, there is a spike when TD = 1. We find
that among all the instances where TD equals 1, the proportion of predicting the starting position is 0.416.
Hence, it appears that the temporal bias accounts for more than half of the bias observed in the triangular
grid. For the starting position bias of the square grid, see Appendix.

In Figure 10, we present analyses for the global structure.1 When dealing with a square grid, we provide
GPT-4 with the complete map upfront by listing each object row by row. For instance, in prompts for the
square grid structure in the global setting, such as “In the first row, we have item A, B, and C. In the
second row, we have item D, E, and F, ...” the temporal distance between A and D would be 3. If GPT-4
represents the square grid as a one-dimensional array, we expect that the frequency of temporal distance
would decrease steadily. However, we observe spikes at 3 and 6 in the temporal distance, which correspond to

1We omit the ring structure because each movement can involve many steps around the ring (e.g. “move by 3 steps clockwise”),
which effectively introduces edges between all graph nodes, and thus renders analysis based on spatial distance less meaningful.
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Figure 10: The spatial and temporal error histograms for the 3 by 3 square grid under the global setting.
We see a spike when the temporal distance (TD) is 3 and 6, indicating an effect of spatial distance – these
two TD values correspond to the spatial distance of 1 and 2.

spatial distances of 1 and 2, respectively. This finding suggests that GPT-4 makes more errors when objects
are closer to the ground truth in terms of spatial structure, rather than temporal distance. It supports
the notion that GPT-4 actually models some aspect of the two-dimensional structure. Furthermore, we
investigate whether there are any discrepancies in error distributions when the distance is calculated using
either row-major order or column-major order. Figure 11 demonstrates that there is an almost symmetrical
distribution between rows and columns. This provides additional evidence that GPT-4 recovers the structure
of the two-dimensional array.
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Figure 11: The row-wise and column-wise error histograms for the 3 by 3 square grid with 8 exploration
steps under the global setting. We see that both row and column-wise histograms are almost identical, which
suggests GPT-4 does not have bias for row or column.

5 Comparison to human baseline

Finally, we have conducted human experiments to assess the average human baseline performance. These
experiments focused on local navigation tasks using the structures shown in Figure 3, which include a 3
by 3 square grid, a size 2 hexagonal grid, a size 3 triangular grid, and a size 12 ring grid. For each of
these structures, we randomly selected 20 prompts from the previously used dataset, resulting in a total
of 80 candidate prompts. Then, for each participant in the experiment, we randomly chose 10 prompts
from this pool of candidate prompts. Participants were asked to provide textual answers to these questions.
Additionally, we included 4 attention check questions. These questions were intentionally designed to be easy
so that we can assess whether participants were providing meaningful answers, and were used as an exclusion
criterion in our analysis. These attention check questions were drawn from the set of questions associated
with very simple structures, such as a 2 by 2 square grid, a size 1 hexagonal grid, a size 2 triangular grid,
and a size 5 ring grid. These attention check questions were distributed randomly throughout the survey.

We established a criterion to measure participants’ engagement in the experiment: if a participant made
more than one mistake in the attention check problems, we would exclude their response from the analysis.
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Specifically, each participant had 30 minutes to solve 14 problems, which consisted of 10 regular problems to
evaluate human performance and 4 attention check problems. The participants were not informed whether
the given problem was a regular task or an attention check.

In this experiment, we received completed responses from a total of 23 participants. Among them, 5 partici-
pants did not meet the attention check criteria mentioned earlier. Their responses were excluded, leaving us
with the responses of the remaining 18 participants for analysis. In total, we collected 180 question-answer
pairs, distributed as follows: 48 pairs for the 3 by 3 square grid, 41 for the size 12 ring grid, 48 for the
size 2 hexagon grid, and 43 for the size 3 triangle grid. We converted all the responses to lowercase and
removed all English articles (a, an, the) from both the human responses and the ground truth. A response
was considered “correct” only if it matched the ground truth exactly. The results can be found in Table 4.

Square Ring Hexagon Triangle Aggregated
Human 0.90 0.78 0.41 0.58 0.67
GPT-4 0.71 0.21 0.07 0.20 0.30

Table 4: Human baseline performance compared against GPT-4. The values of the GPT-4 accuracy are
taken from Figure 3.

The aggregated accuracy across all the structures is 0.67, and the accuracy for each structure is 0.90 for 3 by 3
square grid, 0.78 for size 12 ring grid, 0.41 for size 2 hexagon and 0.58 for size 3 triangle grid respectively. For
GPT-4, the accuracies for each structure are from Figure 3. Although human responses are not perfect, they
still outperform GPT-4 by a significant margin. It is also interesting to note that, like GPT-4, non-expert
humans struggle with non-square grid shapes.

6 Related Work

Some research suggests that language models have the ability to acquire implicit world models Abdou et al.
(2021); Patel & Pavlick (2022); Li et al. (2021). Spatial understanding is particularly intriguing because it
might seem counterintuitive that a language model, which lacks visual or sensorimotor input, can comprehend
spatial structures.

Patel & Pavlick (2022) provide evidence that GPT-3 is capable of grounding spatial and cardinal direction
terms in a text-based grid world. They present contextual examples of cardinal directions (e.g., north, east,
northeast) and evaluate whether the model can generalize to a different subset (e.g., south, west, southwest).
Our work expands upon these findings by assessing spatial understanding that necessitates the accurate
construction and retention of representations of spatial structure in more challenging tasks.

Previous studies have employed text-based navigation tasks to evaluate language models. Bubeck et al.
(2023) evaluate GPT-4 across various domains, including mathematics, coding, vision, medicine, law, and
psychology. In one task involving embodied interaction, they create a simple map and prompt GPT-4 to
explore it interactively using actions such as left, right, up, and down. A human provides feedback during the
exploration. They demonstrate that GPT-4 successfully tracks all the locations and visualizes them using
a generated program. However, their study only examines a single instance of a square-grid map and does
not thoroughly investigate the extent of GPT-4’s spatial understanding. Another similar task is present in
Whittington et al. (2020) but the goal is to test structural generalization. Srivastava et al. (2023) has a task
where the agent is required to determine whether it would return to its original starting position based on
a set of navigation instructions. However, this task only involves providing “yes/no” answers. In the NLP
community, more complex spatial reasoning tasks have been introduced, including those involving multi-hop
reasoning Shi et al. (2022) and tasks that involve understanding of textual descriptions for intricate visual
scenes Mirzaee et al. (2021). In contrast, our study investigates various spatial structures, such as rings,
trees, hexagons, and triangles, while also requiring the language model to remember and track object names.

A concurrent work Momennejad et al. (2023) also evaluates LLMs in terms of cognitive mapping and planning
abilities. While they examine a wide array of tasks, their graph structures are limited to trees, linear paths,
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and social graphs. In contrast, our work is centered on a systematic evaluation of basic spatial structures,
coupled with in-depth error analysis.

7 Conclusion

In this work, we investigated whether LLMs could build representations of spatial structure implicitly from
their sequential inputs. We found that LLMs are able to answer questions about spatial relationships, and
tend to make errors that reflect spatial proximity. However, the details of their performance depends on
the task and structure — square grids are easier than other structures, and local presentation is easier than
global. Overall, our results suggest that LLMs implicitly learn to represent aspects of spatial structure,
though their performance is far from perfect. These findings contribute to the growing literature on the
aspects of world knowledge that LLMs implicitly acquire from their language-only training.

Limitations

In our investigation into the spatial understanding of LLM, our focus lies on the zero-shot setting. We have
conducted a preliminary study to examine the impact of chain-of-thought style prompting, and we observe
an increase in performance for GPT-3.5. However, beyond the 3-shot setting, the performance improvement
reached a plateau. Details of these studies can be found in the Appendix, and we encourage future research
to explore the effects of additional variations of chain-of-thought prompting on LLM’s spatial understanding.
We note that the lack of complete detail about the training of GPT-4 makes understanding the origins of its
strong spatial performance somewhat challenging. Investigating how smaller models fine-tuned on spatial
tasks exhibit spatial understanding would be an intriguing subject for further study.

Broader Impact Statement

As large language models continue to advance and find applications in real-world scenarios, it becomes
increasingly crucial to assess the risks and unintended consequences associated with such LLM-based appli-
cations. Although our study on the spatial understanding of LLMs may not directly address the reduction of
harm and bias in these models, we believe it is important to comprehend their inner workings. We hope that
our work contributes to the ongoing effort of understanding and exploring the mechanisms at play within
LLMs.
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A Prompt examples

We provide additional examples of prompts we used in Figure 12 and 13.

B Temporal distance in the global setting

For instance, in prompts for the 3 by 3 square grid structure in the global setting, such as “In the first row,
we have item A, B, and C. In the second row, we have item D, E, and F, ...” the temporal distance between
A and D would be 3, while the spatial distance between A and D is 1.

C Starting position bias of the square grid

In the 3 by 3 square grid, the ground truth is only present at the 1st, 3rd, 5th, and 7th nodes of the path.
To qualify as a starting position bias when Temporal Distance (TD) equals 1, the ground truth would need
to occur at the 2nd node of the path. Consequently, there is no contribution from the starting position bias
when TD = 1.

D Chain-of-thought prompting

In the case of in-context learning experiments, we used the following system prompt: “You are given a
task to solve. Make sure to output a final answer after "Answer:".” We include in-context examples in the
user prompt in the following format: “Question:\n [question] \n Explanation:\n [explanation] \n Answer:\n
[answer].” An example prompt is given in Figure 15.
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Question: "You have been given an equilateral triangular tile map consisting of 3
rows, where the first row has one tile, the second row has three tiles, and so on,
so that the i th row has 2*i-1 tiles. Starting from a vertex, you will move along
the edges of these tiles. Initially, you are positioned at the top corner of the map,
where you find an ear. You move down-left by one step, where you find a
sundial. You move down-left by one step, where you find a flagpole. You move
down-right by one step, where you find a West Highland White Terrier. You
move right by one step, where you find a Sussex Spaniel. You move up-right by
one step, where you find a howler monkey. You move left by one step, where you
find a Basset Hound. You move up-right by one step, where you find an ice pop.
You move up-left by one step. What will you find?"
Answer: "ear"

Question: "You have been given a 3 by 3 square grid. Starting from a vertex, you
will move along the edges of the grid. Initially, you are positioned at the top right
corner of the grid, where you find a breastplate. You move down by one step,
where you find a hummingbird. You move down by one step, where you find an
eastern diamondback rattlesnake. You move left by one step, where you find a
basketball. You move up by one step, where you find a pulled rickshaw. You
move left by one step, where you find a Black and Tan Coonhound. You move up
by one step, where you find a breakwater. You move right by one step, where you
find a sea cucumber. You move right by one step. What will you find?"
Answer: "breastplate"

(a) 4 by 4 square grid with 8 exploration steps

Question: "You have been given an equilateral triangular tile map consisting of 3
rows, where the first row has one tile, the second row has three tiles, and so on, so
that the i th row has 2*i-1 tiles. Starting from a vertex, you will move along the
edges of these tiles. Initially, you are positioned at the bottom right corner of the
map, where you find a measuring cup. You move left by one step, where you find
a binoculars. You move left by one step, where you find a rotary dial telephone.
You move left by one step, where you find a space heater. You move up-right by
one step, where you find a bolo tie. You move right by one step, where you find an
African bush elephant. You move up-right by one step, where you find a ladle.
You move left by one step, where you find an English Setter. You move down-left
by one step. What will you find?"
Answer: "bolo tie"

Question: "You have been given a 3 by 3 square grid. Starting from a vertex, you
will move along the edges of the grid. Initially, you are positioned at the top left
corner of the grid, where you find a cock. You move down by one step, where you
find a geyser. You move right by one step, where you find a jellyfish. You move
up by one step, where you find an impala. You move right by one step, where you
find a box turtle. You move down by one step, where you find an espresso
machine. You move down by one step, where you find a bib. You move left by one
step, where you find a megalith. You move up by one step. What will you find?"
 Answer: "jellyfish"

(b) Size-3 triangular grid with 8 exploration steps

Question: "You have been given a pointy-topped regular hexagonal tile map
consisting of 2 rows, where the first row has one tile and the second row has two
tiles. Starting from a vertex, you will move along the edges of these tiles.
Initially, you are positioned at the bottom left corner of the map, where you find a
drilling rig. You move up by one step, where you find a carousel. You move up-
right by one step, where you find a loupe. You move up by one step, where you
find a gown. You move up-right by one step, where you find a printer. You move
down-right by one step, where you find a black-footed ferret. You move down by
one step, where you find a station wagon. You move down-left by one step,
where you find a bath towel. You move up-left by one step. What will you find?"
Answer: "loupe"

Question: "You have been given a pointy-topped regular hexagonal tile map
consisting of 2 rows, where the first row has one tile and the second row has two
tiles. Starting from a vertex, you will move along the edges of these tiles. Initially,
you are positioned at the top corner of the map, where you find a bucket. You
move down-left by one step, where you find a gown. You move down by one step,
where you find a racket. You move down-right by one step, where you find an
amphibious vehicle. You move down by one step, where you find a CD player.
You move down-left by one step, where you find a T-shirt. You move up-left by
one step, where you find a library. You move up by one step, where you find a
moped. You move up-right by one step. What will you find?"
Answer: "racket"

(c) Size-2 hexagonal grid with 8 exploration steps

Question: "You have been given a circular grid consisting of 12 connected dots.
Starting from a vertex, you will move along the edges of the circular grid.
Initially, you are positioned on the dot that's located at the top of the grid, where
you find a milk can. You move around the ring by 4 steps in a counter-clockwise
direction, where you find a mushroom. You move around the ring by 9 steps in a
counter-clockwise direction, where you find a spotlight. You move around the
ring by 1 step in a counter-clockwise direction, where you find a shopping
basket. You move around the ring by 5 steps in a counter-clockwise direction,
where you find a safety pin. You move around the ring by 8 steps in a counter-
clockwise direction, where you find a poke bonnet. You move around the ring by
10 steps in a clockwise direction, where you find a Standard Schnauzer. You
move around the ring by 6 steps in a counter-clockwise direction, where you find
a shovel. You move around the ring by 4 steps in a clockwise direction. What will
you find?"
Answer: "safety pin"

Question: "You have been given a circular grid consisting of 12 connected dots.
Starting from a vertex, you will move along the edges of the circular grid. Initially,
you are positioned on the dot that's located at the top of the grid, where you find a
giant panda. You move around the ring by 9 steps in a clockwise direction, where
you find a pickup truck. You move around the ring by 6 steps in a counter-
clockwise direction, where you find a car wheel. You move around the ring by 5
steps in a clockwise direction, where you find a vulture. You move around the ring
by 3 steps in a clockwise direction, where you find a quill. You move around the
ring by 5 steps in a counter-clockwise direction, where you find a fountain pen.
You move around the ring by 11 steps in a counter-clockwise direction, where you
find a snoek. You move around the ring by 6 steps in a counter-clockwise
direction, where you find a military uniform. You move around the ring by 7 steps
in a clockwise direction. What will you find?"
Answer: "vulture"

(d) 12-node ring with 8 exploration steps

Figure 12: Example prompts and answers for the local setting.
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Question: "You have been given a 3 by 3 square grid. In the 1st row, from left to
right, we have a wok, a sleeping bag, and a balance beam. In the 2nd row, from left
to right, we have a restaurant, a half-track, and a radio telescope. In the 3rd row,
from left to right, we have a marimba, a Scottish Terrier, and a military uniform. You
start at the position where the half-track is located, then you go left by one step, then
you go up by one step, then you go right by one step, then you go right by one step,
then you go down by one step, then you go down by one step, then you go left by
one step, and then you go up by one step. What will you find?"
Answer: "half-track."

Figure 13: An example prompt for the global setting.

size-3 triangular grid
Figure 14: Size-3 triangular grid.
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Question: "You are at the top left corner of a 2 by 2 grid, where you find
box turtle. You move right by one step, where you find table lamp. You
move down by one step, where you find American black bear. You move
left by one step, where you find hand plane. You move up by one step.
What do you find?"
Answer: "box turtle",
CoT: "We can describe our movements in the 2 by 2 grid starting from the
the top left corner as follows:\n- Move right from (1,1) to (2,1)\n- Move
down from (2,1) to (2,2)\n- Move left from (2,2) to (1,2)\n- Move up from
(1,2) to (1,1)\nAs a result, we reach the coordinate (1,1) where we find the
box turtle. Therefore, the answer is box turtle."

Figure 15: An example of Chain-of-thought style prompting for the 2 by 2 square grid.
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Figure 16: When chain-of-thought style prompting is employed, the accuracy of GPT-3.5 shows improvement
as we increase the number of examples provided in the prompt. However, it reaches a plateau when the
number of examples ranges between 3 and 5. The setting here is Ring of size 3, the number of exploration
steps is 3.
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Figure 17: The accuracy for GPT-3.5 vs. the size of square structures in the global setting with exploration
steps being 4. Although 3-shot CoT improves over 1-shot CoT, the performance plateaus, as we increase the
size of the square structure.

(a) Square (b) Hexagon (c) Triangle

Figure 18: The temporal distance histogram conditioned on spatial distance (SD) = 1 for the square, SD
= 2 for the hexagonal, and SD = 1 for the triangular grid under the local setting. These spatial distance
conditions are selected because of its maximum frequency in Fig 9.
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