
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

PROPAGATION ALONE IS ENOUGH FOR GRAPH CON-
TRASTIVE LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Graph contrastive learning has recently gained substantial attention, leading to
the development of various methodologies. In this work, we reveal that a simple
training-free propagation method PROP achieves competitive results over dedicat-
edly designed GCL methods across a diverse set of node classification benchmarks.
We elucidate the underlying rationale for PROP’s effectiveness by drawing con-
nections between the propagation operator and established unsupervised learning
algorithms. To investigate the reasons for the suboptimal performance of GCL, we
decouple the propagation and transformation phases of graph neural networks. Our
findings indicate that existing GCL methods inadequately learns effective transfor-
mation weights while exhibiting potential for solid propagation learning. In light of
these insights, we enhance PROP with learnable propagation, introducing a novel
GCL method termed PROPGCL. The effectiveness of PROPGCL is demonstrated
through comprehensive evaluations on node classification tasks.

1 INTRODUCTION

Graph contrastive learning (GCL) has emerged as a promising paradigm for learning graph represen-
tations in the unsupervised manner. By leveraging the inherent structural information in graphs, GCL
has achieved state-of-the-art performance on graph learning tasks (Velickovic et al., 2019; Zhang &
Chen, 2018; You et al., 2020). However, the increasing complexity of these methods, often involving
intricate transformation layers, augmentation strategies, and large-scale parameter tuning, has raised
questions about the necessity of such complexity for effective learning.

In this work, we challenge the conventional wisdom that highly parameterized models are essential
for achieving strong performance in GCL. Instead, we explore a simple yet powerful alternative:
uniform propagation, abbreviated as PROP, which involves no trainable layers. Remarkably, PROP
demonstrates competitive performance on various node classification benchmarks, often matching or
surpassing more sophisticated GCLs. This raises an important question:

How can the simple approach perform so well compared to complex GCL methods?

To address this, we provide a theoretical analysis of PROP, positioning it as a non-parametric method
aligned with traditional unsupervised learning algorithms through iterative optimization. Additionally,
we demonstrate that propagation inherently performs contrastive learning by aligning neighboring
node representations, which elucidates the core strengths of PROP in enhancing feature clustering.
This analysis not only demystifies the success of PROP but also highlights the potential of simpler
models in graph self-supervised learning.

On the other hand, we seek to explore why GCL occasionally exhibits suboptimal performance. By
adopting a decoupling perspective, we isolate and independently analyze the transformation and
propagation phases within the GCL encoder. Our extensive analysis reveals a significant limitation in
the transformation phase: existing GCL methods often struggle to learn meaningful transformation
weights, which perform no better than random counterparts. However, the propagation phase tells a
different story. We demonstrate that GCL can consistently learn informative propagation coefficients,
effectively capturing structural information. This highlights the potential for developing more efficient
GCL methods by prioritizing propagation over transformation.

Building on these insights, we propose a novel method, PROPGCL, which leverages the strengths of
PROP while addressing its limitations of uniform propagation. Specifically, PROPGCL enhances

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

PROP by learning propagation coefficients through GCL. To validate the effectiveness of PROPGCL,
we conduct experiments across a wide range of node classification benchmarks, including both ho-
mophilic and heterophilic datasets. Our results demonstrate that PROPGCL consistently outperforms
existing GCL methods, and requires far fewer computational resources.

This work makes several key contributions to the field of graph contrastive learning:

• We establish PROP, a training-free method, as a strong baseline in graph self-supervised
learning on node classification. We provide a theoretical framework that connects PROP to
classical unsupervised learning algorithms, offering a deeper understanding of effectiveness.

• From a decoupling perspective, we reveal that existing GCL methods struggle to learn effec-
tive transformation weights while excelling at learning propagation coefficients, suggesting
opportunities for efficient GCL methods by prioritizing propagation over transformation.

• We propose PROPGCL, a simple but effective method that enhances PROP by learning
propagation coefficients through GCL. We rigorously evaluate PROPGCL across diverse
node classification benchmarks, demonstrating its superiority over current GCL methods in
terms of both accuracy and efficiency, particularly on heterophilic datasets.

2 RELATED WORKS

GCL Designing Principles. Popular GCL design approaches predominantly focus on three aspects:
augmentation generation, view selection, and contrastive objectives. Augmentation strategies have
been explored to enhance representation learning, such as topology-based, label-invariant, and spectral
augmentations (Zhu et al., 2021b; Li et al., 2022b; Trivedi et al., 2022; Liu et al., 2022). For view
selection, Guo et al. (2023b) question the necessity of positive pairs, while others focus on hard
negative mining (Robinson et al., 2021; Yang et al., 2023; Niu et al., 2024). Meanwhile, contrastive
objectives are often grounded in the mutual information maximization principle (Velickovic et al.,
2019) or the information bottleneck principle (Xu et al., 2021). However, a critical aspect of GCL,
the encoder design, has been largely overlooked, with most approaches defaulting to GCNs without
thorough evaluation. In this work, we challenge this convention by decoupling the transformation
and propagation phases, demonstrating that propagation alone is sufficient for effective GCL.

Simplifying GCL Architectures. Recent efforts in simplifying GCL have introduced various
strategies aimed at reducing the complexity of existing methods. Some approaches remove the
traditional augmentation process by employing K-means clustering, adding noise to the embedding
space, or introducing invariant-discriminative losses (Yu et al., 2022; Lee et al., 2022; Li et al., 2023a).
Zheng et al. (2022) simplify similarity computations by directly discriminating between two groups of
summarized node instances, rather than comparing all nodes. Additionally, Li et al. (2023b) observe
lower layers in deep networks suffer from degradation and propose an efficient blockwise training
strategy. Other works explore using simpler models like MLPs or linear layers as the backbone for
GCL (Liu et al., 2023; Salha et al., 2019). However, these methods continue to rely on transformation
layers that introduce additional parameters. In contrast, our method eliminates transformation layers
entirely, relying solely on a minimal-parameter propagation layer. This design reduces complexity
while maintaining plug-and-play adaptability across various GCL frameworks.

3 BACKGROUND

3.1 GRAPH CONTRASTIVE LEARNING PIPELINES

GCL pipelines often include two stages, pretraining and evaluation. In the pretraining stage, aug-
mented views are generated through learnable or artificial approaches and then embedded into
representations via an encoder. GCL learns the encoder weights by maximizing the representation
consistency between different views. The purpose of pre-training is to learn high-quality node or
graph-level representations without relying on labeled data. In the evaluation stage, linear probing
is commonly adopted, where a simple linear classifier is trained in a supervised manner to map the
pretrained representations to the downstream label space. This enables a fair comparison of the
quality of representations learned by different GCL methods.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

3.2 GRAPH CONVOLUTIONAL NEURAL NETWORKS

Graph convolutional neural Networks (GCNNs) are neural networks based on graph convolution.
One of the foundational works is GCN (Kipf & Welling, 2017) which propagates information from
local neighborhoods and then transforms the aggregated representation in each layer by H(l+1) =
σ(ÃH(l)W(l)), where H(0) = X denotes node features, Ã is the normalized adjacency matrix,
W(l) is transformation weights in the l-th layer, and σ is the activation function.

Decoupled GNNs. In GCN, propagating information and transforming representation are inherently
intertwined in each layer. However, this tight coupling of operations can lead to limitations including
oversmoothing and scalability issues (Wu et al., 2019; Liu et al., 2020; Dong et al., 2021). Therefore,
simpler yet effective models are proposed by decoupling the two operations (Wu et al., 2019; Gasteiger
et al., 2019a; He et al., 2020). For instance, SGC (Wu et al., 2019) composes two decoupled stages
of 1) propagation which uniformly aggregates information from K-hops neighboring nodes by
H′ = AKX, and 2) transformation which transforms features by H = σ(H′W).

Polynomial GNNs. Despite the simplicity of SGC and its follow-ups, they are proven to perform
as a low-pass filter (Balcilar et al., 2021; Nt & Maehara, 2019; Zhu et al., 2021a) and show limited
expressiveness for solving various graph structures. To solve this, polynomial GNNs replace the
uniform propagation by learnable combinations of polynomial basis functions to approximate arbitrary
spectral filters (Chien et al., 2021; He et al., 2021; 2022). Similarly, polynomial GNNs can be
expressed in a unified propagation and transformation framework,

H1 =

K−1∑
k=0

θkgk(L)X, (Propagation)

H = σ(H1W), (Transformation)

where θ ∈ RK is learnable propagation coefficients, gk(L) represents the polynomial basis functions
applied to the graph Laplacian matrix L, W is learnable transformation weights. Notably, the
flexibility of learning spectral filters helps polynomial GNNs capture intricate structures in heterophily
graphs where connected nodes tend to have different labels (He et al., 2021; 2022; Chien et al., 2021).

4 UNIFORM PROPAGATION IS A STRONG BASELINE FOR UNSUPERVISED
LEARNING

In this section, we demonstrate that even without trainable transformation networks, the uniform prop-
agation is in itself a strong baseline for graph self-supervised learning (GSSL) on node classification.
We reveal the rationale by connecting propagation to well-known unsupervised learning algorithms
and benchmarking its performance on a wide range of homophilic and heterophilic graphs.

4.1 PROPAGATION: A NON-PARAMETRIC LEARNING APPROACH ON GRAPH

Propagation as nonparametric unsupervised learning. It is widely acknowledged that propagation
alone can provide better clustering of input features such that they are more linearly separable for
node classification tasks (Kipf & Welling, 2017; Wu et al., 2019). By aggregating features from
neighboring nodes, cascaded propagation operators perform iterative updates of node features,

H(k+1) = ÂH(k), (1)

where H(0) = X is node features, Â = D− 1
2AD− 1

2 is normalized adjacency matrix, and k indexes
the propagation step. The following theorem shows that with an appropriate learning step, the
propagation process realizes the gradient descent of the Dirichlet energy, which measures the feature
distance between neighboring nodes (Zhu et al., 2021a).
Theorem 4.1. For a learning step size of α = 0.5, the propagation procedure of Equation 1 optimizes
the following Dirichlet energy objective and converges to a state where the energy L(H(K)) → 0 as
K → +∞ for non-bipartite graphs.

L(H) = H⊤L̂H =
∑
i,j

Âij∥Hi −Hj∥2, (2)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

In this way, propagation alone can be regarded as a non-parametric approach to unsupervised learning
based on iterative optimization, similar to k-means and compressed sensing (Shehu et al., 2020).

Propagation as graph contrastive learning. In fact, the propagation operator can also be understood
as a special GCL method, where the positive samples are randomly drawn from neighboring nodes.
Define the joint distribution of positive pairs as p(xi, xj) = Aij/

∑
i,j Aij , where Aij denotes the

normalized edge weight in the adjacency matrix. The alignment loss between positive pairs becomes,

Lalign(f) = −Exi,xj∼p(xi,xj)[f(xi)
⊤f(xj)]. (3)

Intuitively, this alignment task will bring the representation of neighboring nodes together. In fact, as
shown in the following theorem, propagation minimizes this alignment loss at its optimum, indicating
that as an architecture component, the propagation can perform contrastive learning implicitly.

Theorem 4.2. Let fk(xi) = H
(k)
i ,∀ i ∈ [N] be unit vectors, then limk→∞ Lalign(fk) = −1.

The proofs of Theorem 4.1 and Theorem 4.2 are shown in Appendix P.

4.2 BENCHMARK PROPAGATION AMONG UNSUPERVISED NODE CLASSIFICATION BASELINES

We compare the uniform propagation operation (PROP) with representative GSSL methods in a
unified setting on homophily and heterophily benchmarks. Experiments show that PROP is highly
competitive among GSSL baselines. Detailed experimental details are shown in Appendix O.

Method. The connections above reveal that iterative propagation can be understood as a special
non-parametric unsupervised learning algorithm. We denote this specific method as PROP, which
only aggregates features within K-hop neighbors without any trainable weights, i.e.,

HPROP = ÃKX, (4)

where Ã is the same propagation matrix used in GCN, i.e., Ã = D′− 1
2A′D′− 1

2 with A′ = A+ I.

Datasets. For homophily benchmarks, we choose popular citation network datasets Cora, CiteSeer,
and PubMed (Sen et al., 2008; Namata et al., 2012), Amazon co-purchase datasets Photo, Computers
(Shchur et al., 2018). For heterophily benchmarks, we include Wikipedia datasets Squirrel, Chameleon
(Rozemberczki et al., 2021) and WebKB datasets Texas, Wisconsin, and Cornell (Pei et al., 2020).

Baselines. We consider two categories of representative GSSL methods as baselines: 1) traditional
graph embeddings DeepWalk (Perozzi et al., 2014) and Node2Vec (Grover & Leskovec, 2016), 2)
deep learning methods including graph autoencoders GAE (Kipf & Welling, 2016), VGAE (Kipf &
Welling, 2016), and contrastive learning methods GRACE (Zhu et al., 2020b), DGI (Velickovic et al.,
2019), GCA (Zhu et al., 2021c), MVGRL (Hassani & Khasahmadi, 2020), ProGCL (Xia et al., 2022),
CCA-SSG (Zhang et al., 2021), BGRL (Thakoor et al., 2022). Given the superiority of polynomial
GNNs, we also compare replacing the vanilla GCN encoder in GCLs with polynomial GNNs.

Settings. Following Zhu et al. (2020b); Hassani & Khasahmadi (2020), we use the linear evaluation
protocol, where the model is trained unsupervised and the learned representations are fed into a linear
logistic regression classifier. We follow Chien et al. (2021); Chen et al. (2024) to randomly split the
nodes into 60%, 20%, and 20%. We also conduct fixed-splitting experiments in Appendix E.

Results. We show the experimental results in Table 1. Even without computationally expensive
training, PROP maintains a superior performance over competing methods. For homophily
benchmarks, PROP achieves comparable performances with other GSSL methods. For heterophilic
benchmarks, PROP exceeds other methods by a large margin, including GCLs with polynomial
GNNs. For example, PROP achieves 58.5% on Squirrel while the runner-up only has 49.5% accuracy.
Notably, GSSL baselines require time-intensive training and extensive hyperparameter tuning, while
training-free PROP operates without backpropagation and has only one hyperparameter, the
propagation step K. This efficiency highlights the strength of PROP. In Appendix G, we further
present the accuracy trends of PROP across different propagation steps.

5 DISSECTING THE LIMITATIONS OF GNNS IN GCL

The preceding experiments reveal that existing GCL methods perform worse than the simple PROP. In
this section, we seek to understand the rationale behind this. For this aim, we analyze the decoupling

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Table 1: Test accuracy (%) of PROP and other graph self-supervised methods on node classification
benchmarks. Each experiment is repeated ten times with mean and standard derivation of accuracy
score. Red indicates the best method, while blue represents the second-best choice.

Training Encoder Homophily Heterophily

Cora CiteSeer PubMed Computers Photo Mean Squirrel Chameleon Texas Wisconsin Cornell Mean

Supervised GCN 87.5 ± 1.0 80.2 ± 0.6 87.0 ± 0.3 88.4 ± 0.3 93.5 ± 0.4 87.3 47.6 ± 0.8 64.1 ± 1.6 76.4 ± 4.1 62.6 ± 2.8 64.4 ± 4.1 63.0

ChebNetII 87.2 ± 0.8 79.9 ± 0.8 88.5 ± 0.1 90.1 ± 0.3 94.9 ± 0.3 88.1 56.7 ± 1.3 72.3 ± 1.5 92.6 ± 1.8 89.3 ± 3.6 90.5 ± 1.6 80.3

Unsupervised Graph Embedding
DeepWalk Word2Vec 80.6 ± 0.8 63.1 ± 1.0 81.9 ± 0.2 87.3 ± 0.4 91.5 ± 0.5 80.9 43.3 ± 0.7 60.8 ± 1.3 53.4 ± 4.8 43.6 ± 4.1 44.6 ± 3.1 49.2

Node2Vec Word2Vec 80.2 ± 1.2 68.1 ± 0.9 80.7 ± 0.3 85.5 ± 0.4 90.3 ± 0.5 81.0 39.7 ± 1.0 59.2 ± 1.1 56.2 ± 4.6 43.6 ± 2.8 45.6 ± 2.8 48.9

GSSL with Vanilla GNNs
GRACE GCN 86.9 ± 1.0 75.6 ± 0.7 85.3 ± 0.2 82.3 ± 0.2 90.1 ± 0.3 84.0 43.8 ± 1.0 62.3 ± 0.9 73.6 ± 4.3 67.0 ± 1.8 65.6 ± 9.0 62.5

DGI GCN 85.8 ± 1.0 78.6 ± 0.7 82.3 ± 0.3 79.6 ± 0.4 80.6 ± 1.2 81.4 37.1 ± 0.8 52.4 ± 1.3 82.6 ± 2.3 72.1 ± 2.4 80.3 ± 2.0 64.9

GAE GCN 84.9 ± 1.3 75.7 ± 0.8 84.7 ± 0.3 76.3 ± 0.5 90.5 ± 0.3 82.4 36.2 ± 0.9 56.8 ± 1.6 60.0 ± 4.3 56.9 ± 4.9 57.0 ± 6.7 53.4

VGAE GCN 85.1 ± 1.0 75.6 ± 0.7 84.6 ± 0.3 76.4 ± 0.5 88.3 ± 0.6 82.0 43.4 ± 0.6 61.4 ± 1.0 73.1 ± 3.4 60.8 ± 4.5 65.0 ± 7.4 60.8

MVGRL GCN 84.0 ± 1.0 74.5 ± 0.8 83.6 ± 0.4 83.5 ± 0.5 89.2 ± 0.4 83.0 31.3 ± 0.6 57.9 ± 1.6 77.7 ± 2.0 65.8 ± 3.5 67.5 ± 7.9 60.0

CCA-SSG GCN 86.7 ± 0.9 79.7 ± 0.6 84.8 ± 0.4 82.8 ± 0.3 91.2 ± 0.4 85.0 40.6 ± 0.7 57.8 ± 1.0 79.3 ± 3.1 71.1 ± 1.4 72.6 ± 4.9 64.3

BGRL GCN 85.1 ± 0.7 76.5 ± 0.9 84.0 ± 0.2 82.8 ± 0.4 86.1 ± 0.4 82.9 36.8 ± 0.7 55.5 ± 1.8 79.7 ± 3.6 67.5 ± 3.9 71.0 ± 10.3 62.1

GCA GCN 84.7 ± 1.0 76.5 ± 0.8 85.0 ± 0.2 79.3 ± 0.2 89.5 ± 0.3 83.0 41.0 ± 0.9 59.4 ± 1.1 78.0 ± 2.6 74.0 ± 2.1 66.9 ± 7.1 63.8

ProGCL GCN 84.6 ± 1.0 78.0 ± 0.5 86.9 ± 0.2 91.2 ± 0.5 84.3 ± 0.4 85.0 49.5 ± 0.6 67.5 ± 1.1 77.9 ± 3.8 71.4 ± 2.5 66.6 ± 11.3 66.6

GSSL with Polynomial GNNs

GRACE

ChebNetII 83.4 ± 0.9 74.8 ± 0.6 84.9 ± 0.3 84.1 ± 0.4 89.2 ± 0.5 83.3 37.9 ± 0.8 55.7 ± 1.0 77.9 ± 2.8 86.4 ± 3.6 75.7 ± 3.6 66.7

BernNet 82.8 ± 1.1 75.4 ± 0.9 84.2 ± 0.2 85.8 ± 0.4 89.7 ± 0.4 83.6 40.6 ± 0.7 54.7 ± 1.3 75.4 ± 3.6 88.3 ± 3.1 74.2 ± 4.1 66.7

GPRGNN 82.4 ± 1.0 75.4 ± 1.0 84.6 ± 0.3 81.0 ± 0.7 90.1 ± 0.5 82.7 38.2 ± 0.7 53.8 ± 1.4 78.7 ± 4.4 71.3 ± 3.9 77.7 ± 5.7 63.9

DGI

ChebNetII 83.4 ± 0.9 71.3 ± 1.2 81.9 ± 0.4 79.6 ± 0.3 78.7 ± 0.7 79.0 34.3 ± 0.6 51.0 ± 1.0 80.8 ± 2.1 81.8 ± 3.0 80.8 ± 1.6 65.7

BernNet 81.5 ± 1.0 73.4 ± 0.5 82.8 ± 0.2 79.2 ± 0.6 78.3 ± 0.5 79.1 32.4 ± 0.9 47.4 ± 1.8 82.8 ± 2.1 78.3 ± 2.3 83.6 ± 2.6 64.9

GPRGNN 82.4 ± 1.4 74.7 ± 1.0 80.9 ± 0.2 77.8 ± 0.6 77.8 ± 0.6 78.1 32.8 ± 0.6 51.0 ± 1.4 80.0 ± 2.0 70.0 ± 3.8 78.9 ± 3.8 62.5

Training-free Method
\ PROP 85.5 ± 0.8 78.9 ± 0.6 82.9 ± 0.5 87.5 ± 0.5 93.0 ± 0.3 85.6 58.5 ± 1.0 68.8 ± 1.4 86.2 ± 3.1 89.0 ± 3.3 86.2 ± 3.1 77.8

of the propagation and transformation phases, a widely adopted perspective in GNNs designing
(Gasteiger et al., 2019a;b; Li et al., 2022a) and scalability considerations (Yu et al., 2024; Liao et al.,
2024). Through this analytical framework, we aim to identify which phase is inadequately learned
within the context of GCL.

5.1 FEATURE TRANSFORMATION IS INEFFECTIVE IN GCL

To determine whether GCL effectively learns transformation weights, we consider a decoupled
encoder, i.e., HPROP = ÂKX followed by two transformation layers H = σ(HPROPW1)W2

where W1 and W2 are the transformation weights. The unweighted propagation enables only
focusing on the transformation weights.

The core idea is comparing the transformation weights learned in GCL with random matrices. In
practice, we first train the transformation weights through GCL methods. Then we replace the
learned transformation weights with a random matrix whose element is independently sampled from a
Gaussian distribution N (µ, σ), where µ is the mean and σ is the standard derivation. Representations
generated by the randomized model are then fed into the downstream task for evaluation.

As shown in Table 2, the transformation weights learned by GCL are no better than random.
The model with random weights W1 and W2 attains a performance of 71.42%, remarkably close
to the 71.76% reached by the transformation weights learned through GCL. Notably, while random
projection (Bingham & Mannila, 2001) is well-established in the literature and proven effective in
various works (Bauw et al., 2021; Li et al., 2006; Freund et al., 2007), GCL should aim to learn
weights tailored on data, rather than relying on a random matrix. Therefore, the results indicate that
GCL fails to learn informative transformation weights as expected. We hypothesize the failure stems
from the unsupervised nature of the task, which leads to inefficient optimization in the absence of
sufficient guidance.

Empirically, we compare the difference between the transformation weights learned by supervised
learning (SL) and GCL. Figure 1(a) and Figure 1(b) illustrate the heatmaps and distributions of the
transformation weights learned in SL and GCL. The SL weights have a substantial variance across
different neuron positions as revealed in the heatmap, and the distribution exhibits a leptokurtic-like

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

shape 1. However, the GCL weights exhibit more uniform smoothing and closely resemble a normal
distribution, aligning with the randomization experiments discussed earlier. These observations
suggest that specific neurons in SL play pivotal roles in distinguishing features, whereas the GCL
learning process appears overly generalized, diminishing the richness of feature representation.

Table 2: Test accuracy (%) of node classification benchmarks, comparing the transformation weights
(W1 and/or W2) learned through GCL with random weights. We present the GRACE method for
space limit and results of other GCL methods are shown in Appendix D. Red indicates the best
method, while underlined represents the second-best choice.

Training Cora CiteSeer PubMed Squirrel Chameleon Texas Wisconsin Cornell Mean

GCL 83.32 ± 1.00 73.02 ± 0.78 82.63 ± 0.41 36.03 ± 0.66 59.04 ± 1.69 84.59 ± 3.11 74.75 ± 3.00 80.66 ± 1.80 71.76

Randomize W1 79.75 ± 0.99 68.64 ± 0.86 82.65 ± 0.39 34.77 ± 0.67 61.38 ± 1.29 85.74 ± 3.28 76.25 ± 3.38 80.49 ± 1.97 71.21

Randomize W2 82.38 ± 1.08 70.46 ± 0.97 82.70 ± 0.33 36.70 ± 0.70 59.39 ± 1.16 85.74 ± 2.95 73.13 ± 2.25 80.33 ± 1.80 71.35

Randomize both 81.31 ± 0.85 68.64 ± 1.06 82.74 ± 0.27 37.08 ± 1.17 61.12 ± 0.99 85.90 ± 1.97 74.25 ± 1.63 80.33 ± 1.81 71.42

Input Neurons

Ou
tp

ut
 N

eu
ro

ns

SL Heatmap

Input Neurons

Ou
tp

ut
 N

eu
ro

ns

CL Heatmap

0.4

0.2

0.0

0.2

0.4

1.0

0.5

0.0

0.5

1.0

(a) Heatmap of transformation weights

1 0 1 2 3
Transformation Weight Value

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Fr
eq

ue
nc

y

SL
CL

(b) Distribution of weights

Figure 1: Characterization of the transformation weights learned by SL and GCL. We show an
illustration of the Cora dataset using the GRACE method. Full results can be found in Appendix L.

5.2 LEARNING PROPAGATION IS PROMISING IN GCL

Now, we take a comprehensive view of both the transformation and propagation phases. While
polynomial GNNs incorporate learnable parameters in both, GCLs utilizing polynomial GNNs, as
shown in Section 4.2, tend to underperform. This issue has been recognized in prior work, often
attributed to the mismatch between the strong fitting capacity of polynomial filters and the lack of
supervision signals in self-supervised learning (Chen et al., 2022; 2024). However, through the
following experiments, we demonstrate that GCLs are capable of learning effective filters.

From the decoupling perspective, there are three conjectures as to why polynomial GNNs perform
poorly in GCL: 1) GCL learns suboptimal transformation weights, 2) GCL learns ineffective propa-
gation coefficients, or 3) a combination of both. To investigate the cause, we separately replace the
propagation coefficients θ and the transformation weights W with well-trained parameters from a
supervised setting. Specifically, we first train polynomial GNNs via supervised learning and save the
optimized parameters as WSL and θSL. We then proceed with the following experiments:

Experiment 1 (Fix-propagation). Corresponding to the first conjecture, we initialize and freeze θ
with the well-trained θSL, and only learn W through GCL. Representations are generated by the
fixed propagation coefficients and learned transformation weights.

Experiment 2 (Fix-transformation). Corresponding to the second conjecture, we initialize and
freeze W with the well-trained WSL, and only learn θ through GCL. Representations are generated
by the learned propagation coefficients and fixed transformation weights.

Experiment 3 (All-one baseline). To verify that GCL indeed learns effective propagation coeffi-
cients, we further consider a baseline with fixed well-trained transformation weights and an all-one
propagation vector 1.

1A leptokurtic-like shape indicates a sharp concentration around the mean.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

The experimental results are summarized in Table 3. For the first conjecture, the fix-propagation
model averages 72.19%, significantly lower than the supervised model’s 80.41%, and sometimes
even underperforms the original GCL method. It indicates that GCL struggles to learn effective
transformation weights (like WSL) even with strong filters. For the second conjecture, the fix-
transformation model achieves an average performance of 79.56%, closely matching that of the
supervised model. In contrast, the all-one baseline yields a lower accuracy of 75.56%, confirming
that the learned propagation coefficients are effective. Thus, GCL can learn good propagation
coefficients with well-trained transformation weights. For further validation, flip experiments
replacing supervised parameters with GCL-trained ones are detailed in Appendix F, with further
comparisons of learned propagation coefficients in Appendix K.

Table 3: Test accuracy (%) of node classification benchmarks. We freeze the propagation coefficients
with optimal θSL (or the transformation weights with WSL), and learn the transformation weights
(or propagation coefficients) through GCL. 1 denotes an all-one vector. Red indicates the best, while
underlined represents the second-best choice.

θ W Cora CiteSeer PubMed Squirrel Chameleon Texas Wisconsin Cornell Mean

SL θSL WSL 88.39 ± 0.74 79.67 ± 0.72 87.11 ± 0.25 49.34 ± 1.09 69.52 ± 0.96 89.67 ± 2.13 91.25 ± 2.75 88.36 ± 3.11 80.41

GCL Learn Learn 83.42 ± 0.92 74.79 ± 0.57 84.92 ± 0.26 37.90 ± 0.79 55.67 ± 0.96 77.87 ± 2.79 86.38 ± 3.63 75.74 ± 3.61 72.09

Fix-propagation θSL Learn 80.26 ± 0.95 76.15 ± 0.80 82.41 ± 0.64 40.31 ± 0.60 59.06 ± 1.58 78.69 ± 4.75 87.88 ± 2.75 72.79 ± 5.57 72.19

Fix-transformation Learn WSL 87.47 ± 0.67 81.11 ± 0.55 87.69 ± 0.24 45.74 ± 1.57 64.95 ± 2.19 90.00 ± 2.46 91.38 ± 3.50 88.85 ± 4.10 79.65

All-one baseline 1 WSL 78.24 ± 0.92 78.72 ± 0.48 84.75 ± 0.33 35.98 ± 0.77 59.61 ± 1.07 89.34 ± 3.93 89.38 ± 2.25 88.49 ± 3.77 75.56

6 PROPGCL: SIMPLE GRAPH CONTRASTIVE LEARNING THAT ONLY
LEARNS PROPAGATION

In Section 5.2, we demonstrate that GCL can effectively learn in the propagation phase, provided well-
trained transformation weights. This insight suggests potential few-shot learning applications, with
preliminary explorations are discussed in Appendix C. However, in the unsupervised setting, optimal
transformation weights are unattainable and GCL tends to learn overly smooth weights. Possible
remedies include enforcing weight sparsity via l1 regularization, applying whitening techniques
(Bell & Sejnowski, 1997), or utilizing normalization methods (Hua et al., 2021; Guo et al., 2023a).
Nevertheless, these methods fail to address the issue as reported in Appendix H.

6.1 PROPGCL

Fortunately, the strong performance of the training-free PROP suggests that a simple model with
few trainable parameters may suffice to achieve competitive results. Inspired by findings in above
sections, we propose to only learn propagation coefficients within the GCL framework. Specifically,
for a given GCL backbone method, we revise it by only replacing the original encoder with the
following learnable spectral propagation,

HPROPGCL =

K−1∑
k=0

θkgk(L)X, (5)

where θ ∈ RK is the learnable propagation coefficients, and gk(L) represents the polynomial basis
functions. For clarity, we denote the revised backbone GCL method with the prefix PROP. Despite
largely reducing the trainable weights, the method delivers surprisingly competitive performance as
shown in the following experiments.

6.2 EXPERIMENTAL RESULTS

Settings. We keep experimental settings the same as Section 4.2. Besides the previously considered
benchmarks, we also evaluate the recently proposed heterophily benchmark (Platonov et al., 2023b)
and large benchmarks ogbn-arxiv (Hu et al., 2020) and ogbn-products.

Baselines. For the baseline, we include PROP, which outperforms well-known GSSL methods as
outlined in Section 4.2. Additionally, we consider recently proposed GCL methods specifically

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

designed for heterophilic graphs, including PolyGCL (Chen et al., 2024), HGRL (Chen et al., 2022),
GraphACL (Xiao et al., 2024), SP-GCL (Wang et al., 2023), and DSSL (Xiao et al., 2022). In
our approach, we choose GRACE, DGI, and a scale-friendly GGD method (Zheng et al., 2022) as
backbones. For example, we replace the original GCN encoder in GRACE with the formulation in
Equation 5, referring to the modified method as PROP-GRACE. We utilize the Chebyshev basis as
the polynomial function and conduct ablation study of basis choices in Appendix N.

Results. The results on node classification benchmarks are presented from Table 4 to Table 7.

Table 4: Test and validation accuracy
(%) on ogbn-arxiv and ogbn-products,
comparing PROPGCL with baselines.

Benchmark Method Val Acc Test Acc

ogbn-arxiv

GGD 71.11 ± 0.13 70.26 ± 0.15

PROP-GGD 70.78 ± 0.07 69.71 ± 0.06

DGI 71.05 ± 0.12 70.09 ± 0.12

PROP-DGI 70.82 ± 0.01 69.80 ± 0.01

ogbn-products GGD 90.59 ± 0.06 75.49 ± 0.19

PROP-GGD 87.88 ± 0.15 73.57 ± 0.15

Our method surpasses the PROP baseline and GCL
methods on most benchmarks. For homophily bench-
marks (Table 5), PROP-GRACE achieves the highest av-
erage accuracy of 88.76%, with PROP-DGI securing the
second-highest at 88.42%. Our approach attains the best
performance in 3 out of 6 benchmarks and performs com-
parably to the best methods in the remaining cases. On
popular heterophily benchmarks (Table 6), PROP-DGI
attains an average accuracy of 73.71%, surpassing the
state-of-the-art PolyGCL by a margin of 4.23%, and ranks
first on 4 out of 6 benchmarks. On recently proposed het-
erophily benchmarks (Platonov et al., 2023b) (Table 7),
PROP-DGI (PROP-GRACE is excluded for the scaling of
GRACE) achieves the best results in 2 out of 5 benchmarks and attains an average performance of
70.22%, second only to PolyGCL’s 71.68%. Notably, PolyGCL is optimized for heterophily graphs,
whereas PROP-DGI builds on the simpler DGI framework. On large benchmarks (Table 4), our
method performs comparably with the corresponding backbone method. For instance, on ogbn-arxiv
our PROP-DGI only falls behind DGI by 0.29% on test accuracy, but at the advantage of higher
time and memory efficiency. In conclusion, PROPGCL exhibits competitive performance on diverse
node classification benchmarks, especially heterophily datasets where many traditional GCL methods
struggle. Moreover, thanks to removing transformation weights, PROPGCL shows a great advantage
in computational and memory efficiency as seen in the following section.

Table 5: Test accuracy (%) of homophily node classification benchmarks, comparing PROPGCL with
other baselines. Red indicates the best method, while underlined represents the second-best.

Method Cora CiteSeer PubMed Photo Computers CS Mean
PROP 85.48 ± 0.75 78.87 ± 0.63 82.89 ± 0.48 93.01 ± 0.28 87.54 ± 0.47 95.15 ± 0.19 87.16

PolyGCL 86.19 ± 0.76 79.07 ± 0.82 86.69 ± 0.24 92.70 ± 0.18 88.91 ± 0.25 95.30 ± 0.07 88.14

SP-GCL 84.68 ± 0.81 76.43 ± 0.63 86.98 ± 0.23 92.65 ± 0.48 89.04 ± 0.35 91.95 ± 0.24 86.91

HGRL 85.39 ± 1.00 79.84 ± 0.91 85.12 ± 0.30 93.61 ± 0.22 85.89 ± 0.22 95.57 ± 0.12 87.57

GraphACL 87.41 ± 1.00 79.17 ± 0.55 85.71 ± 0.27 92.86 ± 0.33 86.43 ± 0.35 94.17 ± 0.16 87.63

DSSL 87.60 ± 1.18 79.52 ± 1.10 86.62 ± 0.24 93.15 ± 0.46 88.53 ± 0.38 94.10 ± 0.18 88.25

PROP-GRACE 87.42 ± 0.95 81.56 ± 0.83 86.19 ± 0.35 93.32 ± 0.31 88.12 ± 0.23 95.95 ± 0.14 88.76
PROP-DGI 86.19 ± 1.05 80.78 ± 0.65 85.14 ± 0.22 92.78 ± 0.37 89.81 ± 0.20 95.82 ± 0.18 88.42

Table 6: Test accuracy (%) of heterophily node classification benchmarks, comparing PROPGCL and
other baselines. Red indicates the best method, while underlined represents the second-best.

Method Squirrel Chameleon Actor Texas Wisconsin Cornell Mean
PROP 58.48 ± 1.03 68.82 ± 1.42 39.36 ± 0.91 86.23 ± 3.11 89.00 ± 3.25 86.23 ± 3.11 71.35

PolyGCL 56.09 ± 0.87 72.17 ± 1.12 40.50 ± 0.78 86.72 ± 2.13 85.50 ± 4.00 75.90 ± 2.46 69.48

SP-GCL 58.11 ± 0.70 70.98 ± 0.90 30.40 ± 1.11 81.97 ± 2.79 76.00 ± 3.75 65.74 ± 6.39 63.87

HGRL 38.89 ± 0.85 55.69 ± 1.03 37.09 ± 0.68 84.10 ± 4.75 86.13 ± 3.00 84.59 ± 4.27 64.57

GraphACL 53.77 ± 0.89 66.94 ± 1.05 38.73 ± 0.86 84.43 ± 1.80 80.00 ± 2.50 79.51 ± 1.80 67.23

DSSL 47.56 ± 0.98 68.85 ± 3.77 35.64 ± 0.51 85.90 ± 2.62 79.00 ± 2.75 80.98 ± 2.13 67.77

PROP-GRACE 55.09 ± 0.81 71.73 ± 1.18 39.35 ± 0.81 89.84 ± 1.81 88.50 ± 3.63 86.72 ± 2.46 71.87

PROP-DGI 60.53 ± 0.66 74.11 ± 0.96 39.53 ± 0.84 91.80 ± 2.30 88.88 ± 2.50 87.38 ± 2.62 73.71

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 7: Test accuracy (%) of recent heterophily node classification benchmarks, comparing PROP-
DGI and baselines. Red indicates the best method, while underlined represents the second-best.

Method roman empire amazon ratings minesweeper tolokers questions Mean

PROP 63.95 ± 0.33 40.22 ± 0.22 74.10 ± 0.58 71.74 ± 0.51 70.23 ± 0.59 64.05

PolyGCL 71.11 ± 0.47 44.09 ± 0.31 86.11 ± 0.41 83.70 ± 0.59 73.41 ± 0.84 71.68
SP-GCL 55.72 ± 0.34 43.02 ± 0.38 72.38 ± 0.64 76.69 ± 0.60 73.91 ± 0.74 64.34

HGRL 63.31 ± 0.33 39.65 ± 0.32 52.14 ± 0.44 74.34 ± 0.45 OOM −
GraphACL 59.66 ± 0.37 42.68 ± 0.19 67.73 ± 0.72 74.93 ± 0.73 74.48 ± 0.51 63.90

DSSL 44.48 ± 0.33 40.44 ± 0.16 82.05 ± 0.50 73.88 ± 0.76 69.08 ± 0.82 61.99

PROP-DGI 74.66 ± 0.27 43.14 ± 0.28 80.50 ± 0.62 77.93 ± 0.54 74.88 ± 0.76 70.22

7 EFFICIENCY ANALYSIS

Thanks to exclusion of transformation weights, PROPGCL demonstrates superior efficiency
compared to corresponding baseline methods in terms of both computational time and memory
usage. As shown in Table 8, PROP-GRACE saves 84.29% training time per epoch for GRACE on
Coauthor CS. For memory consumption, PROP-GRACE consumes over 99% less memory in the
encoder for different benchmarks than GRACE. We also conduct evaluation with different basis
choices and consistently find a boost of efficiency. See Appendix M for the full table.

Table 8: Comparison of training time per epoch in seconds and memory consumption of encoder in
KBs between GRACE and PROP-GRACE. Improvement refers to the percentage increase in speed or
decrease in the memory consumption.

Metric Method Cora CiteSeer PubMed Photo Computers CS Squirrel Chameleon Actor

Time

GRACE 0.1611 0.1939 0.2795 0.2872 0.4639 1.5111 0.7004 0.2295 0.2872

PROP-GRACE 0.1409 0.1478 0.2650 0.2400 0.3626 0.2374 0.2581 0.1450 0.2073

Improvement 12.54% 23.79% 5.18% 16.44% 21.84% 84.29% 63.15% 36.82% 27.83%

Memory

GRACE 3894.04 8434.04 2028.04 2518.04 2562.04 2562.04 5206.04 5678.04 2892.04

PROP-GRACE 11.24 28.97 3.95 5.86 6.04 6.04 16.36 18.21 7.32

Improvement 99.71% 99.66% 99.81% 99.77% 99.76% 99.76% 99.69% 99.68% 99.75%

8 CONCLUSION

In this work, we suggest a training-free method PROP as a strong baseline in GCL. From the
decoupling perspective, we observe that transformation weights learned through GCL present a
quite smooth and uninformative characteristic. We further propose to only learn the propagation
coefficients in the encoder of GCL, which achieves state-of-the-art performance on diverse no
classification benchmarks. We believe that this work opens new avenues for exploring lightweight
and effective graph contrastive learning methods, with broad implications for both research and
practical applications in the field of graph learning.

9 LIMITATIONS

Our study highlights the strong performance of the propagation-only PROP method on diverse node
classification benchmarks, showcasing its simplicity and effectiveness. For graph classification tasks,
which may involve low-quality or absent node features, PROP offers an initial approach that can be
further adapted (see Appendix A). Building on PROP, PROPGCL introduces learnable propagation
through spectral filters, making it particularly effective for single-graph tasks. Future research can
explore extending PROPGCL to multi-graph settings and enhancing its applicability across diverse
graph structures.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

REFERENCES

Bijaya Adhikari, Yao Zhang, Naren Ramakrishnan, and B Aditya Prakash. Sub2vec: Feature learning
for subgraphs. In PAKDD, 2018. 15, 28

Muhammet Balcilar, Guillaume Renton, Pierre Héroux, Benoit Gaüzère, Sébastien Adam, and Paul
Honeine. Analyzing the expressive power of graph neural networks in a spectral perspective. In
ICLR, 2021. 3

Martin Bauw, Santiago Velasco-Forero, Jesus Angulo, Claude Adnet, and Olivier Airiau. Deep
random projection outlyingness for unsupervised anomaly detection. In ICML Workshop on
Uncertainty and Robustness in Deep Learning, 2021. 5

Anthony J Bell and Terrence J Sejnowski. The “independent components” of natural scenes are edge
filters. Vision research, 37(23):3327–3338, 1997. 7, 19

Ella Bingham and Heikki Mannila. Random projection in dimensionality reduction: applications to
image and text data. In SIGKDD, 2001. 5

Karsten M Borgwardt, Cheng Soon Ong, Stefan Schönauer, SVN Vishwanathan, Alex J Smola, and
Hans-Peter Kriegel. Protein function prediction via graph kernels. Bioinformatics, 21(suppl_1):
i47–i56, 2005. 15, 25

Jingfan Chen, Guanghui Zhu, Yifan Qi, Chunfeng Yuan, and Yihua Huang. Towards self-supervised
learning on graphs with heterophily. In CIKM, 2022. 6, 8, 26, 27

Jingyu Chen, Runlin Lei, and Zhewei Wei. Polygcl: Graph contrastive learning via learnable spectral
polynomial filters. In ICLR, 2024. 4, 6, 8, 26, 27

Eli Chien, Jianhao Peng, Pan Li, and Olgica Milenkovic. Adaptive universal generalized pagerank
graph neural network. In ICLR, 2021. 3, 4, 21, 23

Asim Kumar Debnath, Rosa L Lopez de Compadre, Gargi Debnath, Alan J Shusterman, and Corwin
Hansch. Structure-activity relationship of mutagenic aromatic and heteroaromatic nitro compounds.
correlation with molecular orbital energies and hydrophobicity. Journal of medicinal chemistry, 34
(2):786–797, 1991. 15, 25

Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on
graphs with fast localized spectral filtering. In NeurIPS, 2016. 21

Paul D Dobson and Andrew J Doig. Distinguishing enzyme structures from non-enzymes without
alignments. Journal of molecular biology, 330(4):771–783, 2003. 15, 25

Hande Dong, Jiawei Chen, Fuli Feng, Xiangnan He, Shuxian Bi, Zhaolin Ding, and Peng Cui. On
the equivalence of decoupled graph convolution network and label propagation. In WWW, 2021. 3

Yoav Freund, Sanjoy Dasgupta, Mayank Kabra, and Nakul Verma. Learning the structure of manifolds
using random projections. In NeurIPS, 2007. 5

Johannes Gasteiger, Aleksandar Bojchevski, and Stephan Günnemann. Predict then propagate: Graph
neural networks meet personalized pagerank. In ICLR, 2019a. 3, 5

Johannes Gasteiger, Stefan Weißenberger, and Stephan Günnemann. Diffusion improves graph
learning. In Advances in neural information processing systems, 2019b. 5

Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In SIGKDD,
2016. 4, 15, 26, 28

Xiaojun Guo, Yifei Wang, Tianqi Du, and Yisen Wang. Contranorm: A contrastive learning
perspective on oversmoothing and beyond. In ICLR, 2023a. 7, 19, 20

Xiaojun Guo, Yifei Wang, Zeming Wei, and Yisen Wang. Architecture matters: Uncovering implicit
mechanisms in graph contrastive learning. In NeurIPS, 2023b. 2

Kaveh Hassani and Amir Hosein Khasahmadi. Contrastive multi-view representation learning on
graphs. In ICML, 2020. 4, 15, 26, 27, 28

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Mingguo He, Zhewei Wei, Hongteng Xu, et al. Bernnet: Learning arbitrary graph spectral filters via
bernstein approximation. In NeurIPS, 2021. 3, 21, 23

Mingguo He, Zhewei Wei, and Ji-Rong Wen. Convolutional neural networks on graphs with
chebyshev approximation, revisited. In NeurIPS, 2022. 3, 22, 24

Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yongdong Zhang, and Meng Wang. Lightgcn:
Simplifying and powering graph convolution network for recommendation. In SIGIR, 2020. 3

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. arXiv
preprint arXiv:2005.00687, 2020. 7

Tianyu Hua, Wenxiao Wang, Zihui Xue, Sucheng Ren, Yue Wang, and Hang Zhao. On feature
decorrelation in self-supervised learning. In CVPR, 2021. 7, 19

Lei Huang, Dawei Yang, Bo Lang, and Jia Deng. Decorrelated batch normalization. In CVPR, 2018.
19

Sergey Ioffe. Batch normalization: Accelerating deep network training by reducing internal covariate
shift. arXiv preprint arXiv:1502.03167, 2015. 20

Agnan Kessy, Alex Lewin, and Korbinian Strimmer. Optimal whitening and decorrelation. The
American Statistician, 72(4):309–314, 2018. 19, 20

Thomas N Kipf and Max Welling. Variational graph auto-encoders. In NeurIPS Workshop on
Bayesian Deep Learning, 2016. 4, 26

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In ICLR, 2017. 3

Namkyeong Lee, Junseok Lee, and Chanyoung Park. Augmentation-free self-supervised learning on
graphs. In AAAI, 2022. 2

Haifeng Li, Jun Cao, Jiawei Zhu, Qinyao Luo, Silu He, and Xuying Wang. Augmentation-free graph
contrastive learning of invariant-discriminative representations. IEEE Transactions on Neural
Networks and Learning Systems, 2023a. 2

Jintang Li, Wangbin Sun, Ruofan Wu, Yuchang Zhu, Liang Chen, and Zibin Zheng. Oversmoothing:
A nightmare for graph contrastive learning? arXiv preprint arXiv:2306.02117, 2023b. 2

Mingjie Li, Xiaojun Guo, Yifei Wang, Yisen Wang, and Zhouchen Lin. G2cn: Graph gaussian
convolution networks with concentrated graph filters. In ICML, 2022a. 5

Ping Li, Trevor J Hastie, and Kenneth W Church. Very sparse random projections. In SIGKDD, 2006.
5

Sihang Li, Xiang Wang, An Zhang, Yingxin Wu, Xiangnan He, and Tat-Seng Chua. Let invariant
rationale discovery inspire graph contrastive learning. In ICML, 2022b. 2

Ningyi Liao, Siqiang Luo, Xiang Li, and Jieming Shi. Ld2: Scalable heterophilous graph neural
network with decoupled embeddings. In NeurIPS, 2024. 5

Meng Liu, Hongyang Gao, and Shuiwang Ji. Towards deeper graph neural networks. In SIGKDD,
2020. 3

Nian Liu, Xiao Wang, Deyu Bo, Chuan Shi, and Jian Pei. Revisiting graph contrastive learning from
the perspective of graph spectrum. In NeurIPS, 2022. 2

Yue Liu, Xihong Yang, Sihang Zhou, Xinwang Liu, Siwei Wang, Ke Liang, Wenxuan Tu, and Liang
Li. Simple contrastive graph clustering. IEEE Transactions on Neural Networks and Learning
Systems, 2023. 2

Sitao Luan, Chenqing Hua, Minkai Xu, Qincheng Lu, Jiaqi Zhu, Xiao-Wen Chang, Jie Fu, Jure
Leskovec, and Doina Precup. When do graph neural networks help with node classification:
Investigating the homophily principle on node distinguishability. arXiv preprint arXiv:2304.14274,
2023. 16

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Yao Ma, Xiaorui Liu, Neil Shah, and Jiliang Tang. Is homophily a necessity for graph neural
networks? arXiv preprint arXiv:2106.06134, 2021. 16

Haitao Mao, Zhikai Chen, Wei Jin, Haoyu Han, Yao Ma, Tong Zhao, Neil Shah, and Jiliang Tang.
Demystifying structural disparity in graph neural networks: Can one size fit all? In NeurIPS, 2023.
16

Christopher Morris, Nils M. Kriege, Franka Bause, Kristian Kersting, Petra Mutzel, and Marion
Neumann. Tudataset: A collection of benchmark datasets for learning with graphs. In ICML 2020
Workshop on Graph Representation Learning and Beyond, 2020. 25

Galileo Namata, Ben London, Lise Getoor, Bert Huang, and UMD EDU. Query-driven active
surveying for collective classification. In MLG, 2012. 4, 24

Annamalai Narayanan, Mahinthan Chandramohan, Rajasekar Venkatesan, Lihui Chen, Yang Liu, and
Shantanu Jaiswal. graph2vec: Learning distributed representations of graphs. arxiv 2017. arXiv
preprint arXiv:1707.05005, 2017. 15, 28

Chaoxi Niu, Guansong Pang, and Ling Chen. Affinity uncertainty-based hard negative mining in
graph contrastive learning. IEEE Transactions on Neural Networks and Learning Systems, 2024. 2

Hoang Nt and Takanori Maehara. Revisiting graph neural networks: All we have is low-pass filters.
arXiv preprint arXiv:1905.09550, 2019. 3

Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang. Geom-gcn: Geometric
graph convolutional networks. In ICLR2020, 2020. 4, 17, 25

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social representa-
tions. In SIGKDD, 2014. 4, 26

Oleg Platonov, Denis Kuznedelev, Artem Babenko, and Liudmila Prokhorenkova. Characterizing
graph datasets for node classification: Homophily-heterophily dichotomy and beyond. In NeurIPS,
2023a. 16

Oleg Platonov, Denis Kuznedelev, Michael Diskin, Artem Babenko, and Liudmila Prokhorenkova. A
critical look at the evaluation of gnns under heterophily: Are we really making progress? In ICLR,
2023b. 7, 8

Ladislav Rampášek, Michael Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and Do-
minique Beaini. Recipe for a general, powerful, scalable graph transformer. In NeurIPS, 2022.
15

Joshua Robinson, Ching-Yao Chuang, Suvrit Sra, and Stefanie Jegelka. Contrastive learning with
hard negative samples. In ICLR, 2021. 2

Benedek Rozemberczki, Carl Allen, and Rik Sarkar. Multi-scale attributed node embedding. Journal
of Complex Networks, 9(2):cnab014, 2021. 4, 25

Guillaume Salha, Romain Hennequin, and Michalis Vazirgiannis. Keep it simple: Graph autoencoders
without graph convolutional networks. In NeurIPS Graph Representation Learning Workshop,
2019. 2

Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-Rad.
Collective classification in network data. AI magazine, 29(3):93–93, 2008. 4, 24

Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan Günnemann. Pitfalls
of graph neural network evaluation. arXiv preprint arXiv:1811.05868, 2018. 4, 25

Yekini Shehu, Olaniyi S. Iyiola, and Ferdinard U. Ogbuisi. Iterative method with inertial terms
for nonexpansive mappings: applications to compressed sensing. Numerical Algorithms, 83(4):
1321–1347, 2020. 4

Nino Shervashidze, SVN Vishwanathan, Tobias Petri, Kurt Mehlhorn, and Karsten Borgwardt.
Efficient graphlet kernels for large graph comparison. In AISTATS, 2009. 15, 28

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Nino Shervashidze, Pascal Schweitzer, Erik Jan Van Leeuwen, Kurt Mehlhorn, and Karsten M
Borgwardt. Weisfeiler-lehman graph kernels. Journal of Machine Learning Research, 12(9), 2011.
15, 28

Fan-Yun Sun, Jordan Hoffmann, Vikas Verma, and Jian Tang. Infograph: Unsupervised and semi-
supervised graph-level representation learning via mutual information maximization. In ICLR,
2020. 15, 28, 29

Susheel Suresh, Pan Li, Cong Hao, and Jennifer Neville. Adversarial graph augmentation to improve
graph contrastive learning. In NeurIPS, 2021. 15, 28

Shantanu Thakoor, Corentin Tallec, Mohammad Gheshlaghi Azar, Mehdi Azabou, Eva L Dyer, Remi
Munos, Petar Veličković, and Michal Valko. Large-scale representation learning on graphs via
bootstrapping. In ICLR, 2022. 4, 26, 27

Puja Trivedi, Ekdeep S Lubana, Mark Heimann, Danai Koutra, and Jayaraman Thiagarajan. Analyzing
data-centric properties for graph contrastive learning. In NeurIPS, 2022. 2

Petar Velickovic, William Fedus, William L Hamilton, Pietro Liò, Yoshua Bengio, and R Devon
Hjelm. Deep graph infomax. In ICLR, 2019. 1, 2, 4, 26, 27, 28

Nikil Wale, Ian A Watson, and George Karypis. Comparison of descriptor spaces for chemical
compound retrieval and classification. Knowledge and Information Systems, 14:347–375, 2008.
15, 25

Haonan Wang, Jieyu Zhang, Qi Zhu, Wei Huang, Kenji Kawaguchi, and Xiaokui Xiao. Single-pass
contrastive learning can work for both homophilic and heterophilic graph. In TMLR, 2023. 8, 26,
27

Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger. Simplify-
ing graph convolutional networks. In ICML, 2019. 3

Jun Xia, Lirong Wu, Ge Wang, and Stan Z. Li. Progcl: Rethinking hard negative mining in graph
contrastive learning. In ICML, 2022. 4, 26, 27

Teng Xiao, Zhengyu Chen, Zhimeng Guo, Zeyang Zhuang, and Suhang Wang. Decoupled self-
supervised learning for graphs. In NeurIPS, 2022. 8, 26, 27

Teng Xiao, Huaisheng Zhu, Zhengyu Chen, and Suhang Wang. Simple and asymmetric graph
contrastive learning without augmentations. In NeurIPS, 2024. 8, 26, 27

Dongkuan Xu, Wei Cheng, Dongsheng Luo, Haifeng Chen, and Xiang Zhang. Infogcl: Information-
aware graph contrastive learning. In NeurIPS, 2021. 2

Pinar Yanardag and SVN Vishwanathan. Deep graph kernels. In SIGKDD, 2015. 15, 25, 28

Haoran Yang, Hongxu Chen, Sixiao Zhang, Xiangguo Sun, Qian Li, Xiangyu Zhao, and Guandong
Xu. Generating counterfactual hard negative samples for graph contrastive learning. In WWW,
2023. 2

Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, and
Tie-Yan Liu. Do transformers really perform badly for graph representation? In NeurIPS, 2021. 15

Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and Yang Shen. Graph
contrastive learning with augmentations. In NeurIPS, 2020. 1, 15, 26, 28, 29

Yuning You, Tianlong Chen, Yang Shen, and Zhangyang Wang. Graph contrastive learning automated.
In ICML, 2021. 15, 28

Junliang Yu, Hongzhi Yin, Xin Xia, Tong Chen, Lizhen Cui, and Quoc Viet Hung Nguyen. Are graph
augmentations necessary? simple graph contrastive learning for recommendation. In SIGIR, 2022.
2

Yunfeng Yu, Longlong Lin, Qiyu Liu, Zeli Wang, Xi Ou, and Tao Jia. Gsd-gnn: Generalizable and
scalable algorithms for decoupled graph neural networks. In ICMR, 2024. 5

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Seongjun Yun, Minbyul Jeong, Raehyun Kim, Jaewoo Kang, and Hyunwoo J Kim. Graph transformer
networks. In Advances in neural information processing systems, 2019. 15

Hengrui Zhang, Qitian Wu, Junchi Yan, David Wipf, and Philip S Yu. From canonical correlation
analysis to self-supervised graph neural networks. In NeurIPS, 2021. 4, 17, 26, 27

Muhan Zhang and Yixin Chen. Link prediction based on graph neural networks. In NeurIPS,
volume 31, 2018. 1

Yizhen Zheng, Shirui Pan, Vincent Lee, Yu Zheng, and Philip S Yu. Rethinking and scaling up graph
contrastive learning: An extremely efficient approach with group discrimination. In NeurIPS, 2022.
2, 8

Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu, and Danai Koutra. Beyond
homophily in graph neural networks: Current limitations and effective designs. In NeurIPS, 2020a.
16, 25

Meiqi Zhu, Xiao Wang, Chuan Shi, Houye Ji, and Peng Cui. Interpreting and unifying graph neural
networks with an optimization framework. In WWW, 2021a. 3

Yanqiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu, and Liang Wang. Deep Graph Contrastive
Representation Learning. In ICML Workshop on Graph Representation Learning and Beyond,
2020b. 4, 26, 27, 28

Yanqiao Zhu, Yichen Xu, Qiang Liu, and Shu Wu. An empirical study of graph contrastive learning.
In NeurIPS Track on Datasets and Benchmarks., 2021b. 2, 26

Yanqiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu, and Liang Wang. Graph contrastive learning
with adaptive augmentation. In WWW, 2021c. 4, 17, 26, 27

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A EXPERIMENTS OF PROP ON GRAPH CLASSIFICATION

Methods. We first aggregate node features within K-hop neighbors without any trainable weights,
then pool aggregated node features into a global graph representation, i.e.,

HPROP =
1

N

∑
i

Hi, H = ÃKX, (6)

where N is the number of nodes, Ã = D′− 1
2A′D′− 1

2 with A′ = A+ I.

Datasets. For the graph classification task, we choose molecules datasets MUTAG (Debnath et al.,
1991) and NCI1 (Wale et al., 2008), bioinformatics datasets PROTEINS (Borgwardt et al., 2005),
and DD (Dobson & Doig, 2003), social networks IMDB-BINARY, IMDB-MULTI (Yanardag &
Vishwanathan, 2015), and COLLAB (Yanardag & Vishwanathan, 2015).

Baselines. We consider three categories of representative methods as baselines: 1) graph kernel
methods including GL (Shervashidze et al., 2009), WL (Shervashidze et al., 2011), and DGK
(Yanardag & Vishwanathan, 2015), 2) traditional graph embedding methods including node2vec
(Grover & Leskovec, 2016), sub2vec (Adhikari et al., 2018), and graph2vec (Narayanan et al., 2017),
3) contrastive learning methods including InfoGraph (Sun et al., 2020), GraphCL (You et al., 2020),
MVGRL (Hassani & Khasahmadi, 2020), JOAOv2 (You et al., 2021), ADGCL (Suresh et al., 2021).

Settings. Following (You et al., 2020), we train the model in an unsupervised manner and feed the
learned representation into a downstream SVM classifier. To keep comparison fairness, we tune
hyperparameters in a unified combination, and keep the search space among methods as consistent as
possible. Details can be found in Appendix O.

Results. As shown in Table 9, although free of training, PROP surpasses most graph kernels
and traditional embeddings, and performs comparably with GCL methods. On average, the mean
performance gap between PROP and the best method across datasets is only 2.82%. The results
show the potential of PROP on the graph classification task. Notably, common graph classification
benchmarks often have less informative node features than node classification benchmarks, even
lacking node attribute description as seen in Table 24. This probably impedes the ability of PROP.
An optional choice is utilizing Laplacian positional embeddings or random-walk embeddings as
widely discussed in the literature of graph Transforms (Yun et al., 2019; Ying et al., 2021; Rampášek
et al., 2022). We leave deeper research on graph classification tasks for future work.

Table 9: Test accuracy (%) of graph classification benchmarks, comparing PROP and GSSL methods.
The compared results are from published papers, and − indicates that results are unavailable. We
report the performance gap between one method and the best method, averaged across datasets in the
Mean Gap. column. Red indicates the best method, while underlined represents the second-best.

PROTEINS MUTAG DD NCI1 IMDB-B IMDB-M COLLAB Mean Gap. ↓

Graph Kernel

GL − 81.66 ± 2.11 − − 65.87 ± 0.98 − − 7.60

WL 72.92 ± 0.56 80.72 ± 3.00 − 80.01 ± 0.50 72.30 ± 3.44 − − 2.88

DGK 73.30 ± 0.82 87.44 ± 2.72 − 80.31 ± 0.46 66.96 ± 0.56 − − 2.37

Traditional Graph Embedding

node2vec 57.49 ± 3.57 72.63 ± 10.20 − 54.89 ± 1.61 − − − 16.61

sub2vec 53.03 ± 5.55 61.05 ± 15.80 − 52.84 ± 1.47 55.26 ± 1.54 − − 19.79

graph2vec 73.30 ± 2.05 83.15 ± 9.25 − 73.22 ± 1.81 71.10 ± 0.54 − − 3.54

Graph Contrastive Learning

MVGRL − 75.40 ± 7.80 − − 63.60 ± 4.20 − − 11.87

InfoGraph 74.44 ± 0.31 89.01 ± 1.13 72.85 ± 1.78 76.20 ± 1.06 73.03 ± 0.87 48.66 ± 0.67 70.65 ± 1.13 2.07

GraphCL 74.39 ± 0.45 86.80 ± 1.34 78.62 ± 0.40 77.87 ± 0.41 71.14 ± 0.44 48.49 ± 0.63 71.36 ± 1.15 1.52

JOAOv2 74.07 ± 1.10 87.67 ± 0.79 77.40 ± 1.15 78.36 ± 0.53 70.83 ± 0.25 − 69.33 ± 0.34 1.78

ADGCL 73.81 ± 0.46 89.70 ± 1.03 75.10 ± 0.39 69.67 ± 0.51 72.33 ± 0.56 49.89 ± 0.66 73.32 ± 0.61 2.21

PROP 71.07 ± 0.30 87.44 ± 1.53 78.39 ± 0.37 75.24 ± 0.14 71.22 ± 0.28 47.11 ± 0.18 69.07 ± 0.05 2.82

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

B GRAPH STRUCTURE AS SUPERVISED SIGNAL

The taxonomy of homophily and heterophily is widely used to tell whether the graph structure is
informative for training GCN-like models. Beyond the discussion on homophily and heterophily,
recent metrics characterizing graphs are proposed and show closer relationships with the GNN
performance (Mao et al., 2023; Luan et al., 2023; Platonov et al., 2023a). For example, Ma et al.
(2021) claim that the inter-class similarity on Squirrel is slightly higher than the intra-class similarity
for most classes, which substantiates the middling performance of GCN.

However, the performance of GCN-like models is an interplay between graph structure and node
features. Therefore, a bad GCN performance can not indicate the helplessness of graph structure,
or vice versa. For verification, we design experiments based on the mutual information of labels
and different graph elements. To escape from the entanglement of structure and node features, we
use MLP instead of GCN as the trainable model with node features X, adjacency matrix A, and the
concatenation of the two as inputs, respectively. The correspondence is as follows:

• I(Y;X): MLP with X as inputs.

• I(Y;A): MLP with A as inputs.

• I(Y;X;A): MLP with [X,A] as inputs, where [] denotes concatenation.

The results are shown in Table 10. It is surprising that for some heterophily datasets, MLP with
the graph structure as inputs gets satisfying performance. For example, for the Squirrel dataset
with a low homophily ratio of 0.22, MLP based on the graph structure achieves 73.58% accuracy.
Therefore, even presenting a low homophily ratio, the graph structure can still serve as a highly
qualified supervision signal for predicting labels.

Table 10: Test accuracy (%) of MLP with different input signals on node classification benchmarks.
H(G) denotes the edge homophily ratio introduced in Zhu et al. (2020a). Lower H(G) denotes graphs
with a high heterophily level. Bold indicates the best, while underlined represents the second-best
choice.

Cora CiteSeer PubMed Chameleon Squirrel Actor

H(G) 0.81 0.74 0.80 0.23 0.22 0.22

MLP(X) 73.64 70.72 85.75 49.34 35.06 36.51
MLP(A) 78.27 57.81 81.41 77.41 73.58 21.84

MLP([X,A]) 82.29 73.57 85.83 71.05 67.63 31.84

C TRIALS IN FEW-SHOT LEARNING

In Section 5, we observe that GCL has the potential to learn good propagation coefficients. It inspires
methods in the few-shot scenario, where a model is tasked with achieving effective generalization
from a minimal number of labeled examples per class.

In this study, we examine the N -shot case where N support examples are used for training. As
baselines, we evaluate the ChebNetII model trained with both supervised learning (SL) and contrastive
learning (CL). As shown in Table 11, SL exhibits low accuracy due to sparse labeling, while CL
performs relatively better, given access to all provided samples.

Based on our findings, we first train the ChebNetII model using contrastive learning. We then fix the
propagation coefficients learned in GCL and focus on optimizing the transformation weights through
a supervised objective. We term the method as Fix-prop SL. As illustrated in Table 11, this approach
yields improvements on several benchmarks. For instance, Fix-prop SL enhances SL accuracy from
57.51% to 72.60% on Cora in the 5-shot case, and from 39.19% to 65.39% in the 3-shot case. The
results demonstrate the potential of integrating SL and CL from a decoupling perspective in few-shot
learning. However, the Fix-prop SL approach has minimal impact on the Squirrel and Chameleon
datasets. It is important to note that we keep hyperparameters consistent across all training methods
and benchmarks, leaving ample room for further exploration beyond this initial investigation.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Table 11: Test accuracy (%) of node classification benchmarks in the few-shot scenario. Bold
indicates the best, while underlined represents the second-best choice.

Training Cora CiteSeer PubMed Squirrel Chameleon

5 Shot

SL 57.51 ± 2.29 43.11 ± 3.75 59.62 ± 2.56 20.15 ± 0.30 22.09 ± 1.60

CL 66.88 ± 2.29 55.02 ± 4.64 63.20 ± 2.64 28.41 ± 0.87 36.92 ± 2.52
Fix-prop SL 72.60 ± 1.43 53.26 ± 4.03 67.66 ± 2.58 20.60 ± 0.90 23.30 ± 1.91

3 Shot

SL 39.19 ± 3.96 37.52 ± 2.25 55.89 ± 2.55 20.27 ± 0.55 21.40 ± 1.26

CL 64.46 ± 4.34 55.85 ± 5.15 59.88 ± 3.49 25.89 ± 1.54 36.12 ± 1.34
Fix-prop SL 65.39 ± 2.15 46.90 ± 3.40 61.46 ± 5.49 20.38 ± 0.69 27.85 ± 3.02

D EXTENSIVE EXPERIMENTS OF SECTION 5.1

In Section 5.1, we show that in the GRACE method, after replacing the trained transformation weights
with a random Gaussian matrix, the downstream performance does not deteriorate as expected. We
conclude that the transformation weights learned in GCL are not better than random.

To enhance the generalizability of our conclusion, we extended our experimental evaluations to
include additional GCL methods. The experimental settings are kept the same. Table 12 and Table
13 respectively show the results using the DGI and BGRL methods. For DGI, after replacing the
transformation weights W1 or W2 with a random Gaussian matrix, the performance is comparable
with before. Moreover, replacing both W1 and W2 raises the performance from 71.92% to 72.18%
on average. For BGRL, substituting the original transformation weights with random matrices brings
an increase of nearly 2% in average performance at best. Although we can not exhaustively try all
GCL methods, the results of the representative methods are able to verify that GCL fails to learn
effective transformation weights.

Table 12: Test accuracy (%) of node classification benchmarks, comparing the transformation weights
(W1 and/or W2) learned in DGI with random weights. Red indicates the best method, while
underlined represents the second-best choice.

Method Cora CiteSeer PubMed Squirrel Chameleon Texas Wisconsin Cornell Mean

DGI 83.10 ± 1.10 66.18 ± 1.30 82.47 ± 0.38 41.55 ± 0.78 61.75 ± 1.64 85.57 ± 2.95 74.00 ± 2.75 80.82 ± 1.97 71.93

Randomize W1 79.75 ± 0.80 65.59 ± 0.60 82.66 ± 0.39 38.65 ± 0.87 66.04 ± 0.85 85.41 ± 1.97 75.88 ± 3.75 80.82 ± 1.80 71.85

Randomize W2 83.61 ± 0.92 70.19 ± 0.97 82.56 ± 0.30 39.38 ± 1.09 60.20 ± 1.31 85.74 ± 3.11 73.38 ± 1.63 80.98 ± 1.97 72.01

Randomize both 80.99 ± 0.77 65.85 ± 0.60 82.89 ± 0.37 41.04 ± 0.94 68.21 ± 1.20 84.92 ± 3.11 72.75 ± 1.00 80.82 ± 1.97 72.18

Table 13: Test accuracy (%) of node classification benchmarks, comparing the transformation weights
(W1 and/or W2) learned in BGRL with random weights. Red indicates the best method, while
underlined represents the second-best choice.

Method Cora CiteSeer PubMed Squirrel Chameleon Texas Wisconsin Cornell Mean

BGRL 79.57 ± 0.90 68.88 ± 1.36 83.11 ± 0.40 32.92 ± 0.39 46.02 ± 1.90 85.74 ± 3.11 72.75 ± 2.00 80.49 ± 1.64 68.69

Randomize W1 81.02 ± 0.64 71.56 ± 1.30 83.11 ± 0.40 30.48 ± 0.70 46.26 ± 1.27 85.25 ± 1.97 85.63 ± 3.00 80.98 ± 1.97 70.54

Randomize W2 82.97 ± 1.05 70.22 ± 1.02 83.29 ± 0.38 32.42 ± 0.79 46.76 ± 1.29 85.41 ± 3.11 72.38 ± 2.00 80.49 ± 1.80 69.24

Randomize both 81.86 ± 0.61 71.05 ± 1.06 83.41 ± 0.41 30.99 ± 0.51 46.13 ± 1.36 85.57 ± 1.97 72.63 ± 1.50 80.98 ± 1.97 69.08

E EXPERIMENTS WITH A FIXED PUBLIC-SPLITTING.

In Section 4.2, we evaluate PROP and other graph self-supervised methods on the node classification
task with a random splitting. To avoid the conclusion working on one specific split setting, we here
evaluate the models on the public fixed splits following Zhu et al. (2021c); Zhang et al. (2021).
In practice, we use the public splitting introduced in Pei et al. (2020) for most datasets. There is
no available public splitting for Amazon-Photo and Amazon-Computers, so we randomly split the

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

dataset into 1/1/8 as the train/validation/test set, differing from the splitting in Section 4.2. Other
experimental settings are kept the same. As shown in Table 14, on 6 in 10 benchmarks PROP
performs the best among baselines and exceeds the runner-up ProGCL by 4.23% on average. The
results verify the effectiveness of PROP in different data-splitting cases.

Table 14: Test accuracy (%) of PROP and other graph self-supervised methods on node classification
benchmarks with the public splitting. Red indicates the best method, while underlined represents the
second-best choice.

Method Cora CiteSeer PubMed Photo Computers Squirrel Chameleon Texas Wisconsin Cornell Mean

DeepWalk 80.87 ± 1.07 63.14 ± 1.05 81.55 ± 0.27 84.66 ± 0.40 89.59 ± 0.18 43.32 ± 0.79 60.81 ± 1.27 53.44 ± 5.09 43.63 ± 4.25 44.59 ± 2.95 64.56

Node2Vec 84.27 ± 0.70 66.04 ± 1.83 81.33 ± 0.36 83.92 ± 0.31 89.31 ± 0.20 38.41 ± 1.19 59.50 ± 2.30 60.81 ± 1.89 55.10 ± 3.73 60.54 ± 3.24 67.92

GAE 85.96 ± 1.03 72.78 ± 1.11 85.06 ± 0.49 75.29 ± 0.53 89.50 ± 0.26 35.56 ± 1.27 56.51 ± 1.62 62.43 ± 4.86 61.18 ± 3.53 60.27 ± 3.51 68.45

VGAE 86.20 ± 0.76 73.26 ± 0.65 85.19 ± 0.43 72.17 ± 0.33 86.90 ± 0.38 42.38 ± 1.13 60.29 ± 1.05 63.78 ± 3.51 59.61 ± 2.75 60.54 ± 2.16 69.03

GRACE 84.10 ± 1.01 70.41 ± 0.92 84.79 ± 0.38 78.51 ± 0.44 87.80 ± 0.41 39.65 ± 0.87 55.83 ± 1.05 64.59 ± 4.59 58.82 ± 4.91 60.81 ± 2.16 68.53

DGI 87.20 ± 0.99 72.50 ± 1.49 82.55 ± 0.38 71.35 ± 0.57 80.43 ± 0.63 36.61 ± 1.05 52.02 ± 1.32 70.54 ± 2.97 63.53 ± 3.92 61.62 ± 2.16 67.84

MVGRL 83.44 ± 0.72 71.61 ± 0.73 82.48 ± 0.30 80.96 ± 0.67 86.87 ± 0.41 31.48 ± 0.83 58.77 ± 1.45 68.38 ± 2.98 62.94 ± 3.53 61.62 ± 2.16 68.86

CCA-SSG 87.71 ± 0.75 75.42 ± 0.80 85.55 ± 0.40 78.96 ± 0.33 90.91 ± 0.38 40.16 ± 0.74 54.98 ± 1.18 68.65 ± 3.78 64.12 ± 4.31 61.89 ± 2.43 70.84

BGRL 85.77 ± 0.89 72.66 ± 1.54 84.63 ± 0.49 74.43 ± 0.91 85.50 ± 0.59 37.20 ± 1.07 53.82 ± 1.67 67.03 ± 2.70 60.59 ± 3.14 60.81 ± 2.43 68.24

GCA 86.60 ± 0.79 74.71 ± 1.18 86.44 ± 0.34 75.63 ± 0.46 88.77 ± 0.54 41.33 ± 0.88 59.28 ± 1.54 69.46 ± 2.97 62.94 ± 2.75 61.89 ± 2.16 70.71

ProGCL 85.45 ± 0.85 73.61 ± 1.10 86.86 ± 0.41 81.64 ± 0.70 89.91 ± 0.31 50.23 ± 0.86 67.81 ± 1.47 69.46 ± 2.97 62.75 ± 2.75 61.35 ± 1.35 72.91

PROP 84.57 ± 0.82 74.55 ± 1.09 84.65 ± 0.24 84.78 ± 0.38 90.83 ± 0.34 57.20 ± 1.41 68.71 ± 1.18 71.35 ± 4.60 79.61 ± 3.14 75.14 ± 3.78 77.14

F FLIP EXPERIMENTS IN SECTION 5.2

In this flip experiment, we first train GRACE with ChebNetII as the encoder and save the learned
transformation weights WCL and propagation coefficients θCL. Then we train ChebNetII in the
supervised setting with the propagation coefficients fixed with θCL, or the transformation weights
fixed with WCL. As shown in Table.15, despite using the propagation coefficients learned by GCL,
the model still achieves satisfying performances compared to the original supervised model. However,
after replacing the transformation weights, the performance deteriorates largely. The results further
confirm our conclusion in Section 5.2

Table 15: Test accuracy (%) of node classification benchmarks. We freeze the propagation coefficients
with optimal θCL (or the transformation weights with WCL), and learn the transformation weights
(or propagation coefficients) in the supervised setting. 1 denotes an all-one vector. Red indicates the
best, while underlined represents the second-best choice.

Method θ W Cora CiteSeer PubMed Squirrel Chameleon Texas Wisconsin Cornell Mean

SL Learn Learn 88.39 ± 0.74 79.67 ± 0.72 87.11 ± 0.25 49.34 ± 1.09 69.52 ± 0.96 89.67 ± 2.13 91.25 ± 2.75 88.36 ± 3.11 80.41

CL θCL WCL 83.42 ± 0.92 74.79 ± 0.57 84.92 ± 0.26 37.90 ± 0.79 55.67 ± 0.96 77.87 ± 2.79 86.38 ± 3.63 75.74 ± 3.61 72.09

Fix-transformation Learn WCL 76.62 ± 2.12 76.25 ± 0.64 83.32 ± 0.46 36.56 ± 0.61 52.41 ± 2.06 60.16 ± 6.39 75.25 ± 4.38 59.51 ± 5.08 65.01

Fix-propagation θCL Learn 87.06 ± 0.53 79.55 ± 0.74 85.76 ± 0.23 41.44 ± 1.06 64.44 ± 0.74 87.38 ± 2.95 90.63 ± 3.00 84.26 ± 2.62 77.57

All-one baseline 1 Learn 71.74 ± 3.22 75.92 ± 0.61 79.38 ± 0.47 33.27 ± 0.61 42.32 ± 0.90 55.41 ± 4.43 74.13 ± 4.13 60.82 ± 6.56 61.65

G AGGREGATION STEP IN PROP

In this section, we present the accuracies of PROP with different propagation steps. We find the best
step choice varies among datasets, but a shallow propagation is enough in most cases. As shown in
Figure 2, only one-step propagation performs best in datasets including Cora, CiteSeer, Chameleon,
Squirrel, Computers, and Photo. For Texas, Wisconsin, Cornell, Actor, and CS, the raw features, (i.e.,
zero propagation step) are enough. Moreover, when the performance achieves the best, raising the
propagation step will cause a degradation.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

0 1 2 3 4 5 6 7 8 9
Aggregation Step

70

75

80

85

Ac
cu

ra
cy

Cora

Highest Accuracy
Cora mean

0 1 2 3 4 5 6 7 8 9
Aggregation Step

68

70

72

75

78

80

Ac
cu

ra
cy

CiteSeer

Highest Accuracy
CiteSeer mean

0 1 2 3 4 5 6 7 8 9
Aggregation Step

82

83

84

85

Ac
cu

ra
cy

PubMed

Highest Accuracy
PubMed mean

0 1 2 3 4 5 6 7 8 9
Aggregation Step

40

50

60

70

Ac
cu

ra
cy

Chameleon
Highest Accuracy
Chameleon mean

0 1 2 3 4 5 6 7 8 9
Aggregation Step

60

65

70

75

80

85

90

Ac
cu

ra
cy

Texas

Highest Accuracy
Texas mean

0 1 2 3 4 5 6 7 8 9
Aggregation Step

50

60

70

80

90

Ac
cu

ra
cy

Wisconsin
Highest Accuracy
Wisconsin mean

0 1 2 3 4 5 6 7 8 9
Aggregation Step

60

70

80

90

Ac
cu

ra
cy

Cornell

Highest Accuracy
Cornell mean

0 1 2 3 4 5 6 7 8 9
Aggregation Step

30

40

50

60

Ac
cu

ra
cy

Squirrel
Highest Accuracy
Squirrel mean

0 1 2 3 4 5 6 7 8 9
Aggregation Step

30

32

34

36

38

40

Ac
cu

ra
cy

Actor
Highest Accuracy
Actor mean

0 1 2 3 4 5 6 7 8 9
Aggregation Step

86

88

90

92

94

96

Ac
cu

ra
cy

CS
Highest Accuracy
CS mean

0 1 2 3 4 5 6 7 8 9
Aggregation Step

60

65

70

75

80

85

Ac
cu

ra
cy

Computers

Highest Accuracy
Computers mean

0 1 2 3 4 5 6 7 8 9
Aggregation Step

50

60

70

80

90

Ac
cu

ra
cy

Photo

Highest Accuracy
Photo mean

Figure 2: Accuracy (%) of PROP with different propagation steps. We mark the best step choice with
a red star. Experiments are conducted ten times and the shadow denotes the derivation.

H TRIALS ON LEARNING EFFECTIVE TRANSFORMATION WEIGHTS IN GCL

According to the analysis in Section 5.1, GCL learns uninformative weights that are excessively
smoothing. Here we try three ways to solve this problem: 1) enforcing the sparsity of weights with l1
normalization; 2) using whitening methods (Bell & Sejnowski, 1997; Kessy et al., 2018); 3) using
normalization methods (Huang et al., 2018; Hua et al., 2021; Guo et al., 2023a).

l1 regularization. As a typical technique, the l1 regularization encourages sparsity by driving some
weights to zero and retaining the most relevant features. In practice, we add a penalty proportional
to the sum of the absolute values of the encoder parameters to the contrastive loss, i.e., Ltotal =
LCL + λ

∑
i |wi|, where LCL is the contrastive loss, λ is the regularization strength, and the wi

is the parameters of the encoder. We conduct experiments on ChebNetII with the l1 regularized
GRACE training objective, varying the regularization strength λ in [1× 10−4, 1× 10−5, 1× 10−6].
As shown in Table 16, the l1 regularization improves performance over the original GRACE on
the Squirrel, Chameleon, Texas, Wisconsin, and Cornell datasets, though it still lags behind PROP,
except on Wisconsin. However, for Cora, Citeseer, and PubMed, l1 regularization negatively impacts
performance.

Table 16: Test accuracy (%) of node classification benchmarks. We train ChebNetII using the l1
regularized GRACE objective. λ denotes the regularization strength. Red indicates the best, while
underlined represents the second-best choice.

Cora CiteSeer PubMed Squirrel Chameleon Texas Wisconsin Cornell

PROP 85.48 ± 0.76 78.87 ± 0.63 82.89 ± 0.48 58.48 ± 1.03 68.82 ± 1.42 86.23 ± 3.11 89.00 ± 3.25 86.23 ± 3.11

λ=0 (GRACE) 83.42 ± 0.92 74.79 ± 0.57 84.92 ± 0.26 37.90 ± 0.79 55.67 ± 0.96 77.87 ± 2.79 86.38 ± 3.63 75.74 ± 3.61

λ=1e-4 53.71 ± 1.10 26.97 ± 0.50 81.20 ± 0.21 33.07 ± 0.89 48.60 ± 1.42 80.98 ± 2.30 70.00 ± 1.88 82.79 ± 2.46

λ=1e-5 78.87 ± 1.17 73.29 ± 0.63 84.17 ± 0.23 37.46 ± 0.89 56.37 ± 1.01 56.56 ± 1.97 91.88 ± 2.25 81.80 ± 2.30

λ=1e-6 77.75 ± 0.80 73.90 ± 0.74 84.16 ± 0.21 38.27 ± 1.02 56.91 ± 1.09 52.79 ± 4.76 86.88 ± 2.88 74.26 ± 7.38

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Whitening methods. Whitening methods are used to decorrelate and normalize data. By making
dimensions mutually independent, whitening methods implicitly solve the representation collapse
problem. Here we consider the typical Zero-phase Component Analysis (ZCA) whitening (Kessy
et al., 2018), which transforms the input data such that it has zero mean and identity covariance
matrix, while also preserving data structure as much as possible. It is computed by multiplying
the data by the inverse square root of its covariance matrix, i.e., x̂ = VΛ− 1

2V⊤x, where V is the
matrix of eigenvectors and Λ is the diagonal matrix of eigenvalues of the covariance matrix of x. We
conduct experiments under the GRACE framework with a ZCA whitening layer added to the encoder
ChebNetII. As shown in Table 17, the whitening improves performance over the original GRACE on
the PubMed and Chameleon datasets but drastically deteriorates most of the other datasets.

Table 17: Test accuracy (%) of node classification benchmarks. We train ChebNetII using GRACE
with the ZCA whitening. Red indicates the best, while underlined represents the second-best choice.

Cora CiteSeer PubMed Squirrel Chameleon Texas Wisconsin Cornell

PROP 85.48 ± 0.76 78.87 ± 0.63 82.89 ± 0.48 58.48 ± 1.03 68.82 ± 1.42 86.23 ± 3.11 89.00 ± 3.25 86.23 ± 3.11

GRACE 83.42 ± 0.92 74.79 ± 0.57 84.92 ± 0.26 37.90 ± 0.79 55.67 ± 0.96 77.87 ± 2.79 86.38 ± 3.63 75.74 ± 3.61

GRACE+ZCA 79.29 ± 1.71 47.29 ± 0.70 85.76 ± 0.29 36.72 ± 0.91 58.60 ± 1.07 43.77 ± 8.36 27.38 ± 3.63 38.52 ± 6.23

Normalization methods. For normalization methods, we consider the widely used Batch Nor-
malization (BN) (Ioffe, 2015), and the recently proposed Decorrelate ContraNorm (DCN) (Guo
et al., 2023a). Batch normalization scales and shifts the mini-batch of data to have a mean of zero
and a standard deviation of one, i.e., x̂ = (x − µB)/

√
σ2
B + ϵ, where µB and σ2

B are the mean
and variance of the mini-batch B, and ϵ is a small constant for numerical stability. DCN scatters
representations in the embedding space and leads to a more uniform distribution. The formulation of
GCN is x̂ = x− s×x× softmax(x⊤x), where s is the scale factor. We conduct experiments under
the GRACE framework with a BN or DCN layer added to the encoder ChebNetII. As shown in Table
18, BN and DCN both fail to bring substantial improvement over the original GRACE.

Table 18: Test accuracy (%) of node classification benchmarks. We train ChebNetII using GRACE
with BN or DCN normalization. s denotes the scale factor in DCN. Red indicates the best, while
underlined represents the second-best choice.

Cora CiteSeer PubMed Squirrel Chameleon Texas Wisconsin Cornell

PROP 85.48 ± 0.76 78.87 ± 0.63 82.89 ± 0.48 58.48 ± 1.03 68.82 ± 1.42 86.23 ± 3.11 89.00 ± 3.25 86.23 ± 3.11

GRACE 83.42 ± 0.92 74.79 ± 0.57 84.92 ± 0.26 37.90 ± 0.79 55.67 ± 0.96 77.87 ± 2.79 86.38 ± 3.63 75.74 ± 3.61

GRACE + BN 82.25 ± 1.00 72.78 ± 1.00 85.10 ± 0.24 39.56 ± 0.47 54.77 ± 0.74 76.07 ± 2.95 72.63 ± 4.75 75.90 ± 2.79

GRACE + DCN (s=0.5) 79.79 ± 0.99 73.86 ± 0.86 84.00 ± 0.37 38.17 ± 0.95 56.19 ± 1.03 71.15 ± 2.13 83.25 ± 2.50 71.64 ± 4.59

GRACE + DCN (s=1.0) 75.19 ± 1.08 74.91 ± 0.63 83.06 ± 0.22 38.28 ± 1.12 57.35 ± 0.98 74.26 ± 1.64 90.50 ± 1.50 76.72 ± 3.11

GRACE + DCN (s=5.0) 74.40 ± 1.15 74.46 ± 0.63 79.41 ± 0.35 38.01 ± 0.79 58.97 ± 1.33 72.95 ± 3.44 83.25 ± 2.75 73.44 ± 3.44

In summary, these techniques offer limited effectiveness for GCL when used with polynomial GNNs.
We think the possible reason is that the learning of transformation weights needs a high-quality
supervision signal. Although these methods help prevent representation collapse, they do not carry
extra information. Therefore, GCL still fails to learn good transformation weights.

I HYPERPARAMETER SENSITIVITY ANALYSIS

In this section, we conduct the hyperparameter sensitivity analysis comparing PROPGCL and the
corresponding backbone GCL methods. We vary the range of hyperparameters and evaluate the
downstream performance. Here, we choose two hyperparameters in the model architecture, the
hidden dimension and the propagation step. We consider the DGI backbone with the Chebyshev basis.
As shown in Figure 3 and Figure 4, the performance of DGI with ChebNetII is highly influenced by
disturbing hyperparameters. For example, on Cora, decreasing the hidden dimension from 256 to 128
causes nearly 40% accuracy degradation. In comparison, the performances of PROP-DGI show low
variance under different hyperparameter combinations, and a sharp decline is only observed when
using small neural networks.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

256 128 64 32
Hidden dimension

10
5

2
Ag

gr
eg

at
io

n
St

ep

78.54 59.11 78.92 78.78

80.49 61.11 79.97 76.73

77.56 55.25 78.11 48.88

50

55

60

65

70

75

80

(a) PubMed

256 128 64 32
Hidden dimension

10
5

2
Ag

gr
eg

at
io

n
St

ep

81.59 43.86 77.04 31.15

83.19 40.94 80.20 31.99

83.04 43.86 81.41 38.44 40

50

60

70

80

(b) Cora

256 128 64 32
Hidden dimension

10
5

2
Ag

gr
eg

at
io

n
St

ep

55.76 27.03 27.60 71.31

70.86 28.79 27.30 29.32

26.15 26.62 26.59 27.27
30

40

50

60

70

(c) CiteSeer

256 128 64 32
Hidden dimension

10
5

2
Ag

gr
eg

at
io

n
St

ep

50.31 48.93 45.25 34.66

51.03 50.13 47.94 45.93

49.39 50.74 33.61 40.55
35.0

37.5

40.0

42.5

45.0

47.5

50.0

(d) Chameleon

256 128 64 32
Hidden dimension

10
5

2
Ag

gr
eg

at
io

n
St

ep

34.20 32.56 27.24 28.66

34.30 33.44 29.67 28.71

29.86 34.27 33.65 28.33
28

29

30

31

32

33

34

(e) Squirrel

256 128 64 32
Hidden dimension

10
5

2
Ag

gr
eg

at
io

n
St

ep

79.34 74.10 73.11 57.38

80.82 73.77 76.56 57.21

80.49 69.18 76.07 57.38
60

65

70

75

80

(f) Texas

256 128 64 32
Hidden dimension

10
5

2
Ag

gr
eg

at
io

n
St

ep

75.41 75.74 74.10 58.03

79.18 76.56 77.54 57.87

77.70 71.15 78.85 58.36
60

65

70

75

(g) Cornell

256 128 64 32
Hidden dimension

10
5

2
Ag

gr
eg

at
io

n
St

ep

58.00 62.75 81.75 57.25

68.00 72.00 81.25 67.25

62.25 74.00 81.25 57.62
60

65

70

75

80

(h) Wisconsin

Figure 3: Hyperparameter sensitivity analysis on the hidden dimension and propagation step. Experi-
ments are conducted on DGI with ChebNetII as the encoder.

256 128 64 32
Hidden dimension

10
5

2
Ag

gr
eg

at
io

n
St

ep

79.32 81.64 77.47 81.88

82.23 78.46 84.89 81.44

82.92 78.50 85.01 80.52
78

79

80

81

82

83

84

85

(a) PubMed

256 128 64 32
Hidden dimension

10
5

2
Ag

gr
eg

at
io

n
St

ep

76.49 77.00 84.15 77.14

76.68 77.80 84.84 76.91

86.03 85.86 85.93 55.06 60

65

70

75

80

85

(b) Cora

256 128 64 32
Hidden dimension

10
5

2
Ag

gr
eg

at
io

n
St

ep
79.51 74.52 76.21 74.46

78.72 73.04 76.48 74.72

80.78 66.26 77.05 74.52
68

70

72

74

76

78

80

(c) CiteSeer

256 128 64 32
Hidden dimension

10
5

2
Ag

gr
eg

at
io

n
St

ep

64.09 74.11 73.74 73.76

70.33 70.31 62.06 70.35

72.14 69.45 72.08 50.33 55

60

65

70

(d) Chameleon

256 128 64 32
Hidden dimension

10
5

2
Ag

gr
eg

at
io

n
St

ep

47.79 48.32 60.29 58.66

49.28 52.24 48.72 28.92

58.99 59.92 60.27 28.91

30

35

40

45

50

55

60

(e) Squirrel

256 128 64 32
Hidden dimension

10
5

2
Ag

gr
eg

at
io

n
St

ep

89.84 89.34 83.93 83.61

90.82 91.80 81.80 81.48

90.16 87.38 82.30 86.56

82

84

86

88

90

(f) Texas

256 128 64 32
Hidden dimension

10
5

2
Ag

gr
eg

at
io

n
St

ep

86.39 86.07 85.25 85.08

85.25 85.08 82.79 84.43

86.72 87.21 85.90 85.74

83

84

85

86

87

(g) Cornell

256 128 64 32
Hidden dimension

10
5

2
Ag

gr
eg

at
io

n
St

ep

72.62 68.88 62.88 87.25

87.75 80.50 51.38 87.88

88.00 82.50 47.38 88.88
50

60

70

80

(h) Wisconsin

Figure 4: Hyperparameter sensitivity analysis on the hidden dimension and propagation step. Experi-
ments are conducted on PROP-DGI with the Chebyshev basis.

J DETAILS ABOUT POLYNOMIAL GNNS

In this section, we introduce polynomial GNNs from the spectral perspective. Developed from graph
signal processing, graph convolution means transforming the graph signals to the Fourier domain and
then back to the vertex domain after suitable filtering, i.e., H = Ugθ(Λ)U⊤X, where gθ is the filter,
U is the matrix of eigenvectors of graph Laplacian L, Λ is the diagonal matrix of eigenvalues. The
problem arises when the parameters in gθ(Λ) are entirely unconstrained, leading to a lack of spatial
localization in the convolution and a high time complexity due to eigenvalue decomposition.

These issues can be overcome with the use of a polynomial filter gθ(Λ) =
∑K−1

k=0 θkΛ
k, where the

parameter θ ∈ RK is a vector of polynomial coefficients. Therefore, the graph convolution can be
reformulated as H = (

∑K−1
k=0 θkL

k)X. We call GNNs using the polynomial approximated filters as
polynomial GNNs. As one of the pioneer works, ChebNet (Defferrard et al., 2016) use Chebyshev
polynomial parametrization to localize filters as gθ(Λ) =

∑K
k=0 θkTk(Λ̃), where Λ̃ = 2Λ/λmax−I,

θ is the Chebyshev coefficients, and Tk(Λ̃) is the Chebyshev polynomial of order k recursively
calculated by Tk(x) = 2xTk−1(x)− Tk−2(x) with T0(x) = 1 and T1(x) = x.

In section ??, we consider three popular polynomial GNN variants. GPRGNN (Chien et al., 2021)
uses the monomial basis functions evaluated at Â, i.e., gθ(Λ) =

∑K−1
k=0 θk(I − L̂)k with θ as

learnable coefficients. BernNet (He et al., 2021) uses the Bernstein polynomial approximation,

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

i.e., gθ(Λ) =
∑K−1

k=0 θk
1
2k

(
K
k

)
(2I − L)K−kLk with θ as learnable coefficients. ChebNetII (He

et al., 2022) enhances the original Chebyshev polynomial approximation by Chebyshev interpolation,
formulated as gθ(Λ) = 2

K+1

∑K
k=0

∑K
j=0 θjTk(xj)Tk(L̂), where xj = cos((j + 1/2)π/(K + 1))

are the Chebyshev nodes of TK+1, and θ are learnable coefficients.

K CHARACTERIZATION OF LEARNED PROPAGATION COEFFICIENTS

In section 5.2, we find after replacing the transformation weights with supervised ones, the model
trained in GCL performs as well as in a supervised manner. To show that given the transformation
weights, GCL can learn effective propagation coefficients. We compare the propagation coefficients
learned by SL, GCL, and the fix-transformation GCL. As shown in Figure 5, compared with CL, the
propagation coefficients learned by fix-transformation GCL are closer to those in SL. Notably, the
best propagation coefficients for one dataset may not be unique. Therefore, differing from the SL
coefficients does not necessarily indicate poor quality, and the results can not prove that GCL learns
bad propagation coefficients. However, it demonstrates that GCL can learn effective propagation
coefficients fitting the given transformation weights.

0 1 2
Step IndexA

gg
re

ga
tio

n
C

oe
ffi

ci
en

ts

2.69

1.54

0.96

2.44

1.70
1.28

2.19 2.13
1.76

Method
SL fix-trans CL CL

(a) PubMed

0 1 2
Step IndexA

gg
re

ga
tio

n
C

oe
ffi

ci
en

ts

2.73

1.46

0.60

2.91

1.83

1.12

2.22
1.75

1.19

Method
SL fix-trans CL CL

(b) Cora

0 1 2
Step IndexA

gg
re

ga
tio

n
C

oe
ffi

ci
en

ts

3.34

0.41

1.37

3.25

1.27
0.98

3.41

0.82
0.44

Method
SL fix-trans CL CL

(c) CiteSeer

0 1 2
Step IndexA

gg
re

ga
tio

n
C

oe
ffi

ci
en

ts

3.33

4.00

1.14

3.91
3.50

0.58

2.22
2.78

1.16

Method
SL fix-trans CL CL

(d) Chameleon

0 1 2
Step IndexA

gg
re

ga
tio

n
C

oe
ffi

ci
en

ts

4.69
5.55

3.98
3.15

4.45

2.78
2.17

3.29

1.58

Method
SL fix-trans CL CL

(e) Squirrel

0 1 2
Step IndexA

gg
re

ga
tio

n
C

oe
ffi

ci
en

ts

2.73

1.46

0.60

2.91

1.83

1.12

2.22
1.75

1.19

Method
SL fix-trans CL CL

(f) Cornell

Figure 5: Propagation coefficients of the supervised learning (SL), the contrastive learning (CL), and
the fix-transformation contrastive learning (fix-trans CL) introduced in Section 5.2. We show the first
three propagation coefficients for the space limit.

L CHARACTERIZATION OF LEARNED TRANSFORMATION WEIGHTS

In Section 5.1, we demonstrated the transformation weights learned by GCL and SL on the Cora
dataset. Here, we extend these findings by presenting comprehensive results across various datasets.
As depicted in Figure 6, the weights learned by GCL exhibit a smoother heatmap compared to those
learned by SL. Furthermore, as shown in Figure 7, the weights learned by SL display diverse, data-
dependent distributions, while those learned by CL consistently follow a Gaussian-like distribution.
These results provide further evidence that GCL struggles to learn effective transformation weights.

M EFFICIENCY ANALYSIS

PROPGCL is more efficient than the original baselines in time and memory consumption as shown
in Table 19 and Table 20. Remarkably, PRO-GRACE saves 84.29% training time per epoch for the
original GRACE with Chebyshev basis on Coauthor CS. For memory consumption, PROP-GRACE
consumes over 99% less memory in the encoder for different benchmarks than the original baseline.
The boost of time and memory efficiency of PROPGCL is attributed to the exclusion of transformation
weights computation in self-supervised training.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Input Neurons

Ou
tp

ut
 N

eu
ro

ns

SL Heatmap

Input Neurons

Ou
tp

ut
 N

eu
ro

ns

CL Heatmap

1.5

1.0

0.5

0.0

0.5

1.0

1.5

1.0
0.8
0.6
0.4
0.2

0.0
0.2
0.4
0.6

(a) PubMed
Input Neurons

Ou
tp

ut
 N

eu
ro

ns

SL Heatmap

Input Neurons

Ou
tp

ut
 N

eu
ro

ns

CL Heatmap

0.4

0.2

0.0

0.2

0.4

1.0

0.5

0.0

0.5

1.0

(b) Cora

Input Neurons

Ou
tp

ut
 N

eu
ro

ns

SL Heatmap

Input Neurons

Ou
tp

ut
 N

eu
ro

ns

CL Heatmap

0.4

0.3

0.2

0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.0

0.5

1.0

1.5

(c) CiteSeer
Input Neurons

Ou
tp

ut
 N

eu
ro

ns

SL Heatmap

Input Neurons

Ou
tp

ut
 N

eu
ro

ns

CL Heatmap

0.15

0.10

0.05

0.00

0.05

0.10

0.15

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

(d) Chameleon

Input Neurons

Ou
tp

ut
 N

eu
ro

ns

SL Heatmap

Input Neurons

Ou
tp

ut
 N

eu
ro

ns

CL Heatmap

0.15

0.10

0.05

0.00

0.05

0.10

0.15

1.50

1.25

1.00

0.75

0.50

0.25

0.00

0.25

0.50

(e) Squirrel
Input Neurons

Ou
tp

ut
 N

eu
ro

ns

SL Heatmap

Input Neurons

Ou
tp

ut
 N

eu
ro

ns

CL Heatmap

0.2

0.1

0.0

0.1

0.2

0.075

0.050

0.025

0.000

0.025

0.050

0.075

0.100

(f) Cornell

Figure 6: Heatmap of the transformation weights learned by GCL and SL.

2 1 0 1 2
Transformation Weight Value

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Fr
eq

ue
nc

y

SL
CL

(a) PubMed

1 0 1 2 3
Transformation Weight Value

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Fr
eq

ue
nc

y

SL
CL

(b) Cora

1 0 1 2 3
Transformation Weight Value

0

2

4

6

8

Fr
eq

ue
nc

y

SL
CL

(c) CiteSeer

4 3 2 1 0 1 2
Transformation Weight Value

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

Fr
eq

ue
nc

y

SL
CL

(d) Chameleon

2.0 1.5 1.0 0.5 0.0 0.5 1.0
Transformation Weight Value

0

1

2

3

4

5

6

7

Fr
eq

ue
nc

y

SL
CL

(e) Squirrel

0.3 0.2 0.1 0.0 0.1 0.2 0.3
Transformation Weight Value

0
2
4
6
8

10
12
14
16

Fr
eq

ue
nc

y

SL
CL

(f) Cornell

Figure 7: Distribution of the transformation weights learned by GCL and SL.

N ANALYSIS ON BASIS POLYNOMIAL FUNCTIONS

Polynomial GNNs variants mainly differ in the polynomial basis function choices, e.g., the monomial
basis in GPRGNN (Chien et al., 2021), the Bernstein basis in BernNet (He et al., 2021), and the

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Table 19: Comparison of training time per epoch in seconds between polynomial GNNs and its corre-
sponding -PROP version in the GRACE framework. Improvement refers to the percentage increase
in speed of the -PROP version compared to the baseline, i.e., (tGRACE − tPROP−GRACE)/tGRACE.
Experiments are all conducted on a single 24GB NVIDIA GeForce RTX 3090, except those denoted
with ∗ on 48GB Nvidia A40 for out-of-memory.

Basis Method Cora CiteSeer PubMed Photo Computers CS Squirrel Chameleon Actor

Chebyshev GRACE 0.1611 0.1939 0.2795 0.2872 0.4639 1.5111* 0.7004 0.2295 0.2872

PROP-GRACE 0.1409 0.1478 0.2650 0.2400 0.3626 0.2374* 0.2581 0.1450 0.2073

Improvement 12.54% 23.79% 5.18% 16.44% 21.84% 84.29% 63.15% 36.82% 27.83%

Bernstein GRACE 0.1515 0.2215 0.2513 0.4878 0.9293 6.7666* 1.8997 0.4079 0.2619

PROP-GRACE 0.1226 0.1178 0.2334 0.3832 0.6968 0.6038* 0.5175 0.1653 0.1789

Improvement 19.03% 46.79% 7.10% 21.45% 25.02% 91.08% 72.76% 59.47% 31.69%

Monomial GRACE 0.1114 0.1023 0.1217 0.1606 0.2340 1.2487* 0.3714 0.1524 0.1202

PROP-GRACE 0.1024 0.1224 0.1221 0.1428 0.1928 0.1927* 0.1650 0.1151 0.1109

Improvement 8.06% 16.42% 0.31% 11.12% 17.61% 84.57% 55.56% 24.46% 7.74%

Table 20: Comparison of memory consumption of encoder in KBs between PROPGCL and the
original baseline. We consider GRACE with the Chebyshev basis function here. Improvement.
refers to the percentage decrease in the memory consumption of the -PROP version compared to the
baseline. i.e., (mGRACE −mPROP−GRACE)/mGRACE.

Encoder Cora CiteSeer PubMed Photo Computers CS Squirrel Chameleon Actor

GRACE 3894.04 8434.04 2028.04 2518.04 2562.04 2562.04 5206.04 5678.04 2892.04

PROP-GRACE 11.24 28.97 3.95 5.86 6.04 6.04 16.36 18.21 7.32

Improvement 99.71% 99.66% 99.81% 99.77% 99.76% 99.76% 99.69% 99.68% 99.75%

Chebyshev basis in ChebNetII (He et al., 2022). We introduce detailed basis function formulations in
Appendix J.

In this section, we compare different basis polynomial functions used in PROPGCL. Here we consider
the Chebyshev basis, Bernstein basis, and monomial basis. As shown in Table 21 and Table 22,
the performance of PROPGCL is relatively robust in the choice of basis functions. For homophily
benchmarks, PROP-GRACE with Chebyshev basis and the PROP-DGI with monomial basis achieve
the best, surpassing the second slightly by 0.05% on average. For heterophily benchmarks, the best
PROP-DGI with the Chebyshev basis achieves 73.71% on average, and the Bernstein basis ranks
second. In general, the Chebyshev basis is preferred in PROPGCL.

Table 21: Test accuracy (%) of homophily node classification benchmarks, comparing different basis
functions in PROPGCL. Red indicates the best method, while underlined represents the second-best.

Method Basis Cora CiteSeer PubMed Photo Computers CS Mean

PROP-GRACE

Chebyshev 87.42 ± 0.95 81.56 ± 0.83 86.19 ± 0.35 93.32 ± 0.31 88.12 ± 0.23 95.95 ± 0.14 88.76
Bernstein 87.52 ± 1.20 81.69 ± 0.86 85.90 ± 0.25 93.42 ± 0.24 87.77 ± 0.22 95.97 ± 0.13 88.71

monomial 87.34 ± 1.13 81.86 ± 0.79 86.41 ± 0.23 93.19 ± 0.26 86.85 ± 0.34 95.91 ± 0.15 88.59

PROP-DGI

Chebyshev 86.19 ± 1.05 80.78 ± 0.65 85.14 ± 0.22 92.78 ± 0.37 89.81 ± 0.20 95.82 ± 0.18 88.42

Bernstein 86.49 ± 0.99 80.93 ± 0.72 85.80 ± 0.40 93.53 ± 0.26 89.77 ± 0.25 95.46 ± 0.16 88.66

monomial 86.86 ± 1.02 81.69 ± 0.86 86.56 ± 0.33 93.72 ± 0.25 88.18 ± 0.34 95.57 ± 0.14 88.76

O EXPERIMENTAL DETAILS

O.1 BENCHMARKS

Node classification benchmarks. 1) Citation Networks (Sen et al., 2008; Namata et al., 2012). Cora,
CiteSeer, and PubMed are three popular citation graph datasets. In these graphs, nodes represent

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Table 22: Test accuracy (%) of heterophily node classification benchmarks, comparing different basis
functions in PROPGCL. Red indicates the best method, while underlined represents the second-best.

Method Basis Squirrel Chameleon Actor Texas Wisconsin Cornell Mean

PROP-GRACE

Chebyshev 55.09 ± 0.81 71.73 ± 1.18 39.35 ± 0.81 89.84 ± 1.81 88.50 ± 3.63 86.72 ± 2.46 71.87

Bernstein 48.51 ± 0.85 70.02 ± 0.88 39.33 ± 0.81 90.16 ± 1.31 89.00 ± 3.25 88.52 ± 2.95 70.92

monomial 51.96 ± 0.69 69.28 ± 1.05 39.52 ± 0.89 84.43 ± 2.62 84.13 ± 4.50 88.20 ± 2.79 69.59

PROP-DGI

Chebyshev 60.53 ± 0.66 74.11 ± 0.96 39.53 ± 0.84 91.80 ± 2.30 88.88 ± 2.50 87.38 ± 2.62 73.71
Bernstein 53.08 ± 0.83 71.20 ± 0.81 39.48 ± 0.77 92.46 ± 1.48 91.63 ± 3.00 87.38 ± 2.63 72.54

monomial 56.65 ± 0.77 72.12 ± 0.72 37.80 ± 0.57 93.11 ± 1.80 83.63 ± 5.88 81.97 ± 2.95 70.88

papers and edges correspond to the citation relationship between two papers. Nodes are classified
according to academic topics. 2) Amazon Co-purchase Networks (Shchur et al., 2018). Photo and
Computers are collected by crawling Amazon websites. Goods are represented as nodes and the
co-purchase relationships are denoted as edges. Node features are the bag-of-words representation
of product reviews. Each node is labeled with the category of goods. 3) Wikipedia Networks
(Rozemberczki et al., 2021). Squirrel and Chameleon are collected from the English Wikipedia,
representing page-page networks on specific topics. Nodes represent articles and edges are mutual
links between them. 4) WebKB Networks (Pei et al., 2020). In Texas, Wisconsin, and Cornell datasets,
nodes represent web pages and edges represent hyperlinks between them. Node features are the bag-
of-words representation of web pages. 5) Actor Networks Pei et al. (2020). Each node corresponds to
an actor, and the edge between two nodes denotes co-occurrence on the same Wikipedia page. Node
features correspond to some keywords on the Wikipedia pages. Statistics of datasets are shown in
Table 23.

Table 23: Statistics of node classification benchmarks. H(G) denotes the edge homophily ratio
introduced in Zhu et al. (2020a).

Homo / Hetero Category Dataset # Nodes # Edges # Features # Classes H(G)

Homophily
Citation

Cora 2,708 5,278 1,433 7 0.81
CiteSeer 3,327 4,552 3,703 6 0.74
PubMed 19,717 44,338 500 3 0.80

Co-purchase Photo 7,650 119,081 745 8 0.83
Computers 13,752 245,861 767 10 0.78

Heterophily

Wikipedia Chameleon 2,277 36,101 2,325 6 0.23
Squirrel 5,201 217,073 2,089 4 0.22

WebKB
Texas 183 279 1703 5 0.11

Wisconsin 251 466 1703 5 0.21
Cornell 183 277 1703 5 0.30

Film-actor Actor 7,600 30,019 932 5 0.22

Graph Classification benchmarks. 1) Molecules. MUTAG (Debnath et al., 1991) is a dataset of
nitroaromatic compounds and the goal is to predict their mutagenicity on Salmonella Typhimurium.
NCI1 (Wale et al., 2008) is a dataset of chemical molecules that are annotated based on their activity
against non-small cell lung cancer and ovarian cancer cell lines. 2) Bioinformatics. PROTEINS
(Borgwardt et al., 2005) is a dataset of proteins that are classified as enzymes or non-enzymes.
Nodes represent the amino acids and two nodes are connected by an edge if they are less than 6
Angstroms apart. DD (Dobson & Doig, 2003) consists of protein structures with nodes corresponding
to amino acids and edges indicating that two amino acids are within a certain number of angstroms. 3)
Social Networks. IMDB-BINARY and IMDB-MULTI (Yanardag & Vishwanathan, 2015) are movie
collaboration datasets consisting of a network of 1,000 actors/actresses who played roles in movies in
IMDB. In each graph, nodes represent actors/actresses; corresponding nodes are connected if they
appear in the same movie. COLLAB (Yanardag & Vishwanathan, 2015) is derived from three public
collaboration datasets representing scientific collaborations between authors. For all benchmarks, we
use collections from TUDataset (Morris et al., 2020). Statistics of datasets are shown in Table 24.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Table 24: Statistics of graph classification benchmarks. We report average numbers of nodes, edges,
and features across graphs in graph classification datasets.

Category Dataset #Graphs # Nodes # Edges # Features # Classes

Moleculars
MUTAG 188 17.9 39.6 7 2

NCI1 4110 29.87 32.30 37 2

Proteins
PROTEINS 1113 39.1 145.6 0 2

DD 1178 284.32 715.66 89 2

Social Networks

IMDB-BINARY 1000 19.8 193.1 0 2

IMDB-MULTI 1500 13.0 131.9 0 3

COLLAB 5000 74.49 2457.78 0 3

O.2 BASELINES

We categorize baselines for the node classification task into 1) traditional graph embedding al-
gorithms DeepWalk (Perozzi et al., 2014) and Node2Vec (Grover & Leskovec, 2016); 2) graph
autoencoders GAE (Kipf & Welling, 2016), VGAE (Kipf & Welling, 2016); 3) graph contrastive
methods GRACE (Zhu et al., 2020b), DGI (Velickovic et al., 2019), GCA (Zhu et al., 2021c), MV-
GRL (Hassani & Khasahmadi, 2020), ProGCL (Xia et al., 2022); 4) graph non-contrastive methods
CCA-SSG (Zhang et al., 2021) and BGRL (Thakoor et al., 2022), 5) heterophily baselines compared
in Section 6.2, PolyGCL (Chen et al., 2024), HGRL (Chen et al., 2022), GraphACL (Xiao et al.,
2024), SP-GCL (Wang et al., 2023), DSSL (Xiao et al., 2022).The design details are as follows.

1) Traditional graph embeddings.

• DeepWalk (Perozzi et al., 2014). DeepWalk leverages truncated random walks to capture
local network structures. The algorithm treats the random walks as sequences of nodes, akin
to sentences in language models. It learns latent representations by applying skip-gram to
maximize the co-occurrence probabilities of nodes appearing in these random walks.

• Node2Vec (Grover & Leskovec, 2016). Node2Vec is built on DeepWalk by introducing a
flexible biased random walk strategy to explore network neighborhoods. The key innovation
is balancing breadth-first sampling (BFS) and depth-first sampling (DFS). This allows
Node2Vec to capture both homophily and structural equivalence, making the learned node
embeddings more expressive.

2) Graph autoencoders.

• GAE (Kipf & Welling, 2016). GAE involves an encoder-decoder architecture, where the
encoder is a GCN that transforms node features into latent embeddings by aggregating
information from neighboring nodes. The embeddings are then used by the decoder, which
typically applies a simple inner product operation to reconstruct the graph structure, such as
predicting edges between nodes.

• VGAE (Kipf & Welling, 2016). VGAE extends GAE by introducing a probabilistic frame-
work using a variational autoencoder (VAE) setup. It models latent variables with Gaussian
distributions, enabling the generation of node embeddings that capture uncertainty. This
design improves the model’s ability to capture complex structures in graphs, especially in
tasks like link prediction.

3) Graph contrastive methods.

The mode of GCL has three mainstreams: local-to-local, global-to-global, and global-to-local (Zhu
et al., 2021b). A classic example of local-to-local is GRACE (Zhu et al., 2020b), which generates
two graph views by augmentations and the same nodes in augmented views are positive while all
the other node pairs are negative. Global-to-global mode is often used with multiple graphs in
the graph classification task, with GraphCL (You et al., 2020) as an early but influential trial. For
the global-to-local perspective, positive pairs are taken as the global representation and nodes of
augmented views, and negative pairs are the global representation and nodes of corrupted views. DGI
(Velickovic et al., 2019) is a typical example.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

• GRACE (Zhu et al., 2020b). GRACE generates two graph views by corruption and learns
node representations by maximizing the agreement of node representations in these two
views. To provide diverse node contexts for the contrastive objective, GRACE proposes a
hybrid scheme for generating graph views on both structure and attribute levels.

• GCA (Zhu et al., 2021c). GCA proposes adaptive augmentation that incorporates various
priors for topological and semantic aspects of the graph. On the topology level, GCA designs
augmentation schemes based on node centrality measures, while on the node attribute level,
GCA corrupts node features by adding more noise to unimportant node features.

• DGI (Velickovic et al., 2019). DGI relies on maximizing mutual information between
patch representations and corresponding high-level summaries of graphs—both derived
using established graph convolutional network architectures. The learned patch representa-
tions summarize subgraphs centered around nodes of interest, and can thus be reused for
downstream node-wise learning tasks.

• MVGRL (Hassani & Khasahmadi, 2020). MVGRL introduces a self-supervised approach
for learning node and graph-level representations by contrasting structural views of graphs.
MVGRL shows that contrasting multi-scale encodings does not improve performance, and
the best performance is achieved by contrasting encodings from first-order neighbors and
graph diffusion.

• ProGCL (Xia et al., 2022). ProGCL observes limited benefits when adopting existing
hard negative mining techniques of other domains in graph contrastive learning. ProGCL
proposes an effective method to estimate the probability of a negative being true and devises
two schemes to boost the performance of GCL.

4) Non-contrastive methods.

• CCA-SSG (Zhang et al., 2021). CCA-SSG optimizes a novel feature-level objective
that aligns features across different graph augmentations. It uses decorrelation to prevent
degenerate solutions, allowing the model to learn invariant node representations. The model
avoids a mutual information estimator or negative samples, which simplifies training and
reduces computational complexity.

• BGRL (Thakoor et al., 2022). BGRL avoids the use of negative samples by predicting
different augmentations of the input graph. BGRL relies on a bootstrapping mechanism,
where one branch predicts the output of another branch that is not updated by gradient de-
scent. This method eliminates the complexity of contrastive learning and negative sampling,
making it more scalable.

5) Heterophily baselines.

• PolyGCL (Chen et al., 2024). PolyGCL integrates spectral polynomial filters into graph
contrastive learning, enabling it to handle both homophilic and heterophilic graphs. The
method generates different spectral views using polynomials and incorporates high-pass
information into the contrastive objective.

• HGRL (Chen et al., 2022). HGRL introduces self-supervised learning for heterophilic
graphs by capturing distant neighbors and preserving original node features. It achieves
this through carefully designed pretext tasks optimized via high-order mutual information,
avoiding reliance on labels.

• GraphACL (Xiao et al., 2024). GraphACL focuses on an asymmetric view of neighboring
nodes. The algorithm captures both one-hop local neighborhood information and two-hop
monophily similarity, crucial for modeling heterophilic structures.

• SP-GCL (Wang et al., 2023). SP-GCL introduces a single-pass graph contrastive learning
method without augmentations. It theoretically guarantees performance across both ho-
mophilic and heterophilic graphs by studying the concentration property of features obtained
through neighborhood propagation.

• DSSL (Xiao et al., 2022). DSSL decouples neighborhood semantics in self-supervised
learning for node representation. It introduces a latent variable model that decouples node
and link generation, making it flexible to different graph structures. The method utilizes
variational inference for scalable optimization, improving downstream performance without
relying on homophily assumptions.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

We categorize the baselines in the graph classification task into 1) graph kernel methods including
GL (Shervashidze et al., 2009), WL (Shervashidze et al., 2011), and DGK (Yanardag & Vishwanathan,
2015), 2) traditional graph embedding methods including node2vec (Grover & Leskovec, 2016),
sub2vec (Adhikari et al., 2018), and graph2vec (Narayanan et al., 2017), 3) contrastive learning
methods including InfoGraph (Sun et al., 2020), GraphCL (You et al., 2020), MVGRL (Hassani &
Khasahmadi, 2020), JOAOv2 (You et al., 2021), ADGCL (Suresh et al., 2021) as introduced in recent
works. The design details are as follows.

1) Graph kernel methods.

• Graphlet Kernel (GL) (Shervashidze et al., 2009). GL works by counting the number
of small subgraphs (known as graphlets) of a fixed size that appear in each graph. The
comparison of these counts across graphs allows the kernel to capture the local topological
structures of the graphs, making it useful for tasks such as graph classification.

• Weisfeiler-Lehman Sub-tree Kernel (WL) (Shervashidze et al., 2011). WL extends the
concept of graph kernels by applying the Weisfeiler-Lehman test of isomorphism on graphs.
It involves iteratively relabeling the nodes of the graphs based on the labels of their neighbors
and then using these relabelings to define a kernel, typically counting matching sub-trees.

• Deep Graph Kernel (DGK) (Yanardag & Vishwanathan, 2015). DGK combines deep
learning techniques with graph kernels. It first learns a low-dimensional representation
of the graphs through unsupervised learning (often using a form of graph embedding or
autoencoders), then applies traditional kernel methods to these representations.

2) Traditional graph embeddings.

• Node2Vec (Grover & Leskovec, 2016). Node2Vec is built on DeepWalk by introducing a
flexible biased random walk strategy to explore network neighborhoods. The key innovation
is balancing BFS and DFS. This allows Node2Vec to capture both homophily and structural
equivalence, making the learned node embeddings more expressive.

• Sub2Vec (Adhikari et al., 2018). Inspired by the word2vec model, sub2vec learns vector
representations for subgraphs in a graph. It treats each subgraph as a "word" and the
entire graph as a "document" to learn embeddings that capture the structural and contextual
properties of subgraphs.

• Graph2Vec (Narayanan et al., 2017). Similar to sub2vec, graph2vec is designed to learn
embeddings for entire graphs. By treating each graph as a "document" and graph sub-
structures as "words," graph2vec employs a document embedding approach to learn a
fixed-size vector representation for each graph.

3) Graph contrastive methods.

• GraphCL (You et al., 2020). GraphCL designs four types of graph augmentations to
incorporate various priors and learns graph-level representations by maximizing the global
representations of two views for a graph.

• InfoGraph (Sun et al., 2020). InfoGraph maximizes the mutual information between the
graph-level representation and the representations of substructures of different scales (e.g.,
nodes, edges, triangles). By doing so, the graph-level representations encode aspects of the
data that are shared across different scales of substructures.

• ADGCL (Suresh et al., 2021). ADGCL proposes a novel principle, adversarial GCL, which
enables GNNs to avoid capturing redundant information during training by optimizing
adversarial graph augmentation strategies used in GCL.

• JOAO (You et al., 2021). JOAO proposes a unified bi-level optimization framework to
automatically, adaptively, and dynamically select data augmentations when performing
GraphCL on specific graph data. JOAO is instantiated as min-max optimization.

O.3 SETTINGS

For the node classification task, following Zhu et al. (2020b); Velickovic et al. (2019); Hassani &
Khasahmadi (2020), we use linear evaluation protocol, where the model is trained in an unsupervised
manner and feeds the learned representation into a linear logistic regression classifier. In the evaluation

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

procedure, we randomly split each dataset with a training ratio of 0.8 and a test ratio of 0.1, and
hyperparameters are fixed the same way for all the experiments. Each experiment is repeated ten
times with mean and standard derivation of accuracy score.

For the graph classification task, we use Adam SGD optimizer with the learning rate selected
in {10−3, 10−4, 10−5} and the number of epochs in {20, 100}. For PROP, we only search the
propagation step K in the range of [0, 1, 2, 3, 5, 10]. Following Sun et al. (2020); You et al. (2020),
we feed the generated graph embeddings into a linear Support Vector Machine (SVM) classifier,
and the parameters of the downstream classifier are independently tuned by cross-validation. The
C parameter is tuned in {10−3, 10−2, · · · , 102, 103}. We report the mean 10-fold cross-validation
accuracy with standard deviation. All experiments are conducted on a single 24GB NVIDIA GeForce
RTX 3090.

O.4 HYPERPARAMETER

For all methods, we train the linear classifier for 2000 epochs with a learning rate of 0.01 and no
weight decay. For hyperparameters of the model architecture and the unsupervised training procedure,
we maintain consistency in the hyperparameter search space across methods as much as possible.

Specifically, for GRACE, we search the temperature τ in [0.1, 0.5, 1.0], the projector hidden
dimension in [128, 256, 512], the learning rate in [0.01, 0.001], fix the patience as 50, and all
augmentation rates as 0.2. For DGI, we search the learning rate in [0.01, 0.001], the early-stopping
patience in [50, 100], and the hidden dimension in [128, 256, 512]. For CCA-SSG, we search the
training epochs in [20, 50, 100], λ in [1e-3, 5e-4], the hidden dimension in [128, 256, 512], and fix
all augmentation ratios as 0.2. For GCA, we search the temperature τ in [0.1, 0.5, 1.0], the projector
hidden dimension in [128, 256, 512], the drop scheme in [pr, degree, evc], and fix the early-stopping
patience as 50, the learning rate as 0.01, and all augmentation ratios as 0.2. For BGRL, we search the
predictor hidden dimension in [128, 256, 512], the learning rate in [1e-4, 1e-5], the weight decay in [0,
1e-5], fix the learning rate warmup epochs as 1000, the momentum moving as 0.99. For DeepWalk,
we search the vector dimension in [128, 256, 512], the context window size in [5, 10], the walk
number in [10 20], and the walk length in [40, 80]. For Node2Vec, we search the vector dimension in
[128, 256, 512], the walk number in [10 20], the probability p in [0.5, 1.0], q in [0.5, 1.0], and fix the
context window size as 10, and the walk length as 80. For MVGRL, we search the learning rate in
[0.01, 0.001], the early stopping patience in [50, 100], and the hidden dimension in [128, 256, 512].
For GAE and VGAE, we search the learning rate in [0.01, 0.001], the early stopping patience in [50,
100], and the hidden dimension in [128, 256, 512]. For the heterophily baselines in 6.2, we use the
optimal hyperparameter combinations provided in the original papers.

P PROOF OF THEOREMS

Q PROOF OF THEOREM 4.1

Here we present the proof of Theorem 4.1.

Proof. The gradient update of the Dirichlet energy objective (Equation 2) gives the following update
rule of node features H,

H− α
∂L(H)

∂H
= H− 2αL̂H = ((1− 2α)I+ 2αÂ)H, (7)

where the α is the step size. When we choose the learning rate α = 0.5, we recover the propagation
operation in Equation 1, i.e., Hnew = ÂH.

For convergence analysis, we have

L(H(K)) = (ÂKH(0))⊤L̂(ÂKH(0))

= H(0)⊤ÂKL̂ÂKH(0)

= H(0)⊤(Â2K − Â2K+1)H(0).

(8)

As is known, the range of eigenvalue of L̂ is [0, 2], therefore, the eigenvalues of Â belong to [−1, 1].
The eigenvalue of L̂ equals 2 if and only if the graph is bipartite. So for non-bipartite graphs, which

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

is often the case for complex graphs in real world, we have the eigenvalues of Â belong to (−1, 1].
Then when K goes towards infinity, we have limK→+∞ L(H(K)) = 0, which ends the proof.

R PROOF OF THEOREM 4.2

Here we present the proof of Theorem 4.2.

Proof. A key step is to notice that the alignment objective Equation 3 is closely relevant to the
Dirichlet energy when f(xi) = Hi,∀ i ∈ [N] :

Lalign(f) = −
∑
i,j

Aij [H
⊤
i Hj]/(

∑
i,j

Aij) = H⊤AH/(
∑
i,j

Aij) = H⊤(I−L)H/(
∑
i,j

Aij). (9)

It is easy to see that graph convolution converges to identical vectors, known as oversmoothing.
Therefore, we have ∀ i, j, (H∞)i = (H∞)j . Therefore,

lim
k→∞

Lalign(fk) = H⊤
∞AH∞/(

∑
i,j

Aij) = (
∑
i,j

Aij)/(
∑
i,j

Aij) = −1,

which concludes the proof.

30

	Introduction
	Related Works
	Background
	Graph Contrastive Learning Pipelines
	Graph Convolutional Neural Networks

	Uniform Propagation is A Strong Baseline for Unsupervised Learning
	Propagation: A Non-parametric Learning Approach on Graph
	Benchmark Propagation among Unsupervised BurntOrangeNode Classification Baselines

	Dissecting the Limitations of GNNs in GCL
	Feature transformation is ineffective in GCL
	Learning Propagation is Promising in GCL

	PROPGCL: Simple Graph Contrastive Learning that Only Learns Propagation
	PROPGCL
	Experimental Results

	BurntOrangeEfficiency Analysis
	Conclusion
	Limitations
	Experiments of PROP on Graph Classification
	Graph structure as supervised signal
	Trials in few-shot learning
	Extensive experiments of Section 5.1
	Experiments with a fixed public-splitting.
	Flip experiments in Section 5.2
	Aggregation Step in PROP
	Trials on Learning Effective Transformation Weights in GCL
	Hyperparameter sensitivity analysis
	Details about polynomial GNNs
	Characterization of learned propagation coefficients
	Characterization of learned transformation weights
	Efficiency analysis
	Analysis on Basis polynomial functions
	Experimental Details
	Benchmarks
	Baselines
	Settings
	Hyperparameter

	Proof of Theorems
	Proof of Theorem 4.1
	Proof of Theorem 4.2

