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ABSTRACT

The video-language (VL) pretraining has achieved remarkable improvement in
multiple downstream tasks. However, the current VL pretraining framework is
hard to extend to multiple modalities (N modalities, N ≥ 3) beyond vision and
language. We thus propose LanguageBind, taking the language as the bind across
different modalities because the language modality is well-explored and contains
rich semantics. Specifically, we freeze the language encoder acquired by VL pre-
training and then train encoders for other modalities with contrastive learning. As
a result, all modalities are mapped to a shared feature space, implementing multi-
modal semantic alignment. While LanguageBind ensures that we can extend VL
modalities to N modalities, we also need a high-quality dataset with alignment
data pairs centered on language. We thus propose VIDAL-10M with 10 Million
data with Video, Infrared, Depth, Audio and their corresponding Language. In our
VIDAL-10M, all videos are from short video platforms with complete semantics
rather than truncated segments from long videos, and all the video, depth, infrared,
and audio modalities are aligned to their textual descriptions. LanguageBind has
achieved superior performance on a wide range of 15 benchmarks covering video,
audio, depth, and infrared. Moreover, multiple experiments have provided evi-
dence for the effectiveness of LanguageBind in achieving indirect alignment and
complementarity among diverse modalities.

1 INTRODUCTION

With the development of the Internet and smartphones, there has been a proliferation of video web-
sites and apps (e.g., Youtube and TikTok), leading to a substantial increase number of videos (Xue
et al., 2022). Consequently, a set of video tasks have emerged, such as video search (Smith &
Chang, 1997), video recommendation (Deldjoo et al., 2016), and video editing (Casares et al., 2002;
Bonneel et al., 2014). To solve video understanding tasks, video-language pretraining has been em-
ployed by training foundation models by combining computer vision (He et al., 2016; Dosovitskiy
et al., 2020) and natural language processing (Vaswani et al., 2017). These models can capture video
semantics and solve downstream tasks (Karpathy et al., 2014; Mithun et al., 2018).

However, current VL pretraining frameworks are often limited to vision and language modalities.
The ImageBind (Girdhar et al., 2023) introduces an indirect alignment method for multi-modal
pretraining. It aligns other modalities to images, facilitating a comprehensive understanding of
various modalities such as infrared (Jia et al., 2021), depth (Kim et al., 2022), audio (Piczak, 2015),
and IMU (Grauman et al., 2022). In practical tasks such as zero-shot retrieval and classification
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Figure 1: ImageBind vs. LanguageBind. The ImageBind method relies on images as interme-
diaries, while the LanguageBind method dispenses with this requirement. LanguageBind directly
aligns all modalities to the language space, thereby enhancing its applicability to downstream tasks.
“X” represents all modalities except language, and “c” represents category.

as shown in Figure 1, the alignment with language modality is predominantly required for various
modalities. While the indirect alignment of ImageBind may result in performance degradation,
the LanguageBind method does not need images as intermediaries and facilitates straightforward
expansion to additional modalities in downstream tasks.

In this paper, we propose the LanguageBind, a language-based multi-modal pretraining framework
that can extend video-language pretraining to multiple (N) modalities. As the language modality
contains rich semantic information and is well-explored (Kenton & Toutanova, 2019; Dai et al.,
2019), we take it as the bind across different modalities. This process maps all modalities to a
unified embedding space, enabling effective semantic alignment. To improve training efficiency,
we employ Low-Rank Adaptation (LoRA) (Hu et al., 2021) for fine-tuning, achieving impressive
training results with minimal training iterations.

To further improve the modal integrity in pretraining and validate our LanguageBind, we introduce
a dataset with five modalities, the VIDAL-10M, which includes VL, IL (infrared-language), DL
(depth-language), and AL (audio-language) data pairs. The videos of previous datasets are always
truncated segments from long videos (Miech et al., 2019; Xue et al., 2022), resulting in fragmented
semantics. To avoid this problem, we construct our video-text pairs from short videos with com-
plete stories. To ensure the quality of the central language modality, we perform multi-view text
generation and enhancement on VIDAL-10M.

Video 

Infrared

Depth
Audio

Figure 2: LanguageBind achieves superior
performances on 15 benchmarks.

The proposed LanguageBind ensures that we can
extend vision-language to multiple (N) modalities,
and our dataset VIDAL-10M benefits more down-
stream tasks beyond VL tasks, including video re-
trieval (Luo et al., 2022), depth classification (Cao
et al., 2017), infrared classification (Baffa & Lattari,
2018) and audio classification (Palanisamy et al.,
2020). As shown in Figure 2, LanguageBind
achieves superior performances on a broad range
of 15 tasks. In zero-shot text to video retrieval,
LanguageBind achieves superior performance on
four datasets, surpassing InterVideo (Wang et al.,
2022c) by 1.9% on MSR-VTT (Xu et al., 2016),
8.8% on MSVD (Chen & Dolan, 2011), 6.3% on
DiDeMo (Anne Hendricks et al., 2017), and 4.4%
on ActivityNet (Caba Heilbron et al., 2015). For zero-shot classification on depth and infrared
data, LanguageBind achieves a substantial performance advantage over ImageBind. LanguageBind
attains top-1 accuracy of 87.2% and 65.1% on LLVIP and NYU-D, respectively, outperforming Im-
ageBind by 23.8% and 11.1%. For zero-shot audio classification tasks, LanguageBind outperforms
ImageBind with a 23.8% higher top-1 accuracy on the ESC50 dataset.

We summarize our primary contributions as follows:
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• We propose LanguageBind, the langauge-based multi-modal pretraining approach. During
the pretraining process, all modalities gradually align with the language modality through
contrastive learning, and these modalities are unified within a shared embedding space.

• We introduce VIDAL-10M, a large-scale five-modal video dataset, containing 10 million
data pairs with aligned VL, IL, DL, and AL. To the best of our knowledge, VIDAL-10M is
the first large-scale video dataset with depth and infrared modalities.

• Extensive experiments validate the effectiveness of our dataset and approach, achieving
remarkable performance in video and other modality understanding tasks.

2 RELATED WORK

Multi-modal Pretraining Multi-modal pretraining begins with pretraining in vision and lan-
guage. CLIP (Radford et al., 2021) pioneered the alignment of images and texts on a large-scale
dataset comprising 400 million samples, effectively establishing a bridge between the image and
text domains. This alignment benefits a variety of downstream tasks, including zero-shot classifica-
tion and image-text retrieval (Li et al., 2023a). CLIP can also be used as a foundation for alignment
in other modalities. For instance, CLIP4Clip (Luo et al., 2022) aligns video with text, CLAP (Wu*
et al., 2023) aligns audio with text, and PointCLIP (Zhang et al., 2022) aligns point clouds with text.
Recent efforts have undertaken a comprehensive exploration of multi-modal alignment through pre-
training. Augmenting the alignment process with additional modalities can enhance the model’s ro-
bustness while maintaining its performance, as observed in VALOR (Chen et al., 2023a) and VAST
(Chen et al., 2023b). However, as the number of modalities increases, the training paradigm required
to align them effectively undergoes significant changes. Meta-transformer (Zhang et al., 2023) ac-
commodates 12 modalities and utilizes distinct tokenizers to harmonize the embedding space across
modalities. ImageBind (Girdhar et al., 2023) expands multi-modal alignment pretraining to encom-
pass six modalities but may not perform as well in language-related tasks due to indirect alignment.
In our work, we propose LanguageBind, a direct alignment mechanism designed to align alterna-
tive modalities directly with the language modality, which has the highest information density. This
direct alignment mechanism yields discernible improvements in downstream task performance.

Table 1: Comparision of existing multi-
modal datasets. VIDAL-10M is the currently
first accessible multi-modal dataset including
aligned VL, IL, DL, and AL data pairs.

Datasets Samples Modality Year

HMDB-51 7K V 2011
UCF-101 13K V 2012

ActivityNet-200 20K VT 2015
WebVid-10M 10.7M VT 2021
HD-VILA-100M 100M VT 2022
HowTo-100M 136M VT 2019

LLVIP 15k VI 2021
FLIR V1 10k VI 2015
FLIR V2 12k VI 2015
NYU-D 1.4k VD 2012
YouTube-8M 6.1M VAT 2016
AVA 58K VAT 2017

VIDAL-10M (Ours) 10M VIDAL 2023

Multi-modal Datasets Multi-modal datasets serve
as the foundation for multi-modal pretraining (Zhu
et al., 2024; Lin et al., 2023). Initially, these datasets
only consisted of videos and their corresponding cat-
egories, as shown in Table 1. HMDB-51 (Kuehne
et al., 2011) and UCF-101 (Soomro et al., 2012) are
examples of such datasets, which contain truncated
segments from long videos with manual annotation.
However, creating these datasets required significant
human effort, which limited their scalability and di-
versity. To address this issue, researchers turned
their attention to the abundance of video-text re-
sources available on the internet. Inspired by the
success of image-text datasets (Sharma et al., 2018;
Changpinyo et al., 2021), they used script-based pro-
gramming (Schuldt et al., 2004; Kong et al., 2019;
Sigurdsson et al., 2018) to extract millions of video-
text data pairs. However, acquiring data from modal-
ities like infrared (Teledyne FLIR, 2015a;b) and
depth (Silberman et al., 2012), which require spe-
cialized equipment and manual annotation, has been challenging. This has severely limited the scale
of the data and its alignment with other modalities. Although existing work like ImageBind (Gird-
har et al., 2023) has attempted to bind various image-paired datasets and achieve indirect semantic
alignment between different modalities, this approach still faces issues of incomplete and indirect
data alignment. Thus, there is an urgent need for multi-modal datasets with direct semantic aligned
data pairs, especially for modalities with five or more types.
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Figure 3: LanguageBind overview. The language encoder parameters are frozen, while the multi-
modal encoder parameters can be adjusted using the LoRA technique. By employing contrastive
learning between language and other modalities, LanguageBind successfully achieved multimodal
joint learning, thereby fostering semantic alignment across different modalities.

3 METHOD

In this section, we present LanguageBind, a multi-modal pretraining approach designed to align the
semantics of different modalities and enhance cross-modal retrieval and zero-shot classification. As
shown in Figure 3, LanguageBind consists of three parts: (a) multi-modal encoders, (b) language
encoder, and (c) multi-modal joint learning.

3.1 MULTI-MODAL ENCODERS

For other modalities besides language, we employ the 24-layer, 1024-dimensional vision trans-
former with a patch size of 14. The encoders are initialized from OpenCLIP-large (Ilharco et al.,
2021). Depth and infrared are treated as RGB images, which are replicated 3 times in the channel
dimension to align with RGB images. Following ImageBind, audio data is transformed into spec-
trograms with a duration of 10 seconds (128 mel-bins) and we repeat and pad the spectrograms.
For example, a 4-second spectrogram would be repeated twice and then padded with zero for an
additional 2 seconds. Similarly, we also replicate it 3 times in the channel dimension. If the duration
exceeds 10 seconds, we randomly sample three 10-second audio segments, each from the front 1/3,
middle 1/3, and back 1/3 of the original audio, and finally stack them together.

Patch masking To address the inefficiency in processing all tokens within the encoder, we divide
the image into patches and take a small portion of patches by encoder mask Me, following MAE
(He et al., 2022). Given a modality m ∈ RH×W×C , where (H,W ) represents the resolution of
the original data, with C denoting the number of channels. We first transform it into patches using
a patch embedding layer with non-overlapping filters. This operation produces patches denoted as
m′ ∈ RN×C and N = H×W

S2 represents the resulting sequence length, where S represents the
size of each patch. Subsequently, positional embedding is applied to the visible tokens, which are
divided by encoder mask. The combined sequence x is defined as:

x = {m′
i + P i}i∈Me (1)

where P is a sequence of learnable position tokens, and i represents the position index at patches.

LoRA fine-tuning We employ the LoRA technique (Hu et al., 2021) to accelerate fine-tuning. For
a modality-agnostic encoder with a weight matrix W0 ∈ Rd×k, we maintain the weight matrix W0

frozen while learning a new weight matrix BA. For instance, in the case of the modality-agnostic
encoder h(·) and x, the forward process can be represented as follows:

h(x) = W0x+BAx (2)
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where B ∈ Rd×r, A ∈ Rr×k, with r being the minimum of d and k. It is important to highlight
that both W0 and BA possess the same input and output dimensions, facilitating their summation
to produce the final output. Modality extending To extend the LanguageBind method to multiple
(N) modalities, the first step involves processing the data into a sequence of tokens. Subsequently,
the parameters are initialized from OpenCLIP. The encoder for different modalities is then trained
through token masking and LoRA fine-tuning while keeping the language encoder frozen. Finally,
this modality is aligned with the language feature space.

3.2 LANGUAGE ENCODER AND MULTI-MODAL JOINT LEARNING

For the language encoder, we utilize a 12-layer transformer model with 768-dimensional and ini-
tialize it from OpenCLIP. For a given text, we initially employ a BPE tokenizer to segment words
into relatively common subwords. Each subword corresponds to a unique token, and these tokens
are embedded within a word embedding layer. Ultimately, the tokens are encoded by the language
encoder to obtain a text logit y ∈ RL×C , where L represents the length of the sequence. To ensure
alignment across different modalities, we implement contrastive learning principles (Radford et al.,
2021). The objective of this approach is to increase the similarity of paired data, bringing them
closer to the same semantic space, while minimizing the similarity of unpaired data. We utilize
contrastive learning to bind individual modalities to language.

LM2T = − 1

K

K∑
i=1

log
exp(x⊤

i yi/τ)∑K
j=1 exp(x

⊤
i yj/τ)

, LT2M = − 1

K

K∑
i=1

log
exp(y⊤i xi/τ)∑K
j=1 exp(y

⊤
i xj/τ)

(3)

where xi is the i-th modality data and yj is the j-th text and their features are normalized. K and
τ are batch size and the temperature. The direct alignment of each modality M with language T
enables us to significantly enhance zero-shot classification and retrieval tasks.

4 THE VIDAL-10M DATASET

In this section, we will describe how to construct our VIDAL-10M dataset, including 3 million pairs
of video-language data, 3 million pairs of infrared-language data, 3 million pairs of depth-language
data, and 1 million pairs of audio-language data. As shown in Figure 4, the collection process
consists of three main steps: visual search term database construction (Section 4.1), video and audio
collection and filtering (Section 4.2), and modality generation and enhancement (Section 4.3).
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Five-modal 
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Figure 4: VIDAL-10M construction. (a) Firstly, a search term database is generated by leveraging
visually related datasets. (b) Subsequently, relevant videos and audios are collected from the internet
and undergo a series of filtering processes. (c) Lastly, we perform infrared and depth modality
generation, as well as multi-view text generation and enhancement.

4.1 VISUAL SEARCH TERM DATABASE CONSTRUCTION

To build a video dataset with rich visual concepts and diversity, we design a unique search term
acquisition strategy. We leverage text data including labels and captions from various visual task
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datasets (YouTube-8M (Abu-El-Haija et al., 2016), MSR-VTT (Xu et al., 2016), COCO (Lin et al.,
2014), AVA (Gu et al., 2018), HMDB-51 (Kuehne et al., 2011), ImageNet (Deng et al., 2009)) to
create a large-scale search term database with diversity and broad applicability. Then we filter these
search terms based on their frequency and employ the NLTK toolkit for part-of-speech tagging,
followed by tallying the occurrences of keywords (nouns and verbs). A balanced subset of 100,000
search items corresponding to these keywords is then extracted as the final search team database.

4.2 VIDEO AND AUDIO COLLECTION AND FILTERING

During the data collection process, we utilize the aforementioned search terms to retrieve video-text
pairs and audio-text pairs from relevant platforms, e.g. YouTube Shorts, and Freesound. Regarding
video collection, in order to obtain short videos with high-quality textual descriptions, we imple-
mented a filtering mechanism for the title and hashtags. Video samples with titles containing less
than 2 words and without video hashtag labels are excluded from our dataset. Moreover, we re-
moved irrelevant words and hashtags, such as ”youtube”, ”fyp”, ”shorts”, etc. Furthermore, to
ensure a complete, consistent, and precise depiction of the event within a single full video, we de-
cide to impose a duration limit of 20 seconds. Shorter videos tend to exhibit better scene coherence
and event integrity and are more closely aligned with corresponding hashtags and title descriptions.
Ultimately, we obtain a short video dataset that encompasses more specific rather than abstract con-
tent. Concerning audio collection, we rank the audio list on different audio platforms based on
its similarity to the search terms. Additionally, we conduct filtering operations similar to those for
videos, taking into account factors such as audio ratings, download counts, user comments, tags, and
duration. This comprehensive approach allows us to curate and refine the audio and video content
more effectively.

4.3 MODALITY GENERATION AND ENHANCEMENT

Multi-view text generation and enhancement The language modality of VIDAL-10M consists of
multi-view texts, including title, hashtags, keyframe captions, video captions, and enhanced cap-
tions. The detailed text generation and enhancement pipeline is illustrated in the Appendix, section
A. Hashtags in VIDAL-10M are specifically designed to highlight the main subjects and actions
depicted in the video. These hashtags serve as key indicators, emphasizing the focal points and dy-
namic elements of the video. However, hashtags alone may not fully capture the spatial information
conveyed by the video frames. To address this limitation, we leverage the image captioning model
OFA (Wang et al., 2022b) to generate supplementary keyframe captions that enrich the spatial infor-
mation at the keyframe level. These captions also contain local temporal information related to the
video content, which is beneficial for visual-text pretraining. Besides spatial information, temporal
information concealed within the video is equally significant, providing crucial insights into the pro-
gression and sequencing of events within the video. To further supplement the overall thematic and
temporal information of the video, we employ the mPLUG-owl model (Ye et al., 2023) to generate
video captions based on the combination of video, title, and hashtags. By leveraging the title and
hashtags as accurate video labels, we guide the mPLUG-owl model to generate captions that align
with the video theme, reducing potential model bias to a certain extent. Furthermore, to extract
valuable information from the generated video captions, we utilize the ChatGPT model to refine and
enhance the textual description, thereby greatly improving the quality of the text. By incorporating
the above text components, multi-view textual descriptions provide a comprehensive and detailed
representation of the video content.

Infrared and depth modality generation In the field of depth and infrared, creating modal datasets
typically requires specialized equipment and human effort, resulting in limited data. Despite the
success of large-scale pretraining models (Radford et al., 2021; Wu* et al., 2023; Luo et al., 2022;
Chen et al., 2023b) in NLP and CV, there remains a lack of large-scale data in this field. To address
this challenge, we propose using advanced generative models specifically to construct a large-scale
dataset of depth and infrared. The sRGB-TIR model (Lee et al., 2023) is used for infrared modality
generation and the GLPN model (Kim et al., 2022) for depth modality generation, generating depth
and infrared from keyframes in our videos. While some limitations may exist, our collection of
millions of video frames and corresponding texts with highly diverse semantics can significantly
reduce the presence of model biases.
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5 EXPERIMENTS AND RESULTS

In this section, we evaluate the effectiveness of LanguageBind in various downstream tasks. Firstly,
LanguageBind’s capability to align video and text is assessed using zero-shot video-text retrieval.
Additionally, we use LanguageBind to enhance the performance of downstream tasks that involve
depth, infrared images, and audios. Finally, we conduct ablation experiments to analyze the impact
of different parameter configurations and text descriptions on LanguageBind’s performance.

5.1 ZERO-SHOT RETRIEVAL IN VIDEO-LANGUAGE

Comparison to prior methods In the zero-shot text to video retrieval benchmark, we utilize ViT-
L/14 as the video encoder and add temporal attention layers for fair comparison, which can be found
in Appendix B. According to the results presented in Table 2, the performance of LanguageBind ex-
ceeds that of VideoCoca (Yan et al., 2022) and OmniVL (Wang et al., 2022a) by 8.3% and 8.0%
respectively on MSR-VTT. In comparison to the ImageBind model utilizing the Vit-Huge architec-
ture, the LanguageBind model, employing the Vit-Large model, showcases superior experimental
outcomes. Furthermore, compared to models based on CLIP-Large but using more training data,
LanguageBind achieves superior performance on four datasets, outperforming InterVideo (Wang
et al., 2022c) by 1.9% on MSR-VTT, 8.8% on MSVD, 6.3% on DiDeMo, and 4.4% on ActivityNet.
We also exceed TVTSv2 (Zeng et al., 2023) by 4.4% and 3.2% on MSR-VTT and DiDeMo, respec-
tively. Moreover, we outperforms UMT-L Li et al. (2023b) on all datasets. For a fair comparison of
dataset validity, we use the Vit-B/32 model of CLIP4CLIP to conduct validation experiments using
the 100K subset of VIDAL-10M and the 380k subset of HowTo100M. As shown in Table2, the
VIDAL-100k outperforms the HT100M-380k on both MSRVTT and MSVD datasets, validating the
effectiveness of our dataset.

Table 2: Zero-shot text to video retrieval performance of LanguageBind across four datasets.

Method Dataset MSR-VTT MSVD DiDeMo ActivityNet
R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

Non-CLIP models
OmniVL 14M 34.6 58.4 66.6 - - - 33.3 58.7 68.5 - - -
VideoCoCa 100M 34.3 57.8 67.0 - - - - - - 34.5 63.2 76.6

CLIP-H/14
ImageBind - 36.8 61.8 70.0 - - - - - - - - -

CLIP-L/14
UMT 5M 33.3 58.1 66.7 44.4 73.3 82.4 34.0 60.4 68.7 31.9 69.2 72.0
TVTSv2 8.5M 38.2 62.4 73.2 - - - 34.6 61.9 71.5 - - -
InternVideo 12.8M 40.7 - - 43.4 - - 31.5 - - 30.7 - -
LanguageBind 3M 42.6 65.4 75.5 52.2 79.4 87.3 37.8 63.2 73.4 35.1 63.4 76.6

Table 3: Zero-shot text to video retrieval to verify the effectiveness of our dataset.

Dataset Method Parameter Source R@1↑ R@5↑ R@10↑ MR↓

MSR-VTT CLIP4Clip 86M WIT400M, HT100M-380k 32.0 57.0 66.9 4.0
CLIP4Clip 86M WIT400M, VIDAL-100k 35.7 60.8 71.5 3.0

MSVD CLIP4Clip 86M WIT400M, HT100M-380k 38.5 66.9 76.8 2.0
CLIP4Clip 86M WIT400M, VIDAL-100k 42.0 70.0 79.2 2.0

5.2 ZERO-SHOT IN MULTIPLE MODALITIES

Zero-shot X-Language classification We compare our model with the recent state-of-the-art multi-
modal pretraining models, OpenCLIP (Ilharco et al., 2021) and ImageBind (Girdhar et al., 2023)
on multi-modal understanding ability tasks in Table 4. For video zero-shot classification, we out-
perform ImageBind by 14.0% with a smaller model on Kinetics-400 (Kay et al., 2017), and we
also report the results of multi-view/crop (Simonyan & Zisserman, 2014) on OpenCLIP for further
comparison. For infrared, LanguageBind exhibits a noteworthy 23.8% performance advantage over
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ImageBind on the LLVIP and outperforms OpenCLIP on all three datasets (LLVIP, FLIR V1, and
V2). For depth images, our zero-shot results on NYU-D surpass ImageBind by a substantial margin
of 11.1% and outperform OpenCLIP by 19.7%. For audio, we outperform ImageBind by 10.1% on
Audioset dataset and 1.1% on VGGSound dataset. We outperform ImageBind by a large margin of
23.9% on the ESC-50 dataset.
Table 4: Zero-shot X-Language classification. We present the top-1 accuracy results for all
datasets, where AS-A represents Audioset Audio-only (Gemmeke et al., 2017).

Method Size Video Infrared Depth Audio
K400 K600 LLVIP FLIR V1 FLIR V2 NYU-D AS-A ESC-50 VGGS

ImageBind Huge 50.0 - 63.4 - - 54.0 17.6 66.9 27.8
OpenCLIP Large 60.7 59.0 82.2 81.2 42.6 45.4 - - -
LanguageBind Large 64.0 61.9 87.2 82.9 48.0 65.1 27.7 91.8 28.9

Table 5: Zero-shot Audio-Language retrieval

Method Clotho Audiocaps
R@1 R@10 R@1 R@10

AVFIC 3.0 17.5 8.7 37.7
ImageBind 6.0 28.4 9.3 42.3
VALOR 8.4 - - -
LanguageBind 12.1 44.0 12.2 53.2

Zero-shot Audio-Language retrieval We
compare zero-shot text-to-audio retrieval on
Clotho and Audiocaps datasets. LanguageBind
outperformes AVFIC (Nagrani et al., 2022) and
ImageBind by margins of 9.1% and 6.1% on
Clotho and by 2.9% and 5.5% on Audiocaps,
respectively. Moreover, LanguageBind sur-
passes the powerful baseline of VALOR (Chen
et al., 2023a) by 3.7% on the Clotho dataset.

Zeor-shot langauge-based multi-modal joint retrieval In Table 6, we conduct multi-modal joint
retrieval to explore the complementarity of joint space. We report the R@1 scores on MSR-VTT
and Place datasets, while reporting accuracy on other datasets. For MSR-VTT, we only evaluate
using videos that include audio. Integrating audio embeddings for video-language retrieval further
improves performance, increasing it from 41.4 to 42.0. Similar trends have been observed in other
modalities, where each modality has the potential to enhance the performance when combined with
other modalities. These results demonstrate that LanguageBind is capable of learning a more con-
sistent feature space.

Emergent zero-shot retrieval As shown in Table 7, we explore the zero-shot performance of emer-
gency coverage in four datasets, including RGB images, audio, infrared, and depth. Due to the
novelty of our approach, there are no ”fair” baseline models for comparison. Nonetheless, we com-
pare our results with ImageBind, which aligns with images directly. For example, we achieved R@1
scores of 10.6 and 10.0 on AVE (Tian et al., 2018) and VGGS, respectively. On each benchmark, the
performance of emergency zero-shot retrieval achieves significant gains, even approaching results
obtained by incorporating textual features. These results suggest that LanguageBind aligns various
modalities and implicitly transfers text supervision associated with specific modalities and tasks.

Table 6: Zeor-shot langauge-based multi-
modal joint retrieval. ∗ donates that it is not
clear whether only videos with audio are in-
cluded. † donates that dark nighttime images.

Dataset Method Task Top-1

MSR
ImageBind V→T 36.1∗

A+V→T 36.8 (+0.7)

Ours V→T 41.4
A+V→T 42.0 (+0.6)

NYU

ImageBind D→T 54.0

Ours
D→T 65.1
RGB→T 76.0
D+RGB→T 77.4 (+1.4)

LLVIP Ours RGB†→T 62.4
I+RGB†→T 79.3 (+16.9)

Table 7: Emergent zero-shot retrieval. † donates
that we randomly select 10% data to test.

Dataset Method Task Emergent R@1

AVE† Ours V→A ✔ 10.6
ImageBind ✗ 36.9

VGGS† Ours V→A ✔ 10.0
ImageBind ✗ 28.7

LLVIP† Ours

RGB→I ✔ 7.5
RGB+T→I ✗ 9.1

I→RGB ✔ 9.3
D+I→RGB ✗ 10.6

NYU Ours

RGB→D ✔ 17.9
RGB+T→D ✗ 18.3

D→RGB ✔ 24.5
D+T→RGB ✗ 25.7
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5.3 TRAINING LOSS AND ARCHITECTURE

Following ImageBind, we mainly focus on depth and infrared, which are visual and spatial
modality. We report R@1 score for Clotho and top-1 accuracy for others.

Training epochs. We conduct an experiment in Table 8a to study the effect of training
epochs which shows that the LoRA fine-tuning is highly effective. Although 3 epochs of training
regimen yield superior accuracy, we chose to optimize for a single epoch, achieving a balance
between performance and training cost.
Training batch size. In Table 8b, we evaluate the effect of batch size on representation learning.
The experiments have shown that a larger batch size is not necessarily better.
Training strategy. In Table 8c, we compare three different strategies. Training from scratch
exhibits the poorest performance, likely due to the lack of prior knowledge from CLIP pretraining.
On the other hand, full tuning shows significant improvement compared to training from scratch.
This highlights the positive impact of leveraging prior knowledge in the form of pre-trained weights.
Meanwhile, the LoRA method stands out for its advantages in terms of time and memory cost. It
requires less time and memory resources compared to full tuning. Furthermore, LoRA outperforms
full tuning on multiple datasets such as LLVIP, FLIRv1, and Clotho. This indicates that LoRA is
not only efficient but also effective in learning new knowledge specific to different domains while
better retaining the previously acquired knowledge from the pre-trained OpenCLIP models.
Rank of LoRA. As detailed in Table 8d. We observe that smaller rank values lead to more
significant performance improvements, whereas larger rank tends to decrease performance. This
trend may be attributed to the potential overfitting of the model.
Temperature for loss. As shown in Table 8e, we find that the learnable temperature initiated from
0.07 performs best, outperforming the fixed temperature strategy proposed by ImageBind.
Masked ratio. We explore the impact of different mask ratios in Table 8f. The results show
that a mask ratio of 0.5 demonstrates the highest performance, requiring only a quarter of the
computational resources, aligning with findings in FLIP (Li et al., 2023c).

Table 8: Training loss and architecture design decisions and their impact on zero-shot classifica-
tion. Settings for results in Section 5.2 highlighted in gray .

(a) Training epochs

Dataset 1 5

NYU-D 65.1 64.5
LLVIP 83.9 81.1
FLIR V1 82.9 85.0
FLIR V2 48.0 44.7

(b) Training batch size

Dataset 512 1k 2k

NYU-D 63.9 65.1 64.5
LLVIP 80.0 83.9 78.6
FLIR V1 81.6 82.9 85.2
FLIR V2 45.1 48.0 47.9

(c) Training strategy

Scratch Full tuning LoRA

Time 1.4h 1.4h 0.8h
Mems 278M 278M 132M
LLVIP 57.1 85.1 87.2
FLIR V1 74.7 81.3 81.6
ESC-50 86.8 88.9 87.4
Clotho 8.8 9.8 10.1

(d) Rank of LoRA

Dataset 2 4 8

NYU-D 65.1 64.4 64.7
LLVIP 83.9 78.0 -
FLIR V1 82.9 74.4 -
FLIR V2 48.0 45.8 -

(e) Temperature for loss

Dataset Learn 0.05 0.1

NYU-D 65.1 63.0 62.7
LLVIP 83.9 81.8 83.1
FLIR V1 82.9 83.3 80.3
FLIR V2 48.0 45.0 43.2

(f) Masked ratio

Dataset 0.0 0.3 0.5 0.7

NYU-D - 64.8 65.1 62.7
LLVIP 80.3 79.9 83.9 81.5
FLIR V1 83.5 84.2 82.9 81.9
FLIR V2 43.2 44.0 48.0 42.5

6 CONCLUSION

In this work, we propose the LanguageBind, a language-based semantic alignment method for multi-
modal pretraining. We employ contrastive learning to establish modality semantic alignment be-
tween the language modality and all other modalities. To improve modal integrity, we also construct
the first large-scale multi-modal dataset directly aligned to language modality, VIDAL-10M, com-
prising 10 million aligned VL, IL, DL, and AL pairs. Extensive experimental results, including
zero-shot X-language comprehension and indirect alignment between different modalities, demon-
strate the effectiveness of LanguageBind’s multimodal alignment and complementary capabilities,
as well as the effectiveness of VIDAL-10M.
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REPRODUCIBILITY STATEMENT

1. For LanguageBind approach details.

(a) We provide a comprehensive overview of the multi-modal encoder, detailing its archi-
tecture and functionality in Section 3.1.

(b) We outline the language encoder in Section 3.2.
(c) We expound on the methodologies employed for multi-modal joint learning in Sec-

tion 3.2

2. For VIDAL-10M dataset construction details.

(a) We describe the procedures employed to construct the search term database in Sec-
tion 4.1.

(b) We provide insights into the strategies used for collecting and filtering video and audio
data within VIDAL-10M in Section 4.2.

(c) We elaborate on the generation of infrared and depth data, as well as the processes
involved in multi-view text generation and enhancement in Section 4.3

(d) We promise to release the VIDAL-10M dataset upon publication.

3. For setting details.

(a) We describe in detail the training hyperparameters in Appendix B.
(b) We describe the setup of the downstream task dataset Appendix C.
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APPENDIX

A STATISTICS OF VIDAL-10M DATASET

Video Caption: This video describes a cute fennec fox 

with its distinctive ears laying on a pier, looking up at the 

camera and resting on its side. It emphasizes the importance

of fennec fox's large ears, which are not only for hearing, but 

also for maintaining a balance and keeping cool in the heat.

dog pet

Title: Fenech ears are needed not only to hear

Hashtags:

Video Caption: In the video, a massive 

fireball explodes into the sky during an 

industrial accident, creating a dramatic 

and powerful scene.

Fireball Sky

Title:  A fireball exploded in the sky.

Hashtags:hear Explosion

Video Caption:  A beach area in Kozh-

ikode, India is  shown with people enjoying 

rides on a ferris wheel and other attractions.

evening Ferris wheel

Title: Kozhikode beach area evening vibe.

Hashtags:

Video Caption: A cricket match where a young player 

is practicing his cover drive, a powerful shot where

the batsman swings the bat in a horizontal arc, hitting 

the ball with the bottom edge of the bat to score a 

boundary. 

Fireball Sky

Keyframe Captions: [‘a baseball player swinging a bat 

on a field.’, ……]

Hashtags: Explosion

Keyframe Captions: [‘a white fox with a red 

collar laying on a dock’, ……]
Keyframe Captions: [‘a large explosion in

a field with a road in the foreground’, ……]

Title: Baseball player unleashing powerful swings on the field.

Keyframe Captions: [ ‘a Ferris wheel at 

an amusement park’,  …… ]

Figure 5: Examples of video-audio-text-depth-infrared pairs in VIDAL-10M, with the text compo-
nents comprising hashtags, title, keyframe captions, and video caption. Examples are taken from 4
distinct clusters, corresponding to Sports, Pets & Animals, News & Politics, and Education.

In order to build a video dataset with rich visual concepts and diversity, we develop a unique but
simple search term acquisition strategy. This strategy involves obtaining search terms from various
visual datasets (as shown in Table 9). Subsequently, we use these search terms to gather videos from
the YouTube Shorts platform, which has become a popular source for video data due to its abundance
and diverse content. We collect videos in various categories, including sports, animals, nature, etc.,
resulting in a large and diverse dataset. Examples of video-audio-text-depth-infrared pairs in the
VIDAL-10M dataset are shown in Figure 5. Moreover, to ensure data quality, we manually design
a list of stop words that are filtered from our datasets. These words include terms such as ”bts”,
”bmw”, and ”nfl”, among others, that are not relevant to our research.

Video categories and duration Furthermore, we analyze the distribution of video categories with
varying durations in our datasets, as illustrated in Figure 6. The normal distribution pattern observed
in this analysis indicates that our dataset covers a wide range of concepts. Besides, we show the
proportions of each category across different duration grades in the VIDAL-10M dataset in Figure 7.

Table 9: Examples of textual descriptions from various datasets as search terms.

Dataset Search terms

YouTube-8M How to make a delicious chocolate cake.
Learn to dance salsa in 10 easy steps.
. . . . . .

Howto100M How to play chess.
How to make pizza.
. . . . . .

ImageNet lesser panda, red panda, panda, bear cat, cat bear, Ailurus fulgens, coon bear
killer whale, killer, grampus, sea wolf, Orcinus orca, giant panda, panda, panda bear
. . . . . .

COCO A small boat floating on a body of water with a city skyline in the background.
A man with a red helmet on a small moped on a dirt road.
. . . . . .

Others . . . . . .
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Table 10: Stop words in our datasets.

viral funny love fashion subscribe nature
asmr motivation fitness art satisfying foryou
music india fun bts amazing edit

life roblox vlog minecraft design marvel
explore dubai foryoupage comedy outfit ootd
share indian lol creative relaxing tattoo

random instagram quotes workout sad ideas
views bgmi yummy respect easy usa

ronaldo jawellery memes happy nfl song
mlb reel support nba wow status
gree meme gameplay top blackpink whatsappstatus

follow homedecor history tutorial bodybuilding japan
interiordesign freefire stunt foodie animation recipe

skills tips crazy pov editing aesthetic
style view london reaction story pubg

construction challenge healthy bmw uk free
hairstyle enjoy motivational messi capcut nailart

entertainment fifa attitude europe health geography
gta unboxing adventure whatsapp fail btsarny
god inspiration relatable comment tattoos fy
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photoshoot business photography ... ... ...

Figure 6: The number of 15 categories with different durations in our VIDAL-10M datasets. A wide
range of concepts are covered.
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Figure 7: The statistical distribution of categories across the three duration grades in the VIDAL-
10M dataset. The colors green, blue, and yellow represent video durations of 1-7, 8-14, and 15-20
s, respectively.

FPS, Aspect ratio and Resolution The first aspect examined in the dataset is the Frames Per
Second (FPS) of the videos. FPS refers to the number of frames or images displayed per second
in a video. The aspect ratio of a video represents the proportional relationship between its width
and height dimensions. It is a critical factor in determining the visual presentation and viewing
experience of the videos. The distribution of FPS and aspect ratios in Figure 8 provides insights
into the smoothness and fluidity of the recorded content and sheds light on the various formats and
orientations used. Video resolution refers to the number of pixels in each dimension that a video
contains. It directly affects the clarity, sharpness, and level of detail in the visual content. Examining
the distribution of resolutions (Figure 9) in the dataset provides an understanding of the available
video quality and the technological capabilities of the recorded material.
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Figure 8: The distribution of FPS (Frames Per Second) and aspect ratio in the videos of the VIDAL-
10M dataset.
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Figure 9: Height and width distribution of videos in VIDAL-10M dataset.

Language Generation and Enhancement

Title Polish shoes handmade crocodile leather shoes Goodyear 
welted shoes

Hashtags #crocodileleather

Prompt The title is “{}” and the hashtags are “{}”, combine 
with the title and hashtags to summarize a sentence to describe the 
video. The weights of title and hashtags are equaled. 

ChatGPT-mPLUG caption
In the video, a man is using a 
specialized tool to polish handcrafted 
crocodile leather shoes made with 
the Goodyear welted leather 
technique. He is meticulously 
working on the shoes to achieve a 
high-quality finish.

Video 

mPLUG-owl

ChatGPT
OFA captions
1. a person holding a yellow shoe on top of a table.

8. a young boy is looking at a yellow shoe.

mPLUG caption 
This video describes a man polishing 
handmade crocodile leather shoes 
using a specialized tool. The shoes 
are made of Goodyear welted 
leather, a technique that involves 
stitching the sole onto the upper 
part of the shoe. The man is carefully 
working on the shoes, ensuring they 
are polished to a high-quality finish.

……..              ……..

Figure 10: Multi-view text generation and enhancement pipline. We employ the OFA model to
generate keyframe captions and input video, title and hashtags into the mPLUG-owl model to obtain
video captions. The video captions are further refined using ChatGPT, resulting in the ChatGPT-
mPLUG caption. The final multi-view textual description comprises these components.

B PRETRAINING DETAILS

In this section, we introduce our training configuration.

Video-Language. For the video-text retrieval based CLIP4Clip, we verify that the VIDAL-10M
dataset is highly aligned. We adopted the training framework of CLIP4Clip, and the model is ini-
tialized from ViT-B/32, and the rest of the parameters are the same as the default settings, except for
1 epoch and batch size of 512. For the video-text retrieval based LanguageBind, we add a temporal
attention before each spatial attention following Aim (Yang et al., 2023). The temporal attention is
initialized from the spatial attention and LoRA is applied only to the temporal attention. We add tem-
poral position embedding before each temporal attention. We show the details of results as shown
in Table 11. For zero-shot video classification, The text templates are sourced from OpenCLIP, with
a modification consisting of the substitution of “photo” with “video” across all templates.

Depth-Language. The model is initialized from OpenCLIP with a frozen language encoder. For
each individual sample, we employ a random selection approach to extract either a depth image
from the video sequence. Subsequently, we resize these frames to have a short edge length of 256
units, followed by a central cropping process to attain dimensions of 224×224. Additionally, we
tripled the number of channels in both the depth image. The text templates employed for zero-
shot classification are sourced from OpenCLIP, with a modification consisting of the substitution of
“photo” with “depth photo” across all templates. This alteration yields an approximate performance
gain of 1%.

18



Published as a conference paper at ICLR 2024

Table 11: Zero-shot Video-Text Retrieval Performance based LanguageBind. We show the
details of results.

Text-to-Video Video-to-Text
Dataset R@1↑ R@5↑ R@10↑ MR↓ R@1↑ R@5↑ R@10↑ MR↓

MSR-VTT 42.6 65.4 75.5 2.0 37.9 63.1 73.3 3.0
MSVD 52.2 79.4 87.3 1.0 68.4 91.7 96.4 1.0

ActivityNet 35.1 63.4 76.6 3.0 32.3 62.2 74.5 3.0
DiDeMo 37.8 63.2 73.4 3.0 37.6 63.7 73.3 3.0

Infrared-Language. Following depth-language, it is worth noting that the text templates corre-
sponding to infrared images retain the “photo” designation, as no discernible performance improve-
ment is observed from this particular modification.

Audio-Language. The data are preprocessed as in 3.1. Unlike depth and infrared, spectrograms
differ much from the domain of conventional visual images. Therefore, it is not easy to overfit
during training, so we increase the training epoch and the rank of LoRA. Additionally, we replace
“the/a photo of” with “the/a sound of” across all templates for audio zero-shot classification.

Table 12: Training setting.

CLIP4Clip LanguageBind

Config Video Video Infrared Depth Audio

Vision encoder ViT-Base/32 ViT-Large/14
Optimizer BertAdam AdamW
Optimizer Momentum β1, β2 = 0.9, 0.98 β1, β2 = 0.9, 0.98
Epochs 1 16 1 1 8
Learning rate 1e-4 1e-4 1e-4 5e-4 5e-4
Coefficient learning rate 1e-3 1 1e-3 1e-3 1e-3
Weight decay 0.2 0.2
Batch size 512 640 1024 1024 512
Warmup steps 0 2000 200 200 2000
Temperature learnable learnable
Learning rate schedule cosine decay cosine decay
Max words 32 77
Max frames 12 8 - - -
Mask ratio - 0.3 0.5 0.5 0.3
LoRA rank - 16 2 2 16
LoRA alpha - 16
LoRA dropout - 0.0 0.1 0.1 0.1

C DOWNSTREAM DATASETS

Video-language. We perform video-text retrieval experiments on 2 datasets. (a) MSR-VTT (Xu
et al., 2016) comprises 10K YouTube videos, each paired by 200K captions. In our analysis, we
present results based on the 1K-A test subset. (b) MSVD (Chen & Dolan, 2011) consists of about
120K sentences and reports results on test data (670 samples).

Infrared-language. (a) LLVIP (Jia et al., 2021) constitutes a dataset for pedestrian object detec-
tion within the infrared spectrum. Following ImageBind, we extracted all people from the images,
designating all other objects as background elements. This process resulted in a dataset comprising
7,622 ‘background’ classes and 7,954 ‘person’ classes, which was subsequently employed for bi-
nary classification testing. (b) FLIR v1 (Teledyne FLIR, 2015a) offers comprehensive annotations
for both thermal and visible spectrum frames. From the test data, we derived a dataset containing
11,696 images by extracting bounding boxes. This dataset encompasses 4 categories – [’bicycle’,
’car’, ’dog’, ’person’]. (c) FLIR v2 (Teledyne FLIR, 2015b) includes 16,696 images after pro-
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cessing similarly, which were categorized into 12 classes – [’bike’, ’bus’, ’car’, ’hydrant’, ’light’,
’motor’, ’other vehicle’, ’person’, ’sign’, ’skateboard’, ’stroller’, ’truck’].

Depth-language. We use NYU-v2 Depth-only (NYU-D) (Silberman et al., 2012) to validate by
654 test samples. Through preprocessing, we constrained the depth images to a maximum depth of
10 meters. Following ImageBind, we undertook a category reorganization process, resulting in a
total of 10 scene categories.

Audio-language. We validate the zero-shot classification capability with the ESC-50 (Piczak,
2015) dataset, which has 2000 test audios, each uniquely labelled. For zero-shot retrieval, we use the
Clotho (Font et al., 2013) dataset. Each audio has 5 corresponding captions, so we use text-to-audio
retrieval to validate the model performance. We perpare test data following ImageBind.

D LICENSE

Unless explicitly noted otherwise, our released datasets are provided to users under the terms of the
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International Public License (”CC
BY-NC-SA 4.0”), in conjunction with the additional terms outlined herein. The CC BY-NC-SA 4.0
license can be accessed at https://creativecommons.org/licenses/by-nc-sa/4.
0/legalcode. By downloading or utilizing our datasets from our website or other sources, you
agree to adhere to the terms of CC BY-NC-SA 4.0, as well as the terms outlined in our dataset Terms.
In the event of any conflict between the terms of CC BY-NC-SA 4.0 and our dataset Terms, the latter
shall prevail. We once again emphasize that this dataset is exclusively intended for non-commercial
purposes, such as academic research, teaching, or scientific publications. We strictly prohibit any
commercial use of the dataset or any derived works, including the sale of data or utilization of data
for commercial gain.

E ABLATION STUDY

In this section, we conduct extensive experiments to investigate the impact of several factors. At first,
we examine the effects of different enhanced textual inputs on downstream tasks. Furthermore, we
assess the impact of data volumes on pretraining. In addition, we explore various training strategies
to enhance zero-shot classification. Finally, we conduct a meticulous analysis of model training
configurations to ensure robust transferability.

Table 13: Impact of different text sources. We report the results of text-to-video R@1 for zero-
shot retrieval and other datasets report top-1 accuracy. MSR-VTT results were tested on a 500K
subset of VIDAL-10M. “Raw caption” denotes the title & hashtags.

Modality Dataset Raw caption OFA caption mPLUG caption ChatGPT-mPLUG caption

Video MSR-VTT 33.5 34.5 35.8 36.4

Infrared
LLVIP 83.9 87.2 84.6 84.8

FLIR V1 82.9 80.6 81.4 81.6
FLIR V2 48.0 45.7 46.8 46.6

Depth NYU-D 61.5 62.1 63.9 65.1

E.1 IMPACT OF DIFFERENT TEXT SOURCES

In Table 13, we conduct various experiments to explore how different text sources impact language
modality. We verify the effectiveness of LanguageBind, trained with text from multiple sources,
across various modalities. While some text sources yield good results, we discover that a single text
source may not be universally suitable for all downstream tasks and datasets. In terms of video and
depth modalities, the ChatGPT enhanced caption proves to be advantageous. For infrared images,
the OFA performs best in the LLVIP dataset, while the raw caption achieves the highest accuracy
in FLIR v1 and v2. That’s why our VIDAL-10M provides multi-view textual descriptions, allowing
for flexibility in selecting an appropriate text source that caters to diverse task requirements.
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E.2 SCALING THE SIZE OF DATASET
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Figure 11: Scaling pretraining data size.

We analyze the impact of different data amounts on MSR-
VTT and report the R@1 score for zero-shot retrieval as
shown in Figure 11. Our findings indicate that an increase
in data amount leads to significant improvement in recog-
nition performance. Specifically, the performance of 3M
ChatGPT-enhanced text surpasses that of 500k and 100k
data by 0.9% and 1.6%, respectively.

Furthermore, the trends observed in both video-to-text
retrieval and text-to-video retrieval consistently demon-
strate that the interaction between modalities plays a piv-
otal role in enhancing the learning process. Consequently,
with the expansion of data size, the textual descriptions
within the VIDAL-10M dataset align more closely with the video content and demonstrate increased
scalability.
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