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ABSTRACT

Silicon-based integrated circuits (ICs) and electronic devices are used in every
possible electronic device, including high-performance computers fabricated from
silicon wafers. Hence, ensuring the quality and reliability of silicon components
is of utmost importance. This work focuses on developing and implementing
computer vision and deep learning algorithms to detect defects in semiconductor
manufacturing ICs, contributing to higher yields and reduced production costs.

1 INTRODUCTION

Semiconductor defects occur during the fabrication process of silicon wafers, and accurately classi-
fying these defects is crucial for fabrication engineers. Moreover, manual classification is laborious
and challenging, as shown in Figure 1. Recently, several research works have explored the potential
of convolutional neural networks (CNNs) Ishida et al. (2019); Shinde et al. (2022) for semicon-
ductor wafer defect classification using scanning electron microscopes (SEMs). Further, Piao et al.
(2018); Saqlain et al. (2019) proposed ensemble classifiers based on improved defect detection per-
formance. One significant drawback of the datasets capturing silicon wafer defects is that a few
defects are more frequent as compared to others and hence lead to biased learning. The above limi-
tation is visible in the performance of the existing algorithms, which fail to handle minority classes
and, hence, lack generalizability. The proposed research addresses these issues by training noise
augmentation to improve the generalizability of the feature space. Further, we have developed a
custom CNN model by considering the computational cost of edge devices and comparing it with
the existing state-of-the-art (SOTA) methods to demonstrate the efficacy of the proposed algorithm.

2 PROPOSED ALGORITHM

The proposed algorithm consists of two steps: (i) In the first step, we applied the autoencoder to
generate the novel samples to upsample the minority classes and applied the noise layer to ensure
that the generated samples are distinctive. This augmentation process yields a total of 39, 023 data
points, ensuring a balanced distribution of classes. (ii) In the second stage, we have proposed a novel
CNN to perform wafer defect classification. The parameters for training and the model architecture
of both the autoencoder and the CNN are reported in Appendix A and Table 2, respectively.

Figure 1: Sample examples of semiconductor wafer failure types in the WM-811k dataset.

3 DATASET

In this research, we have performed a 9 class classification to classify silicon wafers into defect and
non-defect classes. For that, a benchmark dataset namely WM-811K Wu et al. (2014) containing
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Figure 2: Comparison of the proposed wafer defect detector with the benchmark CNNs and SOTAs.

Table 1: Confusion matrix of the proposed algorithm reflecting the potential for detecting different
defect classes.

True ↓
Predicted → Center Donut Edge-Loc Edge-Ring Loc Random Scratch Near-Full None

Center 936 0 0 0 2 0 1 0 2
Donut 0 923 0 0 0 0 0 0 0
Edge-Loc 0 0 1058 8 2 0 4 0 3
Edge-Ring 0 0 2 924 0 0 0 0 2
Loc 8 0 11 0 1009 0 1 3 16
Random 0 0 0 0 0 911 2 0 0
Scratch 0 0 0 0 2 0 912 0 0
Near-Full 0 0 0 0 1 0 0 599 11
None 1 0 1 0 9 0 0 6 730

811, 457 wafer maps of eight defect classes (Center: 4294; Donut: 555; Edge-Loc: 5189; Edge-
Ring: 9688; Loc: 3593; Random: 866; Scratch: 1193; Near-Full: 149) collected from 46, 393 lots
in real-world fabrication has been used. No defect class referred to as ‘none’ contains 13489 images.

4 EXPERIMENTAL RESULTS AND ANALYSIS

To perform the extensive set of comparisons, in addition to our proposed custom CNN, we have
trained the AlexNet Krizhevsky et al. (2012) and the DenseNet121 Huang et al. (2017) models
for wafer defect classification. Further, we compare the performance of the proposed algorithm
with several existing SOTAs, such as [1] Baly & Hajj (2012), Fisher-discriminant-based Joint Local
and Nonlocal Linear Discriminant Analysis (JLNDA-FD) Yu & Lu (2016), Generative Adversarial
Network (GAN) Ji & Lee (2020), Voting Ensemble Classifier (VEC) Saqlain et al. (2019), CNN
Cheon et al. (2019), decision tree (DT) Piao et al. (2018), Deep CNN (DCNN) Chien et al. (2020),
and YOLO-v4 Shinde et al. (2022).

The results of the proposed and existing SOTA CNNs, such as AlexNet and DenseNet, are reported
using accuracy and the F-1 score to avoid any possible bias. The comparative results of the proposed
algorithm with CNNs in terms of F-1 score are showcased in Figure 2 (left). The comparison
reflects the exciting fact that the proposed algorithm surpasses both shallow (AlexNet) and deeper
(DenseNet) models. Similarly, as shown in Figure 2 (right), the proposed cost-effective algorithm
shows its effectiveness by surpassing each of the existing SOTA algorithms by a significant margin.
Figure 1 visually showcases that it is hard to manually detect defects due to low inter-class and high
intra-class variation; however, the confusion matrix reported in Table 1 shows that the proposed
algorithm is effective and unbiased in detecting different defect classes, including none.

5 CONCLUSION

Once the product is developed, identification of any fault can lead to not only the waste of human re-
sources but also monetary losses; therefore, it is critical to detect the wafer defects in the early stages.
Low inter-class variations, manual classification, and the ineffectiveness of the existing algorithms
demand an effective and unbiased algorithm. In this research, we have proposed a robust and gen-
eralized wafer detection algorithm that surpasses existing algorithms and yields low computational
costs to be deployed on edge devices.

2



Published as a Tiny Paper at ICLR 2024

URM STATEMENT

The authors acknowledge that the key author of this work meets the URM criteria of the ICLR 2024
Tiny Papers Track.

REFERENCES

Ramy Baly and Hazem Hajj. Wafer classification using support vector machines. IEEE Transactions
on Semiconductor Manufacturing, 25(3):373–383, 2012. doi: 10.1109/TSM.2012.2196058.

Sejune Cheon, Hankang Lee, Chang Ouk Kim, and Seok Hyung Lee. Convolutional neural network
for wafer surface defect classification and the detection of unknown defect class. IEEE Trans-
actions on Semiconductor Manufacturing, 32(2):163–170, may 2019. doi: 10.1109/tsm.2019.
2902657.

Jong-Chih Chien, Ming-Tao Wu, and Jiann-Der Lee. Inspection and classification of semiconductor
wafer surface defects using cnn deep learning networks. Applied Sciences, 10(15):5340, 2020.
doi: https://doi.org/10.3390/app10155340.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q. Weinberger. Densely connected
convolutional networks. In 2017 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 2261–2269, 2017. doi: 10.1109/CVPR.2017.243.

Tsutomu Ishida, Izumi Nitta, Daisuke Fukuda, and Yuzi Kanazawa. Deep learning-based wafer-map
failure pattern recognition framework. In 20th International Symposium on Quality Electronic
Design (ISQED), pp. 291–297, 2019. doi: 10.1109/ISQED.2019.8697407.

YongSung Ji and Jee-Hyong Lee. Using gan to improve cnn performance of wafer map defect
type classification : Yield enhancement. In 2020 31st Annual SEMI Advanced Semiconductor
Manufacturing Conference (ASMC), pp. 1–6, 2020. doi: 10.1109/ASMC49169.2020.9185193.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep con-
volutional neural networks. In F. Pereira, C.J. Burges, L. Bottou, and K.Q. Weinberger (eds.),
Advances in Neural Information Processing Systems, volume 25. Curran Associates, Inc., 2012.

Minghao Piao, Cheng Hao Jin, Jong Yun Lee, and Jeong-Yong Byun. Decision tree ensemble-based
wafer map failure pattern recognition based on radon transform-based features. IEEE Transac-
tions on Semiconductor Manufacturing, 31(2):250–257, 2018. doi: 10.1109/TSM.2018.2806931.

Muhammad Saqlain, Bilguun Jargalsaikhan, and Jong Yun Lee. A voting ensemble classifier for
wafer map defect patterns identification in semiconductor manufacturing. IEEE Transactions on
Semiconductor Manufacturing, 32(2):171–182, 2019. doi: 10.1109/TSM.2019.2904306.

Prashant P. Shinde, Priyadarshini P. Pai, and Shashishekar P. Adiga. Wafer defect localization and
classification using deep learning techniques. IEEE Access, 10:39969–39974, 2022. doi: 10.
1109/access.2022.3166512.

Ming-Ju Wu, Jyh-Shing R Jang, and Jui-Long Chen. Wafer map failure pattern recognition and
similarity ranking for large-scale data sets. IEEE Transactions on Semiconductor Manufacturing,
28(1):1–12, 2014.

Jianbo Yu and Xiaolei Lu. Wafer map defect detection and recognition using joint local and nonlocal
linear discriminant analysis. IEEE Transactions on Semiconductor Manufacturing, 29(1):33–43,
2016. doi: 10.1109/TSM.2015.2497264.

A IMPLEMENTATION DETAILS

We train the autoencoder using the Adam optimizer with minimization of the MSE loss. Further,
the initial learning rate of the proposed CNN is set to 0.01 with an adaptive decay rate at the plateau
of the categorical cross-entropy loss. The dataset is split into a training set comprising 70% and a
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testing set comprising the remaining 30% data points. A 3-fold cross-validation approach is imple-
mented, incorporating random data shuffling to mitigate any potential biases introduced during the
training process. The batch size, optimizer, and epochs used for training are 1024, Adam, and 45,
respectively. The configuration of both architectures used in the development of silicon wafer defect
detection is shown in Table 2. AlexNet and DenseNet are trained from scratch using the same con-
figuration used in the case of the proposed CNN model using 100 and 50 as the number of epochs,
respectively.

Table 2: Configuration of the autoencoder and the proposed CNN

Model Configuration

Autoencoder

Conv(3× 3× 64), ReLU,
Conv(3× 3× 128), ReLU,
Conv(3× 3× 256), ReLU,

MaxPool(3× 3),
ConvTranspose(3× 3× 128), ReLU,
ConvTranspose(3× 3× 64), ReLU,

UpSampling(3× 3), ConvTranspose(3× 3× 3), sigmoid

Proposed CNN

Conv(3× 3× 16), ReLU,
Conv(3× 3× 64), ReLU,

Conv(3× 3× 128), ReLU,
Conv(3× 3× 256), ReLU,

Flatten,
FullyConnected(512),
FullyConnected(128),

FullyConnected(9), SoftMax

B FIGURES

Figure 3: Correctly and incorrectly classified samples for some classes.

In the above figure, we show the correctly classified samples in the first row with their respective
classes and the incorrectly classified samples in the second row along with the class in which they are
misclassified. For classes with no misclassified points, the samples from other classes are included
below, depending on their frequency of misclassification. It is evident from the figure mentioned
above that misclassified samples exhibit properties characteristic of both the actual class and the
misclassified class. Consequently, instances may be misclassified due to the overlapping character-
istics shared between the actual and misclassified classes. In addition, there may be instances where
the wafer map corresponds to a class that has not been explicitly labeled yet or does not strictly
classify to one of the existing classes. As we have confined the training process to the provided
labels, misclassifications can occur when encountering unclassified classes.
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Table 3: Comparison of class-wise F1-scores of the proposed algorithm with SOTAs.

Classes AlexNet Saqlain et al. (2019) DenseNet Shinde et al. (2022) Proposed
Center 98.9 89.8 94.3 98.0 99.3
Donut 100.0 86.0 99.4 96.0 100.0
Edge-Ring 97.2 96.3 99.2 99.0 98.6
Near-Full 100.0 96.5 100.0 100.0 99.3
Random 98.0 92.4 98.9 94.0 97.3
Edge-Local 92.7 79.9 93.0 95.0 99.9
Scratch 96.1 53.3 96.1 93.0 99.4
Local 94.7 67.0 93.6 93.0 98.3
None 94.9 98.8 96.2 97.0 99.6
Overall 97.0 96.8 96.5 95.7 98.8

C ABLATION STUDY: CLASSWISE PERFORMANCE COMPARISON

To quantify our observations, we have compared the F1 scores of the proposed algorithm of each
class with the SOTAs. From the results reported in Table 3, it is observed that while the existing
works are found highly effective in detecting a few classes, their performances are not consistent
across the classes. For example, the algorithm by Shinde et al. (2022) has achieved 100% perfor-
mance on Near-full classes but shows significantly lower accuracies on multiple classes such as
scratch and local. The proposed not only outperforms the existing work in terms of overall perfor-
mance but yields consistent results across the classes reflecting lower signs of biasness towards any
particular class.

D ABBREVIATIONS

IC Integrated Circuits
SEM Scanning Electron Microscope
CNN Convolutional Neural Network
DCNN Deep Convolutional Neural Network
ADC Automatic Defect Classification
ANN Artificial Neural Network
VGG Visual Geometry Group Net
YOLO You only look once
ReLU Rectified Linear Unit
CBAM Convolutional Block Attention Module
JLNDA-FD Fisher-discriminant-based Joint Local and Nonlocal Linear Discriminant Analysis
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