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ABSTRACT

Label imbalance and homophily-heterophily mixture are the fundamental problems
encountered when applying Graph Neural Networks (GNNs) to Graph Fraud De-
tection (GFD) tasks. Existing GNN-based GFD models are designed to augment
graph structure to accommodate the inductive bias of GNNs towards homophily,
by excluding heterophilic neighbors during message passing. In our work, we
argue that the key to applying GNNs for GFD is not to exclude but to distin-
guish neighbors with different labels. Grounded in this perspective, we introduce
Partitioning Message Passing (PMP), an intuitive yet effective message passing
paradigm expressly crafted for GFD. Specifically, in the neighbor aggregation
stage of PMP, neighbors with different classes are aggregated with distinct node-
specific aggregation functions. By this means, the center node can adaptively adjust
the information aggregated from its heterophilic and homophilic neighbors, thus
avoiding the model gradient being dominated by benign nodes which occupy the
majority of the population. We theoretically establish a connection between the
spatial formulation of PMP and spectral analysis to characterize that PMP operates
an adaptive node-specific spectral graph filter, which demonstrates the capability
of PMP to handle heterophily-homophily mixed graphs. Extensive experimental
results show that PMP can significantly boost the performance on GFD tasks. Our
code is available at https://github.com/Xtra-Computing/PMP.

1 INTRODUCTION
With the explosive growth of online information, fraudulent activities have significantly increased
in financial networks (Ngai et al., 2011; Lin et al., 2021), social media (Deng et al., 2022), review
networks (Rayana & Akoglu, 2015), and academic networks (Cho et al., 2021), making the detection
of such activities an area of paramount importance. To fully exploit the rich graph structures contained
in fraud graphs, recent studies have increasingly adopted Graph Neural Networks (GNNs) (Wu et al.,
2020) to Graph Fraud Detection (GFD).

Applying message passing GNNs (Gilmer et al., 2017) in GFD encounters two significant challenges:
label imbalance (Liu et al., 2023) and a mixture of heterophily and homophily (Gao et al., 2023a).
Network attackers often employ sophisticated tactics to mimic regular network patterns, by strategi-
cally injecting a limited number of fraud nodes in the main contexts of the target graph to hide their
fraudulent activities. The label imbalance problem causes the GNN to primarily capture the patterns
and characteristics of benign nodes, compromising their ability to accurately identify fraudulent ones.
Additionally, the heterophily-homophily mixture violates the homophily (Zhu et al., 2020) inductive
bias of GNNs, as fraud nodes are often strategically placed within benign communities to exhibit
heterophily, while the context around benign nodes exhibits homophily. Therefore, it is pivotal to
develop GNNs that can navigate these challenges adeptly.

To alleviate these issues, several methods have been proposed from a spatial perspective to diminish
the impact of heterophilic neighbors during the aggregation process. These strategies commonly
involve utilizing a trainable approach or predetermining a mechanism to resample neighbors (Dou
et al., 2020; Liu et al., 2021c; 2020) or reweight edges (Wang et al., 2019; Cui et al., 2020; Shi et al.,
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(a) Generic message passing. (b) Partitioning message passing.

Figure 1: Comparison between generic message passing GNN and partitioning message passing
GNN. Red, blue and grey mean fraud, benign and unlabeled nodes, respectively.

2022; Liu et al., 2021a). From a spectral view, GHRN (Gao et al., 2023a) shows using a high-pass
filter helps identify heterophilic neighbors, pruning inter-class edges to highlight the high frequencies
of the graph. BWGNN (Tang et al., 2022) reveals the ‘right-shift’ phenomenon of spectral energy
and suggests a Beta wavelet-based band-pass graph filter.

However, from the spatial perspective, augmenting the graph structure to exclude heterophilic
neighbors during message passing to accommodate the inductive bias of GNNs is non-trivial for two
reasons. Firstly, semi-supervised GFD usually makes pruning or reweighting of unlabeled neighbors
based on predicted logits unreliable (Gao et al., 2023c). In other words, the edge weight or pruning
probability depends on the similarity of the predicted representations between nodes, therefore any
prediction error may accumulate and impact the final result. Secondly, these methods face scalability
issues on large-scale graphs. On the other hand, spectral-based models can keep the graph fixed and
learn the spectral graph filter beyond low-pass (Bo et al., 2021; He et al., 2021; Tang et al., 2022;
Gao et al., 2023c), which demonstrate efficacy in addressing heterophily. However, these models
usually struggle with label imbalance due to shared parameters and require the entire graph input,
hindering the mini-batch training.

In this paper, we argue that complicated trainable or predetermined strategies for excluding het-
erophilic neighbors are unnecessary. Instead, the key of applying GNNs on fraud graphs is to
distinguish neighbors during the message passing process, rather than exclusion. A powerful model
should inherently have the capacity to adaptively modulate the information derived from both ho-
mophilic and heterophilic neighbors.

Based on this insight, we propose an intuitive yet effective message passing paradigm named
Partitioning Message Passing (PMP). At the neighbor aggregation stage of PMP, we employ distinct
aggregation functions to independently handle homophilic and heterophilic neighbors. It ensures that
parameter sharing is confined to nodes within the same class, thereby preventing the gradients from
being dominated by the majority class nodes. For neighbors with unknown classes, we configure
their aggregation function to be a flexible composite of the aggregation functions used for labeled
neighbors, where the combination weight is derived from an adaptable scalar function unique to
the center node. Besides, since the fraud graph is homophily-heterophily mixed, the amount of
information that different nodes obtain from homophilic neighbors and heterophilic neighbors should
also be adaptively adjusted according to the node. To achieve it, we treat the parameter matrices of
aggregation functions as the output of weight generators with respect to the center node. By this
means, each node can adaptively adjust the influence from different classes of neighbors without
additional parameters. Moreover, our theoretical analysis for PMP bridges the gap between the
spatial form of the model and the spectral explanation, which proves that PMP can be interpreted
as a node-specific spectral convolution, i.e., each node has its own spectral graph filter. It shows
that our model is more suitable for graphs with homophilic and heterophilic mixtures because the
uniform graph filter can not balance both aspects. Extensive experiments on four benchmark datasets
demonstrate the effectiveness of PMP.

2 BACKGROUND AND MOTIVATION

2.1 BACKGROUND

Notations. A multi-relational attributed fraud graph is denoted as G = (V, {Er}Rr=1,X,Y), where
V = {v1, · · · , vN} represents the node set with N nodes, Er represents the edge set under the
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r-relation, and R is the total number of relations. Thus, G can be seen as a combination of r separate
single-relational graphs, each of which is characterized by an adjacency matrix Ar ∈ RN×N derived
from its corresponding edge set Er, i.e., if an edge eij ∈ Er, Ar,ij = 1; otherwise Ar,ij = 0.
X ∈ RN×d is a node feature matrix, wherein the i-th row xi is the feature vector of vi. Y represents
the set of labels, where each node vi is assigned a binary label yi ∈ Y , i.e., yi = 1 denotes fraud node,
and 0 denotes benign node. Due to the label imbalance nature in fraud graphs, the quantity of benign
nodes (the majority class) substantially outweighs that of the fraud ones (the minority class). For a
node vi and its neighbor vj , if yi = yj , vj is a homophilic neighbor; otherwise, it is heterophilic.

Graph Neural Networks. In a typical GNN, the l-th message passing layer for a node vi operates
by iteratively aggregating data from its immediate neighbors, and then combining the aggregated
messages with its own node representation (Gilmer et al., 2017):

h
(l)
i = Comb(l−1)

(
f
(l−1)
self

(
h
(l−1)
i

)
, f (l−1)

agg

({
h
(l−1)
j |vj ∈ N (vi)

}))
, (1)

where h
(l)
i is the l-th layer hidden representation of vi, Comb(·) is a combination function, fself(·)

is a function on the center node, fagg(·) is permutation invariant neighbor aggregation function,
and N (vi) is the neighbor set of vi. fagg(·) typically encompasses two essential components:
feature transformation and message fusion. Existing GNNs have primarily focused on elaborating
on message fusion functions based on Laplacian (Kipf & Welling, 2017; Defferrard et al., 2016),
diffusion (Gasteiger et al., 2019a;b; Chien et al., 2021), attention (Veličković et al., 2018), or a
combination of multiple aggregators (Corso et al., 2020). However, these methods adopt simple linear
feature transformations by employing weight matrices shared across all neighbors. This can lead to a
learning process that is biased by the potential label imbalance. The backpropagation of gradients,
which aims to minimize the overall loss, tends to be dominated by the majority class neighbors.
This limits the ability of the model to learn from the minority class effectively. If the center node
belongs to a minority class, the graph embodies heterophily. Such interplay of heterophily and label
imbalance in fraud graphs provides a unique challenge for GNNs.

Related Work. (1) Label Imbalanced Learning on Graphs. GNNs are known to be sensitive to
label imbalance (Liu et al., 2023). Currently, several studies have proposed different strategies to
address this challenge, such as by implementing adversarial constraints (Shi et al., 2020), generating
minority instances using techniques like GAN (Qu et al., 2021) or SMOTE (Zhao et al., 2021), and
modifying the degree of imbalance compensation (Song et al., 2022). Despite their effectiveness,
their success heavily relies on augmenting graph structure to balance the label distribution, which can
hardly be adaptive to fraud detection tasks on large-scale graphs. (2) Graph Heterophily Learning.
Heterophily has emerged as a significant concern for GNNs. This issue was initially highlighted
by Pei et al. (2020). Separating ego- and neighbor-embeddings (Zhu et al., 2020; Platonov et al., 2023;
Hamilton et al., 2017) proves to be an effective technique for learning on heterophilic graphs. Given
that nodes sharing the same class are distantly placed within heterophilic graphs, several approaches
aim to extend the local neighbors to non-local ones by integrating multiple layers (Chien et al., 2021;
Abu-El-Haija et al., 2019), and identifying potential neighbors through attention mechanisms (Liu
et al., 2021b; Yang et al., 2022b) or similarity measures (Zhuo & Tan, 2022; Jin et al., 2021). Spectral-
based methods (Luan et al., 2021) overcome this challenge by introducing additional graph filters and
mixture strategy, which aims to adaptively integrate information by emphasizing certain frequencies.
This approach shares a similar goal with our work. We discuss in detail how our model relates to
this method in Appendix C. (3) GNN-based Fraud Detection. GNNs have been leveraged to detect
fraudulent activities in financial services (Rao et al., 2022; Xu et al., 2021; Lin et al., 2021; Chen
et al., 2024), telecommunications (Nabeel et al., 2021), social networks (Deng et al., 2022), and
healthcare (Cui et al., 2020). CARE-GNN (Dou et al., 2020) employs a label-aware similarity measure
to identify informative neighbors and leverages reinforcement learning to selectively integrate similar
neighbors. PC-GNN (Liu et al., 2021c) utilizes label-balanced samplers for sub-graph training.
Spectral-based methods (Tang et al., 2022; Gao et al., 2023c) conduct spectral analysis on fraud
graphs, designing band-pass or high-pass graph filters specifically tailored to detect fraud nodes.
GAGA (Wang et al., 2023) groups neighbors by augmenting neighbor features with their labels
explicitly and treating unlabeled neighbors as a new class.
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2.2 MOTIVATION ANALYSIS

To probe the reasons why message passing based GNNs experience shortcomings in fraud detection
tasks, our investigation is conducted through an analysis of the mutual influence between nodes
resulting from the message passing process. Inspired by (Xu et al., 2018; Zhang et al., 2021), the
influence of node vj on the center node vi can be quantified by measuring how alterations in the
input feature of vj affect the representation of vi after k iterations of message passing. For any vi
and its neighbor vj ∈ N (vi), given the message passing form H(k) = ÂkH(0)W where H(0) = X,
considering the h-th feature of X, the influence of vj on the final representation of vi is defined as:

I(k)ij =

[
∂H

(k)
ih

∂H
(0)
jh

]
∀h∈{1,···d}

= Âk
ijW. (2)

Since the gradient is independent of the feature dimension h (Zhang et al., 2021), the final result omits
the h. In a fraud graph characterized by imbalanced label distribution, let m represent the number
of benign neighbors Nbe(vi) of node vi, and n represents the number of fraud neighbors Nfr(vi). In
this context, m≫ n. Since we specifically study the class imbalance problem, to rule out potential
interference from other variables, we assume the graph to be regular. Consequently, all non-zero
off-diagonal entries in Âk are assumed to be equal, and this common value is denoted by γ. The total
influence of benign neighbors on the center node vi is INbe(vi)→vi =

1
γ

∑
j∈Nbe(vi)

Âk
ijw = mW,

where we use γ to scale the influence score. Similarly, for fraud neighbors we have INfr(vi)→vi
= nW.

Then, the total influence from neighbors is given by (m+ n)W ≈ INbe(vi)→vi , which tends to over-
amplify the influence from the majority class neighbors (benign) while neglecting that from the
minority class neighbors (fraudulent). Such an imbalance in influence can skew the message passing
process, causing it to be insufficiently responsive to the nuances of the minority class nodes. As
a result, the capacity of the network to capture critical features from the minority class neighbors
diminishes, potentially undermining its effectiveness in fraud detection especially when the graph
exhibits heterophily.

To address the aforementioned problems, many existing GNN-based fraud detection models adopt
strategies such as re-weighting neighbors from different classes using predefined indicators (Liu
et al., 2021c) or learnable attention values (Wang et al., 2019; Liu et al., 2021a; Shi et al., 2022; Cui
et al., 2020). Additionally, they often incorporate a learnable sampler to selectively focus on potential
neighbors belonging to the same class as the center node (Dou et al., 2020; Liu et al., 2020). These
works typically utilize additional modules to augment the graph structure, aiming to homogenize
contextual information in graphs. The essential goal of these methods is to modify the graph to
exclude heterophilic neighbors (i.e., neighbors that belong to different classes than the center node),
thereby tailoring the graph topology for more effective processing by GNNs in fraud detection tasks.
However, augmenting the graph structure often leads to high time and memory complexity, limiting
scalability to large graphs. In our work, we argue that adapting the graph to fit GNNs is both costly
and unnecessary, but keeping the graph fixed and modifying the GNN model to fit the graph can be
more efficient and effective.

Upon observing the formation of the total influence (m+ n)W, we find that both fraud and benign
neighbors are weighted equally with W, which leads to benign neighbors dominating the gradient of
W during the backpropagation. It naturally motivates us to ask whether handling neighbors of two
distinct classes with separate weight matrices might allow for adaptive adjustment in their influence
on the center node, i.e., mW1 + nW2. Such an approach may effectively mitigate issues related to
label imbalance and heterophily, without doing any operations on the graph itself.

3 PARTITIONING MESSAGE PASSING

Our preliminary analysis in Section 2.2 reveals a relationship between parameter sharing within
GNNs and biases in the learning process. In this section, we formally present our method, Partitioning
Message Passing (PMP), which is a simple, intuitive, yet powerful approach tailored for the fraud
detection task. The basic idea of PMP is to utilize the label information to partition the message
passing process, enabling the model to distinguish neighbors according to their classes by learning
different weights for each class during message passing, thereby enhancing its ability to adaptively
adjust the influence propagated from class-imbalanced neighboring nodes. As shown in Fig. 1b, the
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l-th message passing iteration of PMP for a node vi is described as follows:

h
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i = Comb(l−1)
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)
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(3)

where f
(l)
fr (·), f (l)

be (·), and f
(l)
un (·) correspond to the handling of neighbors categorized as fraud,

benign, and unlabeled, respectively. These functions are parameterized by the weight matrices W(l)
fr ,

W
(l)
be and W

(l)
un ∈ Rd×d′

, aligning with the aforementioned categories. We simply set the message
fusion of aggregation functions to sum: f (l−1)

fr (h
(l−1)
j |vj ∈ Nfr(vi)) =

∑
vj∈Nfr(vi)

h
(l−1)
j W

(l−1)
fr .

Handling unlabeled neighbors as a weighted combination of fraud and benign labels. For
unlabeled neighbors, we face the challenge of determining an appropriate transformation that ac-
knowledges the uncertainty of these connections. Treating fun for unlabeled neighbors independently
from those for fraud and benign neighbors is not suitable, as it would mean forcing an additional,
definite label on these neighbors. For binary classification fraud detection task, unlabeled neighbors
share characteristics with both benign and fraud categories, while a separate, definite label might
make it harder to model the continuous spectrum between clear-cut benign and fraud behavior and can
not leverage the knowledge captured by ffr and fbe. Instead, PMP aims to treat unlabeled neighbors in
a way that reflects their uncertain and mixed nature. Thus we define W(l)

un as a weighted combination
of W(l)

fr and W
(l)
be :

W(l)
un = α

(l)
i W

(l)
fr + (1− α

(l)
i )W

(l)
be , (4)

where α
(l)
i ∈ R(0,1) is a scalar to modulate the class tendency of unlabeled neighbors associated

with the center node vi. In other words, a large α
(l)
i means that the model treats unlabeled neighbors

more similarly to fraud nodes, indicating a tendency or suspicion toward fraud for those particular
connections, and vice versa. The parameter α(l)

i thus serves as a continuous dial that allows the
model to smoothly interpolate between treating unlabeled neighbors as either benign or fraud nodes,
by dynamically adjusting α

(l)
i based on characteristics of each center node vi. Since α

(l)
i should be

node-specific and adaptive, we define α
(l)
i as a function of vi, α

(l)
i = Φ(h

(l−1)
i ), where Φ : Rd → R

is a single-layered MLP with a sigmoid activation shared across all nodes.

Root-specific weight matrix generation. In Eq. (3), the influence from the majority and minority
class neighbors on vi can be adaptively adjusted by Wbe and Wfr respectively. Following the analysis
in Section 2.2, the total influence from labeled neighbors on vi is mWbe + nWfr, where Wbe and
Wfr are shared across all center nodes when performing message passing. Further, in various
contexts across the graph, nodes often exhibit unique characteristics and patterns of interactions.
These differences can arise from distinct node attributes or their positional contexts within the graph
structure. Given this variability, a uniform approach to regulating the influence from different classes
of neighbors might oversimplify these interactions. Instead, a more adaptive and node-specific
method would better capture the intricate dynamics between a node and its diverse neighborhoods.
However, directly equipping every center node with individualized weight matrices, W(l)

fr and W
(l)
be ,

is intractable. To circumvent this, we introduce learnable weight generators that model W(l)
fr and

W
(l)
be as functions of the center node. Importantly, while these generators produce node-specific

weight matrices, their underlying parameters are shared across all center nodes. Such design strikes a
balance between adaptability and model compactness, eliminating the risk of an exponential surge
in parameter count. Specifically, for a center node vi, the (l + 1)-th layer weight matrices of its
aggregation functions are defined as:

W
(l)
fr,i = Ψfr(h

(l)
i ) W

(l)
be,i = Ψbe(h

(l)
i ), (5)

where Ψfr,Ψbe : Rd → Rd×d′
are two learnable weight generators defined as Ψfr(x) =

MLPfr(diag(x)) and Ψbe(x) = MLPbe(diag(x)), and they are both implemented as single-layered
MLPs; diag(x) is the diagonal matrix of the input vector. Each node vi can receive a distinct W(l)

fr,i
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Figure 2: (a) A Barabási–Albert graph with 500 nodes, with 10% nodes are fraud. Features of benign
nodes (depicted in blue) follow a Gaussian distribution, N (1, 1), while those of fraud nodes (shown
in red) are drawn from N (5, 1). (b) Spectral convolution filters of PMP for a random node vi.

and W
(l)
be,i tailored to its unique features, while the generation process MLPfr and MLPbe remains

consistent and is governed by shared parameters across all nodes.

To summarize, PMP works as Algorithm 1 of Appendix A under the r-th relation, utilizing mini-batch
training. For R-relational graphs, we perform PMP propagation for each relation separately, resulting
in R representations for each node. We then add a concatenation pooling followed by an MLP to
integrate R node representations for each node to produce the final node representation.

4 THEORETICAL INSIGHTS

As mentioned in Section 2.1, graphs with fraud usually exhibit a heterophily-homophily mixture, as
attackers would like to sparsely inject a limited number of fraud nodes into benign communities to
camouflage their activities and spread influence. For regions exhibiting homophily, where the center
node and its neighbors predominantly share the same label, the desired GNN should act as a loss-pass
filter to smooth the feature representations in the locality. Conversely, in heterophilic regions, where
the center node’s label diverges from most of its neighbors, the GNN must adaptively shift its spectral
response to capture such contrasting label information. Some work (Yang et al., 2022a; Wang &
Zhang, 2022) show that assigning each feature dimension a separate spectral filter improves the
performance of GNNs. Differently, our model achieves adaptivity at the node level, with each node
being assigned a separate spectral filter. Specifically, we present the following theorem.

Theorem 1. Consider an undirected graph G, let L = UΛU⊤ represent the eigendecomposition of
the symmetric normalized Laplacian L = I−D−1/2AD−1/2, where U is the matrix of eigenvectors
and Λ = diag([λi]i=1···N ) is the diagonal matrix of eigenvalues and 0 = λ1 ≤ · · · ≤ λn ≤ 2. Given
two sets of d′ graph signals XWfr and XWbe, PMP scheme described in Eq. (3) operates as an
adaptive graph filter, with the node-specific spectral convolution for node vi on XWfr and XWbe is
given as:

H(vi) = gifr(L)XWfr + gibe(L)XWbe = Ugifr(Λ)U
⊤XWfr +Ugibe(Λ)U

⊤XWbe (6)

where the spectral convolution filters are diagonal matrices defined as:

gifr(Λ)[j, j] =


1− λj vj ∈ Nfr(vi)

0 vj ∈ Nbe(vi)

αi(1− λj) otherwise

gibe(Λ)[j, j] =


0 vj ∈ Nfr(vi)

1− λj vj ∈ Nbe(vi)

(1− αi)(1− λj) otherwise

.

(7)
where Nfr(vi) and Nbe(vi) are respectively the fraud neighbors and benign neighbors of vi in the
training set. The i-th row of the matrix H(vi), i.e., H(vi)[i, :], is the representation of vi.

We provide a proof in Appendix B. The inherent mixed homophily-heterophily characteristics of
fraud graphs underline the importance of utilizing node-specific adaptive filters. As different center
nodes locate in diverse contexts within the graph, they each reflect distinct degrees of homophily
or heterophily. This variability implies that a one-size-fits-all approach, using a universal graph
filter across all nodes (Defferrard et al., 2016; Kipf & Welling, 2017; Tang et al., 2022), is not only
suboptimal but could lead to inaccuracies in fraud detection. PMP ensures that the filters are tailored
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Table 1: Experiment Results on Yelp and Amazon (40% training ratio).

Method Yelp Amazon

AUC F1-Macro G-Mean AUC F1-Macro G-Mean

GCN 59.83±0.49 56.20±0.67 43.65±2.62 83.69±1.25 64.86±6.94 57.18±19.51

GAT 57.15±0.29 48.79±2.30 16.59±7.89 81.02±1.79 64.64±3.87 66.75±13.45

GraphSAGE 89.38±0.19 75.46±0.81 73.07±4.79 93.16±0.87 88.26±0.62 83.46±1.49

GPRGNN 82.85±0.66 63.19±0.80 75.62±1.24 93.72±0.68 80.66±1.82 85.56±2.73

FAGCN 74.23±0.27 61.18±0.75 67.37±1.26 95.00±0.81 87.29±1.53 79.62±0.96

Care-GNN 76.19±2.92 63.32±0.94 67.91±3.59 90.67±1.49 86.39±1.66 70.52±0.21

PC-GNN 79.87±0.14 63.00±2.30 71.60±1.30 95.86±0.14 89.56±0.77 90.30±0.44

H2-FDetector 89.48±1.26 74.38±2.42 79.15±2.57 96.03±0.69 86.91±1.01 91.74±0.47

BWGNN 90.54±0.49 76.96±0.89 77.12±0.99 97.42±0.48 91.72±0.84 90.01±0.36

GHRN 90.57±0.36 77.54±1.02 74.21±1.57 97.07±0.73 92.36±0.97 90.58±0.45

GDN 90.34±0.80 76.05±0.60 80.84±0.09 97.09±0.16 90.68±0.42 90.78±0.11

PMP 93.97±0.15 81.96±0.56 83.92±1.04 97.57±0.12 92.03±0.79 91.85±0.65

Table 2: Experiment Results on T-Finance and T-Social (40% training ratio). OOM: out of memory;
OOT: out of time (running time > 1 day).

Method T-Finance T-Social

AUC F1-Macro G-Mean AUC F1-Macro G-Mean

GCN 93.31±0.75 86.86±0.77 80.43±0.82 76.00±2.47 46.85±1.64 71.19±2.73

GAT 92.77±1.12 62.19±0.98 77.46±2.20 63.45±1.36 57.22±0.81 69.53±2.18

GraphSAGE 95.05±0.22 90.37±0.49 85.35±0.38 94.19±1.65 74.97±2.49 72.07±2.39

GPRGNN 54.82±0.78 56.25±0.27 32.96±0.25 82.79±1.21 49.23±0.87 50.03±7.62

FAGCN OOM OOM OOM OOM OOM OOM

Care-GNN 93.79±0.92 82.59±0.86 84.58±1.26 78.91±0.84 51.87±1.76 63.60±0.77

PC-GNN 92.09±0.58 55.81±0.34 81.96±0.42 88.98±0.66 44.13±1.07 75.07±0.80

H2-FDetector 94.99±0.68 74.21±0.70 85.91±0.69 OOT OOT OOT
BWGNN 95.84±0.46 88.66±0.72 85.16±1.66 94.72±1.88 84.06±2.89 81.51±4.08

GHRN 95.77±0.60 87.92±0.75 81.65±0.43 90.60±1.78 68.28±0.73 63.42±2.81

GDN 95.53±0.74 88.75±2.26 87.84±0.97 88.06±0.43 56.89±1.11 30.33±3.67

PMP 97.10±0.23 91.90±0.50 88.51±1.26 99.62±0.07 95.27±0.32 92.97±0.64

to the unique neighborhood characteristics of each node, enhancing both sensitivity and specificity in
identifying fraud patterns. Fig. 2 shows an example of PMP on a BA(500) graph. We can find that
gifr(Λ) and gibe(Λ) are two complementary filters that cover all frequencies in the spectral domain.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Datasets and Baselines. We evaluate our approach using five datasets tailored for GFD:
Yelp (Rayana & Akoglu, 2015), Amazon (McAuley & Leskovec, 2013), T-Finance, T-Social (Tang
et al., 2022). Besides, we have evaluated our model on a large-scale real graph from our industry
partner, Grab. The statistics of these datasets are provided in Table 5 of Appendix D. We compare our
model against 11 state-of-the-art approaches, including generic GNNs: GCN (Kipf & Welling, 2017),
GraphSAGE (Hamilton et al., 2017), and GAT (Veličković et al., 2018); beyond homophily GNNs:
GPRGNN (Chien et al., 2021) and FAGCN (Bo et al., 2021); fraud detection tailored GNNs: Care-
GNN (Dou et al., 2020), PC-GNN (Liu et al., 2021c), H2-FDetector (Shi et al., 2022), BWGNN (Tang
et al., 2022), GHRN (Gao et al., 2023c), and GDN (Gao et al., 2023b).

Metrics and Implementation Details. We employ three commonly used metrics for imbalanced
classification in deep learning evaluations: AUC, F1-Macro and G-Mean. We provide a detailed
explanation of each metric in Appendix D.3. Following (Tang et al., 2022), we adopt the data
splitting ratios of 40%:20%:40% for training, validation, and test set in the supervised scenario. In the
semi-supervised scenario, the data splitting ratio is 1%:10%:89%. For consistency in our evaluations,
each model underwent 10 trials with varied random seeds. We present the average performance
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Figure 4: Influence distribution.

and standard deviation for each model as benchmarks for comparison. We provide the detailed
hyperparameter tuning strategies of baselines and hyperparameter setting of PMP in Appendix D.4.

5.2 PERFORMANCE COMPARISON
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Figure 3: AUC vs. testing time on T-
Social.

For public datasets, results derived from the supervised
setting can be found in Tables 1 and 2, while those from
the semi-supervised setting are detailed in Tables 7 and 8
of Appendix E.1. For the Grab dataset, results are shown
in Appendix E.2. The results demonstrate that PMP con-
sistently surpasses baseline performances across almost
all datasets and metrics. One explanation for its enhanced
performance over generic GNNs—where the learnable
weights of the aggregation function are uniformly applied
across all neighbors—is that PMP encodes class-specific
discriminative information into the model parameters.
This is achieved by distinguishing neighbors of distinct classes during the message passing phase.
Besides, the adaptive modulation between Wfr and Wbe allows nodes to judiciously calibrate the
information flow from distinct classes of neighbors. By segregating the processing of neighbors based
on their labels, our model can adaptively emphasize and give importance to rare patterns, which is
vital in imbalanced and heterophilic scenarios. Among generic GNNs, GraphSAGE exhibits better
performance due to its separation between ego- and neighbor embeddings, which is beneficial when
learning under heterophily, and our model also inherits such design.

In comparison to the six GNNs tailored for GFD, our model also demonstrates a markedly superior
performance. For instance, on Yelp, our model shows improvements of 3.4% in AUC, 4.42% in
F1-Macro, and 3.08% in G-Mean. Interestingly, our evaluation reveals that GraphSAGE, despite its
fundamental design, serves as a potent baseline, even surpassing some models specifically crafted
for GFD. Many of these specialized baselines incorporate intricate preprocessing steps rooted in
feature engineering (e.g., GHRN) or employ learnable edge reweighting/sampling techniques (e.g.,
H2-FDetector) for graph augmentation. Such findings suggest that elaborate manipulations to tailor
the graph structure for the model might be superfluous. Instead, adapting the model to align better
with the inherent graph characteristics could prove to be a more effective strategy. Our model
presented in Eq. (3) can be seen as a variant of GraphSAGE. Notably, relative to GraphSAGE, our
model exhibits substantial performance enhancements, underscoring the efficacy of the proposed
partitioning message passing strategy. In Fig. 3, we show that our model achieves the optimal
trade-off between inference speed and effectiveness in comparison to baselines. PMP follows the
iterative aggregation framework of GNNs, thus the number of layers and the dimension of hidden
layers are two core parameters that determine the receptive field and representation power of the
model. Thus, we analyze the sensitivity of the model to these two parameters in Appendix D.5.

5.3 HOW DOES PMP SOLVE THE PROBLEMS OF HETEROPHILY AND LABEL IMBALANCE?

To answer this question, we investigate the influence of neighbors with different labels on the
center fraud nodes. Given a center fraud node vi, we measure the influence of its fraud neighbors
on the final representation of vi as If (vi) =

∑
vj∈Nfr(vi)

∂Zi

∂Xj
, where Zi = H

(L)
i is the output

representation of the last layer. Correspondingly, the influence of benign neighbors is captured by
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Table 3: Ablation study

Method Yelp Amazon T-Finance

AUC F1-Macro AUC F1-Macro AUC F1-Macro

GraphSAGE 89.38 75.46 93.16 88.26 95.05 90.37
+partition 93.15 78.02 96.33 89.64 95.92 91.43

++adaptive combination 93.51 79.93 97.61 91.29 96.86 91.31
+++root-specific weights (full PMP) 93.97 81.96 97.57 92.03 97.10 91.90

Ib(vi) =
∑

vj∈Nbe(vi)
∂Zi

∂Xj
. Then, the larger If (vi) − Ib(vi), the larger influence of homophilic

neighbors on the center fraud node, which indicates that the model is robust, effectively mitigating the
issues of label imbalance and heterophily. In Fig. 4, we show the distribution of If − Ib with respect
to all fraud nodes. It is evident that, in comparison to GCN and BWGNN, the representations learned
through PMP exhibit a higher If − Ib for a greater number of fraud nodes. This metric underscores
PMP’s efficacy in enhancing the impact of homophilic (fraud) neighbors on the center fraud node,
despite them being in the minority, on the center node, thereby showcasing its superior ability to
resist the challenges posed by label imbalance and heterophily.

5.4 ABLATION STUDY

As shown in Eq. (3), the main difference between PMP and GraphSAGE rests in their aggregation
methods: while GraphSAGE employs a uniform aggregation with shared feature transformations for
all neighbors, PMP distinctly partitions message passing, applying varied feature transformations
contingent upon neighbor labels. The results in Section 5.2 show our model consistently outperforms
GraphSAGE across all datasets and evaluation metrics, which demonstrates that such a simple design
can significantly enhance GNN performance in GFD.

Additionally, we delve deeper to validate two pivotal components of our model: the adaptive blending
of unlabeled neighbors as a weighted fusion of labeled data, as shown in Eq. (4), and the root-specific
weight matrices in Eq. (5). Table 3 shows the results, where we employ GraphSAGE as the benchmark
model, given its conceptual proximity to our proposal, to methodically illustrate the incremental
benefits introduced by our design choices. “+partition” denotes adopting distinct weight matrices for
labeled fraud benign neighbors, while for unlabeled neighbors, a separate, independent weight matrix
is employed. Subsequently, “++adaptive combination” denotes that the weight matrix for unlabeled
neighbors is treated as an adaptive combination of the weights of labeled neighbors as introduced in
Eq. (4). “+++root-specific weights” implies that the weight matrices for fraud and benign neighbors
are dynamically generated as functions of the center node as presented in Eq. (5).

From our evaluations, it is evident that GraphSAGE lags behind in performance across all metrics.
This underscores the inherent limitation of uniformly aggregating information from all neighbors
during the message passing process. Such an approach, while general and versatile, might miss
out on capturing the relationships and contextual dependencies intrinsic to GFD. The “+partition”
contributes to major improvements, which affirms that the core feature of our model, distinguishing
between different classes of neighbors during message passing, stands as a pivotal mechanism for
enhancing GNNs’ efficacy in GFD. Besides, the subsequent extensions, “adaptive combination”
and “root-specific weights”, also contribute positively to the overall performance. Specifically, the
”++adaptive combination”, building upon the ”+partition”, brings incremental improvements across
all datasets. The ”+++root-specific weights”, further extending the preceding component, enhances
performance on most metrics in most datasets. Combined, these two components contribute to a
cumulative improvement of more than 1% over the ”+partition” baseline.

6 CONCLUSIONS

This work presents a simple yet effective GNN framework, PMP, for fraud detection task. We propose
that the key of applying GNNs on fraud detection is to distinguish neighbors with different labels
during message passing. With this insight, neighbor aggregation is partitioned based on labels using
distinct node-specific aggregation functions. In this way, the center node can adaptively adjust
the information propagated from its homophilic and heterophilic neighbors, thus avoiding model
overfitting the majority class nodes (i.e., benign), and alleviating the problem of heterophily. The
theoretical analysis of PMP demonstrates that PMP learns an adaptive spectral filter for each node
separately. Extensive experiments show that our model achieves new state-of-the-art results on several
public GFD datasets, verifying the power of partitioning message passing for GFD.
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A ALGORITHMIC DETAILS

Algorithm 1 PMP forward propatation
Input: Fraud graph G = (V, Er,X,Y); Depth L; Batch size B;
Output: Logits Z ∈ RN

1: for l ∈ {1, · · · , L} do
2: for each batch ⊆ G of size B do
3: for vi ∈ batch do
4: ĥ

(l)
i ← f

(l−1)
self (h

(l−1)
i )

5: α
(l−1)
i ← Φ(h

(l−1)
i )

6: W
(l−1)
fr,i ← Ψfr(h

(l−1)
i ); W

(l−1)
be,i = Ψbe(h

(l−1)
i ); W

(l−1)
un,i = α

(l−1)
i W

(l−1)
fr + (1 −

α
(l−1)
i )W

(l−1)
be,i // Generate weight matrices for vi

7: a
(l)
i = f

(l−1)
fr,i

(
h
(l−1)
j |vj ∈ Nfr(vi)

)
+ f

(l−1)
be,i

(
h
(l−1)
j |vj ∈ Nbe(vi)

)
+

f
(l−1)
un,i

(
h
(l−1)
j |vj /∈ Nbe(vi) ∪Nfr(vi)

)
// f

(l−1)
fr,i , f

(l−1)
be,i and f

(l−1)
un,i are parame-

terized by W
(l−1)
fr,i , W(l−1)

be,i and W
(l−1)
un,i respectively.

8: h
(l)
i = ĥ

(l)
i + a

(l)
i

9: end for
10: end for
11: end for
12: H̃ = MLP(H(L)) ∈ RN×1

13: Zi ← Sigmoid(H̃)
14: L =

∑
i (yi log(Zi) + (1− yi) log(1− Zi)) // Cross-entropy loss

Complexity Comparsion We provide a comparison of the time complexity and storage cost in
Table 4, where |E| ≪ N2 is the number of edges, d is the feature dimension and C is the number of
spectral filters in BWGNN. Usually, N > |E|, thus our model demonstrates optimal time and space
complexities compared to these baselines.

Table 4: Time and space complexities O(·).

Dataset Time Complexity Storage Cost

Care-GNN O(Nd+ |E|) O(Nd+N2 + |E|)
H2-FDetector O(N2) O(Nd+N2)
BWGNN O(C|E|) O(Nd+ C|E|)
PMP O(|E|+N) O(Nd+ |E|)

B PROOF OF THEOREM 1

Proof. Assuming the node indices are fixed, let F, B be diagonal label mask matrices, which mask
benign nodes and fraud nodes respectively with 0 in the main diagonal elements. Specifically, for a
node vi labeled 1 (fraud) in the training set, we assign Fii = 1, otherwise 0. Similarly, for training
benign nodes, Bii = 1 otherwise 0. Then the mask matrix of unlabeled nodes is thus I − F −B.
For the sake of simplicity, we analyze the first layer of PMP as an example and omit superscripts.
Specifically, the feature transformation step of Eq. (3) can be reformulated as:

FXWfr +BXWbe + (I− F−B)X (αiWfr + (1− αi)Wbe)

= (F+ αiI− αiF− αiB)XWfr + (B+ (1− αi)I− (1− αi)B− (1− αi)B)XWbe.
(8)

Let K(vi) = F+ αiI− αiF− αiB, Eq. (8) can be rewritten as:
K(vi)XWfr + (I−K(vi))XWbe

where K(vi)[j, j] =


1 vj ∈ Nfr(vi)

0 vj ∈ Nbe(vi)

αi otherwise

.
(9)
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To facilitate the spectral analysis, we align the definition of the graph convolution with GCNs (Kipf
& Welling, 2017), using the normalized adjacency matrix, D−1/2AD−1/2 = I − L. Note that
although our model utilizes summation as the convolution method, this doesn’t alter its inherent
spectral properties (Dong et al., 2021; Zhu et al., 2021). Since the matrix K(·) is node-specific, for
vi, it induces a separate message passing matrix form:

H(vi) =(I− L)K(vi)XWfr + (I− L)(I−K(vi))XWbe

=Ugifr(Λ)U
⊤XWfr +Ugibe(Λ)U

⊤XWbe,
(10)

where the node-specific convolution filters gifr(Λ) and gibe(Λ) can be derived as Eq. (7). H(vi) ∈
RN×d′

is a representation matrix induced by the convolution kernel functions associated with vi,
thus its i-th row H(vi)[i, :] gives the PMP representation for vi. For another node vj , it yields a
corresponding PMP representation matrix H(vj) whose j-th row is the representation of vj . Besides,
we can find that the spectral filters depend on the node indices and the label distribution. For the
frequency λj with its index j satisfying vj /∈ Nfr(vi) ∪ Nbe(vi), then its response gi(λj) is node-
adaptive given that αi is inherently a function of vi. Since in real-world networks, where most nodes
remain unlabeled, we can conclude that PMP is an adaptive node-specific spectral convolution.

C RELATION OF PMP TO ACM

The basic idea of Adaptive Channel Mixture (ACM) (Luan et al., 2021) is to attribute negative
weights to heterophilic neighbors through a spectral synthesis of low-pass and high-pass filters.
This technique fundamentally differs from our PMP. It is because the use of negative weights in
ACM is indicative of removing (or subtracting) the heterophilic components from the homophilic
neighbors. This can be interpreted as a form of information “forgetting” where heterophilic features
are de-emphasized in favor of homophilic features. It is different from PMP which preserves
and utilizes all available information. From the perspective of methodology, ACM is rooted in
spectral graph theory, while PMP is spatially oriented. This difference is not just theoretical but has
practical implications. The spectral nature of ACM inherently influences its scalability, particularly
in the context of large graphs. Typically, spectral-based models, including ACM, require the entire
graph as input, which can pose challenges for mini-batch training and thereby limit scalability.
In contrast, our PMP model, with its spatial-based framework, inherently supports mini-batch
training and is thus more adaptable to large-scale graphs. Furthermore, considering the application
of ACM in GFD tasks, its formulation, with removed nonlinearity for simplicity’s sake, can be

expressed as H
(l+1)
ACM = αFL

H
(l)
fr

H
(l)
be

H
(l)
un

W
(l)
1 + βFH

H
(l)
fr

H
(l)
be

H
(l)
un

W
(l)
2 where FL and FH are distinct

spectral filters. We can observe that the trainable weight matrix W
(l)
L and W

(l)
H are both shared

across all nodes. In contrast, our PMP model, when represented in matrix form, can be rewritten

as H(l+1)
PMP = F

 H
(l)
frW1

H
(l)
be W2

H
(l)
un(αW1 + (1− α)W2)

 where F is the normalized adjacency matrix. Unlike

ACM, trainable weight matrices in PMP, W1 and W2, are specifically applied to nodes with different
labels, where W1 and W2 capture the information of fraud nodes and benign nodes respectively,
reflecting a more label-aware and adaptive approach to message passing in the context of GFD.

D EXPERIMENTAL DETAILS

D.1 DATASETS

Table 5 summarizes the dataset statistics, including the number of nodes, edges, and relations, the
proportion of fraud nodes, feature dimension, and the homophily score. The imbalance-aware
homophily score (Lim et al., 2021) is defined as:

η̂ =
1

C − 1

C−1∑
k=0

[
ηk −

|Ck|
N

]
+

(11)
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where [·]+ = max(·, 0). C, representing the number of classes, is set to 2 for GFD. Ck denotes the
set of nodes in class k, with k = 0 corresponding to benign nodes and k = 1 to fraud nodes. ηk is the
class-wise homophily metric:

ηk =

∑
vi∈Ck

|Nk(vi)|∑
vi∈Ck

|N (vi)|
(12)

where Nk(vi)| is the neighbors of vi with label k. η̂ ∈ [0, 1] where η̂ = 1 corresponds to a fully
homophilic graph, while η̂ < 0.5 indicates a highly heterophilic graph.

We compare the fraud detection performance of different baselines on YelpChi, Amazon, T-Finance,
and T-Social. Among them, 1) YelpChi comprises both filtered (spam) and recommended (legitimate)
reviews of hotels and restaurants, as collected by Yelp.com. This dataset has three types of relations:
R-U-R, representing reviews by the same user; R-S-R, for reviews under the same product receiving
identical star ratings; and R-T-R, which groups reviews for the same product posted within the same
month. 2) The Amazon dataset collects reviews from the musical instruments category on Amazon.
It also has three relations, where the U-P-U relationship links users who have reviewed the same
product; the U-S-U relationship connects users who assigned identical ratings within a week; the
U-V-U relationship bridges users showcasing the top 5% of mutual review text similarities measured
by TF-IDF metrics. 3) T-Finance is a single-relational fraud graph, capturing anomalous accounts
within transaction networks. In this dataset, nodes represent anonymized accounts, with attributes
including registration days, login activities, and interaction frequencies. Edges mean the existence of
transaction records between two accounts. Nodes are annotated as anomalies by human experts if
they exhibit behaviors characteristic of fraud, money laundering, or online gambling. 4) T-Social
is designed to identify anomalous accounts within social networks. two nodes are interconnected if
they sustain a friendship for over three months. 5) The industrial graph includes the transaction of a
month in a leading super app. Due to the anonymity and privacy policy, we exclude the exact details
of the graph but roughly the graph includes over 1 million nodes and over 10 million edges.

Table 5: Summary of dataset statistics.

Dataset # Nodes # Edges # Relations Frauds (%) # Features η̂

YelpChi 45,954 3,846,979 3 14.53% 32 0.0538
Amazon 11,944 4,398,392 3 6.87% 25 0.0512
T-Finance 39,357 21,222,543 1 4.58% 10 0.4363
T-Social 5,781,065 73,105,508 1 3.01% 10 0.1003
Industrial graph ∼1M ∼10M 1 0.54% 17 -

D.2 LABEL DISTRIBUTION

In Fig. 5, we show the label distributions of the labeled neighborhoods of training nodes. We use
|Nfr|
|Nbe| to represent the number of fraud neighbors relative to benign neighbors for a central node.
|Nfr|
|Nbe| < 1 indicates that the number of labeled fraud neighbors is fewer than benign neighbors.

Specifically, if |Nfr|
|Nbe| < 0.5, it indicates that the central node has far fewer fraud neighbors compared

to benign ones, denoting a highly imbalanced neighborhood. The height of each bar means the
number of center training nodes under a certain |Nfr|

|Nbe| . Our results show that commonly used datasets
such as Yelp, Amazon, and T-Finance suffer from significant label imbalance in the neighborhoods,
because the neighborhoods’ label distribution is long-tail, i.e., the number of fraud neighbors is
far less than benign ones. It requires the model can enhance the influence from the minority class
neighbors on the center nodes during neighbor aggregation. Combining with the empirical results in
Section 5.3, our PMP method effectively achieves this, enhancing the influence from minority class
neighbors more efficiently than traditional GNN approaches.

D.3 METRICS

AUC is the area under the ROC curve, and it provides an aggregate measure of performance across
all possible classification thresholds, reflecting the model’s ability to distinguish between positive
and negative classes. F1-Macro computes the F1 score for each class independently and then takes
the average. Lastly, the G-Mean, or geometric mean, calculates the square root of the product of
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Figure 5: Label distributions of the labeled neighborhoods of the training nodes.

the sensitivity and specificity, offering an insight into the balance between true positive rate and
true negative rate performance. Higher values of these metrics signify superior performance of the
methods.

D.4 HYPERPARAMETER SETTINGS

To mitigate bias, we individually fine-tune the hyperparameters of each model for every benchmark
and report the best performance on the validation set. For each model, we explored the following
searching ranges for general hyperparameters: learning rate lr ∈ {0.01, 0.005, 0.001}, weight
decay wd ∈ {0, 5e− 5, 1e− 4}, dropout do ∈ {0, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8}, hidden dimension
d′ ∈ {32, 64, 128, 256, 512}. For spatial-based models, batch size is an important hyperparameter
that highly depends on the graph size. Specifically, for Yelp, Amazon, and T-Finance, batch size
bs ∈ {64, 128, 256, 512, 1024}. For the large-scale graph T-Social, bs ∈ {217, 218, 219}. For model-
specific hyperparameters, we also carefully calibrate parameters in accordance with varying datasets
and training sizes. Here we provide the optimal hyperparameters of PMP in Table 6.

Table 6: Hyperparameter settings for PMP.

Dataset lr wd do bs L d′

Yelp 0.01 0 0 512 1 256
Amazon 0.01 0 0.6 128 1 128
T-Finance 0.01 0 0.4 256 1 64
T-Social 0.001 0 0 217 1 128

D.5 PARAMETER STUDY

We investigate the sensitivity in relation to the key hyperparameters in our model: the number of
layers L and the hidden dimension d′. For each dataset, we vary L over the range [1, 2, 3], and
d′ over [32, 64, 128, 256, 512]. We employed a grid search methodology to test combinations of
hyperparameters. As illustrated in Fig. 6, PMP consistently performs optimally with a single layer,
and more layers bring about a continuous decrease in effect. This phenomenon can be attributed to the
issue of oversmoothing. We find that all these datasets have a high average degree. Specifically, the
average degree of Yelp, Amazon and T-Finance are 167, 740, and 1078, respectively, and we further
investigate the number of nodes within the first two hops of neighborhoods. Eliminating duplication,
the average number of nodes in the first two-hop neighborhoods across all nodes stands at 1229 for
Yelp, 11338 for Amazon, and 24480 for T-Finance. The remarkable density of these benchmark
datasets implies that even a two-layer GNN might aggregate an overwhelming quantum of information
from the global, thereby obfuscating the essential local features. Additionally, Furthermore, our
findings reveal that the optimal value of d′ varies across datasets. This calls for meticulous tuning to
ascertain peak performance. A potential rationale for this sensitivity lies in the substantial variability
in the dimensions of input node features across different datasets.

D.6 COMPUTING RESOURCES

For all experiments, we use a single NVIDIA A100 GPU with 80GB GPU memory.
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Figure 6: Sensitivity study of different hyperparameter combinations.

E MORE EXPERIMENTAL RESULTS

E.1 SEMI-SUPERVISED FRAUD DETECTION ON PUBLIC DATASETS

In Table 7 and Table 8, we show the performance of fraud detection under a semi-supervised setting
(1% training ratio).

Table 7: Experiment Results on Yelp and Amazon (1% training ratio).

Method Yelp Amazon

AUC F1-Macro G-Mean AUC F1-Macro G-Mean

GCN 54.06±0.72 52.48±0.50 46.53±0.98 82.85±0.71 67.93±1.42 58.12±1.97

GAT 50.95±1.39 50.27±2.31 26.83±8.94 73.45±1.26 60.84±2.47 42.24±5.73

GraphSAGE 82.59±0.26 64.21±9.12 57.09±9.56 87.50±0.66 77.88±2.53 70.00±2.26

GPRGNN 54.19±2.95 46.07±1.38 8.29±2.63 80.77±0.31 51.14±2.38 19.93±4.69

FAGCN 70.92±0.92 46.27±0.28 5.90±3.17 92.07±1.51 84.82±0.73 80.13±1.25

Care-GNN 73.96±0.13 61.25±0.34 63.87±0.20 88.30±0.60 69.24±0.27 78.17±0.26

PC-GNN 75.35±0.15 55.05±0.21 68.05±0.25 91.73±0.52 87.58±0.20 80.35±1.68

H2-FDetector 74.19±0.52 57.42±0.45 67.92±0.21 83.26±0.17 67.60±0.31 55.25±0.36

BWGNN 79.31±0.25 66.59±0.16 66.12±0.36 88.37±0.77 86.50±0.59 83.35±0.46

GHRN 76.76±0.37 64.30±0.61 61.73±1.03 90.27±0.30 89.16±0.89 83.68±2.22

GDN 72.31±0.36 58.28±2.13 53.07±1.00 86.38±0.29 76.20±0.08 83.19±0.59

PMP 83.94±0.37 68.60±0.76 72.39±0.42 91.82±0.74 87.72±1.15 83.77±0.66

Table 8: Experiment Results on T-Finance and T-Social (1% training ratio)

Method T-Finance T-Social

AUC F1-Macro G-Mean AUC F1-Macro G-Mean

GCN 74.37±0.73 57.51±1.62 72.58±0.90 59.61±1.37 52.34±0.31 52.35±3.93

GAT 83.38±0.67 67.18±0.3 59.71±0.92 68.55±1.46 47.03±1.27 71.26±0.86

GraphSAGE 92.53±0.51 85.09±0.64 82.86±1.73 88.89±0.77 49.24±0.83 22.76±7.66

GPRGNN 89.57±0.65 80.47±1.19 69.34±1.95 74.30±2.57 49.24±0.84 2.72±1.10

FAGCN OOM OOM OOM OOM OOM OOM

Care-GNN 90.73±0.24 76.25±0.29 74.38±0.63 68.32±1.73 53.31±1.52 63.75±0.60

PC-GNN 92.29±0.17 76.17±0.16 81.93±0.73 84.66±1.57 49.38±0.94 57.06±2.65

H2-FDetector 94.37±1.66 83.44±2.53 79.32±2.02 OOT OOT OOT
BWGNN 89.54±5.03 85.17±2.81 78.99±5.12 86.40±14.62 77.35±12.89 72.17±16.48

GHRN 89.18±2.31 73.20±1.54 70.08±1.65 87.28±0.29 65.37±0.33 57.93±0.17

GDN 93.32±0.69 87.26±1.77 83.04±1.04 87.37±0.80 56.48±2.85 29.34±3.34

PMP 93.78±0.19 88.89±0.37 84.91±2.57 97.14±0.75 84.58±0.30 83.16±0.64

E.2 EXPERIMENTAL RESULTS ON GRAB

In Table 9 and Table 10, we show the fraud detection performance on the Grab dataset under
supervised and semi-supervised settings.

E.3 COMPARISON WITH R-GCN

As an extension of the comparative analysis presented in Fig. 4, we include R-GCN due to its ability
to handle multiple types of relationships within a graph. R-GCN (Schlichtkrull et al., 2018) extends
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Table 9: Experiment Results on Grab (40% training ratio)

Method Grab

AUC F1-Macro G-Mean

Care-GNN 99.58±0.01 68.87±0.21 98.31±0.03

PC-GNN 98.97±0.02 66.32±1.15 98.08±0.14

H2-FDetector OOT OOT OOT
BWGNN 99.79±0.03 80.63±0.47 99.32±0.01

GHRN 99.71±0.01 76.65±1.46 99.11±0.01

GDN 99.73±0.04 80.83±1.47 99.64±0.02

PMP 99.82±0.02 82.42±0.90 99.63±0.08

Table 10: Experiment Results on Grab (1% training ratio)

Method Grab

AUC F1-Macro G-Mean

Care-GNN 99.56±0.03 71.73±0.22 98.65±0.02

PC-GNN 96.35±0.24 71.51±2.33 98.98±0.15

H2-FDetector OOT OOT OOT
BWGNN 98.78±0.12 81.53±0.79 99.40±0.02

BHomo-GHRN 99.53±0.02 69.78±1.07 98.42±0.26

GDN 99.72±0.02 79.33±0.46 99.27±0.43

PMP 99.72±0.00 79.73±0.06 99.54±0.04

the GCN model to account for different types of relations in the graph. Fig. 7 illustrates the influence
distributions for the multi-relational Yelp and Amazon datasets. It is evident that accounting for
multiple relationships results in a rightward (positive) shift in the influence distributions. Despite the
relational capabilities of R-GCN, our model demonstrates superior performance on both datasets.
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Figure 7: Influence distribution.
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