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ABSTRACT

Existing video-language studies mainly focus on learning short video clips, leav-
ing long-term temporal dependencies rarely explored due to over-high computa-
tional cost of modeling long videos. To address this issue, one feasible solution is
learning the correspondence between video clips and captions, which however in-
evitably encounters the multi-granularity noisy correspondence (MNC) problem.
To be specific, MNC refers to the clip-caption misalignment (coarse-grained) and
frame-word misalignment (fine-grained), hindering temporal learning and video
understanding. In this paper, we propose NOise Robust Temporal Optimal traNs-
port (Norton) that addresses MNC in a unified optimal transport (OT) framework.
In brief, Norton employs video-paragraph and clip-caption contrastive losses to
capture long-term dependencies based on OT. To address coarse-grained misalign-
ment in video-paragraph contrast, Norton filters out the irrelevant clips and cap-
tions through an alignable prompt bucket and realigns asynchronous clip-caption
pairs based on transport distance. To address the fine-grained misalignment,
Norton incorporates a soft-maximum operator to identify crucial words and key
frames. Additionally, Norton exploits the potential faulty negative samples in clip-
caption contrast by rectifying the alignment target with OT assignment to ensure
precise temporal modeling. Extensive experiments on video retrieval, videoQA,
and action segmentation verify the effectiveness of our method. Code is available
at https://lin-yijie.github.io/projects/Norton.

1 INTRODUCTION

Video-Language Pre-training (VLP) has emerged as a popular approach for video understand-
ing (Miech et al., 2020; Bain et al., 2021; Ge et al., 2022; Wang et al., 2022c; Luo et al., 2020)
in recent years. Although promising results have been achieved, the pioneer works are mainly de-
voted to learning short video clips while overlooking long-term temporal dependencies. In practice,
it is generally acknowledged that the long-term temporal dependency plays an indispensable role
in understanding the relationships and transitions over time in various applications such as video-
paragraph retrieval (Yang et al., 2023b; Sun et al., 2022) and action segmentation (Tang et al., 2019).

To learn the long-term temporal correspondence from the long videos, one important challenge is
the heavy demand for computation resources. For example, Han et al. (2022); Bertasius et al. (2021)
employ long-form vision transformers to capture the temporal correlation, which involves comput-
ing cross-attention among every frame in long videos. As long videos are typically composed of
a sequence of short video clips according to ASR timestamps (Miech et al., 2020), an alternative
approach is to explore the temporal correlation among video clips and captions. For instance, Tem-
pCLR (Yang et al., 2023b) uses Dynamic Time Warping (Müller, 2007; Cuturi & Blondel, 2017;
Zhou & Torre, 2009) to measure the sequential distance between video clips and captions, and in-
corporates the temporal correlation across clips by contrasting the video with the paragraph. This
strategy is remarkably efficient than directly modeling the entire video, making it an attractive option
for learning long-term temporal correspondence.

However, dividing long videos into short clips would inevitably introduce an accompanied chal-
lenge, i.e., multi-granularity noisy correspondence (MNC). As shown in Fig. 1, MNC refers to the
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Figure 1: Our observation on multi-granularity noisy correspondence (MNC) in video understand-
ing. (Left) The green timeline denotes the alignable captions while the red timeline indicates the
unalignable captions. The green text in t5 denotes partially correlated words w.r.t v5. (Right) The
dashed line represents the original alignment according to timestamps and the red block indicates
the misaligned clip-caption pair. The green block denotes the ground-truth alignment. The solid line
denotes the re-alignment by Dynamic Time Warping (Müller, 2007) which struggles to handle noisy
correspondence well.

misaligned video-text pairs at two different granularities: i) Coarse-grained misalignment (Clip-
caption). Coarse-grained misalignment includes asynchronous and irrelevant misalignments ac-
cording to whether a clip/caption is alignable with the captions/clips in the long video. To be specific,
asynchronous misalignment refers to temporal misalignment between subtitles and visual clips, e.g.,
t1 in Fig. 1. It often occurs when people explain their actions before or after actually performing
them, resulting in the mismatch between the order of statements and actions. On the other hand,
irrelevant misalignment refers to irrelevant or meaningless captions that cannot be aligned with any
available video clips (e.g., t2 and t6 in Fig. 1), and vice versa for video clips. According to Han et al.
(2022), only 30% of clip-caption pairs are visually aligned in HowTo100M (Miech et al., 2019), with
even fewer 15% being naturally well-aligned; ii) Fine-grained misalignment (Frame-word). Within
each video clip, the narration sentences may only partially correlate with the visual frames. As de-
picted in Fig. 1, “the sugar goes on top” in t5 is strongly correlated with visual content v5 while the
action “watch the glaze take off” is uncorrelated. Irrelevant words or frames can distort the identi-
fication of crucial ones and result in inaccurate similarity measurements, further contaminating the
clip-caption alignment. Note that only a few methods (Han et al., 2022) consider the coarse-grained
misalignment problem in temporal learning while none of them realize this fine-grained misalign-
ment problem. Undoubtedly, MNC poses a significant obstacle to effective temporal modeling.

To this end, we propose NOise Robust Temporal Optimal traNsport (Norton), a unified optimal trans-
port approach for addressing multi-granularity noisy correspondence in temporal learning. Specifi-
cally, Norton proposes a video-paragraph and a clip-caption contrastive loss based on optimal trans-
port (OT) to explore the temporal correlations.

In video-paragraph contrast, Norton employs OT to measure sequence distances between video clips
and captions from a fine-to-coarse perspective. To handle fine-grained misalignment, Norton incor-
porates a token-wise soft-maximum operator to identify crucial words and key frames within each
clip-caption pair. This operator improves the measurement of clip-caption similarity from fine-
grained multi-modal interactions. Building upon this clip-caption similarity, Norton establishes a
flexible assignment between clips and captions by maximizing the global alignment similarity of
OT. Based on the transport assignment, Norton realigns each video clip to multiple related captions,
and vice versa, thereby mitigating the asynchronous misalignment. To further address the irrelevant
misalignment, Norton introduces an alignable prompt bucket which serves as a candidate alignable
target for noisy clips or captions. By discarding the ones aligned to the bucket, Norton effectively
filters out meaningless content during the OT process. Note that our late interaction between clips
and captions through OT alleviates the computational cost of directly modeling long videos.

In clip-caption contrast, Norton tackles the faulty negative problem (Chuang et al., 2020; Yang
et al., 2021b) through OT. Specifically, semantically similar clip and captions would be wrongly
treated as negatives in contrastive learning (Chen et al., 2020; Lin et al., 2021; 2022; Liu et al.,
2022a) and impact the clip-wise representation. Norton leverages OT assignments of within-batch
clip-caption pairs as additional supervision in clip-caption contrastive loss, which exploits potential
faulty negative samples and improves temporal learning.

2



Published as a conference paper at ICLR 2024

The main contributions of this work are summarized below:

• We reveal multi-granularity noisy correspondence problem in temporal learning, which refers to
coarse-grained asynchronous and irrelevant misalignments, as well as fine-grained misalignment.

• We achieve efficient and robust correspondence learning by incorporating several innovative com-
ponents such as the soft-maximum operator, alignable prompt bucket, and faulty negative exploita-
tion within the optimal transport framework. Extensive experiments on various tasks including
video retrieval, videoQA, and action segmentation verify its effectiveness.

2 RELATED WORK

Video Temporal Learning. Temporal learning is a critical yet challenging topic in video under-
standing. Traditional works focus on integrating spatial-temporal operations into convolution (Fe-
ichtenhofer et al., 2019) or Transformer architectures (Bertasius et al., 2021; Wang et al., 2023;
Sun et al., 2022). Inspired by image-language pre-training approaches (Radford et al., 2021; Jia
et al., 2021), recent works leverage natural language to guide video temporal learning. Among these
works, one scheme is “sorting the clips” (Zellers et al., 2021; Zeng et al., 2023a;b; Ma et al., 2023)
which involves ranking the video clips according to their sequential sentences. While effective, this
framework generally requires encoding long video into one sequence and entails significant com-
putational resources. Another type of scheme proposes to leverage Dynamic Time Warping (Yang
et al., 2023b; Müller, 2007; Dvornik et al., 2021) to measure the sequence distance between video
clips and captions, and achieve temporal learning by aligning the video with the corresponding
paragraph.

Although promising results have been achieved, existing temporal learning methods suffer from
the noisy correspondence problem where the ground truth order of captions w.r.t. video clips does
not conform to the original timestamp order. This issue can significantly impact temporal learning,
leading to suboptimal results for sorting-based and DTW-based approaches. Different from these
works, this paper is dedicated to solving noisy correspondence in temporal learning and accordingly
proposes an MNC-robust optimal transport framework that effectively measures sequence similarity
between noisy video and paragraph.

Noisy Correspondence Learning in Video-language Pre-training. Video-language pre-training
has achieved promising progress thanks to large-scale datasets such as HowTo100M (Miech et al.,
2019). As the text description is often not well-aligned to the visual content (Han et al., 2022), noisy
correspondence learning (Huang et al., 2021; Gao et al., 2021) becomes a new fashion in VLP. To be
specific, MIL-NCE (Miech et al., 2020) first studies this problem by simply aligning each video clip
with multiple adjacent sentences to mitigate the impact of noise. TAN (Han et al., 2022) proposes
a co-training strategy that uses mutual agreement to filter out the noisy pairs. Different from the
above on-the-fly noise rectified methods, Decembert (Tang et al., 2021) generates high-quality video
descriptions using an off-the-shelf image captioning model from a data collection aspect.

Our method differs from existing works in two key aspects. First, the above noisy correspondence
methods only consider coarse-grained asynchrony while ignoring the frame-word misalignment
problem. In contrast, we point out that fine-grained misalignment can impact temporal learning
and accordingly propose a unified optimal transport approach that effectively addresses noisy corre-
spondence at both coarse and fine-grained levels. Second, our method is computationally efficient
with a low memory cost. It operates in a bootstrapping manner without requiring additional models,
e.g., dual networks (Han et al., 2022), momentum networks (Li et al., 2021; Han et al., 2022), or
image caption models (Tang et al., 2021). These advantages make our approach more practical and
scalable for real-world applications.

Optimal Transport. OT is originally proposed to depict the distance between two probability dis-
tributions. Recently, OT has gained significant attention in various fields such as domain adapta-
tion (Xu et al., 2020), clustering (Caron et al., 2020), document matching (Yu et al., 2022; Kusner
et al., 2015), and sequence alignment (Su & Hua, 2017; Liu et al., 2022b). However, none of these
works specifically focus on the alignment of video and text, which is the primary focus of our re-
search. In addition to addressing the traditional sequence alignment, we point out the fine-grained
misalignment problem that is specific to video-text learning. Experimental results show that the
proposed multi-grained alignment effectively improves temporal learning.
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Figure 2: Overview of our multi-granularity correspondence learning. We perform video-paragraph
contrastive learning to capture long-term temporal correlations from a fine-to-coarse perspective.
Specifically, we first utilize the log-sum-exp operator on the frame-word similarity matrix to ob-
tain fine-grained similarity between clip and caption. Additionally, we append an alignable prompt
bucket on the clip-caption similarity matrix to filter out the irrelevant clips or captions. By apply-
ing Sinkhorn iterations on the clip-caption similarity matrix, we effectively tackle the asynchronous
problem and obtain the optimal transport distance as the video-paragraph similarity.

3 METHOD

In this section, we first introduce the overall pre-training objective of Norton in Section 3.1. Subse-
quently, we elaborate on our multi-granularity correspondence learning in Section 3.2 and explain
how to exploit the faulty negative samples in clip-caption contrastive learning in Section 3.3.

3.1 PRE-TRAINING OBJECTIVE

Given an instructional video dataset D = {Vi,Ti}Ni=1, where Vi and Ti represent the video and
paragraph of i-th instance, we formulate each video/paragraph as a sequence of video clips/captions
according to the ASR timestamps. Specifically, we mark the video clips and captions in i-th video
as {va}na=1 and {tb}mb=1. Here {vj

a}
f
j=1 and {tjb}wj=1 represent the frames and words within va and

tb, where f and w represent the length of the clip and caption. Based on the above definitions, we
propose the following training objectives:

L = Lclip + λLvideo, (1)

where video-paragraph contrastive loss Lvideo explores the temporal correlations between the long
video Vi and its corresponding paragraph Ti through a novel noise robust temporal optimal trans-
port distance. The clip-caption contrastive loss Lclip exploits potential faulty negative samples to
improve clip representation and ensure accurate temporal modeling. We will elaborate on these two
losses in the following sections.

3.2 CORRESPONDENCE LEARNING VIA ROBUST OPTIMAL TRANSPORT

As long videos are typically composed of a sequence of short video clips, we propose to use the
optimal transport distance between video clips and captions as the similarity criterion for video-
paragraph contrastive learning in a robust and efficient way.

Let S ∈ Rn×m denote the clip-caption similarity matrix where [S]a,b measures the similarity be-
tween clip va and caption tb. Q ∈ Rn×m

+ denotes the corresponding transport assignment where
[Q]a,b represents the probabilities of aligning va with tb. Optimal transport seeks to establish a
flexible alignment between clips and captions by maximizing global similarity ⟨Q,S⟩ = tr(Q⊤S).
Formally, the objective of optimal transport is defined as follows:

max
Q∈Q

⟨Q, S⟩+ εH(Q)

s.t. Q =
{
Q ∈ Rn×m

+ | Q1m = µ,Q⊤1n = ν
}
.

(2)

where 1m represents the vector of ones in dimension m, µ ∈ Rn and ν ∈ Rm indicate the rela-
tive importance of each clip or caption. Since each clip or caption is sampled independently, we
choose uniform probability distribution µ = 1

n1n and ν = 1
m1m to assign equal weight to each
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instance following Su & Hua (2017). H(Q) is an entropy regularizer derived from the optimization
perspective (Cuturi, 2013) and ε controls its smoothness.

As illustrated in Eq. (2), optimal transport can realign each clip or caption to multiple related cap-
tions or clips based on global similarity, thus effectively resolving the potential asynchronous mis-
alignment problem between the two modalities. The optimal Q∗ of Eq. (2) has a simple normalized
exponential matrix solution by Sinkhorn fixed point iterations (Cuturi, 2013),

Q∗ = Diag(κ1) exp (S/ε)Diag(κ2),

with iteratively updated κ1 ← µ./ (exp (S/ε)κ2) , κ2 ← ν./
(
exp

(
S⊤/ε

)
κ1

)
,

(3)

where κ1 ∈ Rn, κ2 ∈ Rm are the non-negative left and right scaling vectors. By utilizing OT dis-
tance between clips and captions as the video-paragraph similarity, our video-paragraph contrastive
loss captures the long-term temporal dependencies as follows,

Lvideo = −
N∑
i=1

(
log

exp (⟨Qii, Sii⟩/τ)∑N
j=1 exp (⟨Qij , Sij⟩/τ)

+ log
exp (⟨Qii, Sii⟩/τ)∑N

j=1 exp (⟨Qji, Sji⟩/τ)

)
, (4)

where Sij ∈ Rn×m is the clip-caption similarity matrix between video Vi and paragraph Tj , Qij is
the corresponding transport assignment of Sij , and τ is a learnable temperature initialized as 0.07.
Note that when calculating Eq. (4), we stop the gradient of the transport assignment Q to keep the
stability of our video-paragraph contrastive loss. To ensure the discriminative capacity of the model,
we search the nearest videos as the hard negative samples following Xu et al. (2021). By using
optimal transport to measure sequence distance instead of directly modeling the long videos, our
method significantly reduces computational cost. A detailed training efficiency discussion is placed
in Appendix C.

However, the optimal transport objective Eq. (2) still has some limitations: i) OT estimates the
sequence distance based on clip-caption similarity (coarse-grained), leaving word-frame misalign-
ment (fine-grained) problem unexplored; ii) OT requires each source instance must exactly map to
the targets, which is not practical when dealing with a large amount of meaningless text. To address
these challenges, we propose a soft-maximum operator for fine-grained alignment and an alignment
prompt bucket to filter out meaningless clips and captions for noise robust distance estimation.

Fine-grained Alignment. Most previous works (Xu et al., 2021; Yang et al., 2023b; Han et al.,
2022) typically encode frames or words to a global feature using [CLS] token or averaging the frame
or word embeddings (e.g., AvgPool({vj

a}
f
j=1)). However, such strategies neglect fine-grained in-

teractions between modalities and do not address the problem of frame-word misalignment.

To address this issue, we propose a cross-modal late interaction mechanism to identify crucial words
and key frames for fine-grained alignment inspired by Yao et al. (2022); Wang et al. (2022b). Specif-
ically, we define the fine-grained similarity between clip va and caption tb as follows:

[S]a,b =
1

2

 1

f

f∑
i=1

α log

 w∑
j=1

exp(
vi
a · t

j
b

α
)

+
1

w

w∑
i=1

α log

 f∑
j=1

exp(
tib · vj

a

α
)

 . (5)

Take the front part for example, for each frame in the video clip, we identify the most impor-
tant words through a soft-maximum operation, i.e., log-sum-exp approximation (Beck & Teboulle,
2012), and then compute the average soft-maximum similarities of all frames as shown in Fig. 2.
Similarly, for each textual token, we also find its related video frames in the latter part of Eq. (5). The
parameter α magnifies the importance of the most relevant words or frames. As α approaches 0, the
log-sum-exp approximates the maximum. Specifically, this soft-maximum operation allows us to
reduce the negative influence of background words or frames on clip-caption similarity estimation.

Though inspired from Wang et al. (2022b); Yao et al. (2022), our method differs in several aspects.
Firstly, we introduce a straightforward log-sum-exp operator as a soft approximation of the maxi-
mum. This allows us to concentrate on more crucial words, making it particularly well-suited for
video content as opposed to images. Experiments in Table 7 demonstrate that our design yields a
substantial improvement compared to solely focusing on the most important item. Secondly, we
leverage the estimated clip-caption similarity for sequence alignment, effectively enhancing tempo-
ral learning. In contrast, Wang et al. (2022b) exclusively concentrates on clip-caption alignment.
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Alignable Prompt Bucket. Optimal transport requires every source instance to exactly map to
the targets. Yet, in real-world scenarios, a significant amount of captions and video clips might be
noisy or irrelevant that cannot be aligned, i.e., coarse-grained irrelevant misalignments. Motivated
by Sarlin et al. (2020), we propose an innovative solution that uses an alignable prompt bucket
(APB) to filter out semantic irrelevant clips and captions. As shown in Fig. 2, the prompt bucket
consists of one new row and column, filled with the same value p. The prompt bucket is appended
to the similarity matrix S that

[S̄]a,m+1 = [S̄]n+1,b = [S̄]n+1,m+1 = p, [S̄]a,b = [S]a,b, ∀a ∈ [1, n], b ∈ [1,m]. (6)

When calculating the transport distance given S̄, each video clip can be aligned with either available
captions or the prompt bucket. Substituting Eq. (2) with Eq. (6), we obtain the final optimal transport
assignment by dropping the last row and column of the transport assignment, i.e., Q̄∗ = Q̄∗

1:n,1:m.

From an intuitional viewpoint, the prompt value p in Eq. (6) serves as a similarity margin that
distinguishes between alignable and unalignable clips and captions. If a video clip va lacks an
alignable caption, its pairwise similarities with the set of captions {tb}mb=1 are generally small.
Consequently, if the margin p is larger than these pairwise similarity values, va is forced to align with
the prompt bucket and subsequently filtered from the transport assignment. In our implementation,
we determine the value of p as the bottom 30% similarity of the original aligned clip-caption pairs
in a data-driven manner.

3.3 CLIP-CAPTION ALIGNMENT VIA FAULTY NEGATIVE EXPLOITATION

Since self-supervised contrastive learning (He et al., 2020) relies on the random sampling of neg-
ative instances, captions that are semantically similar to the anchor clips can be treated as faulty
negatives (Han et al., 2020; Zolfaghari et al., 2021), and vice versa. However, the existing one-hot
target used in contrastive learning penalizes all negative predictions regardless of their correlations.

To mitigate this issue, we propose to exploit the faulty negatives through optimal transport. Let
Ŝ ∈ RB×B denotes the within-batch clip-caption similarity matrix where B represents the number
of clips/captions for all videos in the batch. We apply optimal transport on the similarity matrix Ŝ,

max
Q̂∈Q̂

⟨Q̂, Ŝ⟩+ εH(Q̂) s.t. Q̂ =

{
Q̂ ∈ RB×B

+ | Q̂1B =
1

B
1B , Q̂

⊤1B =
1

B
1B

}
, (7)

where the transport assignment Q̂ attempts to realign the clips with similar captions (i.e., faulty
negatives). After implementing the Sinkhorn algorithm described in Eq. (3), we utilize the clip-wise
realigned targets Q̂∗ as additional supervision for contrastive learning,

Lclip = −
B∑
i=1

B∑
j=1

[T]i,j

(
log

exp([Ŝ]i,j/τ)∑B
k=1 exp([Ŝ]i,k/τ)

+ log
exp([Ŝ]i,j/τ)∑B

k=1 exp([Ŝ]k,j/τ)

)
,T = (1− β) IB + βQ̂∗,

(8)
where β is a weighted parameter that balances the identity target IB and realigned targets Q̂∗. By
replacing identity matrix IB with estimated soft-alignment probabilities, the model can recalibrate
the attractive and repulsive forces between clips and captions. Specifically, the entire training batch
is treated as a support set (Patrick et al., 2021) with a subset of relevant clips and captions. Our
method enables the detection and correction of potential faulty negatives within the set.

4 EXPERIMENTS

We verify the effectiveness of Norton in comprehending both long and short videos across a range
of downstream tasks. Additionally, we perform extensive ablation studies to analyze the impact of
different design choices on the model’s performance. For comprehensive training details, training
efficiency results, and additional experiments please refer to the Appendix.

4.1 COMPARISONS ON VIDEO-PARAGRAPH RETRIEVAL

As the main contribution of this work lies in long-term temporal learning, we first evaluate our
method on the video-paragraph retrieval task. The objective of this task is to accurately find the
corresponding video using a set of sentence queries that describe different parts of the long video.
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Table 1: Video-paragraph retrieval on YouCookII
(Background Removed). The best and second-best re-
sults are bold and underlined, respectively.

Approach Measure R@1 R@5 R@10
MIL-NCE (Miech et al., 2020) Cap. Avg. 43.1 68.6 79.1
HT100M (Miech et al., 2019) Cap. Avg. 46.6 74.3 83.7
MCN (Chen et al., 2021) Cap. Avg. 53.4 75.0 81.4
VideoCLIP (Xu et al., 2021) Cap. Avg. 74.5 94.5 97.9
TempCLR (Yang et al., 2023b) Cap. Avg. 74.5 94.6 97.0
Norton (Ours) Cap. Avg. 75.5 95.0 97.7
VideoCLIP (Xu et al., 2021) DTW 56.0 89.9 96.3
TempCLR (Yang et al., 2023b) DTW 83.5 97.2 99.3
Norton (Ours) DTW 88.7 98.8 99.5
VideoCLIP (Xu et al., 2021) OTAM 52.8 89.2 95.0
TempCLR (Yang et al., 2023b) OTAM 84.9 97.9 99.3
Norton (Ours) OTAM 88.9 98.4 99.5

Table 2: Video-paragraph retrieval
on YouCookII (Background Kept).

Approach R@1 R@5 R@10
Cap. Avg.

VideoCLIP 73.6 94.7 98.4
TempCLR 71.7 94.5 97.9
Norton (Ours) 74.8 94.7 98.4

DTW
VideoCLIP 55.7 93.1 98.9
TempCLR 70.4 93.8 97.9
Norton (Ours) 76.1 95.0 97.7

OTAM
VideoCLIP 56.6 92.8 98.9
TempCLR 72.2 94.5 97.7
Norton (Ours) 73.6 94.7 97.7

Setup and Metric. We evaluate the zero-shot performance of our method in two different set-
tings, namely, Background Removed and Background Kept. The former setting discards the text-
uncorrelated video clips based on the timestamps, while the latter uses the full video. As times-
tamps may not always be available, paragraph retrieval with background is a more realistic scenario.
To provide a comprehensive evaluation, we employ three standard strategies, namely, Cap. Avg.
(Caption Average), DTW, and OTAM (Ordered Temporal Alignment Module (Cao et al., 2020)).
Specifically, Cap. Avg. matches one clip for each caption and retrieves the video with the most
matched clips. DTW and OTAM calculate the sequence distance by accumulating the clip-caption
distance based on chronological order. We report recall metrics R@1, R@5, and R@10 for all se-
tups. Specifically, R@1 indicates how often the correct prediction is the first result, which is highly
desirable in many applications, while R@10 provides a wider scope and may be less critical as users
typically focus on the top few results in practical scenarios.

Datasets. We conduct the evaluation on YouCookII (Zhou et al., 2018) where the testing data
consists of 436 videos with 3,350 clip-caption pairs in total. The videos existing in YouCookII
have been removed from Howto100M (Miech et al., 2019) following the same protocol as previous
works (Miech et al., 2020; Xu et al., 2021; Yang et al., 2023b).

Results. i) Background Removed: As shown in Table 1, TempCLR (Yang et al., 2023b) performs
remarkably better than VideoCLIP (Xu et al., 2021) in terms of DTW and OTAM, as it is trained
to explore the global temporal context. However, all these methods suffer from noisy correspon-
dence in the temporal alignment. In contrast, our proposed robust optimal transport framework
explicitly overcomes multi-granularity noisy correspondence. Specifically, our method effectively
improves the performance of all measurements by a large margin (+ 1% Cap. Avg., 5.2% DTW,
and 4% OTAM in terms of R@1), indicating that our method learns better temporal information.
ii) Background Kept: As shown in Table 2, compared with the Background Removed results, the
recall of all methods dropped as the irrelevant information in the background can distract the video
features. Nevertheless, our proposed method consistently outperformed VideoCLIP and TempCLR,
even under such challenging conditions.

4.2 EVALUATION ON DIVERSE DOWNSTREAM TASKS

To verify the generalization of our method, we conduct experiments on three downstream tasks with
four datasets described below.

Text-to-Video retrieval (clip level). This task aims to find a corresponding video clip given a query
caption. We use YouCookII (Zhou et al., 2018) and MSR-VTT (Xu et al., 2016) to evaluate the
transferability of our method. MSR-VTT (Xu et al., 2016) is a well-known retrieval benchmark
containing 10,000 short videos with 20 captions each. Following Xu et al. (2021), we utilize the
1,000 clip-caption test pairs for evaluation. For YouCookII, we use 3,350 clip-caption pairs as
introduced in Section 4.1.
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As shown in Table 3, our method achieves remarkable improvement over state-of-the-art methods
on YouCookII. On MSR-VTT (Table 5), our method shows solid improvements especially about
1.9% R@5 and 1.6% R@10 zero-shot improvement compared with VideoCLIP. After fine-tuning,
our method still reaches state-of-the-art R@1. Here we include SupportSet (Patrick et al., 2021) and
Frozen (Bain et al., 2021) for completeness, while they use different pre-training data such as 65
million Instagram videos (Ghadiyaram et al., 2019), 2.5 million WebVid videos (Bain et al., 2021)
and 3 million Google Conceptual Captions (Sharma et al., 2018). The results in this clip-caption
retrieval experiment indicate that our method not only improves the global temporal information
(long video retrieval as shown in Section 4.1), but also facilitates clip-level representation learning.

Table 3: Clip-caption retrieval on YouCookII.

Approach Feature R@1 R@5 R@10
ActBERT (Zhu & Yang, 2020) R101+Res3D 9.6 26.7 38.0
MIL-NCE (Miech et al., 2020) S3D-G 15.1 38.0 51.2
MCN (Chen et al., 2021) R152+RX101 18.1 35.5 45.2
TACo (Yang et al., 2021a) S3D-G 19.9 43.2 55.7
VT-TWINS (Ko et al., 2022) S3D-G 9.7 27.0 38.8
MMFT (Shvetsova et al., 2022) S3D-G 19.8 42.9 55.1
TAN (Han et al., 2022) S3D-G 20.1 45.5 59.5
VideoCLIP (Xu et al., 2021) S3D-G 22.7 50.4 63.1
TempCLR (Yang et al., 2023b) S3D-G 23.3 51.0 64.5
Norton (Ours) S3D-G 24.2 51.9 64.1

Table 4: Action segmentation on COIN.

Approach Frame
Accuracy

VAVA (Liu et al., 2022b) 47.3
ActBERT (Zhu & Yang, 2020) 57.0
Drop-DTW (Dvornik et al., 2021) 59.6
MIL-NCE (Miech et al., 2020) 61.0
ClipBERT (Lei et al., 2021) 65.4
TACo (Yang et al., 2021a) 68.4
VideoCLIP (Xu et al., 2021) 68.7
TempCLR (Yang et al., 2023b) 68.7
Norton (Ours) 69.8

Table 5: Text-to-video retrieval on MSR-VTT.

Superivsed R@1 R@5 R@10
SupportSet (Patrick et al., 2021) 30.1 58.5 69.3
Frozen (Bain et al., 2021) 31.0 59.5 70.5
MMFT (Shvetsova et al., 2022) 23.7 52.1 63.7
VideoCLIP (Xu et al., 2021) 30.9 55.4 66.8
TempCLR (Yang et al., 2023b) 30.6 55.1 65.5
Norton (Ours) 31.2 55.7 66.8
Zero-shot R@1 R@5 R@10
SupportSet (Patrick et al., 2021) 8.7 23.0 31.1
Frozen (Bain et al., 2021) 23.2 44.6 56.6
MIL-NCE (Miech et al., 2020) 9.9 24.0 32.4
MMFT (Shvetsova et al., 2022) 9.9 24.0 32.6
VT-TWINS (Ko et al., 2022) 9.4 23.4 31.6
VideoCLIP (Xu et al., 2021) 10.4 22.2 30.0
TempCLR (Yang et al., 2023b) 10.1 22.2 29.4
Norton (Ours) 10.7 24.1 31.6

Table 6: VideoQA on MSR-VTT.

Superivsed Accuracy
EITanque (Kaufman et al., 2017) 65.5
MLB(Kim et al., 2016) 76.1
JSFusion (Yu et al., 2018) 83.4
ActBERT (Zhu & Yang, 2020) 85.7
ClipBERT (Lei et al., 2021) 88.2
MERLOT (Zellers et al., 2021) 90.9
VideoCLIP (Xu et al., 2021) 92.1
TempCLR (Yang et al., 2023b) 92.2
Norton (Ours) 92.7
Zero-shot Accuracy
VideoCLIP (Xu et al., 2021) 73.9
TempCLR (Yang et al., 2023b) 74.4
Norton (Ours) 77.1

VideoQA. We conduct the multiple choice VideoQA experiment on MSR-VTT (Yu et al., 2018).
Given a video query and some candidate textual answers (5 on average), the task is to find the
one that fits the query out of possible candidates. As shown in Table 6, our method outperforms
the counterparts with +2.7% in terms of zero-shot accuracy and achieves 0.5% improvements after
finetuning, showing the superiority of our method.

Action Segmentation. This task assumes that each video is associated with various actions. The
goal is to determine the specific action for each second, which requires fully exploring the temporal
dependencies. We use the long video dataset COIN (Tang et al., 2019) to evaluate the action segmen-
tation performance of our method. COIN contains 11,827 videos (476 hours) in total where each
video is labeled with 3.91 action segments on average, according to 778 candidate segment labels.
Following Xu et al. (2021), we apply a one-layer classification head on top of the visual encoder
to classify the action label. We report the frame-wise accuracy using the evaluation protocol of Xu
et al. (2021); Miech et al. (2020). As shown in Table 4, our method outperforms all baselines.
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Table 7: Ablation experiments evaluated on YouCookII, where “Clip” is short for clip-caption
retrieval, “Video” for video-paragraph retrieval, “B” for video backgrounds, and “FNE” for faulty
negative exploitation. We report the DTW measurement for video-paragraph retrieval.

Basic Setting Clip Video (w/o B) Video (w B)
Model FNE Soft-max α APB p R@1 R@5 R@1 R@5 R@1 R@5

VideoCLIP (Xu et al., 2021) – – – 22.7 50.4 56.0 89.9 55.7 93.1
TempCLR (Yang et al., 2023b) – – – 23.3 51.0 83.5 97.2 70.4 93.8

A (w/o Lvideo) – – 22.8 50.1 56.7 89.0 56.4 91.8
B (w/o Lvideo) ✓ – – 23.4 50.8 63.3 93.3 65.1 92.4

C ✓ Mean average – 23.1 50.1 84.2 97.3 74.3 94.7
D ✓ (Yao et al., 2022) – 23.5 50.5 86.9 98.6 74.1 94.6
E ✓ 0.1 – 23.8 51.7 88.1 98.6 74.2 94.7
F ✓ 0.2 – 24.0 51.8 88.2 98.6 74.9 94.4
G ✓ 1 – 24.0 51.8 88.4 98.8 75.2 94.7
H ✓ 1 10% 24.2 51.8 88.4 98.8 75.9 94.9
I ✓ 1 50% 24.2 51.9 88.4 98.6 75.9 94.9
J (Norton) ✓ 1 30% 24.2 51.9 88.7 98.8 76.1 95.0

4.3 ABLATION STUDY ON THE PROPOSED METHODS

In this section, we investigate the effects of our design choices and discuss the results in Table 7.

Effect of Faulty Negative Exploitation. In model-{A,B}, we tackle the issue of faulty negatives in
clip-caption contrastive learning through the correction of optimal transport. This strategy not only
improves the performance of clip-caption retrieval but also enhances the temporal ability.

Effect of OT in Temporal Learning. In model-C, we utilize vanilla optimal transport to measure
the distance between sequences where the clip/caption representation is obtained by averaging the
frame/word embeddings. As shown, model-C achieves comparable performance to TempCLR and
even outperforms TempCLR in retrieval tasks involving backgrounds.

Effect of Fine-grained Alignment. In model-{D,E,F,G}, we investigate the effect of fine-grained
alignment by varying the weight of the log-sum-exp approximation. We also compare our approach
with Yao et al. (2022) which selects the most important token for fine-grained alignment. The
comparison demonstrates that our strategy outperforms Yao et al. (2022), supporting our claim that
focusing on more crucial words/frames yields better fine-grained measurements in video under-
standing. When the weight α tends towards 0, the log-sum-exp approximation approximates the
maximum, resulting in the selection of the most relevant words/frames. The comparison between
model-{E,F,G} shows that a larger α leads to better performance, further validating our assumption
that focusing on more important tokens would enhance performance.

Effect of Alignable Prompt Bucket. In model-{H,I,J}, we integrate the prompt bucket into the
optimal transport framework and vary the value of p to be the bottom 10%, 30%, and 50% similarity
between the original aligned clips and captions. We observe that the use of APB results in a clear
performance improvement for video-paragraph retrieval with background, and setting the value of p
to the bottom 30% similarity is an effective choice.

5 CONCLUSION

Learning temporal correlations in long-form videos is prohibitively expensive in terms of the hard-
ware required. To address this, we propose Norton, a noise robust temporal optimal transport to es-
timate the sequence distance that can be easily extended and scaled to larger datasets with minimal
computational cost. Notably, our unified optimal transport solution resolves the noisy correspon-
dence problem at both frame-word and clip-caption levels. Extensive experiments demonstrate that
our method not only captures long-term temporal dependencies but also facilitates clip-level repre-
sentation learning. In the future, we plan to extend our method to address noisy correspondence for
more modalities as videos typically include visual, textual, and audio content.
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APPENDIX

In this supplementary material, we present:

1. Full details of pre-training (Section A)

2. Derivation of the Sinkhorn-Knopp iteration for optimal transport (Section B)

3. Training efficiency discussion (Section C)

4. Experiments on noisy correspondence analysis (Section D)

5. Applications and potential implications (Section E)

6. Challenges in future works (Section F)

7. Visualization of re-alignment by Dynamic Time Warping and Optimal Transport (Section G)

A DETAILS OF PRE-TRAINING

Following mainstream VLP works (Miech et al., 2020; Xu et al., 2021; Yang et al., 2023b; Han et al.,
2022), we use the instructional videos HowTo100M (Miech et al., 2019) for pre-training. Below, we
provide an overview of the network architecture, data sampling, and training setting.

Architecture. We adopt dual Transformer encoders (Devlin et al., 2018) for processing video clips
and captions, separately. Specifically, the video encoder consists of a 6-layer Transformer, while
the text encoder consists of a 12-layer Transformer. For each video clip, we use HowTo100M pre-
trained S3D (Miech et al., 2020) to extract one video token per second at 30 fps. For each text, we
obtain word tokens via embedding lookup as in BERT (Devlin et al., 2018). The video tokens and
text tokens are then separately passed through the video and text Transformer encoders to obtain
frame and word representations, respectively. As the quality of the representations plays a crucial
role in temporal learning, we initialize our network with VideoCLIP checkpoint (Xu et al., 2021)
due to limited computation resources, following the same setting of TempCLR (Yang et al., 2023b).
Experimental results demonstrate that our method significantly improves VideoCLIP’s performance
on various long and short video tasks, with only 1 GPU day of post-training.

Data sampling. We follow the sampling strategy of VideoCLIP (Xu et al., 2021) as below:

1. Sample a text caption with 8 ∼ 32 tokens by merging the timestamps of the raw captions. This is
done because sampling a video clip first may not have a corresponding caption nearby;

2. Sample a timestamp within the boundary of the caption as the center for a video clip;

3. Grow a video clip with random duration (3 ∼ 16 seconds) from this center timestamp.

We sample 16 clips/captions from each HowTo100M video and form the long video sequence with
consecutive 8 clips/captions. The batch size is set to 64 videos, resulting in 128 (64×16/8) video
sequences in total for video-paragraph contrastive learning in a mini-batch.

Training setting. We implement our method in PyTorch 1.11.0 (Paszke et al., 2019) and conduct
all experiments on the Red Hat 6.4.0-1 OS. We train the network for 10 epochs with fp16 precision,
which takes approximately 1 A100 GPU day. We use Adam optimizer (Kingma & Ba, 2014) with
the learning rate of 1e−5 to optimize the network. Each training batch consisted of 64 videos, each
paired with 16 corresponding clips and captions. We set the balanced weight λ between clip and
video loss to 0.1. The log-sum-exp parameter α and the faulty negative exploitation β are set to 1
and 0.3, respectively. We run 50 steps of the Sinkhorn algorithm and set the entropy ε to 0.1 and 1
for calculating the optimal transport in Lvideo and Lclip, respectively.

To compute clip-caption loss Lclip, we derive clip and caption representations through average pool-
ing on the token embeddings of frames and words, respectively. For video-paragraph loss Lvideo,
we enhance the average pooling similarity by incorporating the proposed fine-grained similarity
measure. For downstream tasks such as retrieval and QA, we maintain computational efficiency by
averaging the embeddings of frames and words as the clip and caption representations, respectively.
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B DERIVATION OF THE SINKHORN-KNOPP ITERATION

In this section, we briefly introduce the derivation of the Sinkhorn algorithm (Cuturi, 2013) for
calculating the optimal transport distance. Given the similarity matrix S ∈ Rn×m where [S]a,b
measures the similarity between video clip va and caption tb, optimal transport aims to maximize
the expectation of the global similarity through,

max
Q∈Q

⟨Q, S⟩ = tr(Q⊤S) =

n∑
a=1

m∑
b=1

[Q]a,b · [S]a,b

s.t. Q =
{
Q ∈ Rn×m

+ | Q1m = µ,Q⊤1n = ν
}
.

(9)

where probability vectors µ,ν denote the amount of mass that could transport from v to t (Wang
et al., 2022a). If each clip in video V or caption in paragraph T is sampled independently from a
distribution, the weights can be set equally, i.e., µ = 1

n1n and ν = 1
m1m.

Note that Eq. (9) is a standard linear programming problem and can be solved in polynomial time
(around O(n3 log n)). However, considering the high volume of data points, common linear pro-
gramming solvers can be time-consuming. To overcome this limitation, Cuturi (2013) investigates a
fast approximation version of this optimization by adding an entropy regularization term,

max
Q∈Q

⟨Q, S⟩+ εH(Q) (10)

where H(Q) = −
∑

ab[Q]a,b log[Q]a,b is derived from an optimization perspective and it makes
the objective function smoothing and convex, allowing for efficient computation. Let L(Q,u,v) be
the Lagrangian of Eq. (10) with dual multipliers u ∈ Rn,v ∈ Rm,

L(Q,u,v) = ⟨Q,S⟩+ εH(Q) + u⊤ (Q1L − µ) + v⊤ (Q⊤1n − ν
)
, (11)

Since the original optimization problem is convex, the solution must satisfy the Karush-Kuhn-Tucker
(KKT) conditions. Therefore, by taking the partial derivative of the Lagrangian in Eq.(11) with
respect to [Q]a,b, we obtain the following equation:

∂L(Q,u,v)

∂[Q]a,b
= [S]a,b − ε (log ([Q]a,b) + 1) + ua + vb = 0 (12)

For any couple (a, b),

(∂L/∂[Q]a,b = 0)⇒ [Q]a,b = e−
1
2+

ua
ε e

[S]a,b
ε e−

1
2+

vb
ε . (13)

Therefore, solving Eq. (10) equals to finding the dual multipliers u and v, which is also equivalent
to get another two scaling coefficients vectors κ1 ∈ Rn,κ2,∈ Rm such that,

[κ1]a = e−
1
2+

ua
ε and [κ2]b = e−

1
2+

vb
ε . (14)

These scaling coefficients are used to compute the optimal transport matrix Q as a normalized
exponential matrix form,

Q∗ = Diag(κ1) exp (S/ε)Diag(κ2). (15)

Recall Q∗ meets the constraints in Eq. (9) that,

Q∗1m = Diag(κ1) exp (S/ε)κ2 = µ, Q∗⊤1n = Diag(κ2) exp
(
S⊤/ε

)
κ1 = ν, (16)

which gives rise to an alternative coordinate descent algorithm, known as the Sinkhorn-Knopp fixed
point iteration (Cuturi, 2013), that updates the scaling coefficients as follows:

κ1 ← µ./ (exp (S/ε)κ2) , κ2 ← ν./
(
exp

(
S⊤/ε

)
κ1

)
. (17)

Empirically, running 50 steps is often sufficient to obtain a satisfactory alignment result. Finally, we
get optimal transport distance through ⟨Q∗,S⟩.
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Table 8: Training time per epoch. ‘f’ denotes the sampled frame for a video clip. We use the
time cost of clip-caption contrastive learning (Line 1) as the base value for comparison in the third
column. The default setting is marked in gray.

Line Approach Time Cost
1 Clip-caption Contrast (16f) 87 min (×1.000)
2 + Faulty Negative Exploitation 92 min (×1.057)
3 + Video-paragraph Contrast (16f×8) 142 min (×1.632)
4 + Fine-grained Soft-maximum Operator (16f×8) 146 min (×1.678)
5 Clip-caption Contrast (32f) 172 min (×1.977)
6 Sinkhorn iteration in Lclip 2.4 min (×0.027)
7 Sinkhorn iteration in Lvideo 2.6 min (×0.029)

C TRAINING EFFICIENCY DISCUSSION

Most existing temporal learning methods (Han et al., 2022; Zeng et al., 2023b) directly model long
videos using the video Transformer encoder. However, the complexity of the Transformer (Devlin
et al., 2018; Vaswani et al., 2017) is approximately O(t2), where t is the number of the video frames.
Consequently, these methods require significant computational resources to model lengthy videos.
In contrast, our approach utilizes optimal transport to estimate the sequence distance between short
video clips and captions in a late fusion manner, thereby alleviating the need to encode entire long
videos. Although the complexity of the Sinkhorn algorithm is directly proportional to the number
of video clips, captions, and Sinkhorn iterations, this late computation is negligible compared to the
computation of the deep network.

Table 8 presents the training time for different settings on a single A100 GPU. “16f” indicates that we
sample video clips up to 16 seconds. “16f×8” denotes that we employ OT to measure the distance
between 8 clips and 8 captions, resulting in a sequence length increase to 128. For contrastive
learning in Lines 1 and 5, we average the token embeddings of frames/words as the clip/caption
representation following Xu et al. (2021). As shown, the proposed faulty negative exploitation (Line
2) and fine-grained operator (Line 4) only require a small amount of time compared with Lines 1 and
3. This is because our fine-grained operator and optimal transport both operate in a late interaction
mechanism, which is only conducted on the final output of the encoder.

When extending the video length to 32 frames (Line 5), the training time increases from 87 minutes
(Line 1) to 172 minutes (approximately×1.98). This experiment aims to simulate temporal learning
methods that encode the entire long video into a single sequence (Zeng et al., 2023b; Han et al.,
2022). In contrast, our method (Line 4) requires a smaller amount of time (146 minutes) while still
being capable of embedding videos with 128 frames. We further evaluate the time cost of Sinkhorn
iteration per epoch in Lines 6 and 7. Compared to the forward and backward passes of the network,
the computation of the Sinkhorn iterations is minimal.

D ROBUSTNESS ON NOISY CORRESPONDENCE

In this section, we evaluate the effectiveness of different methods against noisy correspondence
through visual-textual alignment experiments on the HTM-Align dataset (Han et al., 2022). HTM-
Align is a subset of the HowTo100M dataset, consisting of 80 videos with 49K sentences that have
been manually annotated to rectify the alignment in the presence of noisy correspondence. The
annotators have two main tasks: i) determining if a sentence from ASR is visually related to the
video, and ii) adjusting the start & end timestamps to accurately cover the visual content if the
sentence is related.

After training the models on the HowTo100M dataset, we evaluated their performance on this align-
ment task to assess their ability to handle noise. We report the Recall metrics for this alignment
task. Specifically, for a misaligned sentence, if its most closely matched video frame falls into the
ground-truth segment annotated by the human, it is counted as a successful recall. The Recall scores
are averaged across all the text segments.
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For a fair comparison, the maximum number of video frames is set to 32 for Han et al. (2022); Xu
et al. (2021); Yang et al. (2023b) and our method. We also include the 64 frame version of TAN (Han
et al., 2022) for completeness. We use a sliding window approach to calculate the similarity between
video frames and sentences with a window size of 32 seconds and a step size of 8 seconds. We
averaged the similarity scores for overlapping visual tokens from multiple windows. As shown in
Table 9, CLIP exhibits inferior performance, possibly because it has only been trained on images
and lacks the ability to capture video dynamics. In contrast, our method outperforms VideoCLIP
and TempCLR, providing evidence that our approach is not prone to fit noisy correspondence.

Table 9: Alignment results on the HTM-Align datasets.

Approach Recall
CLIP (ViT-B/32) (Radford et al., 2021) 17.5
MIL-NCE (Miech et al., 2020) 34.2
TAN (Han et al., 2022) - 32 frame 41.1
TAN (Han et al., 2022) - 64 frame 49.2
VideoCLIP (Xu et al., 2021) 44.4
TempCLR (Yang et al., 2023b) 44.1
Norton (Ours) 46.9

E APPLICATIONS AND POTENTIAL IMPLICATIONS

Application scenarios. Norton is a representation learning method that exhibits versatility across
various tasks including video retrieval, video QA, and classification, as confirmed by our experi-
ments. A notable strength of Norton lies in its ability to effectively address the common challenge
of noisy correspondence, particularly in uncurated instructional videos. This adaptability allows
Norton to be implemented in diverse scenarios without necessitating meticulous video curation. For
instance, Norton proves effective in tasks such as long video retrieval or classification for various
content genres like movies, education videos, and cooking tutorials. It’s also essential to acknowl-
edge that Norton is tailored for representation learning and may exhibit suboptimal performance in
tasks focused on content generation, such as video captioning.

Potential implications. This paper delves into two challenging problems in video understanding,
namely, long video learning and noisy correspondence learning. In addressing the former, where
computational constraints have limited prior works, our proposed efficient solution may spark in-
creased interest in long video understanding tasks. Regarding the latter, the noisy correspondence
problem (mismatched data pairs) has garnered attention in diverse multi-modal applications, ex-
tending beyond video-text domains to encompass challenges in image-text retrieval (Huang et al.,
2021; Qin et al., 2022; 2023; Han et al., 2023; Yang et al., 2023a), cross-modal generation (Li
et al., 2022), person re-identification (Yang et al., 2022), and graph matching (Lin et al., 2023). Our
work has the potential to attract increased attention to the broader spectrum of noisy correspondence
challenges across various domains.

F CHALLENGES IN FUTURE WORKS

Multi-modal scenarios. Our approach introduces an optimal transport solution to address the noisy
correspondence between bi-modalities in videos and text. However, as videos inherently encompass
visual, textual, and audio content (Shvetsova et al., 2022; Yang et al., 2024), the noisy correspon-
dence challenge might extend across multiple modalities. Addressing multi-modal noisy correspon-
dence using optimal transport presents an open challenge, given the quadratic growth in combina-
tions concerning the number of modalities. We acknowledge this limitation and plan to extend our
method to effectively tackle multi-modal noisy correspondence, exploring these scenarios in future
work.

Utilization of Noise. In this paper, we employ the prompt bucket to directly filter out irrelevant
clips and captions during sequential alignment, attempting to mitigate the influence of noisy corre-
spondence. However, an intriguing question arises regarding whether these noisy samples could be
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utilized as an incentive for training (Li, 2022). Exploring the possibility of generating associated
text for unalignable video clips using large multimodal models (LMMs), e.g., LLaVA (Liu et al.,
2023), BLIP-2 (Li et al., 2023) and GPT-4V(ision) (OpenAI, 2023), could open up a novel avenue
for exploration and improvement in future research endeavors.

G VISUALIZATION OF RE-ALIGNMENT FOR YOUTUBE VIDEOS

In this section, we present the visualization of the optimal transport assignment Q to demonstrate
the robustness of our method. Specifically, we compared our proposed Norton with the Dynamic
Time Warping and vanilla optimal transport. As shown in Fig. 3c, the vanilla OT falsely aligns the
meaningless text “It’s a tense moment” to some irrelevant video clips, because OT requires exact
mapping between each source instance and the targets. In contrast, as depicted in Fig. 3d, our
method successfully filters out the semantically irrelevant captions with the help of the proposed
Alignable Prompt Bucket. Moreover, as shown in Fig. 3b, DTW erroneously aligns video clips to
multiple captions and fails to address the issue of irrelevant captions. In a word, the visualization
illustrates that our Norton outperforms DTW and vanilla OT in aligning the clips with captions in
the presence of noisy correspondence.
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Figure 3: Visualization of the re-alignment.
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