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ABSTRACT

Neural methods have shown significant merit in solving combinatorial optimiza-
tion (CO) problems, including the Bin Packing Problem (BPP). However, most
existing ML-based approaches focus on geometric BPP like 3DBPP, neglecting
complex vector BPP. In this study, we introduce a vector BPP variant called
Class-Constrained Bin Packing Problem (CCBPP), dealing with items of both
classes and sizes, and the objective is to pack the items in the least amount of
bins respecting the bin capacity and the number of different classes that it can
hold. To enhance the efficiency and practicality of solving CCBPP, we propose a
learning-based Encoder-Decoder Model. The Encoder employs a Graph Convolu-
tion Network (GCN) to generate a heat-map, representing probabilities of different
items packing together. The Decoder decodes and fine-tunes the solution through
Cluster Decode and Active Search methods, thereby producing high-quality solu-
tions for CCBPP instances. Extensive experiments demonstrate that our proposed
method consistently yields high-quality solutions for various kinds of CCBPP with
a very small gap from the optimal. Moreover, our Encoder-Decoder Model also
shows promising performance on one practical application of CCBPP, the Manu-
facturing Order Consolidation Problem (OCP).

1 INTRODUCTION

The Bin Packing Problem (BPP) is a classic combinatorial optimization (CO) problem with nu-
merous practical applications in various industries, such as manufacturing, logistics, and resource
allocation. Approximate heuristics methods and the exact algorithms have traditionally been used
to find good solutions, but they may either lack solving efficiency or generalizability. Recently,
a variety of machine learning (ML) based methods (Kwon et al., 2020; Ma et al., 2021; Cheng
et al., 2023; Jiang et al., 2021; Zhao et al., 2021a;b; Zhang et al., 2020; 2023) have been proved to
be effective means to deal with complex CO problems including BPP with appealing advantages.
These learning-based methods outperform both exact solvers and approximate heuristics in terms of
solution efficiency as well as generalization ability.

There are primarily two generalizations of bin packing, geometric bin packing and vector bin pack-
ing (Christensen et al., 2016). The majority of the learning-based BPP solvers focus on geometric
BPP like offline and online 3D bin packing problem (3DBPP), which usually refers to packing a set
of cuboid-shaped items along with x, y, and z axes respectively, into the minimum number of bins in
an axis-aligned fashion. These methods usually leverage Attention Networks or Convolution Neural
Networks as the Encoder to better represent the space constraints and learn to construct a solution
sequentially via reinforcement learning (RL) which learns the solver from the generated packing se-
quences (Duan et al., 2018; Zhang et al., 2021; Zhao et al., 2021a;b; Jiang et al., 2021). On the other
hand, vector BPP with multiple properties and complex constraints have received limited attention
in the neural CO problems field thus far. A typical example of vector BPP is the Class-Constrained
Bin Packing Problem (CCBPP), which deals with items of classes and sizes, and the objective is to
pack the items in the least amount of bins respecting the bin capacity and the number of different
classes that it can hold.
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Figure 1: The pipeline of the Encoder-Decoder Model.

Our work aims to learn a novel learning-based model that can effectively solve various kinds of
CCBPP that have multiple properties and complex constraints. In the context of CCBPP, only the
packing sequences need to be noted, without the position and orientation that need to be considered
in 3DBPP. However, an optimal packing result always corresponds to numerous packing sequences
since shuffling the order of items within each bin does not affect the packing solution but will
directly alter the packing sequence. Thus, it brings complexity when relying solely on learning from
packing sequences. To overcome these challenges, we introduce the connection matrix as a label to
represent whether different items are packed together in the optimal result. If two items are packed
together, the corresponding value in the matrix is 1, otherwise, its value is 0. The connection matrix
is providing richer information compared to the generated packing sequences.

In this paper, we propose a learning-based Encoder-Decoder Model to get an approximate solution
of CCBPP, as illustrated in Fig. 1. Our approach involves the construction of a graph based on
item information, as the sizes and classes of the items can be effectively represented through a
graph structure. The training labels are defined as the true connection matrix depicting relationships
among various items. GCN is leveraged to train an Encoder so that the connectivity matrix with
probabilities, also be treated as a heat-map, of the test instance can be generated. After the Encoder is
well-trained, the Cluster Decoder tries to decode the heat-map matrix to an item sequence. However,
the test instances may suffer from significant differences in the distribution from training samples,
which may lead to relatively poor performance. Therefore, Active Search technique is utilized
during the decoding to fine-tune the final solution, exploiting the instance-specific characteristics to
ensure solution quality. Our Model is different from conventional Encoder-Decoder structures to
solve CO problems (Vinyals et al., 2015; Kool et al., 2019; Li et al., 2019) that the Encoder and
the Decoder are two separated parts with different purposes, which makes the Encoder easier to
learn from the connection matrix, and it will be more flexible to be applied in real-word scenarios.
Overall, the main contributions are summarized as follows:

• We give a clear definition of CCBPP, and introduce a practical application of CCBPP, the
Manufacturing Order Consolidation Problem (OCP) in detail. We show that CCBPP and
OCP can be formulated as special variants of vector BPP.

• We introduce a novel model to solve packing problems by first encode the properties and
dominant constraints by GCN to generate the connectivity probabilities of different items,
and decode the best solution according to the particular attributes of one instance. As far
as we know, we are the first to propose a learning-based method to solve complex vector
BPP.

• We conduct extensive experiments on various settings of CCBPP synthetic datasets and
real-world OCP datasets, and the results show that our algorithm can obtain better solutions
than other benchmarks, while also spending less time.

2 RELATED WORK

1DBPP The 1D bin packing problem (1DBPP) is one of the most well-known problems in combi-
natorial optimization, and related research dates back to the 1960s (Kantorovich, 1960). Due to the
NP-hard nature of 1DBPP, many heuristic approximation algorithms have been designed and their
worst-case performance analysis has also been explored (Coffman et al., 1996). For example, the
Next Fit (NF) algorithm, the First Fit (FF) algorithm, and the Best Fit (BF) algorithm are the most
well-known greedy algorithms to solve 1DBPP.
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CCBPP CCBPP is one special variant of vector BPP. Many authors have studied the CCBPP
and proposed various algorithms to solve it. Shachnai & Tamir (2001) introduced the CCBPP with
applications to a data placement problem. Later on, Xavier & Miyazawa (2006) presented vari-
ous approximation algorithms for the online and offline versions of CCBPP which is motivated by
applications on video-on-demand systems. Shachnai & Tamir (2002) presented algorithms for the
online CCBPP problem when all items have unit sizes. Epstein et al. (2010) followed up on the
previous works that improved upon existing algorithms and offered a study of the approximation of
the CCBPP. Lin et al. (2013) proposed a heuristic approach for the online version of this problem.
Most of these works focus on a specific application of CCBPP, and they mainly provide the the-
oretical analysis of the approximation scheme, while our method is a learning-based algorithm on
general CCBPP. Recently, Borges et al. (2020) presented a Branch-and-Price framework to solve the
CCBPP with two different branching schemes, da Silva & Schouery (2023) proposed branch-and-
cut-and-price framework to solve cutting stock problems including CCBPP. These two frameworks
are exact algorithms, which are different from ours.

Neural methods for BPP Learning-based methods to solve BPP mainly focus on geometric
BPP like offline and online 3D bin packing problems. Duan et al. (2018) proposed a multitask frame-
work based on Selected Learning to solve 3D flexible bin packing problem. Zhao et al. (2021a);
Jiang et al. (2021) leveraged deep reinforcement learning (DRL) method to solve online 3DBPP.
Later, Zhao et al. (2021b) tries to enhance the practical applicability of online 3DBPP via learning
on packing configuration trees. For offline settings of BPP, Zhang et al. (2021) proposed a new end-
to-end learning model based on self-attention-based encoding and DRL algorithms for BPP, and Zhu
et al. (2021) proposed a data-driven tree search algorithm (DDTS) to tackle the large-scale offline
3DBPP.

3 PROBLEM DESCRIPTION

Class-Constrained Bin Packing Problem In the Class-Constrained Bin Packing Problem, given
positive integers B, C, Q and a set {1, ..., N} of items along with their size si ∈ N+ and class
ci ∈ {1, ..., Q} of item i, one must partition the set of items so that the sum of the item sizes in each
part is at most B and the number of different classes in each part is at most C while keeping the
number of parts to a minimum. Thus, B is the size of the bin, C is the number of different classes
that a bin can hold and Q is the number of classes of all the items. The objective of CCBPP is to
minimize the number of bins: minimize

∑N
j=1 yj .

Single-class constrained BPP and multi-class constrained BPP are two kinds of general CCBPP.
In single-class constrained BPP, one item belongs to only one class, Data placement (Golubchik
et al., 2000) and Production planning (Davis et al., 1993) are typical single-class constrained ver-
sions of BPP. Multi-class version means one item belongs to multiple classes, Co-Painting (Peeters
& Degraeve, 2004) and Manufacturing Order Consolidation Problem discussed below are typical
applications of multi-class constrained BPP.

Order Consolidation Problem The Manufacturing Order Consolidation Problem is a practical
application of CCBPP in the domain of supply chain management which will also be discussed in
this paper. Specifically, a manufacturing order (item) involves multiple components (classes) sup-
plied by a component feeder. The feeder has a fix-size thus it can only provide limited KINDS of
components in one production process. Various orders can be combined into a new order (packing
into a bin) to be produced, as long as the total kinds of components required for their production
do not exceed the feeder’s supply capacity. The primary objective of OCP is to minimize the to-
tal amount of orders after the consolidation process, which can greatly save time for equipment
switching and improve productivity. More details of OCP can be found in Appendix B.2.

4 METHODOLOGY

4.1 FRAMEWORK

The overview of our framework is illustrated in Fig. 1. The input data is the properties of items
that should be packed, e.g. the classes and sizes of items in CCBPP or the size of components one
order contains in OCP. Firstly, we construct a graph according to the variables and constraints of
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the problems, and then the input graph is encoded by a well-defined Graph Convolution Network to
generate a heat-map, which represents the probabilities of items packing together. Cluster Decode is
then leveraged to decode the heat-map into a sequence format and output the final solution according
to the characteristics of the particular sample with Active Search. In the following sections, we will
introduce the Encoder and the Decoder in detail.
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Figure 2: An illustration of the Encoder and the Decoder. The Encoder takes the well-constructed
graph as input and outputs the heat-map which shows the probabilities of items packing together.
The Decoder decodes the heat-map into a packing sequence, along with the Active Search to fine-
tune the result according to the characteristics of the input instance.

4.2 ENCODER

In the domain of CCBPP, it is essential to acknowledge that various items may share the same
class, implying relationships between them. Since graph is a structure amounting to a set of objects
in which some pairs of the objects are in some sense “related” (Fraughnaugh, 1997), it can be
leveraged to represent this problem where these items are the vertices and their class relationships
are the edges. This approach enables us to harness the power of Graph Convolutional Network as
our learning model, allowing to effectively capture the intricate patterns inherent in CCBPP. GCN
is uniquely equipped to leverage both the attributes of vertices and the connections between them,
making them a well-suited choice for addressing the complexities of this problem. The details of
the Encoder are shown in Fig. 2a.

The network is trained by supervised learning and the output of the network is the heat-map. The
structure of GCN and the training details will be presented in the following.

4.2.1 GRAPH CONVOLUTION NETWORK

We format the CCBPP as a full connected undirected graph G = (V,E) containing the node set V
and edge set E.

In our GCN input, node attributes xv ∈ Rd represent item properties, such as size and class. Edge
attributes xe ∈ R represent the relationships between items. Similar class affiliations suggest a
tendency for items to be packed together, hence we use class cosine similarities as edge features. To
account for items without shared classes, zero cosine similarities are replaced with a small constant
ϵ. The GCN output provides probabilities of two items being packed together. At the beginning, the
node inputs xv and the edge inputs xe are linearly projected into different vectors, v0i ∈ RH and
e0i,j ∈ RH , respectively, H is the feature dimension, i ∈ V and (i, j) ∈ E.

v0i = Avxv + bv (1)

e0ij = Aexe + be (2)

where Av ∈ RH×D and Ae ∈ RH×1. Then the projected node and edge embeddings are fed into L
Graph Convolution layers. Let vli and eli,j denote the node feature vector and the edge feature vector
respectively, the features at layer l can be defined as follows:
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attnl
i,j = exp(W l

0e
l−1
i,j )⊘

∑
(i,m)∈E∗

exp(W l
0e

l−1
i,m) (3)

vli = vl−1
i +ReLU(BN(W l

1v
l−1
i +

∑
(i,m)∈E∗

attnl
i,j ⊙W l

2v
l−1
j )) (4)

eli,j = el−1
i,j +ReLU(BN(W l

3v
l−1
i +W l

4v
l−1
j +W l

5e
l−1
i,j )) (5)

where W ∈ RH×H , ⊙ represents the element-wise multiplication and ⊘ represents the element-wise
division. Skip-connection layer (He et al., 2016) and Batch Normalization layer (Ioffe & Szegedy,
2015) are consisted in Equation (4) and (5). The structure of GCN are motivated by Bresson &
Laurent (2018).

The last layer edge embedding eLi,j is then leveraged to compute the probabilities of different items
being packed together, which can also be treated as a heat-map over the connectivity matrix of
different items. The heat-map output is widely used to solve Traveling Salesman Problem (TSP) (Fu
et al., 2021; Joshi et al., 2019), one of the most well-known CO problems. The packing probability
pi,j of item i and item j can be calculated as follows:

pi,j =
exp(ReLU(W6e

L
i,j))

exp(ReLU(W6eLi,j)) + 1
(6)

where W6 ∈ RH×H and pi,j ∈ [0, 1].

4.2.2 NETWORK TRAINING

The network is trained via supervised learning and the ground-truth label can be generated through
cutting stock (Gilmore & Gomory, 1961), which will be discussed in detail in Appendix D.1. The
ground-truth labels can then be converted into a connection matrix where each element p̂i,j denoted
whether item i and item j are packed into one container, 1 for true and 0 for false, and pi,j , (i, j) ∈ E
is the output of GCN.

In order to better get cluster characteristics of the heat-map, the loss should contain both the pre-
diction errors and cluster biases. Specifically, the loss function includes two parts, the weighted
cross-entropy loss Lce and the modular loss Lm.

Lce = − 1

γ|V |
∑
i,j

p̂i,j log pi,jw1 + (1− p̂i,j) log(1− pi,j)w0 (7)

Lm = − 1

γ|V |
∑
i,j

pi,j · p̂i,j − pi,j (8)

Lce tries to calculate the distance between the predicted probability and the ground-truth value.
To avoid the positive and negative sample imbalance, we weighted Lce where w0 = N2

N2−2N and

w1 = N2

2N . w0 and w1 are balanced coefficients relative to the edges belonging or not belonging
to the ground-truth (Liu & Zhou, 2007). Minimizing Lm means maximizing the probabilities that
should be packed together indicated by ground-truth, which leverages modularity in Louvain (Blon-
del et al., 2008). Modularity measures the degree to which items in the same cluster are more densely
connected than they are to items in other clusters, which is consistent with the objective of packing
problems. The overall loss is defined as Ltot = Lce + λLm where λ is a coefficient that balances
the two losses.

4.3 DECODER

The heat-map generated by GCN encapsulates valuable cluster information on the items in the
CCBPP. It provides probabilistic indications of item associations, with higher probabilities reflect-
ing stronger correlations. Motivated by the First Fit (FF), the well-known greedy algorithm to solve
1DBPP, we first convert the heat-map into a permutation that determines the packing sequence, then
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the FF algorithm is utilized to generate the final packing solution. Decoding the heat-map into a se-
quence also makes it possible to optimize the solution via reinforcement learning (RL), which will
be discussed in Section 4.3.2.

The whole decode procedure is illustrated in Fig. 2b. In the beginning, several sequences are
sampled from the generated heat-map by the Cluster Decode algorithm, which is highly parallelized.
Following this decoding phase, the bin packing results are subsequently derived from the packing
sequences via FF. The best result will be chosen and the network will be updated by backpropagation
of the selected solution, hence the generated heat-map will be changed. After several rounds of
network updates, the quality of the packing solution will be significantly improved.

4.3.1 CLUSTER DECODE

Since we obtain the packing probabilities according to the heat-map, decoding strategies can be
leveraged to generate a sequence from the heat-map matrix, and the final solution is then obtained
by FF. While greedy decoding and sample decoding, commonly employed in TSP, typically focus on
the last item and overlook other items, packing problems require a comprehensive consideration of
all packed items and the aggregation of relevant information. Cluster algorithms such as K-Nearest
Neighbors can be leveraged to divide the items into several parts, but the divided parts of items may
not be able to be packed in one bin, thus the final solution may be very different from K.

Bin-1

Bin-2

Bin-j

…   …

Bin-j

Unpacked 

Items

Find All Items in 

Current Bin

Calculate Average 

Weight of Unpacked

Select the Item with 

Strongest Probabilities
Find the Latest Bin

Traverse All Bins to 

Pack Selected Item

Bin-1

Bin-2

…   …

Bin-j

T
r
a
v

er
se

Figure 3: Procedure of the Cluster Decode

To address the packing constraints more effectively, the Cluster Decode algorithm is proposed to
make full use of the generated heat-map and the relevant packing status. The algorithm ranks the
items one by one, with each item’s selection being determined by the maximum average connectivity
probabilities with the items already placed in the latest bin, as depicted in Fig. 3. In this way, the
aggregation information in the heat-map is better represented in the form of a sequence, so that the
constraints will be considered during the decoding process while the information of the packing
bins is also considered. The detailed Cluster Decode algorithm is described in Appendix C. At the
beginning, one item is picked at random and the index is set as the first of the sequence, the item is
put into the jth bin via FF. Then all bins are traversed and the latest open one Bm is found. Since
the newly selected item has the greatest possibility of being packed in the latest bin, the next item is
picked by the average connectivity probabilities of all the items in Bm represented by heat-map P .
The sequence is generated until all N items are visited.

4.3.2 ACTIVE SEARCH

It should be noted that while Cluster Decode provides both the packing sequence and the corre-
sponding packing solution, there exists a notable discrepancy between the obtained solution and the
optimal solution since the distribution of the training samples and the test samples may not be iden-
tical. In order to get more search guidance and react towards the solutions decoded by the Cluster
Decode, reinforcement learning can be leveraged to fine-tune the packing sequence according to
the solutions seen so far. Compared with supervised learning algorithms, reinforcement learning
algorithms are guided by environmental reward signal so that it allows near-optimal solutions to be
found without expert guidelines.

Motivated by Yu et al. (2016) and Hottung et al. (2022), we exploit RL-based Active Search to fine-
tune the pre-trained network. Since only a few samples are leveraged for fine-tuning, we froze most
of the graph network and update only one layer embedding with a RL loss function based on Policy
Gradient (Williams, 2004). For each instance, solution π can be repeatedly sampled by Cluster
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Decode whose cost is C(π) = −R(π), the opposite number of the occupied bins. The no-fixed
parameters w are adjusted to minimize L(w):

L(w) = Eπ[(C(π)− b)∇ log pθ(π|w)]

where b denotes the average reward of the batch data and pθ(π|w) =
∏N

t=1 pθ(at|st, w) (Kwon
et al., 2020) , pθ here is the probability of of generating a packing sequence based on the heat-map
according to the Cluster Decode strategy mentioned above. Note that only the parameters w are
instance specific, while all other model parameters are identical for all instances.

5 PERFORMANCE EVALUATION

In this section, we first report the performance of our proposed Encoder-Decoder Model in solving
two kinds of general CCBPP, single-class constrained BPP and multi-class constrained BPP as de-
scribed in Section 3. Then we will conduct a case study of one typical application of general CCBPP,
the Manufacturing Order Consolidation Problem. Finally, we conduct ablation studies to verify the
effectiveness of the Encoder, Cluster Decode algorithm, and the effect of Active Search iterations.

We compare our algorithm with different heuristic algorithms and learning-based algorithms. The
baseline heuristic methods include Random packing, First Fit Decreasing (FFD), which is one of the
most well-known greedy algorithms to solve 1DBPP, and two typical population-based algorithms,
Genetic Algorithm (GA) and Ant Colony Optimization algorithm (ACO) implemented by scikit-
opt1, whose modeling details are included in Appendix D.3.1. As for learning-based methods, since
there is no learning-based related work about CCBPP, we re-implement Pointer Network (Vinyals
et al., 2015) for CO problems with Policy Gradient (Bello et al., 2017) (PointNet in the following
tables) as a baseline. The Greedy and Sampling are strategies to obtain a solution after Cluster
Decode. Greedy strategy means we select the best solution after Cluster Decode, and sampling
means we sample 32 solutions during the Cluster Decode and report the best. GCN-Cluster in the
tables below means the Encoder-Decoder Model in this paper, Active Search (AS) is also compared
with the Greedy and Sampling strategies. Note that exact solvers like OR-tools (Perron & Furnon,
2022) and gurobi (Bixby, 2007) cannot obtain the solution within a limited time. For example, it
costs several hours to obtain one solution of single-class constrained BPP when Q = 10, C = 3, and
besides, it is difficult to reproduce the exact algorithms provided in Borges et al. (2020) and da Silva
& Schouery (2023), so we omit these results. The experiments are conducted on a Linux server with
GeForce RTX 3090 GPU and AMD EPYC 7542 32-Core Processor CPU@2.9GHz.

5.1 GENERAL CLASS-CONSTRAINED BIN PACKING PROBLEM

For general CCBPP, we conduct numerical experiments with simulated data. Since there are no
known benchmarks for the CCBPP available in the literature, the datasets are generated following
the convention of Borges et al. (2020) and da Silva & Schouery (2023). The sizes of items are
random integers ranging from 10 to 25 while the bin capacity B is 100. In single-class version, the
number of different classes available Q ∈ {10, 20, 30} and the class constraint value C ∈ {3, 5}. In
the multi-class version, the class constraint value C is 5, the number of different classes available
Q ∈ {10, 20} and each item belongs to M classes, M ∈ {2, 3}. 6400 training instances and 200 test
instances are generated via the cutting stock algorithm. For all the training and testing instances of
general CCBPP, the optimal value is 20. Details of data generation are described in Appendix D.1.

Table 1 and Table 2 shows the performance evaluation of single-class constrained BPP. It can be
shown that for all the settings, our algorithm outperforms all other baselines. FFD is not suitable for
CCBPP and it performs even worse than Random Packing in most cases. Heuristic methods GA and
ACO also obtain competitive solutions, but the time cost is higher. Note that the scikit-opt we use
here is implemented with parallelization and caching techniques, so it runs more efficiently. Point
Networks have achieved competitive performance on many routing problems (Bello et al., 2017),
they do not perform well on our problems probably because the sequential decision model does
not catch the relationship between items. Compared with Greedy and Sampling strategies, Active
Search with RL further improves the quality of the solution by fine-tuning the network according to
the characteristics of each test instance, meanwhile, the running time is also getting longer.

1https://github.com/guofei9987/scikit-opt
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Table 1: Results of single-class constrained BPP when C = 3, and Q ∈ {10, 20, 30}, Time(s) is the
average time to solve a single instance and the unit is second, Bins is the average cost of total bins,
Gap refers to the gap between the optimal solution.

Method Q = 10 Q = 20 Q = 30
Bins Gap Time(s) Bins Gap Time(s) Bins Gap Time(s)

Random 21.395 6.98% 0.0095 22.04 10.20% 0.0117 22.365 11.83% 0.0106
FFD 21.58 7.90% 0.0109 22.375 11.88% 0.0109 23.09 15.45% 0.0126
GA 20.99 4.95% 14.51 21.00 5.00% 16.43 21.00 5.00% 17.86

ACO 20.81 4.05% 92.00 20.935 4.68% 93.89 21.00 5.00% 96.85
PointNet-Greedy 21.41 7.05% 0.0181 21.88 9.40% 0.0181 22.11 10.55% 0.019

PointNet-Sampling 21.07 5.35% 0.40 21.03 5.15% 0.41 21.06 5.30% 0.67
GCN-Cluster, Greedy 21.00 5.00% 0.045 21.03 5.15% 0.051 21.29 6.45% 0.056

GCN-Cluster, Sampling 20.965 4.83% 0.40 21.00 5.00% 0.41 21.00 5.00% 0.62
GCN-Cluster, AS(Ours) 20.74 3.70% 10.14 20.91 4.55% 10.52 20.98 4.90% 14.05

Table 2: Results of single-class constrained BPP when C = 5 and Q ∈ {10, 20, 30}

Method Q = 10 Q = 20 Q = 30
Bins Gap Time(s) Bins Gap Time(s) Bins Gap Time(s)

Random 21.005 5.03% 0.0095 21.02 5.10% 0.0120 21.03 5.15% 0.0103
FFD 21.00 5.00% 0.0118 21.08 5.40% 0.0098 21.405 7.03% 0.0109
GA 20.63 3.15% 13.96 20.86 4.30% 14.47 20.935 4.68% 15.42

ACO 20.785 3.93% 93.11 20.85 4.25% 105.08 20.83 4.15% 93.82
PointNet-Greedy 21.07 5.35% 0.0156 21.00 5.00% 0.023 21.21 6.05% 0.0156

PointNet-Sampling 20.99 4.95% 0.33 21.00 5.00% 0.7609 21.00 5.00% 0.667
GCN-Cluster, Greedy 21.00 5.00% 0.036 21.00 5.00% 0.055 21.00 5.00% 0.0052

GCN-Cluster, Sampling 20.945 4.73% 0.23 20.99 4.95% 0.73 20.99 4.95% 0.44
GCN-Cluster, AS(Ours) 20.47 2.35% 10.14 20.77 3.85% 10.52 20.82 4.10% 14.05

Table 3 shows the results of multi-class constrained BPP, our algorithm outperforms all other base-
lines for all the settings, with a more significant leading than that of single-class constrained BPP.
Compared to the results of single-class constrained BPP in Table 2, the gap between all results and
the optimal is larger and gradually increases as M becomes larger. The results illustrate the diffi-
culty of solving the multi-class version of CCBPP, especially when M gets larger. From the results
listed above, it can be inferred that our model has more prominent results when the input problem
has more complex constraints such as multi-class constrained BPP.

Table 3: Results of multi-class constrained BPP when C = 5, Q ∈ {10, 20} and M ∈ {2, 3}

Method Q = 10, C = 5,M = 2 Q = 10, C = 5,M = 3 Q = 20, C = 5,M = 2 Q = 20, C = 5,M = 3
Bins Gap Time(s) Bins Gap Time(s) Bins Gap Time(s) Bins Gap Time(s)

Random 21.805 9.03% 0.0169 25.33 26.65% 0.0161 25.82 29.10% 0.0167 43.36 116.80% 0.0255
FFD 22.105 10.53% 0.022 26.50 32.50% 0.0256 27.67 38.35% 0.026 44.26 121.30% 0.0354
GA 20.995 4.98% 52.29 21.785 8.93% 68.90 21.955 9.78% 73.76 27.875 39.38% 56.74

ACO 20.97 4.85% 106.83 21.78 8.90% 131.36 21.93 9.65% 112.22 26.83 34.15% 119.64
PointNet-Greedy 21.88 9.40% 0.0053 23.595 17.98% 0.072 25.11 25.55% 0.029 41.26 106.30% 0.044

PointNet-Sampling 21.00 5.00% 0.53 23.36 16.80% 0.7208 23.70 18.50% 0.8537 37.48 87.40% 1.46
GCN-Cluster, Greedy 22.215 11.08% 0.0527 23.595 17.98% 0.0595 23.22 16.10% 0.0616 32.095 60.48% 0.0759

GCN-Cluster, Sampling 20.99 4.95% 0.462 22.275 11.38% 0.640 22.095 10.48% 0.726 28.38 41.90% 1.11
GCN-Cluster, AS(Ours) 20.91 4.55% 40.04 21.62 8.10% 38.77 21.515 7.58% 41.6 25.915 29.58% 58.21

5.2 CASE STUDY: ORDER CONSOLIDATION PROBLEM

For the Order Consolidation Problem, our datasets consists of the synthetic dataset with ground-
truth and real supply chain dataset in September 2022. The real-world data contains orders in 24
days of September and orders ranging in size from 123 to 178 each day. The synthetic dataset is
generated via cutting stock algorithms (Gilmore & Gomory, 1961) based on real-world data, which
means the items in a sequence are created by “cutting” the bin so that the sequence can be perfectly
packed and restored to the bin. Since the space utilization is 100%, the packing result can be treated
as the ground-truth. In this experiment, we extract real orders to fulfill the feeder to get perfect space
utilization, and the number of bins is set random from 3 to 14 to make the order numbers similar to
the real ones. We generate orders of 2000 days for training and orders of 200 days for testing, the
average ground-truth of the test labels is 9.11.
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The results of synthetic data and real-world data are listed in Table 4. For two kinds of data, only
one GCN is trained with 2000 synthetic data by cutting stock algorithms, and the trained network is
employed on these two datasets, test synthetic datasets with 200 instances and real-world datasets
with 24 instances. Since we already know the ground-truth of the synthetic data, the gap between
different methods and the optimal solution can be obtained, whereas the gap of real-world data is
omitted because the true labels cannot be calculated.

Table 4: Results of OCP on different datasets

Method Synthetic data Real-world data
Bins Gap Time(s) Bins Gap Time(s)

Random 11.705 28.48% 0.038 17.68 / 0.050
FFD 11.865 30.24% 0.041 17.79 / 0.052
GA 10.93 20.00% 98.01 17.00 / 180.02

ACO 9.76 7.13% 113.16 15.33 / 233.42
PointNet-Greedy 12.53 37.54% 0.05 18.88 / 0.42

PointNet-Sampling 11.66 28.00% 1.5 17.62 / 12.5
GCN-Cluster, Greedy 10.08 10.65% 0.043 14.92 / 0.078

GCN-Cluster, Sampling 9.610 5.49% 0.60 14.46 / 0.52
GCN-Cluster, AS (Ours) 9.325 2.36% 21.6 14.29 / 21.0

Results from Table 4 show that our algorithm outperforms all baselines. Although the running time
of Random and FFD is short, the solution quality does not show any advantages. The time cost
of heuristic methods GA and ACO is too high and the results are also not competitive. GCN can
exhibit a high degree of clustering so it has shown good performance in our experiments. Active
Search with RL further improves the quality of the solution by fine-tuning the network according
to the characteristics of each test instance, meanwhile, the running time is also getting longer. Our
algorithm can get an average of 9.325 bins with a gap of the best solution of 2.36% on synthetic data
and an average of 14.29 bins on real-world data, respectively. Compared with the results on general
CCBPP, our model also shows significantly promising performance in practical applications.

5.3 ABLATION STUDIES

We evaluate the effects of different parts of our Encoder-Decoder Model, and the results are as
follows:

• Appendix E.1.1 The heat-map generated by the GCN Encoder provides more information
than the others for the final result.

• Appendix E.1.2 The Cluster Decode algorithm does have a very positive impact on the
performance of the whole framework.

• Appendix E.1.3 The learning curve of Active Search decreases more and more slowly when
the number of iterations increases. A compromise may need to be made between solution
quality and running time when the algorithm is applied in practice.

6 CONCLUSIONS

In this paper, we introduce and formulate a special variant of complex vector BPP, the Class-
Constrained Bin Packing Problem, which has not been extensively studied in existing operational
research. In particular, we propose a learning-based Encoder-Decoder Model to solve the BPP
with multiple properties and more complex constraints. The GCN Encoder generates a heat-map
that shows the probabilities of items packed together, then the Cluster Decoder is leveraged to se-
quential decode the heat-map and fine-tune the solution according to the characteristics of the test
sample with Active Search. Extensive experiments demonstrate that our methodology obtains high-
quality solutions with a very small gap between the optimal while performing better than existing
approaches on various settings of general CCBPP. Additionally, experiments also demonstrate that
our Encoder-Decoder Model shows promising performance on OCP, one practical application of
CCBPP. For future research, we are interested in trying to improve the generalities of our algorithms
to different sizes and distributions of CCBPP. Applying our Encoder-Deocoder Model to other ap-
plications of CCBPP is also an interesting direction.
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Manuel López-Ibáñez. Ant colony optimization. In Annual Conference on Genetic and Evolutionary
Computation, 2010.

Yining Ma, Jingwen Li, Zhiguang Cao, Wen Song, Le Zhang, Zhenghua Chen, and Jing Tang.
Learning to iteratively solve routing problems with dual-aspect collaborative transformer. In
NeurIPS, 2021.

Melanie Mitchell. An introduction to genetic algorithms. 1996.

Marc Peeters and Zeger Degraeve. The co-printing problem: A packing problem with a color
constraint. Oper. Res., 52:623–638, 2004.

Laurent Perron and Vincent Furnon. Or-tools, 2022. URL https://developers.google.
com/optimization/.

Hadas Shachnai and Tami Tamir. Polynomial time approximation schemes for class-constrained
packing problems. Journal of Scheduling, 4:313–338, 2001.

Hadas Shachnai and Tami Tamir. Tight bounds for online class-constrained packing. Theor. Comput.
Sci., 321:103–123, 2002.

11

https://api.semanticscholar.org/CorpusID:28963291
https://api.semanticscholar.org/CorpusID:28963291
https://api.semanticscholar.org/CorpusID:212959678
https://api.semanticscholar.org/CorpusID:212959678
https://developers.google.com/optimization/
https://developers.google.com/optimization/


Published as a conference paper at ICLR 2024

Jiwoo Son, Minsu Kim, Hyeonah Kim, and Jinkyoo Park. Meta-sage: Scale meta-learning scheduled
adaptation with guided exploration for mitigating scale shift on combinatorial optimization. arXiv
preprint arXiv:2306.02688, 2023.

Laurens van der Maaten and Geoffrey E. Hinton. Visualizing data using t-sne. Journal of Machine
Learning Research, 9:2579–2605, 2008.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. In NIPS, 2015.

Ronald J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine Learning, 8:229–256, 2004.

Honguk Woo, Hyunsung Lee, and Sangwoo Cho. An efficient combinatorial optimization model
using learning-to-rank distillation. CoRR, abs/2201.00695, 2022. URL https://arxiv.
org/abs/2201.00695.

Eduardo C. Xavier and Flávio Keidi Miyazawa. The class constrained bin packing problem with
applications to video-on-demand. Theor. Comput. Sci., 393:240–259, 2006.

Zhen Xiao, Qi Chen, and Haipeng Luo. Automatic scaling of internet applications for cloud
computing services. IEEE Transactions on Computers, 63:1111–1123, 2014. URL https:
//api.semanticscholar.org/CorpusID:5819797.

Lantao Yu, Weinan Zhang, Jun Wang, and Yong Yu. Seqgan: Sequence generative adversarial nets
with policy gradient. In AAAI Conference on Artificial Intelligence, 2016.

Cong Zhang, Wen Song, Zhiguang Cao, Jie Zhang, Puay Siew Tan, and Xu Chi. Learning to
dispatch for job shop scheduling via deep reinforcement learning. Advances in Neural Information
Processing Systems, 33:1621–1632, 2020.

David W Zhang, Corrado Rainone, Markus Peschl, and Roberto Bondesan. Robust scheduling with
gflownets. arXiv preprint arXiv:2302.05446, 2023.

Jingwei Zhang, Bin Zi, and Xiaoyu Ge. Attend2pack: Bin packing through deep rein-
forcement learning with attention. ArXiv, abs/2107.04333, 2021. URL https://api.
semanticscholar.org/CorpusID:235790753.

Hang Zhao, Qijin She, Chenyang Zhu, Yin Yang, and Kai Xu. Online 3d bin packing with con-
strained deep reinforcement learning. In Proceedings of the AAAI Conference on Artificial Intel-
ligence, volume 35, pp. 741–749, 2021a.

Hang Zhao, Yang Yu, and Kai Xu. Learning efficient online 3d bin packing on packing configuration
trees. In International Conference on Learning Representations, 2021b.

Qianwen Zhu, Xihan Li, Zihan Zhang, Zhixing Luo, Xialiang Tong, Mingxuan Yuan, and Jia Zeng.
Learning to pack: A data-driven tree search algorithm for large-scale 3d bin packing problem.
Proceedings of the 30th ACM International Conference on Information & Knowledge Manage-
ment, 2021.

12

https://arxiv.org/abs/2201.00695
https://arxiv.org/abs/2201.00695
https://api.semanticscholar.org/CorpusID:5819797
https://api.semanticscholar.org/CorpusID:5819797
https://api.semanticscholar.org/CorpusID:235790753
https://api.semanticscholar.org/CorpusID:235790753


Published as a conference paper at ICLR 2024

A MORE INTRODUCTION OF CCBPP

A.1 FROM ACADEMIC VIEW

Bin packing problem (BPP) can be divided into two main categories, geometric BPP (2D and 3D
BPP), and vector BPP (Christensen et al., 2017). The difference between these two problems is
whether we should consider the geometrical constraints. In the vector BPP research field, there are
plenty of works proposed to solve vector BPP with different constraints (Christensen et al., 2017;
Epstein et al., 2010; Kellerer & Pferschy, 1999). Among them, Class-Constrained BPP is a typical
variant. These research mainly focus on approximation heuristics (Shachnai & Tamir, 2001) or exact
solutions (Borges et al., 2020). Unfortunately, learning-based methods have not been applied in this
field so far.

A.2 FROM APPLICATION VIEW

In general, BPP can be viewed as a resource allocation problem with resources from two kinds,
incompatible resources and compatible resources (shared resources). The vanilla vector BPP only
considers incompatible resources, i.e. all items are consuming accumulative resources. Actually,
there are plenty of real-world applications corresponding to both kinds of resources. For example,
an operation machine can only process 2 kinds of operation (compatible resource) with limited
materials (incompatible resources) (Crévits et al., 2019). This is quite common in many real-world
applications, we list some of these as follows.

• Automatic Scaling in Cloud Computing (Xiao et al., 2014). One server can hold several
kinds of applications, each is consuming computing resources (CPU/Memory/Bandwidth).

• Data-Placement Problem in Video-on-Demand (Golubchik et al., 2000; Xavier &
Miyazawa, 2006). The network loading is incompatible, but the data-file is shared among
different online-users .

• Production Planning (Davis et al., 1993; Peeters & Degraeve, 2004). The raw material
demand by each order is incompatible, while the production can be operated on the same
machine from different orders.

• Co-painting Problem (Peeters & Degraeve, 2004). Item consuming the same color can
share the same painting oil container while with different demand in amount.

• Steel Mill Slab Problem (Crévits et al., 2019). Different orders with the same production
route can be operated on the same machine as long as their cumulative length does not
exceed the slab-size.

These applications listed above are all typical Class-Constrained Bin Packing Problems. The opti-
mization of these applications can bring numerous economic value by improving the efficiency.
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B MILP FORMULATIONS

B.1 CCBPP

We present below an Integer Linear Programming formulation for the CCBPP as following Borges
et al. (2020), in which we consider a 2D vector x of size N ×N , a 2D vector z of size N ×Q and
a vector y of size N , all of the binary variables such that for all i ∈ {1, ..., N} and j ∈ {1, ..., N},
xij is a binary variable to indicate whether the ith item is packed in the jth container and yj is also
binary to show if the jth container is occupied. zjk is 1 if class k is included in the jth container
for j ∈ {1, ..., N}. For single-class constrained BPP, zjk is a one-hot vector, and for multi-class
constrained BPP, there are M ones in zjk for j ∈ {1, ..., N}.

minimize

N∑
j=1

yj

subject to :

N∑
i=1

si · xij ≤ B ∀ j ∈ {1, 2, 3..., N}

Q∑
k=1

zjk ≤ C ∀ j ∈ {1, 2, 3..., N}

xij ≤ zjci ∀ i, j ∈ {1, 2, 3..., N}
N∑
j=1

xij = 1 ∀ i ∈ {1, 2, 3..., N}

B.2 OCP

The details of order consolidation are depicted in Fig. 4, A manufacturing order (item) involves
multiple components (classes) supplied by a component feeder. The feeder has a fix-size thus it
can only provide limited KINDS of components in one production process. Various orders can
be combined into a new order (packing into a bin) to be produced, as long as the total kinds of
components required for their production do not exceed the feeder’s supply capacity. The primary
objective of OCP is to minimize the total amount of orders after the consolidation process. The
consolidation of orders will significantly reduce the equipment switching time, making it imperative
to minimize the number of orders after consolidation to optimize operational efficiency.

Notably, the OCP presents heightened complexities compared to the general CCBPP due to the
involvement of a substantial number of components and the potential inclusion of multiple com-
ponents within a single order. This distinctive characteristic renders the attainment of high-quality
solutions for the OCP more challenging in comparison to the general CCBPP.

Components

Orders 1 3 4 6 1 3 7 2 5 6 4 5 6 7 2 3 5 6 1 5 7

1 3 4 6 7 2 3 5 6 1 4 5 6 7

Order-001 Order-002 Order-003 Order-004 Order-005 Order-006

Order-001

+

Order-002

Order-003

+

Order-005

Order-004

+

Order-006

Consolidated 

Orders

Fixed Size of Components Feeder 

(Bin/Knapsack)1 2 3 4 5 6 7

Components with Different Sizes

Figure 4: An illustration of OCP. Order-001 and 002, order-003 and 005, order-004 and 006 can be
merged since the components collection after consolidation meet the constraints.
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The whole process of OCP is illustrated in Fig. 5, which depicts the scenario of multiple orders
{1, ..., N} represented as printed circuit boards (PCBs) requiring the assembly of various compo-
nents. The number of included components of all orders is Q. At the beginning of the production
process, blank PCBs are placed onto the working space of a Surface Mount Technology (SMT)
machine. Subsequently, a robotic arm picks up corresponding components from the feeder, placing
them onto the PCBs. After finishing the current order, the SMT will be reset and switched for the
next order. Notably, each kind of component k occupies a specific “bandwidth” sk within the feeder.
The feeder has a fixed size C in bandwidth thus it can only provide limited kinds of components
for one production process, while the supply of each kind of component can be ample in amount
(B = ∞), as depicted in Fig. 5. Specifically, several orders can be combined into a new order to
be produced, as long as the cumulative bandwidth of the component collections required for their
production does not exceed the feeder’s bandwidth limit C.
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Figure 5: Feeders in PCB consolidation process

minimize

N∑
j=1

yj

subject to :

Q∑
k=1

zjk · sk ≤ C ∀ j ∈ {1, 2, 3..., N}

xij ≤ zjm ∀ i, j ∈ {1, 2, 3..., N},m ∈ ci

N∑
j=1

xij = 1 ∀i ∈ {1, 2, 3..., N}

Compared with the formulation of CCBPP, the class one order belongs to is a subset, not one value
of {1, 2..., Q}, which means one order may belong to multiple classes simultaneously. The limit of
shared resource B is equal to infinity and there are only class constraints in the problem.
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C DETAILS OF CLUSTER DECODE

Here we list the algorithm details of Cluster Decode mentioned in Section 4.3.1.

Algorithm 1 Cluster Decode

Require: The heat-map P ∈ RN×N , the remaining items List set L = {1, 2, ..., N}, N empty bin
set B1, B2, ..., BN = ∅

Ensure: the packing items’ sequence S
1: Initialize items sequence S = ∅
2: Randomly pop an itemi from L
3: Add itemi’s index to the sorted list S
4: while L ≠ ∅ do
5: Pack itemi into jth bin according to FF algorithm
6: Add the index of itemi into Bj

7: for m = N...1 do ▷ find the latest open bin
8: if Bm ̸= ∅ then
9: break

10: end if
11: end for
12: Calculate the average connectivity probabilities of items in Bm, score =

average(P{k}|k ∈ Bm)
13: Get the item index i with the highest score i = argmax(score{k}|k ∈ L)
14: Pop the itemi with index i from L
15: Add itemi’s index to the sorted list S
16: end while
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D EXPERIMENT DETAILS

D.1 DATA GENERATION

Full Bin

Cutting into Items

Included

Classes

All Classes

1 3 4 75

1 2 5 6 7

2 3 4 5 6

Full Bin Cutting into Orders

1 3 4 7 1 3 75

53 4 7

1 72 5

2 3 4 5 3 4 5 6

2 5 6 7

2 3 5 62 5 6

Figure 6: Ground-truth label generation of CCBPP and OCP by cutting stock algotithm.

It is difficult to obtain optimal solutions by exact solvers like OR-tools since it costs almost several
hours to obtain one solution of single-class constrained BPP when Q = 10, C = 3 in our settings.
As a result, we need to construct quantities of “perfect” solutions in other ways. Motivated by item
sequences generation for online 3D Bin Packing Problems (Zhao et al., 2021b;a), our ground-truth
labels can also be obtained by cutting stock (Gilmore & Gomory, 1961).

For general CCBPP, we first generate a sequence of valid items whose size threshold is smin ∼
smax following uniform distribution and the sum of which is equal to the bin size B, as shown
in Fig. 6. Then we randomly choose C classes over total Q classes and assign the C classes to
the generated valid items. In this way, the items may be perfectly packed and restored to the bin,
and the utilization is 100%. In all the single-class constrained BPP and multi-class constrained
BPP settings, we generate 20 perfect sequences which means the optimal packing bin number of all
the items is 20. The number of items in total 20 bins may vary in different instances, we choose
the maximum number of items in all instances N as the number constructed graph nodes and pad
the other instances with 0. The pseudocode of our dataset construction algorithm is described in
Algorithm 2.

For OCP, we generate a synthetic dataset according to the distributions of real-world datasets. The
real-world data contains orders in 24 days of September and orders ranging in size from 123 to 178
each day. The components in each order contain a range from 955 to 1234, and there is a total of
2480 components included in all orders. The sizes of different components occupied are ranging
from 1 to 6, and most of them are 1 or 2. The maximum size of the feeder is 282, as shown in Fig.
6.

The distribution of the real data may differ from the distribution of the generated data used to train
the model. However, in practical applications, we can analyze the distribution of real data as much
as possible and fit the most approximate dataset for training.

D.2 EXPERIMENT HYPER-PARAMETERS

For the graph neural network, the number of GCN layers Lgcn is 3, and the number of MLP layers
Lmlp is 3. The learning rate lr is 5e−5 with 1e−5 weight decay, the 0 in edge features are replaced
by ϵ = 0.3, and the loss balance coefficient λ = 0.3 . Our network is trained for 20 epochs. It costs
2 hours to train the single-class constrained BPP and 3 hours to train the multi-class constrained
BPP model.

For the Active Search, we update the parameters of the MLP’s last layer, while keeping other param-
eters frozen. For sampling, 32 solutions per instance are sampled from the Cluster Decode procedure
and report the best. The learning rate lr is 5e − 3 with 1e − 4 weight decay, and for each instance,
the search epoch is set as 30 for single-class constrained BPP experiments, and 50 for multi-class
constrained BPP and OCP experiments.
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Algorithm 2 Dataset Construction

Require: Valid item size threshold smin ∼ smax, bin capacity B, number of classes one bin can
hold C, total number of classes Q, number of cutting bins K.

1: function CONSTRUCTION OF ITEMS COLLECTION
2: for j = 1...K do
3: initialize the used space of one bin Sused = 0, valid item list Lvalid = ∅
4: initialize class set Cvalid which contains C classes out of the total number Q
5: while Sused ≤ B do
6: generate one item where the size si satisfies smin ≤ si ≤ smax, and ci ∈ Cvalid
7: if Sused + si < B then
8: Sused+ = si
9: add the item into Lvalid

10: else if Sused + si == B then
11: add the item into Lvalid

12: break
13: else
14: Sused = 0 , Lvalid = ∅
15: end if
16: end while
17: end for
18: return Lvalid

19: end function

For the baseline heuristic methods, the parameters of GA are 50 populations in the initial and 300
iterations. The distance matrix of ACO is set as the inverse value of the cosine similarity matrix and
the number of populations and iterations are set as 50 and 100, respectively.

The parameters of PointNet are set as follows: the number of encoding layers is 2, and the number
of multi-head is 4. The learning rate lr is 1e− 4 with 1e− 4 weight decay.

D.3 DETAILS OF BENCHMARK ALGORITHMS

D.3.1 GENETIC ALGORITHM AND ANT COLONY OPTIMIZATION MODELING

Genetic Algorithm (GA) (Mitchell, 1996) is a computational model searching for optimal solu-
tions by simulating the natural evolution process with natural selection and genetic mechanism of
Darwinian biological evolution theory. Genetic algorithms take all the individuals in a kind of popu-
lation and use randomization techniques to guide an efficient search of an encoded parameter space.
Among them, selection, crossover, and mutation constitute the genetic operation of the genetic al-
gorithm. The parameter encoding, setting of the initial population, design of fitness function, design
of genetic operation, and setting of control parameter, form the core of the genetic algorithm.

In computer science and operations research, the ant colony optimization algorithm (ACO) (López-
Ibáñez, 2010) is a probabilistic technique for solving computational problems that can be reduced to
finding good paths through graphs. Artificial ants stand for multi-agent methods inspired by the be-
havior of real ants. The pheromone-based communication of biological ants is often the predominant
paradigm used. Combinations of artificial ants and local search algorithms have become a method
of choice for numerous optimization tasks involving some sort of graph, e.g., vehicle routing and
internet routing.

The output of both GA and ACO are sorted sequences. After the items’ sequences are generated,
different packing schemes such as First Fit (FF), Best Fit (BF), and Next Fit (NF) can be leveraged
to pack the items in specific order so that the packing solution can be obtained. The input and output
of GA are both full permutations of items to be packed and sizes and class information are needed to
match the permutations to the final result. Specifically, M full alignments as an initial population are
randomly generated, and the maximum number of evolutionary generations T is set. Then we need
to set the adaptivity function, whose input is the sequence and information of items and output is the
packing solution. Finally, the loop ends when the genetic evolution repeats T rounds or reaches the
iteration condition.

18



Published as a conference paper at ICLR 2024

Figure 7: A pointer network architecture introduced by Vinyals et al. (2015)

For the ACO algorithm, the inputs include information about the items and also the distance matrix,
which indicates the likelihood of choosing a path, the shorter the path the more likely it is that two
items will be packed together. Here the distance matrix we set as the opposite number between the
cosine similarity of each item class, i.e. the more similar the items are to each other and the smaller
the distance between them, the more likely they are to be packed together.

D.3.2 POINTNET MODELING

The Pointer Network is proposed to leverage the attention mechanism to solve the sorting problem of
an input sequence. The traditional seq2seq model is not able to solve the problem that the vocabulary
of the output sequence changes with the length of the input sequence. In some tasks, the input is
strictly dependent on the input, or the output can only be selected from the input. In this case, the
traditional seq2seq model ignores the priori information that the input can only be selected from the
output. Pointer Networks are proposed to solve this problem. The relationship between the output
elements and the input elements is calculated by the attention mechanism. The element with the
largest attention value will be set as the output element. Actually, each output element is similar to
a pointer to point to the input element. Note that each input element can only be pointed to one time
to avoid the repetition in output sequence.

PointNet is widely used in routing problems where the output can directly be treated as one per-
mutation of the input nodes. In the packing problem, since one packing solution corresponds to
varies output sequences, supervised learning is inappropriate for solving Class-Constrained BPP.
Reinforcement Learning provides an appropriate paradigm for training neural networks for combi-
natorial optimization, especially because these problems have relatively simple reward mechanisms
that could be even used at test time (Bello et al., 2017). The input of the Pointer Network is N items
along with the size and class information, and the output is one specific permutation of all items.
The packing solution can finally be obtained with the aid of FFD.
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E MORE EXPERIMENT RESULTS

E.1 ABLATION STUDIES

E.1.1 BENEFITS OF THE ENCODER

The visualization of the heat-map is shown in Fig. 8. Orange points in Fig. 8 are the items visualized
by t-SNE (van der Maaten & Hinton, 2008), an embedding technique that is commonly used for the
visualization of high-dimensional data in scatter plots, the grey lines of the right figure represent the
true label, which means two items are packed together in the optimal solution. The grey lines on
the left figure show the connection of items when the value of the heat-map is larger than 0.2. It can
be seen that these two figures show great similarities, which means our heat-map contains crucial
information on the true labels.

Link Strength of Heatmap Link Strength of True labels

Figure 8: Visualization of heat-map

To verify the heat-map trained by GCN does have benefits to the final result, we compare different
kinds of heat-map along with the Cluster Decoder proposed in the Section 4.3 along with Active
Search, and Table 5 and Table 6 list the results of CCBPP and OCP, respectively. Equal probability
here means the elements in the initial heat-map are all equal to 1

N and N is the number of items in
one instance. Cos similarity in the following table is the cosine similarity of the class features of
each item. PointNet (Vinyals et al., 2015) here is also leveraged an an Encoder to output a heat-map,
the loss function is the same as ours. Results show the heat-map our GCN generated outperforms
all the others on both CCBPP and OCP while the time overhead differs very little. GCN is best
suited to capture the relationships of the items, and the heat-map generated by GCN obtains more
information via the true labels, thereby contributing significantly to the final results.

Table 5: Comparisons on different heat-maps on CCBPP.

Method Q = 10, C = 5 Q = 20, C = 5
Bins Gap Time(s) Bins Gap Time(s)

Equal probs + Cluster Decoder 20.93 4.65% 12.94 20.98 4.90% 13.81
Cos similarity + Cluster Decoder 20.95 4.75% 12.37 20.98 4.90% 12.94

PointNet + Cluster Decoder 21.00 5.00% 12.82 21.00 5.00% 12.98
GCN + Cluster Decoder 20.47 2.35% 10.98 20.77 3.85% 13.48

Table 6: Comparisons on different heat-maps on OCP.

Method Synthetic Data Real-world Data
Bins Gap Time(s) Bins Gap Time(s)

Equal prob + Cluster Decoder 12.145 33.31% 21.50 18.75 / 33.69
Cos similarity + Cluster Decoder 12.135 33.20% 21.39 18.67 / 35.77

PointNet + Cluster Decoder 10.80 18.55% 21.61 15.45 / 33.12
GCN + Cluster Decoder 9.325 2.36% 21.26 14.29 / 21.88

E.1.2 HOW CLUSTER DECODE ALGORITHM AFFECTS THE RESULT?

In this part, we want to figure out how the Cluster Decode algorithm proposed in Section 4.3.1
affects the result. Note that all decoding algorithms are combined with Active Search. Table 7 and
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Table 8 list the CCBPP and OCP results of different heat-map decode schemes. Greedy Decode
means the next item of one sequence has the maximum connectivity probability with the last item
in the heat-map, whereas Sample Decode means the next item will be sampled according to the
connectivity probability of the last item. The Greedy and Sample Decode schemes are different from
the Greedy and Sampling strategies for obtaining solutions mentioned in Section 5. The parameters
here are the same as mentioned in Appendix D.2. The result shows our Cluster Decode (Algorithm
1) achieves better solution quality than the Greedy Decode with similar time cost on synthetic data,
which may due to the cluster information and packing state our decode scheme takes into account.
As for real-world data, the results of Greedy Decode and Cluster Decode remain the same, which
may be because the size of the test samples is too small. Sample Decode shows poor results in this
part, which may be owing to the values in the heat-map do not differ much, and Sample Decode
may bring noise to the final result. It can be proved from this experiment that the Cluster Decode
algorithm does have a very positive impact on the performance of the whole framework.

Table 7: Comparisons of different decode schemes on CCBPP

Method Q = 10, C = 5 Q = 20, C = 5
Bins Gap Time(s) Bins Gap Time(s)

Greedy Decode 20.51 2.55% 10.16 20.94 4.70% 13.14
Sample Decode 20.965 4.83% 14.27 20.99 4.95% 15.52
Cluster Decode 20.47 2.35% 10.14 20.77 3.85% 13.48

Table 8: Comparisons of different decode scheme on OCP

Method Synthetic Data Real-world Data
Bins Gap Time(s) Bins Gap Time(s)

Greedy Decode 9.450 3.73% 21.9 14.29 / 19.5
Sample Decode 11.97 31.39% 30.2 18.54 / 28.5
Cluster Decode 9.325 2.36% 21.6 14.29 / 21.0

E.1.3 WHAT IS THE UPPER LIMIT OF THE FRAMEWORK?

In this section, we want to take OCP as an example and explore the impact of the number of AS
iterations on the final result. It can be shown from Table 3 that the average results of synthetic data
and real-world data are 9.325 and 14.29 when the search epoch is 50, how will the results change if
the number of epochs is further increased?

0 25 50 75 100 125 150 175 200
epoch

9.3

9.4

9.5

9.6

Synthetic Dataset
sample size = 32
sample size = 64

0 25 50 75 100 125 150 175 200
epoch

14.2

14.3

14.4

14.5

14.6
Real-world Dataset

sample size = 32
sample size = 64

Figure 9: Learning curves of Active Search, with decode sample size = 32 and 64.

Fig. 9 shows the learning curve of the Active Search with RL, the sample size is set as 32 and
64 which means 32 or 64 solutions are sampled, and the best one is reported. Note that there are
only 32 physical cores in the experimental server. The decline of final results becomes much slower
as the number of iterations increases, whereas the running time always increases linearly. Results
of the synthetic dataset and real-world dataset are 9.285 and 14.125 when epoch = 200, and the
running time per instance is nearly 90s when the sample size is 32 and 180s when the sample size
is 64, which is sometimes infeasible in real-world scenarios. A compromise may need to be made
between solution quality and running time when the algorithm is applied in practice.
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E.2 1DBPP RESULTS

1DBPP is a special case of CCBPP where Q is 1 and C is also 1. We want to figure out how the
Encoder-Decoder Model works on 1DBPP. The setting of 1DBPP is the same as CCBPP where the
capacity limit B is 100. We consider two kinds of size settings here. For the small-scale items, the
sizes range from 10 to 25, and for the large-scale items, the sizes range from 25 to 50. Note that the
sizes of small-scale items and large-scale items are all integers in this experiment.

Table 9 shows the packing results of small items and large items. From the table, we can see our
model can achieve the best results while spending less time than heuristic ones GA and ACO, and
the gap to the optimal result is very small.

Comparing the results of different search strategies Greedy, Sampling, and AS, we can conclude
that directly using the greedy algorithm can already get a promising result, which shows the repre-
sentation ability of the heat-map for 1DBPP is remarkable. After adding AS, the resulting quality
can still be significantly improved, which shows that the effect of the search is also very obvious for
1DBPP. In 1DBPP, only sizes of items are given and there are no class constraints so the relationship
between different items is hard to get, but our GCN can still obtain the cluster information via the
heat-map labels. The results of 1DBPP show the generalizability of our algorithm.

Table 9: Results of 1DBPP, for small items, the sizes are ranging from 10 to 25, and for large items,
the sizes are ranging from 25 to 50. The optimal value of the bin is 20 for both datasets.

Method For small-scale items For large-scale items
Bins Gap Time(s) Bins Gap Time(s)

Random 21.00 5.00% 0.009 22.39 11.95% 0.0075
FFD 21.00 5.00% 0.011 22.17 10.85% 0.0084
GA 20.59 2.95% 8.26 21.00 5.00% 7.02

ACO 20.77 3.85% 20.77 21.00 5.00% 75.99
PointNet-Greedy 21.00 5.00% 0.011 22.34 11.70% 0.0082

PointNet-Sampling 21.00 5.00% 0.34 21.65 8.25% 0.26
GCN-Cluster, Greedy 20.79 3.95% 0.031 20.86 4.30% 0.032

GCN-Cluster, Sampling 20.44 2.20% 0.21 20.36 1.80% 0.18
GCN-Cluster, AS(Ours) 20.24 1.20% 5.14 20.27 1.35% 4.13

E.3 GENERALIZATION TO DIFFERENT DISTRIBUTIONS

We investigate the generalization capability of our algorithm to the problem instances generated
from different distributions. Since different C, Q, and M mean different problems, we mainly
explore the generalization of item sizes. We sample s from normal distributions N(µ, σ2) where
µ and σ are the expectation and the standard deviation. Two normal distributions s ∼ N(15, 52)
and s ∼ N(20, 52) are adopted here. The test datasets of these two distributions are generated
at random, not by cutting stock, so the optimal number is unknown. Another uniform distribution
s ∼ U(25, 50) generated also by cutting stock is also tested here, and the optimal bins of the uniform
distribution are 20.

Table 10 and Table 11 list the results of CCBPP when C = 5, Q = 10 and C = 5, Q = 20. The
GCN model is trained on the uniform distribution U(10, 25) without any fine-tuning. For uniform
distribution s ∼ U(25, 50), our method does not show advantages with heuristic algorithms GA
and ACO, it may be due to the sizes of larger uniform distribution do not have any overlap with the
training distribution. For the other two normal distributions, ours performs better than others, but
with a weak advantage. It may further improve the generalization capability if we better design the
structure of our Graph Neural Networks, which we leave to future work.

E.4 RESULTS ON LARGE-SCALE BENCHMARKS

We conducted experiments on N = 300 and N = 500, as shown in Table 12 and Table 13. The
dataset is also generated following Appendix.D.1, and the optimal bins are 30 and 50 respectively.
The results show that our proposed method still has advantages compared to other baselines. Larger-
scale experiments when N > 1000 are not conducted at present due to the resource limitation.
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Table 10: Results from different distributions when C = 5 and Q = 10.

Method s ∼ U(25, 50) s ∼ N(20, 52) s ∼ N(15, 52)
Bins Gap Time(s) Bins Gap Time(s) Bins Gap Time(s)

Random 22.44 12.20% 0.0070 40.655 / 0.0152 30.125 / 0.012
FFD 22.15 10.75% 0.0095 40.15 / 0.0179 30.12 / 0.016
GA 21.00 5.00% 13.18 39.875 / 17.2 29.74 / 14.45

ACO 21.00 5.00% 93.86 39.945 / 105.08 29.74 / 97.83
PointNet-Greedy 22.34 11.70% 0.0098 40.63 / 0.023 30.07 / 0.019

PointNet-Sampling 21.68 8.40% 0.33 40.23 / 0.7609 29.89 / 0.63
GCN-Cluster, Greedy 22.29 11.45% 0.036 40.08 / 0.055 30.05 / 0.0052

GCN-Cluster, Sampling 21.91 9.55% 0.23 39.81 / 0.73 29.67 / 0.60
GCN-Cluster, AS(Ours) 21.00 5.00% 10.14 39.74 / 10.52 29.59 / 14.05

Table 11: Results from different distributions when C = 5 and Q = 20.

Method s ∼ U(25, 50) s ∼ N(20, 52) s ∼ N(15, 52)
Bins Gap Time(s) Bins Gap Time(s) Bins Gap Time(s)

Random 22.405 12.03% 0.0070 40.95 / 0.0152 30.33 / 0.0124
FFD 22.115 10.58% 0.0164 40.60 / 0.018 30.53 / 0.016
GA 21.00 5.00% 12.21 40.185 / 21.33 29.75 / 18.67

ACO 21.00 5.00% 96.74 40.19 / 94.81 29.65 / 89.31
PointNet-Greedy 22.34 11.70% 0.012 40.87 / 0.024 30.08 / 0.020

PointNet-Sampling 21.69 8.45% 0.415 40.48 / 0.77 29.85 / 0.77
GCN-Cluster, Greedy 22.08 10.40% 0.040 40.87 / 02024 30.08 / 0.020

GCN-Cluster, Sampling 21.68 8.40% 0.29 40.15 / 0.72 29.84 / 0.62
GCN-Cluster, AS(Ours) 21.00 5.00% 12.02 39.85 / 15.91 29.60 / 16.33

There are some excellent works in the direction of combinatorial optimization that transplant models
trained on small-scale problems to solve large-scale ones (Li et al., 2021; Fu et al., 2021; Son et al.,
2023), which should be inspiring and helpful to solve large-scale CCBPP with lower time complexity
for the future research.

Table 12: Results when N = 300.

Method Q = 10, C = 5 Q = 20, C = 5
Bins Gap Time(s) Bins Gap Time(s)

Random 31.25 4.17% 0.0136 31.07 3.57% 0.0134
FFD 31.050 3.50% 0.0141 31.125 3.75% 0.0145
GA 30.58 1.93% 27.99 30.62 2.07% 29.753

ACO 30.625 2.08% 163.87 30.595 1.98% 179.704
PointNet-Greedy 31.09 3.63% 0.034 31.19 3.97% 0.0305

PointNet-Sampling 31.00 3.33% 0.3757 31.00 3.33% 0.5056
GCN-Cluster, Greedy 31.00 3.33% 0.0644 30.995 3.32% 0.0702

GCN-Cluster, Sampling 30.925 3.08% 0.6250 30.93 3.10% 0.6911
GCN-Cluster, AS(Ours) 30.545 1.82% 21.0235 30.57 1.90% 20.16

Table 13: Results when N = 500.

Method Q = 10, C = 5 Q = 20, C = 5
Bins Gap Time(s) Bins Gap Time(s)

Random 51.86 3.72% 0.0409 51.95 3.90% 0.0409
FFD 51.4150 2.83% 0.0308 51.76 3.52% 0.0315
GA 50.90 1.80% 72.65 51.00 2.00% 76.65

ACO 50.97 1.94% 388.10 51.00 2.00% 418.45
PointNet-Greedy 51.91 3.82% 0.0509 52.06 4.12% 0.0509

PointNet-Sampling 51.22 2.44% 0.7997 51.46 2.92% 0.8793
GCN-Cluster, Greedy 51.4650 2.93% 0.1300 51.6450 3.29% 0.1388

GCN-Cluster, Sampling 51.0050 2.01% 1.4969 51.02 2.04% 1.5866
GCN-Cluster, AS(Ours) 50.84 1.68% 63.72 50.99 1.98% 64.52

E.5 THE ENCODER-DECODER FOR OTHER PROBLEMS

Our proposed Encoder-Decoder Model also has the potential to generalize to other problems, we
try to prove that on multi-dimensional knapsack problem (MDKP). The multi-dimensional knap-
sack problem is a classic optimization problem in which a set of items with multiple attributes or
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dimensions (such as weight, volume, or value) must be selected to maximize a given objective while
satisfying certain constraints. Since there is only one bin in MDKP and we only need to decide
whether one item should be packed in or not, the heat-map in the model can be treated as a vector in
this problem, and the Decoder is the same as the greedy strategies. The features of the vertices are
the properties of the items, and the edge features are filled with 1.

In this section, we use the performance (the achieved value in a knapsack) by GLOP implemented
in the OR-tools (Perron & Furnon, 2022) as a baseline. The value/weight greedy, Reinforcement
Learning, and Learning-to-Rank are used as comparisons following Woo et al. (2022), gumbel trick
is an efficient sequence sampling method also proposed in Woo et al. (2022).

Table 14: Results of MDKP on different datasets, N and k denote the number of items and the
size of knapsack resource dimensions, respectively. c denotes the correlation of weight and value of
items. Time is the average time to solve a single instance and Gap represents the ratio to the GLOP
algorithm.

Method N = 50, k = 3, c = 0.0 N = 50, k = 3, c = 0.9 N = 100, k = 10, c = 0.0 N = 100, k = 10, c = 0.9 N = 200, k = 20, c = 0.0 N = 200, k = 20, c = 0.9
Gap Time(s) Gap Time(s) Gap Time(s) Gap Time(s) Gap Time(s)e Gap Time(s)

GLOP 100% 0.066 100% 0.11 100% 0.24 100% 0.24 100% 1.63 100.0% 0.78
Greedy 98.16% 0.00039 90.26% 0.00052 100.86% 0.00059 98.85% 0.00076 102.57% 0.001 101.72% 0.00097

RL 90.30% 2.32 99.55% 0.48 93.97% 1.85 101.26% 0.96 97.27% 3.02 102.61% 3.68
RL-Sampling 82.51% 2.02 99.19% 0.50 89.83% 1.73 101.30% 0.98 94.87% 2.94 102.65% 3.58

RD 87.94% 0.092 96.14% 0.02 91.00% 0.054 97.60% 0.024 95.28% 0.054 100.52% 0.034
RD-Gumbel 90.69% 0.10 99.66% 0.041 93.49% 0.069 101.15% 0.054 95.93% 0.081 101.36% 0.093
GCN-Greedy 99.54% 0.0015 97.34% 0.0012 101.07% 0.0016 100.23% 0.0011 102.61% 0.0034 102.20% 0.0031
GCN-Gumbel 99.64% 0.017 99.00% 0.019 101.76% 0.030 101.26% 0.026 103.00% 0.044 102.71% 0.047

GCN-AS 101.59% 0.061 101.00% 0.051 104.30% 0.076 104.94% 0.072 103.81% 0.091 105.30% 0.083

Table 14 shows the results of datasets with different scales. GCN-Greedy, GCN-Gumbel, and GCN-
AS provided in Table 14 are the results of training the network and introducing different search
algorithms. As mentioned above, only one bin is included in MDKP, the heat-map we get here
is only one-dimensional data, and the value represented in the data is the probability of this item
being packed into the knapsack. According to this one-dimensional representation, some search
algorithms can be combined to obtain the final result. From the results, we can see that the results of
AS are greatly improved compared with Greedy and Gumbel Search, but the time cost is relatively
large. Gumbel search can also improve the results by introducing a certain random mechanism, yet
the improvement is not obvious. It can be concluded from Table 14 that our framework GCN-AS
achieves the best results on all datasets, while the time cost is the lowest among all the learning-based
methods.

As N increases, all methods show longer inference time, but the increment gap of GLOP is much
larger than other methods.Our method shows superior performance over GLOP as N = 50 with less
time-consuming. The greedy algorithm shows a very good advantage in running time and solution
quality, especially when c = 0.0. RL and RD achieve good performances when c = 0.9 but the time
complexity of RL is very high. Our algorithm shows even better results than all other algorithms on
both solution quality and running time compared to smaller N .
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