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ABSTRACT

Disaggregating the prefill and decoding phases represents an effective new
paradigm for generative inference of large language models (LLM), which elimi-
nates prefill-decoding interference and optimizes resource allocation. However, it
is still an open problem about how to deploy the disaggregated inference paradigm
across a group of heterogeneous GPUs, which can be an economical alternative
to deployment over homogeneous high-performance GPUs. Towards this end,
we introduce HEXGEN-2, a distributed system for efficient and economical LLM
serving on heterogeneous GPUs following the disaggregated paradigm. Built on
top of HEXGEN, the core component of HEXGEN-2 is a scheduling algorithm that
formalizes the allocation of disaggregated LLM inference computations and com-
munications over heterogeneous GPUs and network connections as a constraint
optimization problem. We leverage the graph partitioning and max-flow algo-
rithms to co-optimize resource allocation, parallel strategies for distinct inference
phases, and the efficiency of inter-phase key-value (KV) cache communications.
We conduct extensive experiments to evaluate HEXGEN-2, i.e., on OPT (30B)
and LLAMA-2 (70B) models in various real-world settings, the results reveal that
HEXGEN-2 delivers up to a 2.0× and on average a 1.3× improvement in serving
throughput, reduces the average inference latency by 1.5× compared with state-
of-the-art systems given the same price budget, and achieves comparable inference
performance with a 30% lower price budget.

1 INTRODUCTION

Large Language Models (LLMs), such as OPT Zhang et al. (2022), LLAMA Touvron et al. (2023),
GPT OpenAI (2024), GEMINI Reid et al. (2024), CLAUDE Anthropic (2024) and MIXTRAL Jiang
et al. (2024a) have shown exceptional performance across various advanced applications. However,
deploying the generative inference service for such LLMs can be costly, typically requiring a sub-
stantial number of homogeneous, high-performance GPUs to meet the service demands, such as first
token latency and generation throughput. In this paper, we explore an alternative solution that de-
ploys the most advanced disaggregated generative inference paradigm over a set of heterogeneous
GPUs to provide an efficient and economical LLM service.

Disaggregated inference is currently the most efficient framework for serving the generative in-
ference requests of LLMs Zhong et al. (2024); Patel et al. (2024). By splitting the prefill phase
(compute-bounded) and decoding phase (HBM IO-bounded) across different GPUs, the disaggrega-
tion significantly reduces interference between different requests and enables more flexible parallel
configurations for the two phases. When compared with colocating the prefill and decoding com-
putations, the disaggregated approach optimizes resource usage and enhances the scalability and
efficiency of the LLM inference service. Recent efforts Jiang et al. (2024b); Griggs et al. (2024);
Zhao et al. (2024); Miao et al. (2024) have shown that serving LLMs with heterogeneous GPUs
can be a economical alternative to deploying over homogeneous high-performance GPUs. Hetero-
geneous deployments offer significant opportunities to reduce inference service costs by leveraging
the wide availability of diverse GPU types across commercial and private computing platforms. Note
that Nvidia typically releases new GPU generations every 24 months, e.g., Turing in 2018, Ampere
in 2020, Hopper in 2022, and Blackwell scheduled for Q4 2024; but one particular version of GPU
general remains in use for a much longer period.1.

1For example, Tesla K80 GPUs, released in 2006, are still available on AWS as p2 instances
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The wide availability of heterogeneous GPU pools presents significant opportunities to adapt the
most advanced disaggregated inference paradigms. However, effectively adapting the disaggregated
paradigm to this heterogeneous setting is much harder to implement than to ask for. Traditional
implementation of co-locating prefill and decoding phases only leverage standard tensor model par-
allelism Narayanan et al. (2021) and pipeline parallelism Huang et al. (2019) for LLM inference,
where only the activations are communicated. In the disaggregated paradigm, transferring the key-
value (KV) cache between prefill and decoding model replicas introduces significant data movement,
potentially creating a communication bottleneck that must be carefully managed in a heterogeneous
setting. Additionally, the flexibility of parallel configurations among prefill and decoding model
replicas also introduces new complexity in the heterogeneity-aware scheduling.

Towards efficiently adapting the disaggregated paradigm under the heterogeneous setting, we iden-
tify two types of new challenges and opportunities that previous heterogeneity-aware scheduling
approaches Jiang et al. (2024b) fail to integrate:
• Accommodate the computation flexibility in disaggregated paradigm. In a heterogeneous

setting, each GPU type has distinct peak FLOPS, HBM memory bandwidth, and HBM memory
limit, even making optimal computation allocation for the colocating paradigm a difficult problem.
The disaggregated paradigm adds further complexity, as the prefill and decoding phases have
different resource requirements and favor specific parallel strategies depending on varying LLM
inference workloads, such as arrival rates and input/output sequence lengths.

• Accommodate additional KV cache movement over heterogeneous connections. GPU com-
munication bandwidth also varies widely, from different NVLink and PCIe generations within
a server to InfiniteBand(IB), RoCE, TCP, and Ethernet connections among different servers.
Along with communication demands from parallel strategies within each model replica, disag-
gregated inference requires extensive KV cache transmissions, which are especially sensitive to
low-bandwidth links. Therefore, an effective scheduling algorithm is essential to manage commu-
nication across heterogeneous GPU connections and minimize costs.

In order to overcome these challenges, we propose HEXGEN-2, a disaggregated LLM inference
system that coordinates distributed LLM inference computations and communications over a set of
GPUs with different computation capabilities and heterogeneous network connections. Our contri-
butions are summarized as:

Contribution 1: We formulate the scheduling problem of allocating disaggregated LLM inference
computations over a set of heterogeneous GPU devices as a constraint optimization problem. To
solve this problem efficiently, we propose a sophisticated scheduling algorithm that employs a com-
bination of graph partitioning and max-flow algorithm to coordinate the resource allocations and
parallelism plans for the prefill and decoding phases of LLM inference. Concretely, the graph par-
titioning algorithm partitions the available GPUs into multiple model serving groups, where each
group should be dedicated to serving a prefill or decoding model replica; and the max-flow algo-
rithm guides the iterative refinement of the graph to optimize model placement.

Contribution 2: We implement HEXGEN-2, a heterogeneous LLM inference system that facilitates
tensor model parallelism and pipeline parallelism with a disaggregated paradigm. HEXGEN-2 al-
lows the two phases of LLM inference to be split onto separate GPUs with different parallel plans,
effectively eliminating prefill-decoding interference and boosting inference performance.

Contribution 3: We evaluate HEXGEN-2 through extensive experiments, where we compare
HEXGEN-2’s system efficiency across various LLM inference workloads with HEXGEN on sev-
eral heterogeneous settings and DISTSERVE on a standard homogeneous setting. We conduct these
comparisons on the popular LLM models OPT (30B) and LLAMA-2 (70B). We show that given
the same budget in terms of cloud service fees, HEXGEN-2 can choose to achieve up to a 2.0×
and on average a 1.3× higher serving throughput or reduce the average inference latency by 1.5×.
Additionally, when given only 70% of the budget, HEXGEN-2 can still maintain a comparable level
of inference service compared to the homogeneous baseline.

2 PRELIMINARY

LLM generative inference. Given the input request, the LLM inference process typically contains
two phases: prefill and decoding. The prefill phase processes the request to compute the KV cache
and generates the first token for the response in a single step. The decoding phase then takes the
last input token and KV cache as inputs to generate subsequent tokens by one token at each step.

2
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The distinct characteristics of both phases lead to differing GPU resource utilization: the prefill
phase is compute-bound, whereas the decoding phase is HBM memory I/O-bound. Naive imple-
mentation of the inference engines colocates the two phases on the same group of GPUs, despite
their distinct computational characteristics. Two standard strategies are applied to parallelize the
LLM inference computation: tensor model parallelism and pipeline parallelism. Tensor model par-
allelism (TP) Narayanan et al. (2021) distributes inference computations across multiple GPUs by
partitioning the weight matrices of transformer layers both row-wisely and column-wisely, each
layer’s output activations are aggregated through two AllReduce operations. Pipeline parallelism
(PP) Huang et al. (2019) divides the model into multiple stages, each assigned to a specific GPU or
group of GPUs for execution, the inter-layer activations are communicated between stages.

Inference serving goal. There are two essential metrics to evaluate LLM serving: throughput
and inference latency. Throughput refers to the number of tokens a system can generate within
a specified time period. Inference latency is the time required to complete each inference request
from start to finish. We assess system performance on inference latency using service level objective
(SLO) attainment, which gauges the proportion (e.g., 99%) of requests fulfilled within a time frame
predefined by the SLO. This SLO is adjusted to various multiples of single device execution latency
(termed as SLO scale) to measure performance under different degrees of SLO stringency.

Batching. Due to the computational difference of the prefill and decoding phases, integrating batch-
ing strategies leads to varying performance outcomes. As shown in Figure 1, in the prefill phase,
a small batch size quickly saturates the GPU’s computation capacity — Once the total number of
batched tokens reaches 2048, no further improvement in throughput is observed but the prefill la-
tency escalates with batch size. Conversely, in the decoding phase, where the system bottleneck lies
in scanning the LLM parameters, the throughput increases linearly as the total number of batched
tokens rises, highlighting the effectiveness of batching in this phase for performance enhancement.
The current state-of-the-art LLM serving system employs a batching optimization called continuous
batching Yu et al. (2022), which batches the prefill of new requests with the decoding of ongoing
requests to enhance GPU utilization. However, this leads to severe prefill-decoding interference.
Adding a single prefill job to a batch of decoding requests significantly slows down both processes,
with the slowdown intensifying as the prefill length increases.
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Figure 1: Effects of batching on different phases
(LLAMA-2 (7B) inference with an input length
of 512 on a single A100 GPU).
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Figure 2: Illustration of disaggregated paradigm.

Disaggregated architecture. As the two phases in LLM inference have distinct characteristics, re-
cent efforts Zhong et al. (2024); Patel et al. (2024); Jin et al. (2024); Qin et al. (2024); Hu et al.
(2024) propose a disaggregated inference architecture that splits the two phase in separate hardware
resources. In the disaggregated inference architecture (See Figure 2), there are two types of model
replicas: prefill model replica is responsible for taking the incoming request, generating the first
token and KV cache; decoding model replica takes the generated token and KV cache as inputs,
and generates the subsequent tokens. This separation enhances LLM serving by: (1) Eliminate the
prefill-decoding interference; (2) Allow prefill and decoding model replicas to use different batch-
ing and parallelism strategies — Prefill replicas benefit from tensor model parallelism and smaller
batches to reduce per-request latency, while decoding replicas perform better with larger batches to
maximize throughput. (3) Accommodate varying LLM serving workloads by adjusting resource al-
locations between the two phases, e.g., the coding workload characterized in Patel et al. (2024) with
typically longer prefill and shorter decoding sequence lengths requires more resources for prefill to
optimize performance. As prefill and decode model replicas operate independently, it is crucial to
transmit the KV cache from the prefill to the decode model replicas. Given the large volume of KV
cache in LLM serving, current implementations necessitate a high-bandwidth communication link

3
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Figure 3: Illustration of each scheduling step.

to facilitate the transmission of the KV cache. Patel et al. (2024) utilize InfiniteBand (IB) for inter-
node KV cache transmission, while Qin et al. (2024) deploy their system on GPU clusters equipped
with RDMA network cards, and Zhong et al. (2024) collocate prefill and decode model replicas on
GPUs within the same node to expedite KV cache transmission via NVLink. We also include the
discussion of disaggregation versus chunked prefill in Appendix D.

3 SCHEDULING ALGORITHM IN HEXGEN-2

The core technique component in HEXGEN-2 is a scheduling module that can efficiently allocate
the heterogeneous GPUs to serve prefill or decoding model replicas. In this section, we formulate
the scheduling problem and introduce our solution.

3.1 PROBLEM FORMALIZATION

To support LLM serving with the disaggregated paradigm under heterogeneity, the scheduling algo-
rithm should determine four essential allocations: (1) the group partition, i.e., how to partition the
GPUs to multiple groups, where each responsible for serving one model replica; (2) the group type,
i.e., whether a group serves a prefill or decoding model replica. (3) the parallel strategy for each
model serving group, i.e., the combination of TP and PP under the heterogeneous setting Jiang et al.
(2024b); (4) the KV cache communication strategy among prefill and decoding model replicas. We
term a solution to these four components as a model placement strategy.

Given the exponential search space, determining the optimal model placement is an NP-hard prob-
lem. To solve the problem, we adopt a two-phase search algorithm, which can be summarized as:

• Graph partition: Given a set of heterogeneous GPU devices D, the first phase (§3.2) aims to
partition them into multiple model serving groups, and determines the group type.

• Max flow: Based on the outputs from the first phase, the second phase (§3.3) find the current
optimal parallel strategies for prefill and decoding model replicas, and generates the optimal KV
cache communication strategy among them.

• Iterative refinement: We iteratively repeat the two-phase algorithm to find the optimal model
placement strategy (§3.4) that maximizes the end-to-end system performance.

3.2 FIRST PHASE: GRAPH PARTITION

The first phase of our scheduling algorithm aims to partition the GPU devices D into multiple model
serving groups and determine whether each group is a prefill or decoding model replica. We first
formulate the GPU device set D as a global graph G = (D,E), with each GPU d ∈ D representing
a graph node, and the GPU memory limit md defined as the node weight. The communication link
ed,d′ ∈ E between GPU d and d′, ∀d, d′ ∈ D, is defined as the graph edge, with communication
bandwidth βd,d′ as the edge weight. Then, we partition the formulated graph G into partition P =

4
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{p1 . . . pK}, where pk denotes the k-th model serving group, and determine the type for each group.
Concretely, there are three steps in the first phrase:

Step (i) - Initial partition: We first partition the global graph into multiple model serving groups
based on edge weights (bandwidths), and balance the node weights (memory capacities) across
groups. We leverage the spectral partitioning method Alpert & Yao (1995) to partition the graph
G into K groups, which uses the eigenvectors of the Laplacian matrix to guide partitioning and
minimize inter-group edge weights. The group size K is determined by dividing the cluster’s total
memory by the estimated memory required for a single model replica. Then we adopt the Kernighan-
Lin algorithm Kernighan & Lin (1970) to iteratively refine the partition P by swapping node pairs
between groups, which further reduces edge weights and balances node weights (memory capacities)
across groups. Figure 3 demonstrates the process. Note that we balance memory rather than compute
capacity to avoid potential OOM issues and provide a solid starting point for further optimization.

Step (ii) - Coarsen & secondary partition: We then determine the group type, where the graph
is coarsened and partitioned again to determine the model replica type for each group. Note that
coarsen is a common operation that merges nodes and edges to simplify graph partition Hendrick-
son et al. (1995). Here, the coarsening operation merges graph nodes (GPUs) within the same group
(model replica) into super nodes, which ensures the graph only includes relationships among the
super nodes. The coarsened graph is then partitioned to distinguish between prefill and decoding
model replicas. As illustrated in Figure 3, the four super nodes are divided into two parts: the two
super nodes on the left are designated as prefill model replicas, while the two on the right are desig-
nated as decoding model replicas. Different from initial partition, the secondary partition focuses on
maximizing inter-partition edge weights (i.e., the edge weights between prefill and decoding model
replicas) to support frequent KV cache communications between different group types.

Step (iii) - Projection: Once we allocate the super nodes into prefill and decoding model replicas,
we need to apply project operation, i.e., the reverse operation of the coarsen operation described in
step (ii), to recover the GPU information within each super node. Note that after the projection,
we can leave the problem of determining the optimal parallel strategies for each prefill or decoding
model replica based on the GPU information within each super node during the second phase.
3.3 SECOND PHASE: MAX-FLOW

The second phase of our scheduling algorithm determines the parallel strategies within each super
node and KV cache communication strategies between each super node. We leverage max-flow, as a
promising method, to formulate the disaggregated inference pradiagm. Taking the partitioned graph
from the first phase as input, we transform it into a directed graph with compute nodes and network
connections. We define the source and sink of the directed graph to be the coordinator node h, which
is responsible for request dispatching and completion. Formally, we define:

Compute nodes. The prefill and decoding model replicas are defined as compute nodes C, with
ϕi ∈ C denoting a prefill model replica and δi ∈ C denoting a decoding model replica. For each
compute node ϕi/δi ∈ C, we force it connect with two other nodes in the graph, named ϕin

i /δini
and ϕout

i /δouti . The capacity of the directed edge (ϕin
i /δini , ϕout

i /δouti ) represents the maximum
number of requests this node can process within a certain time period T (e.g., 10 minutes). We
adopt the inference cost model from HEXGEN Jiang et al. (2024b) and detail the node capacity
estimation in Appendix A. To optimize capacity, the optimal parallel strategy should be selected
for each node. As discussed in §2, given the distinct computational characteristics of different
phases, their optimal parallel strategies also vary. For prefill model replicas, we aim to determine
the latency-optimal parallel configurations, as they are computation-intensive and batching does not
enhance efficiency. In contrast, for decoding model replicas, we aim to deduce the throughput-
optimal parallel configurations, since this phase is memory I/O-bound and benefits from batching
more requests. Based on these considerations, we iterate through all possible model parallelism
combinations for each model replica and select the optimal one. For compute node ϕi/δi, the amount
of flow that passes through (ϕin

i /δini , ϕout
i /δouti ) should be no larger than its maximum capacity.

Network connections. A node in the directed graph might be connected with any other nodes,
while only a subset of those connections are valid. A valid connection should satisfy one of the
following criteria: (1) the connection is from coordinator node h to compute node ϕi, we represent
the connection with directed edge (source, ϕin

i ); (2) the connection is from δi to coordinator node
h, we represent the connection with directed edge (δouti , sink); (3) the connection is from a compute
node ϕi to another compute node δi, we represent the connection with directed edge (ϕout

i , δini ). The
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edge capacity equals the maximum number of requests this connection can process within the time
period T. Note that for connection type (3), between any two prefill and decoding model replicas ϕi

and δi with an edge connection, each GPU containing the j-th layer within ϕi should transmit its
KV cache to the matching GPU housing the j-th layer within δi. The edge capacity is determined
by the collective performance of all GPU-to-GPU transmission connections, as each connection is
responsible for a portion of the KV cache transmission. The estimation of edge capacity is detailed
in Appendix A. We only permit flow to pass through valid network connections, and the transmitted
flow should not exceed the maximum capacity of the connection.

After constructing the directed graph, we run preflow-push algorithm Cheriyan & Maheshwari
(1989) to get the max flow between source and sink node, with one unit of flow representing one
request that can pass through a compute node or network connection per unit time. This algorithm
continuously pushes the maximum allowable flow up to the edge’s capacity to maximize the flow
through the direct connection. The generated flow assignments between compute nodes ϕi and δi
are used to guide the KV cache communication. The communication frequency is set to be pro-
portional to these flow values to follow the max flow of the directed graph without creating bursts,
as illustrated in Figure 3. However, the algorithm may not fully utilize edge capacities as flows
within the directed graph are interdependent; upstream and downstream edges can restrict total flow,
preventing the full utilization of higher-capacity edges due to bottlenecks or imbalanced capacities.
For instance, a low capacity on the edge (ϕout

i , δini ) can restrict the flow on edge (δini , δouti ) from
reaching node capacity. Therefore, iteratively refining the directed graph is essential.

3.4 ITERATIVE REFINEMENT

§3.3 presented how we obtain the max flow for a given graph partition; now we introduce how we
can iteratively refine the graph partition to maximize the flow. We refine the graph iteratively based
on edge swapping, which is a common approach for optimizing graph partition Hendrickson et al.
(1995); Vaishali et al. (2018), and we further propose a max-flow guided edge swap operation, which
uses max-flow outputs to guide the iterative refinement of the graph.

The preflow-push algorithm mentioned in §3.3 provides the detailed flow assignments necessary to
analyze edge utilization Waissi (1994). By comparing the flow through each edge with its capacity,
we can identify bottleneck and underutilized edges. Bottleneck edges are defined as those where
the flow reaches capacity limits, preventing the directed graph from achieving a higher overall flow.
Underutilized edges are those where the flow falls short of capacity and could accommodate more
data flow. As long as these imbalances exist, we attempt to swap edges. Therefore, we implement
local swaps of edges guided by the max-flow outputs to form a new graph partition, as illustrated
in Figure 3. This swap operation is essential in terms of: (i) balancing the inter- and intra-group
edge weights to maintain high intra-group capacities while enabling efficient inter-group KV cache
communicating; and (ii) adjusting the node and edge weights across intra-groups to optimize re-
source allocation. After the swaps, we rerun the two-phase algorithm to obtain the optimal model
placement strategy and max flow of the new graph partition. We then refine the partition again. This
iterative process continues until no further improvements can be made. Evaluation in §5.3 highlights
the necessity of our design, the max flow guided edge swap overcomes local minima and acceler-
ates optimization compared with other approaches. To better illustrate each phase of our scheduling
algorithm, we provide a detailed analysis in Appendix C, and a case study in Appendix E.

4 SYSTEM IMPLEMENTATION

HEXGEN-2 is a distributed system designed to support efficient LLM inference service under the
disaggregated paradigm in heterogeneous environments. HEXGEN-2 uses a task coordinator to
handle the dispatch of incoming LLM inference requests, which is based on an open-source im-
plementation of decentralized computation coordination Yao (2023) that utilizes libP2P LibP2P
(2023) to establish connections among the work groups in a peer-to-peer network. All parallel
communications in HEXGEN-2 are implemented using NVIDIA Collective Communication Library
(NCCL) NVIDIA (2024), and all required communication groups for different parallelism plans are
established in advance to avoid the overhead associated with constructing NCCL groups. HEXGEN-
2 utilizes asynchronous NCCL SendRecv/CudaMemcpy for KV cache communication to enable
overlapping between computation and communication. Furthermore, HEXGEN-2 integrates popular
features for optimizing LLM inference such as continuous batching Yu et al. (2022), FlashAtten-
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Figure 4: Communication bandwidth (Gbps) matrix for different settings. Homogeneous setting
contains 8×H100 GPUs with a budget of 29.5 $/h; heterogeneous setting 1 contains 2×H100,
6×A100, 4×L40 and 8×A6000 GPUs with a budget of 28.8 $/h; heterogeneous setting 2 contains
3×H100 and A100, 6×L40 and A6000 GPUs with a budget of 26.9 $/h; heterogeneous setting 3
contains 6×A100 and A6000, 12×L40 GPUs with a budget of 27.1 $/h; heterogeneous setting 4
contains 3×H100 and 9×A100 GPUs with a budget of 26.3 $/h; heterogeneous setting 5 contains
4×A100, 6×L40 and 10×A6000 with a 70% budget of 20.5 $/h.

tion Dao et al. (2022); Dao (2024), PagedAttention Kwon et al. (2023), and supports open-source
LLMs such as OPT Zhang et al. (2022) and LLAMA Touvron et al. (2023).

5 EVALUATION

To evaluate the design and implementation of HEXGEN-2, we ask the following essential questions:

• What is the end-to-end performance comparison in terms of throughput and latency between
HEXGEN-2 and the state-of-the-art homogeneous or heterogeneous generative inference systems?

• How effective is our scheduling algorithm in terms of finding the optimal assignment of the infer-
ence workflow compared with existing methods?

5.1 EXPERIMENTAL SETUP

Distributed environment. We rent GPUs from RunPod RunPod (2023), a GPU cloud provider with
services for various GPUs, and perform evaluation in the following setups:

• Homogeneous setup: We rent one on-demand instance equipped with 8×NVIDIA H100-80G
GPUs, with a budget of $29.52/hour to represent the standard homogeneous case.

• Heterogeneous setups: We utilize four types of GPUs: H100, A100, L40, and A6000, to con-
struct five different heterogeneous cluster setups, where the first four settings use a similar budget
as the homogeneous setting, while the last setting use a 70% budget of the homogeneous settings.
The detailed configuration is illustrated in Figure 4.

We measure the communication bandwidth between each pair of GPUs via NCCL for all above men-
tioned environments. As shown in Figure 4, the heterogeneous environments demonstrate notable
bandwidth limitation and heterogeneity.

LLM inference workloads. To evaluate the performances in different LLM inference workloads,
we run four different types of workloads: heavy prefill with light decoding (HPLD), heavy prefill
with heavy decoding (HPHD), light prefill with heavy decoding (LPHD), light prefill with light
decoding (LPLD). Prefill requests that have more than 512 tokens are categorized as heavy, others
are light, and decoding requests with more than 128 tokens are categorized as heavy Hu et al. (2024).
We generate these workloads using samples from the Azure Conversation dataset Patel et al. (2024).

Online and offline testing. We test two different arrival rates: In the online setting, we scale the
average arrival rate to 75% of the cluster’s peak throughput to prevent request bursts that could cause
system outages due to out-of-memory (OOM) errors, Figure 5 illustrates the distribution of input
and output lengths in our trace. In the offline setting, we permit requests to arrive at a rate that fully
utilizes the cluster, testing all four types of workloads (HPLD, HPHD, LPHD, LPLD).

Models. We evaluate HEXGEN-2 on OPT (30B) Zhang et al. (2022) and LLAMA-2 (70B) Touvron
et al. (2023) models, both are representative and popular open-source transformer models, to study
the system performance on models of different sizes.
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Figure 6: Throughput results to evaluate HEXGEN-2 on LLAMA-2 (70B). Each row corresponds to
a particular heterogeneous setting. The first four columns demonstrates the offline inference results
on different LLM workloads. The last column represents the online inference results.
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Figure 7: Throughput results to evaluate HEXGEN-2 on OPT (30B).
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Figure 5: Request traces for online testing.

Baselines. We carefully select state-of-the-art
approaches as baselines. To understand end-
to-end performance, we compare HEXGEN-2
with DISTSERVE Zhong et al. (2024) as the
state-of-the-art approach under the homoge-
neous setting, which enhances LLM serving
by disaggregating prefill and decoding compu-
tations across different GPUs, allowing differ-
ent resource allocation and parallelism for each
phase. And HEXGEN Jiang et al. (2024b) as the state-of-the-art approach under heterogeneous set-
tings, which is a distributed inference engine that efficiently manages LLM inference across hetero-
geneous environments, leveraging asymmetric parallelism with a scheduling algorithm to optimize
resource allocation. To understand the efficiency of the proposed scheduling algorithm, we compare
its convergence with the truncated variant of our scheduling algorithm and genetic algorithm.

Evaluation metrics. For offline serving, we report the average decoding throughput, measured as
the number of tokens generated per second. For online serving, we additionally report the SLO
attainments as detailed in §2.

5.2 END-TO-END EXPERIMENTAL RESULTS

End-to-end performances. Figure 6 and Figure 7 demonstrate the end-to-end throughput results of
HEXGEN-2 compared with HEXGEN with different models, workloads, and heterogeneous settings,
and DISTSERVE in the homogeneous setting. Given the same price budget, HEXGEN-2 outper-
forms its counterparts in almost all cases. In fact, compared with HEXGEN, HEXGEN-2 achieves
up to a 1.5× and, on average, a 1.4× increase in serving throughput. Compared with DISTSERVE,
HEXGEN-2 achieves up to a 2× and, on average, a 1.3× higher serving throughput. We also demon-
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Figure 8: Latency results in online experiments.

strate the latency results of HEXGEN-2 compared with HEXGEN in different heterogeneous settings
and with DISTSERVE in the homogeneous setting. As shown in Figure 8, HEXGEN-2 achieves on
average a 1.5× lower latency deadlines than its counterparts. Specifically, analyzing the scheduling
results2 under different heterogeneous settings and LLM workloads, we find that: (1) our schedul-
ing approach prioritizes tensor model parallelism for prefill model replica to minimize latency and
hybrid parallelism for decoding model replica to maximize throughput; (2) the scheduled result also
employs pipeline parallelism to reduce the inter-machine communication over limited bandwidth,
and avoid ultra-low cross data center communication; (3) relatively more resources are assigned for
prefill and decoding in the HPLD and LPHD workloads to balance the resource demands for differ-
ent phases; (4) our approach always schedules KV cache communications through high-bandwidth
links such as NVLink and PCIe to prevent them from becoming system bottlenecks. We also com-
pare HEXGEN-2 with the state-of-the-art LLM serving platform VLLM in Appendix F, and demon-
strate the performance of HEXGEN-2 in the homogeneous setup in Appendix G.
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Figure 9: Throughput results with 70% price budget.

Cost efficiency. To evaluate cost-
efficiency in terms of serving
throughput between homogeneous
and heterogeneous setup, we reduce
the budget in the heterogeneous set-
ting by 30%. As shown in Figure 9,
HEXGEN-2 in heterogeneous setting
5 still reveals similar performance
to DISTSERVE in the homogeneous setting, and even outperforms it by 30% in some specific
workloads. We believe that this is strong evidence to illustrate that a heterogeneous system such
as HEXGEN-2 is capable of managing heterogeneous GPUs to provide more economical LLM
inference services without compromising service quality.

5.3 EFFECTIVENESS OF THE SCHEDULING ALGORITHM

To evaluate the effectiveness of our scheduling algorithm, we compared its convergence behavior
with some truncated variants, which disables the max-flow guided edge swap operation mentioned in
§3.4 by replacing it with a random swap operation, and with the genetic algorithm. The genetic algo-
rithm, designed to optimize model deployment, uses a population-based approach involving merge,
split, and swap operations to iteratively refine GPU groupings Jiang et al. (2024b). In our compari-
son, we replaced the group generation step in the graph partition phase and the iterative refinement
phases of our algorithm with the genetic algorithm to enable HEXGEN-2 with this method. We
benchmarked heterogeneous setting 1 across all four types of workloads. Figure 10 and Figure 11
illustrate the convergence curves and experimental results. Our scheduling algorithm identifies opti-
mal assignments for all scenarios within 90 to 120 seconds, which significantly outperforms both the
truncated variant and the genetic algorithm, finds assignments that deliver on average a 1.8× higher
serving throughput and converges much faster, while the others get stuck in local minima. Addi-
tionally, we verified that in all cases, the estimated serving throughput closely aligns with the actual
throughput. Our scheduling algorithm also scales effectively with larger clusters, we demonstrate
the experimental results in Appendix H.

6 RELATED WORKS

LLM inference serving and disaggregated inference paradigm. There are plenty of recent re-
searches focused on optimizing LLM inference and serving Li et al. (2023); Kwon et al. (2023);

2The placements chosen by HEXGEN-2 for online experiments can be found in Appendix B.
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Figure 10: Convergence comparison of our proposed search strategy, our strategy without edge
swap, and genetic algorithm, where all run 15 times.
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Figure 11: Throughput comparison in heterogeneous setting 1 among HEXGEN-2, HEXGEN-2
without edge swap, and HEXGEN-2 empowered by genetic algorithm.

Agrawal et al. (2024); Liu et al. (2023); Wu et al. (2023); Zhou et al. (2022); Yu et al. (2022).
Among them, vLLM Kwon et al. (2023) proposes paged-attention to improve the memory effi-
ciency of the system. Orca Yu et al. (2022) introduces continuous batching to improve inference
throughput. AlpaServe Li et al. (2023) adopts model parallelism to optimize LLM serving per-
formance. SARATHI Agrawal et al. (2024) introduces a chunked-prefill approach and piggybacks
decoding requests to improve hardware utilization. Deja Vu Liu et al. (2023) predicts contextual
sparsity on-the-fly and uses an asynchronous and hardware-aware implementation to enhance LLM
inference. On the other hand, many very recent works have been produced using disaggregated
paradigm. Splitwise Patel et al. (2024) splits the prefill and decoding phases onto separate machines
to optimize hardware utilization. DistServe Zhong et al. (2024) further implements distinct parallel
strategies for different phases. TetriInfer Hu et al. (2024) partitions prompts into fixed-size chunks
and adopts a two-level scheduling algorithm to improve the performance of disaggregated inference.
Mooncake Qin et al. (2024) features a KV cache-centric disaggregated architecture that enhances
inference by fully leveraging the underutilized resources of GPU clusters, excelling in long-context
scenarios. These works further confirm the effectiveness of the disaggregated architecture.

Heterogeneous GPU computing. Recent efforts have investigated diverse approaches to deploying
LLMs in heterogeneous environments. LLM-PQ Zhao et al. (2024) supports adaptive model quan-
tization and phase-aware partitioning to boost LLM serving efficiency on heterogeneous GPU clus-
ters. Helix Mei et al. (2024) formulates heterogeneous GPUs and network connections as a maxflow
problem, and adopts a mixed integer linear programming algorithm to discover highly optimized
strategies for serving LLMs. HexGen Jiang et al. (2024b) proposes asymmetric parallelism and an
advanced scheduling algorithm to deploy generative inference in decentralized and heterogeneous
environments. Mélange Griggs et al. (2024) formulates the GPU allocation task as a cost-aware bin
packing problem and optimizes cost efficiency for LLM services by leveraging heterogeneous GPU
types. Note that our work shares a similar objective and but is the first to adapt the disaggregated
inference architecture for heterogeneous environments.

7 CONCLUSION

We explore the potential of implementing a disaggregated inference framework in heterogeneous
environments with devices of diversified computational capacities connected over a heterogeneous
network. Toward this end, we propose HEXGEN-2, a generative inference framework that incor-
porates a disaggregated architecture alongside an efficient scheduling algorithm tailored for such
deployments. Our empirical study suggests that, given the same budget, HEXGEN-2 can outper-
form state-of-the-art homogeneous and heterogeneous inference frameworks by up to 2.0× and on
average 1.3× in serving throughput, and reduces the average inference latency by 1.5×. Addition-
ally, HEXGEN-2 maintains competitive inference performance relative to leading frameworks with
a 30% lower price budget. We believe that such an effort from HEXGEN-2 to provide efficient
economical LLM inference could potentially democratize the usage of generative AI.
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Table 1: Modeling the generative inference cost and limit.
Description Prefill Cost Formulation Decode Cost Formulation

Computation cost max
d∈di,j

(
24bts

in
t H

2

|di,j | cd

)
· li,j max

d∈di,j

(
12H2Btypes

out
t

|di,j |md

)
· li,j + max

d∈di,j

(
24bts

out
t H2

|di,j | cd

)
· li,j

TP communication cost max
d∈di,j

 ∑
d′∈di,j\{d}

(
αd,d′ +

bts
in
t HBtype

|di,j |βd,d′

) · 4li,j max
d∈di,j

 ∑
d′∈di,j\{d}

(
αd,d′ +

btHBtype

|di,j |βd,d′

) · 4sout
t li,j

PP communication cost min
d∈di,j , d′∈di,j+1

(
αd,d′ +

bts
in
t HBtype

βd,d′

)
min

d∈di,j , d′∈di,j+1

(
αd,d′ +

btHBtype

βd,d′

)
· sout

t

Memory limit

(
12H2Btype

|di,j |
+

2bt
(
sin
t + sout

t

)
HBtype

|di,j |

)
× li,j + 4bt

(
sin
t + sout

t

)
HBtype

KV cache communication cost αd,d′ +
2bts

in
t HBtype

βd,d′

We formulate the computation cost, tensor parallel (TP) communication cost, key-value (KV) cache communication cost, memory limit of the
j-th stage in the i-th pipeline, and the pipeline parallel (PP) communication cost between the j-th and (j+1)-th stages of the i-th pipeline for
a particular inference task t ∈ T. Here, d is the GPU device, md is the GPU memory bandwidth, cd is the tensor core computation power,
αd,d′ and βd,d′ is the latency and bandwidth between device d and d′, di,j is the set of GPUs serves the j-th stage in the i-th pipeline that
holds li,j transformer layers, bt is the batch size, sin

t is the sequence length of the input prompt, sout
t is the number of output tokens, H is the

size of the hidden dimension in a transformer block, and Btype denotes the number of bytes for the precision of inference computation (e.g.,
Btype(FP16) = 2).

Table 2: GPU Deployment, Strategy, and Type.

LLAMA-2 (70B)
Heterogeneous Setting 1 Heterogeneous Setting 3

GPU Configuration Strategy Type of Instance GPU Configuration Strategy Type of Instance
1xH100+1xA100 TP=1,PP=2 Prefill Instance 2xA100 TP=1,PP=2 Prefill Instance
2xA100+2xA6000 TP=2,PP=2 Prefill Instance 2xL40+3xA6000 TP=1,PP=5 Prefill Instance
4xL40 TP=4,PP=1 Prefill Instance 4xL40 TP=4,PP=1 Prefill Instance
1xH100+1xA100 TP=1,PP=2 Decode Instance 4xA100 TP=2,PP=2 Decode Instance
2xA100+2xA6000 TP=2,PP=2 Decode Instance 2xL40+3xA6000 TP=1,PP=5 Decode Instance
4xL40 TP=2,PP=2 Decode Instance 4xL40 TP=2,PP=2 Decode Instance

Heterogeneous Setting 2 Heterogeneous Setting 4
GPU Configuration Strategy Type of Instance GPU Configuration Strategy Type of Instance
1xH100+1xA100 TP=1,PP=2 Prefill Instance 1xH100+1xA100 TP=1,PP=2 Prefill Instance
2xL40+2xA6000 TP=2,PP=2 Prefill Instance 2xA100 TP=2,PP=1 Prefill Instance
2xH100+2xA100 TP=2,PP=2 Decode Instance 2xH100+2xA100 TP=2,PP=2 Decode Instance
4xL40+4xA6000 TP=4,PP=2 Decode Instance 4xA100 TP=4,PP=1 Decode Instance

OPT (30B)
Heterogeneous Setting 1 Heterogeneous Setting 4

GPU Configuration Strategy Type of Instance GPU Configuration Strategy Type of Instance
1xH100+1xA100 TP=1,PP=2 Prefill Instance 1xH100 TP=1,PP=1 Prefill Instance
2xA100 TP=2,PP=1 Prefill Instance 1xA100 TP=1,PP=1 Prefill Instance
2xL40+1xA6000 TP=1,PP=3 Prefill Instance 1xA100 TP=1,PP=1 Prefill Instance
2xL40+1xA6000 TP=1,PP=3 Prefill Instance 1xA100 TP=1,PP=1 Prefill Instance
1xH100+1xA100 TP=1,PP=2 Decode Instance 2xH100 TP=2,PP=1 Decode Instance
2xA100 TP=1,PP=2 Decode Instance 2xA100 TP=1,PP=2 Decode Instance
2xL40+1xA6000 TP=1,PP=3 Decode Instance 2xA100 TP=1,PP=2 Decode Instance
2xL40+1xA6000 TP=1,PP=3 Decode Instance 2xA100 TP=1,PP=2 Decode Instance

A GENERATIVE INFERENCE COST ESTIMATION

Node capacity estimation. To estimate the generative inference cost, we adopt the cost model
from HEXGEN Jiang et al. (2024b) and summarize the computation costs, communication costs,
and memory consumption constraints in Table 1. The inference latency for a single request is cal-
culated by summing the total computation and communication costs. We determine the capacity of
the compute-bound prefill node, where batching more requests does not enhance system through-
put, by dividing the predefined time period by the latency. Conversely, for the memory I/O-bound
decoding node, which benefits from batching, we calculate its capacity by dividing the product of
the maximum available batch size and the time period by the latency.

Edge capacity estimation. For connection types (1) and (2) mentioned in §3.3, the edge capacities
are equal to the product of the predefined time period and the connection bandwidth, divided by the
transmission size of a request. For connection type (3), the edge capacity is equal to the time period
divided by the estimated KV cache communication cost in Table 1. As mentioned in §3.3, the edge
capacity of connection type (3) is determined by the collective performance of all GPU-to-GPU
transmission connections, as each connection is responsible for a portion of the KV cache transmis-
sion. To optimize it, given the parallel configurations of the prefill and decoding model replicas,
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we adjust the pipeline stage order of both phases to minimize the overall KV cache communication
cost, which in turn determines the edge capacity.

B HEXGEN-2 SCHEDULING RESULTS

We list the model serving group partitions and types generated by HEXGEN-2 in the online experi-
ments for each heterogeneous setting in Table 2.

C SCHEDULING ALGORITHM ANALYSIS

The scheduling algorithm aims to optimize the deployment of large language model (LLM) infer-
ence workloads on a heterogeneous GPU cluster. The optimization involves the following essential
phases:

• Graph partition. The initial partition focuses on creating memory-balanced groups and optimiz-
ing the capacity within each group. The secondary partition determines group type (i.e., prefill or
decoding), focusing on maximizing inter-type communication bandwidth for efficient KV cache
transfer.

• Max-flow. This phase determines optimal parallel strategies for each group and determines the
optimal inter-type KV cache communication paths based on the max-flow outputs.

• Iterative refinement. This phase continuously adjusts partitions and strategies based on workload
demands until no further improvements can be made.

The upper bound for graph partitioning indicates the optimal utilization of heterogeneous compu-
tation power and connections. The theoretical upper bound of the graph partition phase is achieved
when the cluster is partitioned into groups with balanced memory capacities and optimized pro-
cessing capabilities, and the groups are assigned types (i.e., prefill or decoding) in a manner that
maximizes inter-type communication bandwidth for key-value (KV) cache transfers.

The upper bound for max-flow indicates the maximum possible data flow within the cluster. The
theoretical upper bound of the max flow phase is determined by the maximum possible data transfer
rate of the entire system. This upper limit is achieved when the system fully utilizes the inter-type
network bandwidth for KV cache transfers and optimizes the processing capabilities of the prefill
and decoding model replicas.

Based on our scheduling algorithm, the optimization will iteratively narrow the gap between the
current allocation and the theoretical upper bounds, where the iterative refinement process addresses
the limitations inherent in each phase. The challenges in reaching upper bounds lie in two aspects:

• In the graph partition phase, creating an ideal graph partition in a single iteration is challeng-
ing since this phase lacks critical information (e.g., parallel strategy and KV cache communica-
tion path) from subsequent phases. Without these insights, the initial graph partitioning cannot
guarantee an ideal utilization of the heterogeneous cluster, leading to potential communication
bottlenecks and workload imbalances.

• The max flow phase operates within the constraints set by the graph partition. The max-flow
algorithm cannot achieve the theoretical maximum flow if the preceding graph partition results in
less-than-optimal grouping. Limited inter-group communication bandwidth and unbalanced node
capacities prevent the system from fully utilizing the network’s data transfer capabilities.

Iterative refinement. The iterative refinement phase is crucial in bridging the gap toward the
upper bounds. It continuously evaluates and adjusts groupings, fine-tunes parallel configurations
and recalculates optimal KV cache communication paths based on updated partitions. This approach
allows the algorithm to:

• Rebalance trade-offs for graph partition. Balance intra-group resource optimization with inter-
type communication efficiency for optimized resource utilization.

• Enhance max-flow potential. Balance overutilized and underutilized edges within the formulated
flow network for optimized data flow efficiency.
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D DISAGGREGATION AND CHUNKED PREFILL

Chunked prefill Agrawal et al. (2024) is a method that divides input tokens into smaller chunks,
which are then processed in a continuous batch. This approach simplifies scheduling by treating
all nodes uniformly and enhances computational efficiency during decoding, improving machine
utilization. However, this approach may not result in significant performance gains across all work-
load types. We evaluate chunked prefill using vLLM Kwon et al. (2023) on one H100 GPU serving
the OPT-30B model. Experimental results demonstrate that on HPLD and LPLD workloads, chun-
ked prefill brings an approximately 20% throughput improvement, while it only brings around 5%
throughput gains on HPHD and LPHD workloads. Therefore, we choose disaggregation, which
enables different batching strategies, resource allocations, and parallel approaches for each phase,
providing greater flexibility in handling various types of workloads.

E CASE STUDY: SCHEDULING ALGORITHM ANALYSIS ON A SMALL
CLUSTER

In this section, we provide a case study of our scheduling algorithm on relatively small size hetero-
geneous cluster with 4 H100s and 4 A100s for better understanding of our scheduling algorithm.
The detailed procedures are listed bellow.

E.1 PHASE 1: GRAPH PARTITION

The graph partition phase aims to find the group construction and type mentioned in §3.1.

Step 1: initial partition. Step 1 divides the GPUs into multiple independent groups based on min-
imizing inter-group communication bandwidth and balancing the memory capacity of each group.
After step 1, the cluster is divided into four groups g1-4, and the construction of each group is: g1:
two H100, g2: two H100, g3: two A100, and g4: two A100.

Step 2 & 3: coarsen & secondary partition & projection. This step aims to distinguish the type
for each group (prefill or decoding). In the small case, g1 and g3 are determined to be the prefill
model replicas, and g2 and g4 are determined to be the decoding model replicas.

E.2 PHASE 2: MAX-FLOW ALGORITHM

The max-flow algorithm aims to fine the parallel strategy and KV cache communication path men-
tioned in §3.1.

Step 1: find the optimal parallel strategies for prefill and decoding groups. This step deter-
mines the latency- and throughput-optimal parallel strategies for prefill and decoding model repli-
cas. After searching, g1 and g3 (prefill model replicas) use a parallel strategy of (TP=2, PP=1)
(latency-optimal), while g2 and g4 (decoding model replicas) use a parallel strategy of (TP=1, PP=2)
(throughput-optimal).

Step 2: find the optimal KV communication path. We run a preflow-push algorithm to get the max
flow of the cluster. The generated flow assignments are used to guide the KV cache communication.
In the small case, g1 (prefill model replica) communicates with g2 (decoding model replica), and g3
(prefill model replica) communicates with g4 (decoding model replica).

E.3 PHASE 3: ITERATIVE REFINEMENT

The iterative refinement phase aims at co-optimizes the four objectives (group construction, group
type, parallel strategy and KV cache communication path) in the first and second phases.

Iterative refinement using swap operation. We use max-flow guided edge swap to iterative refine
the graph partition until no further improvements can be made. For instance, for workloads with light
prefill and heavy decoding (LPHD) needs, the algorithm would attempt to allocate more resources to
decoding model replicas. In the small case with LPHD workloads, one H100 from g1 (prefill model
replica) is swapped into g2 (decoding model replica) and one A100 from g3 (prefill model replica)
is swapped into g4 (decoding model replica) for enhancing the decoding ability of the system and

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

maximizing the system throughput. The iterative refinement will optimize the plan for any given
LLM inference workload accordingly given the workload characteristics.

In this small case, the output of our scheduling algorithm is the same as the output that is derived
through exhaustive search.

F COMPARE HEXGEN-2 WITH VLLM

In this section, we conduct additional experiments to compare HEXGEN-2 with state-of-the-art LLM
serving platform. We evaluated vLLM using the same homogeneous experimental setup described
in §5.1. Specifically, we rent 8 H100 GPUs from the RunPod platform and test vLLM with the
Llama2-70B model using samples from the Azure Conversation dataset. As demonstrated in Table 3,
HEXGEN-2 achieves up to a 2.1× and on average a 1.5× higher serving throughput compared with
VLLM in our testbed.

Table 3: Comparison between different frameworks with different setups.
Setting System HPLD HPHD LPHD LPLD Online
Heterogeneous Setting 1 HEXGEN-2 157 tokens/s 448 tokens/s 689 tokens/s 570 tokens/s 350 tokens/s
Heterogeneous Setting 1 HEXGEN 123 tokens/s 375 tokens/s 492 tokens/s 407 tokens/s 259 tokens/s
Homogeneous Setting DISTSERVE 128 tokens/s 368 tokens/s 553 tokens/s 291 tokens/s 251 tokens/s
Homogeneous Setting VLLM 97 tokens/s 437 tokens/s 563 tokens/s 270 tokens/s 256 tokens/s

G CASE STUDY: HOMOGENEOUS SYSTEM COMPARISON

In this section, we compare HEXGEN-2 with DISTSERVE and HEXGEN in a homogeneous setup.

Experimental setup. To compare the runtime of HEXGEN-2 with DISTSERVE and HEXGEN, we
rented 4 H100 GPUs from the RunPod platform and tested serving throughput on the OPT-30B
model using the four types of LLM inference workloads (HPLD, HPHD, LPHD, LPLD) described
in §5.1.

Compare with DISTSERVE. We found that for certain inference workloads, the scheduling results
of HEXGEN-2 and DISTSERVE differ. For example, with the HPLD workload, HEXGEN-2 fa-
vors replicating more model replicas to enhance the system’s parallel processing, while DISTSERVE
prefers model parallelism to distribute the computation of a single model replica across multiple
GPUs. Experimental results demonstrate that HEXGEN-2 outperforms DISTSERVE in certain cases
due to better scheduling results while delivering comparable performance when the scheduling out-
comes are the same.

Compare with HEXGEN. HEXGEN-2, with optimized scheduling in a disaggregated architec-
ture, minimizes interference between the prefill and decoding phases of LLM inference. It selects
appropriate parallelism and batching strategies for each phase, resulting in improved inference per-
formance compared to HEXGEN in a homogeneous environment.

Table 4: Throughput comparison in a homogeneous cluster.
HEXGEN-2 DISTSERVE HEXGEN

HPLD 365 tokens/s 302 tokens/s 277 tokens/s
HPHD 683 tokens/s 692 tokens/s 505 tokens/s
LPHD 758 tokens/s 774 tokens/s 533 tokens/s
LPLD 730 tokens/s 553 tokens/s 545 tokens/s

H CASE STUDY: SCHEDULING ALGORITHM SCALABILITY

In this section, we conduct additional experiments to evaluate the scalability of our scheduling algo-
rithm. The results are shown below.
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Table 5: Algorithm convergence time across different cluster sizes.
Ngpus Time (min)

64 4.03
128 7.93
192 21.66
256 28.44
320 47.77

Experimental results demonstrate that our scheduling algorithm scales polynomially and shows po-
tential for addressing larger and more complex heterogeneous scheduling problems.

18


	Introduction
	Preliminary
	Scheduling Algorithm in HexGen-2
	Problem Formalization
	First Phase: Graph Partition
	Second Phase: Max-flow
	Iterative Refinement

	System Implementation
	Evaluation
	Experimental Setup
	End-to-end Experimental Results
	Effectiveness of the Scheduling Algorithm

	Related Works
	Conclusion
	Generative Inference Cost Estimation
	HexGen-2 Scheduling Results
	Scheduling Algorithm Analysis
	Disaggregation and Chunked Prefill
	Case Study: Scheduling Algorithm Analysis on a Small Cluster
	Phase 1: Graph Partition
	Phase 2: Max-Flow Algorithm
	Phase 3: Iterative Refinement

	Compare HexGen-2 with vLLM
	Case Study: Homogeneous System Comparison
	Case Study: Scheduling Algorithm Scalability

