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ABSTRACT

In this study, we consider the transferability of LoRA adapters across quantized
foundation models. Specifically, we investigate whether LoRA adapters trained
on a low-bit-width foundation model can still perform effectively when merged
into a higher-bit-width foundation model. By leveraging this transferability, it be-
comes possible to construct models with performance comparable to conventional
LoRA using QLoRA adapters trained under resource-constrained conditions. This
approach not only improves the performance of trained QLoRA models without
additional training but also accelerates LoRA fine-tuning.

1 INTRODUCTION

In recent years, the increasing parameter size of Large Language Models (LLMs) has significantly
enhanced their performance, achieving success across various tasks (Kaplan et al. (2020); Dubey
et al. (2024)). However, it has also led to the challenge of increasing computational costs. As a
result, the infrastructure costs associated with deploying LLMs have increased, making it difficult
for users or organizations with limited computational resources to deploy and operate LLMs.

Given this background, researchers have been studying techniques that combine Low-Rank Adapta-
tion (LoRA) (Hu et al. (2021)) and Weight Quantization (Yao et al. (2022); Frantar et al. (2023); Lin
et al. (2024)) to facilitate the fine-tuning (FT) and inference of LLMs under computational-resource
constraints (Dettmers et al. (2023); Xu et al. (2024); Li et al. (2024); Jeon et al. (2024)). In QLoRA,
one of the earliest studies in this area, the foundation model is quantized first, and then LoRA is
applied. LoRA is a parameter-efficient FT method that trains not the model’s weights directly but
low-rank matrices, known as adapters, which are merged into each layer of the LLM. LoRA is a
popular technique because it significantly reduces computational costs and achieves nearly the same
performance as Full FT. On the other hand, Weight Quantization compresses the weights of LLMs,
which are typically represented using a 16-bit data type, into 8-bit, 4-bit, or even lower precision,
thereby reducing the model’s memory requirements. Although quantization introduces quantization
errors that slightly degrade the model’s performance, the benefit of utilizing larger and more intel-
ligent foundation models within the same memory capacity outweighs this drawback. Combining
these two techniques reduces GPU memory usage during both FT and inference of LLMs, making
it possible to construct a higher performing LoRA model with limited computational resources.

The existing quantization-LoRA frameworks, such as QLoRA, aim to reduce the computational re-
source required for FT. However, these frameworks do not consider the resources available during
inference, meaning surplus resources cannot be effectively utilized. For example, when FT and in-
ference are executed on the same computational resources, FT requires memory to store gradients
and optimizer states. In contrast, inference does not, resulting in a relative surplus of memory during
inference. Alternatively, inference efficiency techniques, such as offloading part of the processing
to the CPU, could also create surplus resources. Leveraging these available memory surpluses dur-
ing inference enables the use of foundation models with larger bit-widths, potentially mitigating
performance degradation induced by quantization errors.
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Figure 1: Conceptual diagram of the proposal method (PLR) and existing methods (LoRA, QLoRA).
PLR restores the foundation model and merges the adapter trained using QLoRA. Note that PLR can
apply not only to QLoRA but also to subsequent studies, such as QA-LoRA (Xu et al. (2024)).

This study proposes Post-LoRA Restoration (PLR) as a framework to utilize the surplus GPU mem-
ory during inference effectively. Figure 1 illustrates the workflow of the proposed method. In PLR,
after applying LoRA training to a quantized foundation model, the model is restored to a larger
bit-width for inference. This is based on the hypothesis that, because quantized models are tuned to
behave as closely as possible to their originals, an adapter trained on a foundation model at one bit-
width will remain effective when transferred to foundation models of other bit-widths. PLR enables
the avoidance of performance degradation in the foundation model due to quantization errors during
inference and can improve the processing performance of the LoRA model across various tasks.

In the evaluation experiments, we observed performance improvements in QLoRA models with
PLR under nearly all conditions, confirming that the transferred adapter functions effectively. Fur-
thermore, it was confirmed that 4-bit and 3-bit QLoRA combined with PLR achieved performance
equivalent to conventional 16-bit LoRA. These results suggest that PLR is an effective method for
speeding up training by reducing memory costs during learning and enabling larger batch sizes.

2 POST-LORA RESTORATION

Post-LoRA Restoration (PLR) restores the precision of the foundation model’s weights to a higher
bit-width after QLoRA training. Our framework makes it possible to avoid the performance degra-
dation of the foundation model caused by quantization errors.

The specific process of PLR is introduced below. Let W 16-bit
0 denote the weights of the founda-

tion model with 16-bit precision, and ∆WLoRA denote the weights of the LoRA adapter. Then,
the weights of each layer after applying LoRA can be expressed as W = W0 + ∆WLoRA. In
a Quantization-LoRA framework like QLoRA, W 16-bit

0 is quantized to k-bit and replaced. Conse-
quently, each layer is given by W = W k-bit

0 +∆WLoRA. Here, k satisfies 0 < k < 16. In PLR,
after completing LoRA training, W k−bit

0 is replaced with W l−bit
0 . Consequently, each model layer

is given by W = W l−bit
0 +∆WLoRA during inference. Here, l satisfies l > k and is chosen based

on the surplus computational resources available for inference.

In general, LLMs incur more significant quantization errors and degraded performance as they are
quantized to lower bit-width. PLR enables the selection of an optimal quantization bit-width for
the model based on the available computational resources during inference, thereby minimizing
performance degradation caused by quantization errors.

3 EXPERIMENTS

In this experiment, we investigate whether the accuracy of each evaluation task improves when PLR
is applied to QLoRA.

3.1 SETTINGS

Foundation Models and Datasets In our experiments, we use three models from the Llama 3
family (Dubey et al. (2024)), Llama 3.2-1B, Llama 3.2-3B, and Llama 3.1-8B, as foundation models
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Table 1: Accuracy (%) on each task for the LoRA, QLoRA, and QLoRA+PLR models. Note that
PLRl means restoring the QLoRA foundation model to l-bit.

Datasets Models 16-bit
LoRA

8-bit QLoRA 4-bit QLoRA 3-bit QLoRA 2-bit QLoRA

QLoRA PLR16 QLoRA PLR8 PLR16 QLoRA PLR4 PLR8 PLR16 QLoRA PLR3 PLR4 PLR8 PLR16

GSM8k

Llama 3.2-1B 21.60 22.13 21.83 18.19 18.95 19.41 11.22 15.31 16.91 16.53 3.18 3.11 3.03 2.81 2.43
Llama 3.2-3B 42.91 43.06 42.07 37.75 41.32 42.38 29.56 34.50 37.76 37.30 4.17 6.60 15.61 15.39 15.85
Llama 3.1-8B 59.66 58.75 58.98 56.56 58.15 58.00 50.34 57.31 58.98 59.59 5.16 18.27 33.35 33.73 34.34

Avg. 41.39 41.31 40.96 37.50 39.47 39.93 30.37 35.71 37.88 37.81 4.17 9.33 17.33 17.31 17.54

SCC

Llama 3.2-1B 69.21 67.29 63.33 25.84 30.11 31.60 23.90 22.19 37.69 37.63 0.00 0.00 0.22 0.22 0.19
Llama 3.2-3B 72.30 83.02 82.79 75.22 80.49 80.41 68.65 68.15 75.54 75.44 2.97 32.93 39.51 35.83 35.87
Llama 3.1-8B 84.96 84.30 84.21 84.38 84.47 84.46 77.35 79.46 80.04 79.94 4.81 36.73 32.20 36.13 36.20

Avg. 75.49 78.20 76.78 61.81 65.02 65.49 56.63 56.60 64.42 64.34 2.59 23.22 23.98 24.06 24.09

Avg.

Llama 3.2-1B 45.40 44.71 42.58 22.02 24.53 25.51 17.56 18.75 27.30 27.08 1.59 1.55 1.63 1.52 1.31
Llama 3.2-3B 57.61 63.04 62.43 56.49 60.91 61.40 49.11 51.33 56.65 56.37 3.57 19.77 27.56 25.61 25.86
Llama 3.1-8B 72.31 71.53 71.60 70.47 71.31 71.23 63.85 68.39 69.51 69.77 4.99 27.50 32.78 34.93 35.27

Avg. 58.44 59.76 58.87 49.66 52.25 52.71 43.50 46.15 51.15 51.07 3.38 16.27 20.65 20.69 20.81

in our experiments. For the dataset of FT, we select Grade School Math 8K (GSM8k) (Cobbe et al.
(2021)) and SQL Create Context (SCC) (b mc2 (2023)). GSM8k comprises approximately 7,500
training samples and around 1,300 evaluation samples, while SCC includes roughly 78,600 training
samples. Accordingly, for LoRA fine-tuning and evaluation, GSM8k’s training set is split with 10%
held out for validation. For SCC, 10% of its training data is used for validation and an additional
10% for evaluation.

Training Setting In LoRA and QLoRA, the adapter’s rank r and α are set to 16 for all models,
and LoRA is applied to all attention layers. The learning rate is 2e-4 and the batch size is 32.
Among the 10 training epochs, we use the weights from the epoch that achieved the lowest loss on
the validation data for evaluation. For quantizing the foundation model in LoRA, four quantization
variations were prepared 8, 4, 3, and 2-bit width. Each quantization was performed using GPTQ
(Frantar et al. (2023)). GPTQ is a quantization technique that, after quantizing the weights, employs
calibration data to correct quantization errors and thereby mitigate performance degradation. We
use 500 samples randomly drawn from the training data as the calibration data.

3.2 RESULTS

Table 1 shows the accuracy for each task of the LoRA, QLoRA, and QLoRA+PLR models, which
were trained under the settings above. In the table, PLRl means restoring the QLoRA foundation
model to l-bit.

Looking at the overall averages for all models and datasets in the table, PLR demonstrates improved
performance compared to QLoRA in almost every case, thereby confirming the effectiveness of
PLR. On the other hand, in the 8-bit scenario, PLR is the only method that exhibits a performance
decline. Here, focusing on 16-bit LoRA, both 8-bit QLoRA and 8-bit QLoRA+PLR16 exhibit higher
accuracy than 16-bit LoRA. This result suggests that as a foundation model for LoRA, the 8-bit one
is superior to the 16-bit one, which can be interpreted as why 8-bit QLoRA outperform PLR16
restoring the foundation model to 16-bit. This phenomenon can be attributed to a regularization
effect induced by 8-bit quantization, which allowed the adapter to learn its task more efficiently on
the 8-bit model than on the 16-bit model.

Next, when comparing the results by model size, we observed that the effectiveness of PLR increases
as the model size becomes larger and its performance improves. Notably, the accuracy of the 3-bit
QLoRA+PLR16 on GSM8K and the 4-bit QLoRA+PLR16 on SCC is nearly identical to or even
exceeds that of 16-bit LoRA. This fact suggests that on foundation models quantized to 4-bit or
3-bit precision, the adapter can learn to solve tasks at a level comparable to conventional LoRA. Our
experimental results indicate that the performance degradation observed with QLoRA compared to
LoRA is attributable to the foundation model’s performance deterioration due to quantization errors,
and that the adapter itself is being trained successfully up to a specific bit-width.

On the other hand, in the 2-bit scenario, the accuracy of QLoRA is remarkably low, and the accuracy
recovery achieved by PLR remains insufficient compared to 16-bit LoRA. Since the adapter training
may not proceed as expected, accurately verifying the effectiveness of PLR requires validation using
quantization-aware LoRA methods such as QA-LoRA (Xu et al. (2024)).
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4 DISCUSSION

Comparison of PLR and QLoRA The evaluation experiments demonstrate that PLR can im-
prove QLoRA models’ performance without requiring any additional training after FT. On the other
hand, as PLR requires additional memory during inference, it is necessary to consider the trade-off
between memory requirements and performance improvements carefully.

Figure 2: Trends in the accuracy of each (Q)LoRA model and the
memory usage of its weights when PLR is applied.

Figure 2 is a plot showing both
the performance and the mem-
ory requirements of each model
used in the evaluation exper-
iments. For example, when
applied to the 3-bit QLoRA
model of Llama 3.1-8B, PLR4
increases memory usage by only
14% while reducing perfor-
mance degradation relative to
16-bit LoRA by as much as 54%
without requiring any additional
training.

Moreover, even if surplus mem-
ory for PLR is lacking, it may still be possible to apply PLR by utilizing techniques such as pruning
(Zhang et al. (2024)) or offloading (Rasley et al. (2020); Alizadeh et al. (2023)). However, these
techniques may lead to decreased inference speed or degraded performance, so we must thoroughly
investigate their impact when combined with PLR.

Comparison of PLR and LoRA Our experiments indicate that 4-bit QLoRA + PLR16 and 3-bit
QLoRA + PLR16 can achieve performance equivalent to vanilla 16-bit LoRA. Based on this finding,
our method can also be applied to accelerate LoRA training. For example, when using 4-bit QLoRA
combined with PLR16 on Llama 3.1-8B, up to 75% of training memory can be saved compared to
16-bit LoRA, even though the restored accuracy remains nearly identical. Therefore, by utilizing the
saved memory to increase the batch size, training speed can be improved by reducing the number of
training steps.

On the other hand, the performance improvements achieved with PLR are inconsistent, and it re-
mains unclear which QLoRA bit width should be used depending on the task and model. For ex-
ample, in GSM8K with Llama 3.1-8B, 3-bit QLoRA+PLR16 outperforms 4-bit QLoRA+PLR16,
which is counterintuitive. In order to effectively utilize PLR for accelerating training, it is essential
to enhance the consistency of both PLR and QLoRA across various bit-widths.

5 CONCLUSION

In this study, we proposed PLR, a novel Quantization-LoRA framework that leverages the trans-
ferability of adapters across foundation models with different bit-widths. For the increasingly large
LLMs of recent years, PLR holds significant promise, as it enables both faster training and higher
accuracy without incurring additional training compared to LoRA.

Finally, we outline the future work. One of the limitations of our approach is that we can only
apply to models with the same architecture. It is necessary to devise a method that leverages the
transferability of adapters to support not only different bit-widths of the same model but also dif-
ferent bit-widths across models with different architectures. Another research topic is to investigate
the applicability of PLR to successor techniques of LoRA, such as DoRA (Liu et al. (2024)) and
Transformer-Squared (Sun et al. (2025)). By solving these issues, we will further expand the scope
of the application of PLR, and it will be possible to construct high-performance fine-tuned LLM
under a broader range of computing resource settings.
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