LEARNING TO EXPLORE AND EXPLOIT WITH GNNS FOR UNSUPERVISED COMBINATORIAL OPTIMIZATION

Anonymous authors

Paper under double-blind review

ABSTRACT

Combinatorial optimization (CO) problems are pervasive across various domains, but their NP-hard nature often necessitates problem-specific heuristic algorithms. Recent advancements in deep learning have led to the development of learningbased heuristics, yet these approaches often struggle with limited search capabilities. We introduce Explore-and-Exploit GNN (X^2 GNN, pronounced x-squared GNN), a novel unsupervised neural framework that combines exploration and exploitation for combinatorial search optimization: i) Exploration - X^2 GNN generates multiple solutions simultaneously, promoting diversity in the search space; (ii) Exploitation - X^2 GNN employs neural stochastic iterative refinement, where sampled partial solutions guide the search toward promising regions and help escape local optima. X^2 GNN employs neural stochastic iterative refinement to exploit partial existing solutions, guiding the search toward promising regions and helping escape local optima. By balancing exploration and exploitation X^2 GNN achieves superior performance and generalization on several graph CO problems including Max Cut, Max Independent Set, and Max Clique. Notably, for large Max Clique problems, X^2 GNN consistently generates solutions within 1.2% of optimality, while other state-of-the-art learning-based approaches struggle to reach within 22% of optimal. Moreover, X^2 GNN consistently generates better solutions than Gurobi on large graphs for all three problems under reasonable time budgets. Furthermore, X^2 GNN exhibits exceptional generalization capabilities. For the Maximum Independent Set problem, X^2 GNN outperforms state-of-the-art methods even when trained on smaller or out-of-distribution graphs compared to the test set. Our framework offers a more effective and flexible approach to neural combinatorial optimization, addressing a key challenge in the field and providing a promising direction for future research in learning-based heuristics for combinatorial optimization.

034

004

006

008 009

010 011

012

013

014

015

016

017

018

019

020

021

024

025

026

027

028

029

031

032

034

1 INTRODUCTION

037 038

Combinatorial optimization (CO) problems aim to find a discrete solution that optimizes an objective function from a discrete set of feasible solutions constrained by specific problem parameters. These optimization problems frequently emerge in commercial, governmental, and scientific contexts, prompting extensive study in fields such as mathematics, computer science, and operations research. Many combinatorial optimization problems are NP-hard, indicating no polynomial-time exact algorithm exists unless P = NP.

Exact algorithms, which achieve optimality by implicitly or explicitly considering all possible solutions, are typically only tractable for small instances due to their exponential worst-case time complexity. Consequently, another body of work focuses on heuristic algorithms that quickly attain high-quality solutions without optimality guarantees. Work here seeks to balance computational time and solution quality, often exploring the search space through multiple different solutions, and exploiting promising ones (Eiben and Schippers, 1998).

Heuristics are often hand-crafted for a specific problem, exploring problem intricacies to achieve peak
 performance for a given problem distribution, requiring time and domain expertise. The rise of deep
 learning has enabled new learning-based heuristics that can be automatically tuned for performance
 using data. However, current approaches are often limited in their search capabilities, often only

054 iteratively improving a single solution, or naively restarting and forgetting previously generated 055 solutions. 056

In this paper, we introduce **Explore-and-Exploit GNN** (X^2 GNN, pronounced X-squared GNN), 057 a novel unsupervised neural combinatorial optimization framework. X^2 GNN combines effective 058 exploration of the solution space with intelligent exploitation of partial solutions. 059

Our Main Contributions are: 060

- 1. We propose X^2 GNN, which combines exploration and exploitation for combinatorial search optimization: (i) Exploration - X^2 GNN simultaneously generates multiple coupled solutions, promoting diversity in the search space; (ii) Exploitation - X^2 GNN employs neural stochastic iterative refinement to exploit partial existing solutions, guiding the search toward promising regions and helping escape local optima.
- 2. State-of-the-art performance: X^2 GNN outperforms existing learning-based approaches on benchmark datasets for the maximum cut, maximum independent set, and maximum clique problems. Additionally, X^2 GNN is competitive with general OR approaches like Gurobi, and problem specific heuristics like KaMIS, offering improved or comparable solution quality at similar time cutoffs.
- 3. Strong generalization capabilities: X^2 GNN generalizes graphs that are out-of-distribution or up to 4 times larger than those seen during training, while still significantly outperforming other learning-based methods trained on the same distribution as the test set.
 - 4. Rigorous Evaluation: We enhance existing benchmark datasets commonly used in the ML for combinatorial optimization community by including strong traditional baselines and evaluating solvers at comparable runtimes. We additionally allow solvers a 30-minute timelimit, which is at least 24 times longer than our longest-running model.

2 **RELATED WORK**

079 081

061

062

063

064

065

067

068

069

070

071

073

074

075

076

077

078

The broad intersection between machine learning (ML) and combinatorial optimization (CO) has seen 082 much work with different facets explored in various surveys (Bengio et al., 2021; Kotary et al., 2021; 083 Cappart et al., 2023). State-of-the-art learning-based primal heuristics specifically can be broadly 084 categorized by their training supervision and solution construction methods. Supervised learning 085 approaches use training data composed of problem instances and corresponding solutions derived from existing solvers (Khalil et al., 2016; Selsam et al., 2019; Nair et al., 2020; Sun and Yang, 2023). 087 However, these may face challenges such as the unavailability of high-quality solvers for all problems 880 and poor generalization capabilities across different problem instances (Yehuda et al., 2020). Despite these challenges, recent studies have shown that diffusion-based training can enhance generalization 089 in supervised learning (Sun and Yang (2023)). 090

091 Unsupervised learning approaches have also been explored, differing primarily in whether solutions 092 are constructed autoregressively or not. Earlier non-autoregressive models generate a 'soft' solution in a single step, which is then decoded into a final solution using methods ranging from simple greedy (Karalias and Loukas, 2020) decoding to more sophisticated techniques (Min et al., 2022). As 094 Sanokowski et al. (2024) noted, these approaches can be classified as single-step diffusion methods. 095 These models are notably faster and more scalable than their autoregressive counterparts. Sanokowski 096 et al. (2023) suggest that non-autoregressive solution construction may fail to capture essential dependencies among problem variables and they refer to these types of methods as mean-field 098 approximations.

The earlier single-step non-autoregressive methods are outperformed by autoregressive construction 100 governed by MDPs (Sanokowski et al., 2023; Zhang et al., 2023). However, these models are trained 101 using reinforcement learning (RL) and face high computational needs and poor generalization (Sun 102 and Yang, 2023). Additionally, autoregressive construction does not allow modification of fixed 103 decisions, unlike diffusion-based construction where all variables can be altered at each step. 104

105 The success of generative diffusion models (Sohl-Dickstein et al., 2015) made it appealing for CO. For diffusion-based CO approaches, noise is sequentially added to the optimal solution obtained 106 from other solvers in the forward process, and the model learns to iteratively remove this noise in 107 the reverse process. Sun and Yang (2023) models the CO problems as a discrete diffusion problem

108 using Bernouilli and Categorical noise. For MIS, they outperform non-autoregressive models but 109 have similar performance to autoregressive models, suffering from long diffusion schedules. Li 110 et al. (2023) follow the same training procedure as Sun and Yang (2023) but employ gradient-guided 111 noising-denosing rounds during inference. This improves upon Sun and Yang (2023); however, long 112 diffusion schedules and reliance on the gradients hinder effectiveness. Sanokowski et al. (2024) trains a diffusion model to sample from the Boltzmann distribution with the probability of sampling a 113 solution being positively correlated to its objective value. They derive an unsupervised loss function 114 using a continuous Lagrangian relaxation, showing that longer generation schedules increase quality. 115

116 117

118

3 PRELIMINARIES

¹¹⁹ We consider the broad class of combinatorial optimization problems on graphs and instantiate ¹²⁰ X^2 GNN for three NP-hard problems on undirected unweighted graphs G = (V, E). As in many ¹²¹ real-world scenarios, we consider distributional versions of these problems, where we are asked to ¹²² train an algorithm on a dataset of instances and then deploy the algorithm on unseen instances.

123 124 125 Maximum Clique (MC): A clique in a graph G is a subset of vertices where every two vertices are adjacent. The Maximum Clique problem involves finding the largest clique in G.

 $\begin{array}{ll} \textbf{Maximum Independent Set (MIS): An independent set in a graph G is a subset of vertices, none of which are adjacent. The Maximum Independent Set problem aims to find the largest independent set. \end{array}$

128 Maximum Cut (MCut): For a graph G = (V, E), the Maximum Cut problem seeks to partition the 129 set of nodes V into two subsets S and $V \setminus S$, maximizing the number of edges between S and $V \setminus S$.

Solutions for these problems can be represented by a binary decision for each node, $Y \in \{0, 1\}^{|V|}$, indicating solution inclusion, $Y_i = 1$ if $v_i \in S$ otherwise 0. Additionally, the maximum clique and maximum independent set problems are closely related; a clique S in graph corresponds to an independent set S in its complementary graph (Cormen et al. (2001)). We use this relationship for all approaches and solve MC problems by solving MIS on the corresponding complementary graph.

135 136

137

4 X^2 GNN FRAMEWORK

138 X^{2} GNN, illustrated in Figure 1, is an iterative framework that explores the search space by simul-139 taneously generating a pool of K-Coupled solutions and exploiting promising ones via stochastic 140 refinement. K-Coupled solutions is a group of K solutions that are built collectively, we refer to each 141 group as a K-Couple. We model the K-Couple using a multilayer graph, copying the original graph 142 K times to represent the K solutions, and adding auxiliary edges between corresponding nodes in 143 different layers. We model the solution values themselves as node features. We then iteratively feed 144 the K-Couple into a graph neural network (GNN) which makes a prediction on each node corre-145 sponding to a new K-Couple. We train the GNN's outputs at each iteration using a combination of an unsupervised optimization loss, a constraint satisfaction loss, and a diversity loss on the K-Couple. 146 Importantly, before feeding a K-Couple as input to the GNN, we randomly perturb the solution to 147 help escape local equilibria. Furthermore, we randomly initialize the K-Couple. 148

Formally, given a problem represented by graph G = (V, E), we represent the GNN input of Ksolutions at iteration t using ${}^{t}X \in [0, 1]^{K \times |V|}$, with ${}^{t}X_{u}^{k}$ denoting the feature of node $u \in V$ for solution $k \in 1, ..., K$ in iteration t. We use ${}^{t}\hat{Y}$ to denote the K-Coupled solution generated at iteration t. That is, ${}^{t}\hat{Y} = g_{\theta}(G, {}^{t}X)$. Similarly, we use the notation ${}^{t}\hat{Y}_{u}^{k}$ to denote the probability of node $u \in V$ being in solution $k \in 1, ..., K$ generated at iteration t.

Solution Generation and Stochastic Iterative Refinement: We refer to the first iteration (t = 1) of X^2 GNN as construction and the subsequent iterations $(t \ge 2)$ as refinement. During construction, we randomly initialize node features ${}^{1}X_{u}^{k}$ to 0.5 with probability p and 0 with probability 1 - p, with p being 0.95 in practice. Essentially, we initialize the K-Couple with unbiased solutions while introducing diversity to break symmetries for nodes with identical degrees.

159

160 During refinement, we randomly set the previous iteration's output ${}^{t-1}\hat{Y}$ to 0 with probability ϕ to 161 generate new node features ${}^{t}X$. The parameter ϕ offers a natural way to control exploration and exploitation. If $\phi = 1$, no information from the previous iteration is used, maximizing exploration.

Figure 1: Illustration of X^2 GNN for a Minimum Independent Set instance. First, a multilayer graph is created from K = 2 copies of the original graph, with cross edges to couple solutions. Copies of the original edges (E'_{O}) are drawn in blue, and cross edges (E'_{C}) are drawn in red. Node features correspond to the probability of being in the solution, representing soft solutions. Initially, when generating the coupled solutions, the features are random. These features are fed into a GNN to obtain K soft solutions. During stochastic refinement, the GNN iteratively takes solutions from the previous time step, randomly perturbs them, and generates new solutions. Stochastic refinement can be repeatedly applied at inference and is done once during training. Finally, the training loss is calculated for all generated solutions using the objective value, lagrangian term, and diversity.

182

183

185

186

187

188

192 193

If $\phi = 0$, the previously generated solutions are maintained, and the method will deterministically 194 refine the K-Couple, maximizing exploitation. Thus, high values of ϕ lead to exploration whereas 195 low values lead to exploitation. We refer to one step of this approach as Stochastic Refinement and 196 the general application of multiple iterations as Stochastic Iterative Refinement.

197 Aligning the model's input and output enables repeated use of the recurrent model. Recurrent models trained on short iterations can be deployed for longer iterations to solve more complex problems 199 (Schwarzschild et al., 2021); however, overuse can result in 'overthinking' (Bansal et al., 2022). 200 X^{2} GNN mitigates this by not iterating over the hidden representations, but rather iterating stochasti-201 cally over the output space. The stochastic sampling process significantly impacts performance by 202 facilitating exploration around the current solution, allowing exploitation, and escaping local optima. Moreover, it helps generalization to bigger and out-of-distribution datasets. 203

204 **Converting Soft Solutions to Hard Solutions:** Since the GNN outputs soft solutions \hat{Y}^k , we convert 205 them to discrete feasible solutions S depending on the problem. For MCut, we select a node u into S 206 iff $\hat{Y}^k \ge 0.5$, yielding a feasible solution due to the absence of constraints. For MIS and MC, we add 207 node u into S in order of decreasing probability \hat{Y}_{u}^{k} as long as $S \cup \{u\}$ satisfies problem constraints. 208

K-Coupled Solutions: To couple solutions, we construct a multilayer graph $G_M = (V', E')$ from 209 the original graph G = (V, E). G_M contains K "layers" each containing a copy of the original graph. 210 Additional edges (cross edges) connect nodes in different layers corresponding to the same node in 211 G. We denote E'_O as the edges corresponding to original edges E, and E'_C as the cross edges, such 212 that $E' = E'_O \cup E'_C$. We construct G_M as follows: For each node $v_i \in V$, we create node v_i^k for 213 all layers k = 1, ..., K. For each edge $(v_i, v_j) \in E$, we create an original edge between v_i^k and v_j^k 214 for all k = 1, ..., K, forming E'_O . We then add cross edges E'_C , such that for each node $i \in V$ all 215 copies of i have a pairwise edge between them in G_M In practice, we select K = 2.

(a) Original Graph (b) Multilayer Graph with blue original edges E'_O , and red cross edges E'_C .

Figure 2: Figure shows an example of a graph and its corresponding multilayer graph for K = 2.

226 X^{2} GNN Neural Network Architecture: The GNN used by X^{2} GNN to construct and refine 227 solutions consists of 2L layers combining Graph Isomorphism Networks (GIN) (Xu et al., 2019) and 228 Graph Attention Networks (GAT) (Velickovic et al., 2018; Brody et al., 2022). The layers alternate 229 between GIN layers operating on (V', E'_O) to work on individual solutions and GAT layers operating 230 on (V', E'_C) to enable information sharing between solutions. This alternating design enables the 231 simultaneous generation of K-coupled solutions. Note that the same model parameters are used for 232 both construction and refinement.

233 **Training and Loss Functions:** We train X^2 GNN using unsupervised combinatorial optimization 234 losses which take the form of Lagrangian relaxations of the original problem. We adopt nonlinear 235 programming formulations for MCut, MIS, and MC problems from Sanokowski et al. (2024). For 236 MIS and MC, the objective is to include as many nodes in S as possible, penalizing constraint 237 violation, whereas in MCut the objective is to include as many edges in the cut as possible. We 238 additionally propose adding a loss function to promote diversity among the K-coupled solutions. In 239 the MIS and MC settings, we want solutions to contain different nodes, whereas we are interested in having different cut edges for MCut. We write the optimization problems, continuous relaxations, 240 and lagrangian terms for the constraints in Table 1. 241

242 Overall, X²GNN trains the GNN parameters θ to jointly optimize objective quality (\mathcal{L}_{ρ}), constraint 243 satisfaction (\mathcal{L}_c), and solution diversity (\mathcal{L}_d) over the training set \mathcal{G} :

$$\min_{\theta} \mathbb{E}_{G \in \mathcal{G}} \left[\sum_{t} \left[\sum_{k} \mathcal{L}_{o}(G, {}^{t}\hat{Y}^{k}) + \lambda_{1}\mathcal{L}_{c}(G, {}^{t}\hat{Y}^{k}) \right] + \lambda_{2}\mathcal{L}_{d}(G, {}^{t}\hat{Y}) \right]$$

For MC and MIS, we impose node diversity:

$$\mathcal{L}_d(G, \hat{Y}) = \frac{1}{K(K-1)} \sum_{\substack{1 \le k_1, k_2 \le K \\ k_1 \ne k_2}} \sum_{u \in V} \hat{Y}_u^{k_1} \hat{Y}_u^{k_2}$$

For MCut, we impose cut edge diversity:

$$\mathcal{L}_d(G,\mathcal{Y}) = \frac{1}{K(K-1)} \sum_{\substack{1 \le k_1, k_2 \le K \\ k_1 \ne k_2}} \sum_{(u,v) \in E} \frac{1 - (2\hat{Y}_u^{k_1} - 1)(2\hat{Y}_v^{k_1} - 1)}{2} \frac{1 - (2\hat{Y}_u^{k_2} - 1)(2\hat{Y}_v^{k_2} - 1)}{2}$$

255 256 257

258

259

260

261

253 254

224

225

We train X^2 GNN using a two-stage training procedure. In the first stage, the model learns to construct solutions, and in the second stage, the model learns to stochastically refine constructed solutions for one step. The proposed two-stage training procedure leads to better initial solutions and more stable solution refinement for X^2 GNN.

Inference: Unlike during training, during inference we use the stochastic refinement step multiple 262 times leading to stochastic iterative refinement. Training the model on a single stochastic refinement 263 iteration is enough to teach the model to generally improve solutions. We show that using the 264 stochastic iterative refinement longer leads to a significant increase in solution quality. Additionally, 265 instead of generating just one K-coupled solution, we generate C K-coupled solutions to increase 266 exploration. These K-coupled solutions are independent and effectively run X^2 GNN simultaneously 267 with different random seeds. 268

 X^2 GNN offers time-quality trade-offs by selecting C, the number of K-Coupled solutions, and T 269 the number of iterations. By increasing C and/or T, we can consider more solutions to improve

Problem	For	mulation	Objective	Constraint los
МС	$\max_{\substack{Y \in \{0,1\}^{ V } \\ \text{s.t. } Y_u}} \sum_{X \in \{0,1\}^{ V }} $	$u \in V Y_u$ $Y_v = 0, \ \forall (u, v) \notin E$	$\sum_{u \in V} \hat{Y}_u$	$\sum_{(u,v)\not\in E} \hat{Y}_u^k \hat{Y}_v^k$
MIS	$\max_{\substack{Y \in \{0,1\}^{ V } \\ \text{s.t. } Y_u}} \sum_{X \in \{0,1\}^{ V }} $	$u \in V Y_u$ $Y_v = 0, \ \forall (u, v) \in E$	$\sum_{u \in V} \hat{Y}_u$	$\sum_{(u,v)\in E} \hat{Y}_u^k \hat{Y}_v$
MCut	$\max_{Y \in \{0,1\}} \sum_{ V \ (u,v) \in E}$	$\frac{1 - (2Y_u - 1)(2Y_v - 1)}{2}$	$\sum_{(u,v)\in E} \frac{1 - (2\hat{Y}_u - 1)(2\hat{Y}_v - 1)}{2}$	-

Table 1: Mathematical formulation, objective loss \mathcal{L}_o , and constraint loss \mathcal{L}_c for our problems.

solution quality by using more time. For each choice of C and T, X^2 GNN generates $C \times K$ solutions at the first iteration that are then refined for T-1 iterations to generate $C \times K \times T$ solutions in total. A natural question is how to select C and T for a fixed computational budget. Under a fixed budget, increasing C promotes exploration by maintaining more solutions, whereas increasing T enhances exploitation by allowing more refinement iterations on existing solutions. This mechanism controls exploration and exploitation in our optimization framework, which is crucial for effectively navigating the search landscape of complex problems.

289 290 291

292

281 282 283

284

285

286

287

288

5 EXPERIMENTS

293 **Datasets:** Previous literature has identified that some problem instances for MIS and MC are relatively easy (Dai et al., 2020). For rigorous evaluation, we use synthetically generated hard instances for 295 all problems, following previous work (Karalias and Loukas, 2020; Zhang et al., 2023; Sanokowski 296 et al., 2024). Our datasets include RB graphs (Xu and Li, 2000), a revision to model B graphs (Gent 297 et al., 2001; Smith and Dyer, 1996), which are known to generate hard instances for MC and MIS. 298 We consider RB graphs with 200-300 nodes(RB250) and 800-1200 nodes (RB1000). For MIS, we 299 also evaluate on Erdős-Rényi (ER) graphs (Erdös and Rényi, 1959) with 700-800 nodes and edge probability 0.15 (ER750). For MCut, we use Barabási-Albert (BA) graphs (Barabási and Albert, 300 1999) with 250 nodes (BA250) and 1,000 nodes (BA1000). We train on 4,000 graphs and test on 500 301 graphs except for ER which has 128 test graphs. 302

303 **Baselines:** We compare X^2 GNN against both Operations Research (OR) and Machine Learning 304 (ML) techniques. We compare against Gurobi (Gurobi Optimization, LLC, 2024) on all tasks as it is a general-purpose exact solver that is highly performant on many CO tasks due to years of 305 development. For MIS, we compare against KAMIS (Lamm et al., 2016), a highly specialized MIS 306 solver, as well as learning-based approaches such as PPO (Ahn et al., 2020), Gflow (Zhang et al., 307 2023), DIFFUSCO (Sun and Yang, 2023), T2T (Li et al., 2023), and DiffUCO (Sanokowski et al., 308 2024). For MC, we benchmark against KAMIS used on the complement graph, greedy algorithms, 309 mean-field annealing (MFA), and learning-based methods including ERDOS and its annealed version 310 ANNEAL (Karalias and Loukas, 2020; Sun et al., 2022), DiffUCO, and Gflow. MCut comparisons 311 include semi-definite-programming (SDP) based approximation algorithm (Goemans and Williamson, 312 1995), Tabu Search (TS) (Nath and Kuhnle, 2024), and learning-based methods RUN-CSP (Tönshoff 313 et al., 2020), ANYCSP (Tönshoff et al., 2023), ERDOS, ANNEAL, DiffUCO, and Gflow. When 314 given, we use Fast, Quality, and 30min to denote that we set time limits around the twice the fastest 315 version of X^2 GNN, twice the slowest version of X^2 GNN, and 30 minutes respectively.

316 **Evaluation Metrics:** We employ three metrics: the mean objective value (Size), the mean drop 317 in quality relative to the best-known solution (Drop), and the mean runtime in seconds (Time). 318 Overall, better methods find solutions with lower solution quality drop at smaller runtimes. Since 319 all problems are maximization problems, larger size is better. For instance, a 10% drop means the 320 method generates solutions with a mean objective value of 90, while the best method achieves 100. 321 In all tables, learning-based methods are shaded. Bold entries denote the best learning-based method, and italics indicate the best method, learning or traditional. Additionally, we denote the method type 322 categorizing methods into operations research (OR), heuristic (H), supervised learning (SL), and 323 unsupervised learning (UL).

Table 2: Results for Max Clique on small and large RB graphs, presenting the mean clique size, drop in quality to the virtual best, and runtime in seconds. Learning-based methods are shaded and the best learning-based result is bolded. The best global result is in italics. X^2 GNN generates solutions at least 14% to 23% better than all learning-based methods. X^2 GNN solves RB250 optimally, with a similar run time as Gurobi and KaMIS.

Method	Туре		RB250			RB1000	
		Size \uparrow	Drop \downarrow	Time ↓	Size ↑	Drop \downarrow	Time ↓
KaMIS	OR	19.074	0%	10	40.652	0%	51
Gurobi (30min)	OR	19.074	0%	0.73	40.652	0%	287
Gurobi (Quality)	OR	19.068	0.03%	0.61	36.23	10.88%	47
Gurobi (Fast)	OR	14.62	23.35%	0.17	25.36	37.62%	3
Greedy	Н	13.53	29.07%	0.03	26.71	34.30%	0.04
MFA	Н	14.82	22.30%	0.04	27.94	31.27%	0.21
Erdos	UL	12.02	36.98%	0.06	25.43	37.44%	0.2
Anneal	UL	14.1	26.08%	0.06	27.46	32.45%	0.2
Gflow	UL	16.24	14.86%	0.06	31.42	22.71%	0.44
DiffUCO	UL	16.3	14.54%	4.13	30.5	24.97%	7.92
X ² GNN (RB250)(2x64)	UL	19.04	0.18%	0.09	39.83	2.02%	1.5
X^{2} GNN (RB250)(8x64)	UL	19.072	0.01%	0.37	40.09	1.38%	5.8
X^{2} GNN (RB250)(32x64)	UL	19.074	0%	1.41	40.17	1.19%	23.5

For generalization, we denote the training dataset with (RB250) or (BA250) in the model name. We denote variants of X^2 GNN that generate C 2-Coupled solutions and use T - 1 stochastic refinement steps with (2CxT) in the model name.

5.1 RESULTS ON MAXIMUM CLIQUE

Results for MC on small and large RB datasets are shown in Table 2. For MC, we train X^2 GNN on RB250 and showcase generalization to larger instances. X^2 GNN generates solutions of at least 14% and 23% higher objective value than the second best learning-based methods on RB250 and RB1000 respectively.

Compared to traditional algorithms, X^2 GNN solves every instance on RB250 dataset optimally, with a similar run time as Gurobi and KaMIS. On the larger dataset, on which X^2 GNN wasn't trained, X^2 GNN generates solutions that are within 2% of optimality while almost being 50 and 190 times faster than KaMIS and Gurobi, respectively. Additionally, at a similar runtime, X^2 GNN has substantially better solution quality than Gurobi.

5.2 RESULTS ON MAX INDEPENDENT SET

Table 3 presents results for Maximum Independent Set (MIS) on small RB, large RB, and ER graphs. For all datasets, the metaheuristic KaMIS achieves the best solution quality. Again, X^2 GNN outperforms all learning-based methods by a large margin, especially for the largest RB1000 dataset, where X^2 GNN generates solutions that are 9% better than the second best. Even the model trained on RB250 dataset is able to outperform the other learning-based methods on both RB1000 and ER750 datasets, showing that X^2 GNN can successfully generalize to harder and different graph distributions.

Comparison with the traditional algorithms is more nuanced. On ER750, X^2 GNN generates better solutions than both KaMIS and Gurobi when algorithms are given either 15 or 60 seconds. On RB1000, X^2 GNN generates better solutions than Gurobi but slightly worse solutions than KaMIS at around 20 seconds.

371

344

345

346 347

348

359

360

372 5.3 RESULTS ON MAXIMUM CUT373

374Results for Maximum Cut on small and large BA datasets are shown in Table 4. X^2 GNN outperforms375all state-of-the-art learning-based methods on both datasets. However, ANYCSP and DiffUCO376notably have only slightly worse performance than X^2 GNN both in terms of speed and quality. For377the large dataset, X^2 GNN outperforms Gurobi with a time limit of 30 minutes per instance whileonly using 0.2 seconds. Similarly, X^2 GNN outperforms Tabu Search, finding better solutions faster.

Table 3: Results for Max Independent Set on small and large RB graphs and ER graphs, presenting the mean independent set size, drop in quality to the virtual best (KaMIS), and runtime in seconds. Learning-based methods are shaded and the best learning-based result is bolded. The best global result is in italics. X^2 GNN substantially outperforms learning-based approaches on all datasets. When generalizing from small RB250 instances, X^2 GNN outperforms learning-based methods trained on the larger and in-distribution problems. On ER instances, X^2 GNN outperforms traditional OR approaches given similar time limits.

Method	Туре		RB250			RB1000			ER750	
		Size ↑	Drop \downarrow	Time \downarrow	Size ↑	Drop \downarrow	Time ↓	Size ↑	Drop \downarrow	Time ↓
KaMIS (30min)	OR	20.106	0%	3.92	43.218	0%	381	45.234	0%	382
Gurobi (30min)	OR	20.106	0%	0.31	42.96	0.60%	550	43.62	3.57%	1800
KaMIS (Quality)	OR	20.106	0%	3.92	42.98	0.55%	18	44.84	0.87%	61
Gurobi (Quality)	OR	20.106	0%	0.42	42.25	2.24%	22.27	43.5	3.83%	120
KaMIS (Fast)	OR	20.032	0.37%	1.16	42.66	1.29%	6.5	43.46	3.92%	16
Gurobi (Fast)	OR	19.16	4.71%	0.1	38.81	10.20%	1.23	41.31	8.67%	3.62
РРО	UL	19.01	5.45%	0.15	32.32	25.22%	0.91	41.11	9.12%	2.11
GFlow	UL	19.18	4.61%	0.05	37.48	13.28%	0.4	41.14	9.05%	1.03
DIFUSCO	SL	17.68	12.07%	0.87	35.82	17.12%	41.11	40.35	10.80%	15.46
T2T	SL	18.35	8.73%	2.32	35.822	17.11%	26.55	41.37	8.54%	13.92
DiffUCO	UL	19.24	4.31%	0.42	38.87	10.06%	5	43.63	3.55%	0.71
X^2 GNN(16x8)	UL	19.51	2.96%	0.034	40.53	6.22%	0.3	42.05	7.04%	0.31
X^2 GNN(64x8)	UL	19.82	1.42%	0.128	41.54	3.88%	1.18	43.06	4.81%	1.07
X^2 GNN(256x8)	UL	19.98	0.63%	0.5	42.19	2.38%	4.66	43.82	3.13%	3.91
X^{2} GNN(256x32)	UL	20.072	0.17%	1.94	42.48	1.71%	18.36	44.43	1.78%	15.26
X^{2} GNN(1024x32)	UL	20.098	0.04%	7.11	42.81	0.94%	74.4	44.91	0.72%	57.18
X^{2} GNN(RB250)(256x32)	UL	20.072	0.17%	1.94	39.28	9.1%	9.43	44.15	2.40%	7.96

Table 4: Results for Max Cut on small and large BA graphs, presenting the mean cut size, drop in quality to the virtual best, and runtime in seconds. Learning-based methods are shaded and the best learning-based result is bolded. The best global result is in italics. X^2 GNN outperforms learning-based methods, but only slightly outperforms ANYCSP. Additionally, on BA1000, X^2 GNN outperforms Gurobi given 30 minutes by generating better solutions in 0.2s.

Method	Туре		BA250			BA1000	
		Size ↑	Drop \downarrow	Time ↓	Size ↑	Drop ↓	Time ↓
Gurobi (30min)	OR	735.32	0%	759	2966.58	0.76%	1800
Gurobi (Quality)	OR	731.99	0.45%	2.5	2931.02	1.95%	4.24
Gurobi (Fast)	OR	731.83	0.47%	0.16	2930.99	1.95%	0.66
SDP	OR	700.04	4.8%	4.2	-	-	-
Tabu Search	Н	733.79	0.21%	3	2926.6	2.10%	11.5
Greedy	Н	688.31	6.39%	0.02	2761.06	7.64%	0.29
MFA	Н	704.03	4.26%	0.15	2833.86	5.20%	0.66
Erdos	UL	693.45	5.69%	0.07	2870.34	3.98%	0.25
Anneal	UL	696.73	5.25%	0.07	2863.23	4.22%	0.24
GFlow	UL	704.3	4.22%	0.27	2864.61	4.17%	1.95
RUN-CSP	UL	726.96	1.14%	0.78	2925.8	2.12%	10.8
ANYCSP	UL	735.12	0.03%	2.5	2988.6	0.02%	7.37
DiffUCO	UL	733.5	0.25%	2.77	2981.1	0.27%	6.6
X^2 GNN(16x8)	UL	734.21	0.15%	0.08	2985.2	0.14%	0.2
X^2 GNN(64x8)	UL	734.92	0.05%	0.15	2987.7	0.05%	0.48
X^2 GNN(256x8)	ŪL.	735.17	0.02%	1.2	2988.7	0.02%	1.95
X^{2} GNN(256x32)	UL.	735.26	0.01%	4.1	2989.3	0%	73
X^{2} GNN (BA250)(256x32)	III	735.26	0.01%	4.1	2085.5	0.13%	5.4

These results indicate that on 3 CO problems, X^2 GNN outperforms neural baselines, is competitive with specialized metaheuristics like KaMIS, and improves over general solvers like Gurobi.

5.4 ABLATION

In this section, we analyze the impact of K-coupled solutions for different values of K. We also measure the impact of stochastic refinement, two-stage training, and encouraging diversity.

Problem	K = 1	K = 2	K = 4	K = 8
MIS	4.01%	0.43%	3.81%	9.47%
MC	0.14%	0.01%	0.21%	1.79%
MCut	0.030%	0.015%	0.021%	0.157 %

Table 5: Effects of the parameter K on K-coupled solutions, showing K = 2 gives the lowest drop.

436 437 438

441

434 435

Table 5 demonstrates that K = 2 is the optimal choice for both problems. Its impact is particularly significant for MIS, while more subtle for MC.

We evaluate the impact of ablating aspects of X^2 GNN by comparing to our standard version which achieves a drop value of 0.43% on MIS. Using deterministic refinement instead of stochastic refinement significantly increases drop value to 4.97%. Training the full framework in a single stage increased drop value to 1.44%. Similarly, ignoring the diversity loss raises drop value to 1.81%. These findings highlight the cumulative benefits of our proposed techniques. The combination of K = 2 coupled solutions, stochastic refinement, two-stage training, and diversity loss is crucial for the superior performance of X^2 GNN.

449 450 5.5 NEURAL SEARCH DYNAMICS

For a fixed budget, X^2 GNN can controllably balance exploration and exploitation by trading off the number of solution couples generated at each iteration C, with the number of iterations T taken.

Different search strategies are needed for MC and MIS due to the different feasible regions. MC requires exploration to avoid local optima, and MIS requires exploitation to improve solutions.

456 We showcase that different versions of X^2 GNN perform as expected in these two settings, by 457 analyzing the effects of choosing C and T for a fixed computational budget up to 1024. Figure 3 458 shows the drop in solution quality for various C with T being determined by the computational 459 budget. Figure 3a shows that for MC, focusing X^2 GNN on exploration (higher C) is more helpful, 460 with C = 64 giving the best results. Conversely, Figure 3b shows that for MIS, focusing X^2 GNN on 461 exploitation, by taking more iterations T, is more helpful, with C = 4 giving the best results.

Figure 3: Search dynamics on RB250: Each line corresponds to one setting of C, a parameter where higher values encourage exploration. We present the drop in solution quality (lower is better) over various computational budgets for each value of C. In MC, a problem that benefits from exploration, we see that higher values of C yield better performance. Additionally, in MIS, a problem benefiting from exploitation, we see lower values of C leading to better solutions. This indicates that C provides a meaningful lever for balancing exploration and exploitation.

481

462

463

464

465

466

467

468

469

470

471

472 473

474

482 483

6 CONCLUSION

484

In this work, we introduce Explore-and-Exploit GNN (X^2 GNN), a novel unsupervised neural framework that addresses a key challenge in learning-based combinatorial optimization (CO). Unlike

486 most existing approaches that focus on constructing a limited number of solutions, X^2 GNN effectively 487 explores the vast search space of NP-hard CO problems through two key mechanisms: 488

(i) Exploration: X^2 GNN generates multiple solutions simultaneously, and promotes solution diversity. 489

490 (ii) Exploitation: X^2 GNN employs neural stochastic iterative refinement, using sampled partial 491 solutions to guide the search toward promising regions and escape local optima.

492 Our experiments on three canonical NP-Hard CO problems - Maximum Clique (MC), Maximum 493 Independent Set (MIS), and Maximum Cut (MCut) - demonstrate that X^2 GNN significantly out-494 performs state-of-the-art learning-based approaches. Notably, for large MC problems, X^2 GNN 495 consistently generates solutions within 1.2% of optimality, while other learning-based methods 496 struggle to reach within 22% of optimal. Moreover, X^2 GNN exhibits exceptional generalization 497 capabilities, outperforming existing methods even when trained on smaller or out-of-distribution graphs. The iterative nature of X^2 GNN allows users to trade off runtime and solution quality, as 498 the model can be applied indefinitely to refine solutions. This feature, combined with its strong 499 performance and generalization performance, positions X^2 GNN as a competitive framework with 500 promising directions for future research in learning-based heuristics for combinatorial optimization. 501 By balancing exploration and exploitation, X^2 GNN offers a more effective and adaptable approach 502 to neural combinatorial optimization, addressing the limitations of existing methods and paving the way for more robust solutions to complex CO problems across various domains. 504

REFERENCES

505

506

516

521

522

523

525

526

527

528

529 530

531

532

534

- 507 Agoston E Eiben and Cornelis A Schippers. On evolutionary exploration and exploitation. Funda-508 menta Informaticae, 35(1-4):35-50, 1998. 509
- 510 Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. Machine learning for combinatorial optimization: 511 a methodological tour d'horizon. European Journal of Operational Research, 290(2):405–421, 512 2021. 513
- 514 James Kotary, Ferdinando Fioretto, Pascal Van Hentenryck, and Bryan Wilder. End-to-end constrained 515 optimization learning: A survey. In International Joint Conference on Artificial Intelligence, 2021.
- Quentin Cappart, Didier Chételat, Elias B Khalil, Andrea Lodi, Christopher Morris, and Petar 517 Veličković. Combinatorial optimization and reasoning with graph neural networks. Journal of 518 Machine Learning Research, 24(130):1–61, 2023. 519
- 520 Elias Boutros Khalil, Pierre Le Bodic, Le Song, George L. Nemhauser, and Bistra Dilkina. Learning to branch in mixed integer programming. In Dale Schuurmans and Michael P. Wellman, editors, Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, February 12-17, 2016, Phoenix, Arizona, USA, pages 724–731. AAAI Press, 2016. doi: 10.1609/AAAI.V30I1.10080. 524 URL https://doi.org/10.1609/aaai.v30i1.10080.
 - Daniel Selsam, Matthew Lamm, Benedikt Bünz, Percy Liang, Leonardo de Moura, and David L. Dill. Learning a SAT solver from single-bit supervision. In 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019. URL https://openreview.net/forum?id=HJMC_iA5tm.
 - Vinod Nair, Sergey Bartunov, Felix Gimeno, Ingrid von Glehn, Pawel Lichocki, Ivan Lobov, Brendan O'Donoghue, Nicolas Sonnerat, Christian Tjandraatmadja, Pengming Wang, Ravichandra Addanki, Tharindi Hapuarachchi, Thomas Keck, James Keeling, Pushmeet Kohli, Ira Ktena, Yujia Li, Oriol Vinyals, and Yori Zwols. Solving mixed integer programs using neural networks. CoRR, abs/2012.13349, 2020. URL https://arxiv.org/abs/2012.13349.
- 536 Zhiqing Sun and Yiming Yang. Difusco: Graph-based diffusion solvers for combinatorial optimization. In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine, editors, Advances in Neural Information Processing Systems, volume 36, pages 3706–3731. Curran Asso-538 ciates, Inc., 2023. URL https://proceedings.neurips.cc/paper_files/paper/ 2023/file/0ba520d93c3df592c83a611961314c98-Paper-Conference.pdf.

- 540 Gal Yehuda, Moshe Gabel, and Assaf Schuster. It's not what machines can learn, it's what we 541 cannot teach. In Hal Daumé III and Aarti Singh, editors, Proceedings of the 37th International 542 Conference on Machine Learning, volume 119 of Proceedings of Machine Learning Research, 543 pages 10831-10841. PMLR, 13-18 Jul 2020. URL https://proceedings.mlr.press/ 544 v119/yehuda20a.html.
- Nikolaos Karalias and Andreas Loukas. Erdos goes neural: an unsupervised learning framework for 546 combinatorial optimization on graphs. Advances in Neural Information Processing Systems, 33: 6659-6672, 2020. 548
- Yimeng Min, Frederik Wenkel, Michael Perlmutter, and Guy Wolf. Can hybrid geometric scattering 549 networks help solve the maximum clique problem? Advances in Neural Information Processing 550 Systems, 35:22713-22724, 2022. 551
- 552 Sebastian Sanokowski, Sepp Hochreiter, and Sebastian Lehner. A diffusion model framework for 553 unsupervised neural combinatorial optimization. arXiv preprint arXiv:2406.01661, 2024.
- 554 Sebastian Sanokowski, Wilhelm Berghammer, Sepp Hochreiter, and Sebastian Lehner. Vari-555 ational annealing on graphs for combinatorial optimization. In A. Oh, T. Naumann, 556 A. Globerson, K. Saenko, M. Hardt, and S. Levine, editors, Advances in Neural Information Processing Systems, volume 36, pages 63907-63930. Curran Associates, Inc., 558 2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/ 559 file/c9c54ac0dd5e942b99b2b51c297544fd-Paper-Conference.pdf.
- Dinghuai Zhang, Hanjun Dai, Nikolay Malkin, Aaron C Courville, Yoshua Bengio, and 561 Ling Pan. Let the flows tell: Solving graph combinatorial problems with gflownets. In 562 A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine, editors, Advances 563 in Neural Information Processing Systems, volume 36, pages 11952–11969. Curran Asso-564 ciates, Inc., 2023. URL https://proceedings.neurips.cc/paper files/paper/ 565 2023/file/27571b74d6cd650b8eb6cf1837953ae8-Paper-Conference.pdf.
- 566 Jascha Sohl-Dickstein, Eric A. Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised 567 learning using nonequilibrium thermodynamics. In Francis R. Bach and David M. Blei, editors, 568 Proceedings of the 32nd International Conference on Machine Learning, ICML 2015, Lille, France, 569 6-11 July 2015, volume 37 of JMLR Workshop and Conference Proceedings, pages 2256–2265. 570 JMLR.org, 2015. URL http://proceedings.mlr.press/v37/sohl-dickstein15. 571 html. 572
- Yang Li, Jinpei Guo, Runzhong Wang, and Junchi Yan. From distribution learning in training 573 to gradient search in testing for combinatorial optimization. In Alice Oh, Tristan Naumann, 574 Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine, editors, Advances in Neural 575 Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 576 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023, 2023. 577
- Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to 578 Algorithms, Second Edition. The MIT Press and McGraw-Hill Book Company, 2001. ISBN 579 0-262-03293-7. 580
- 581 Avi Schwarzschild, Eitan Borgnia, Arjun Gupta, Furong Huang, Uzi Vishkin, Micah Goldblum, 582 and Tom Goldstein. Can you learn an algorithm? generalizing from easy to hard problems with 583 recurrent networks. In Marc'Aurelio Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang, 584 and Jennifer Wortman Vaughan, editors, Advances in Neural Information Processing Systems 34: Annual Conference on Neural Information Processing Systems 2021, NeurIPS 2021, December 585 6-14, 2021, virtual, pages 6695-6706, 2021. URL https://proceedings.neurips.cc/ 586 paper/2021/hash/3501672ebc68a5524629080e3ef60aef-Abstract.html.
- 588 Arpit Bansal, Avi Schwarzschild, Eitan Borgnia, Zeyad Emam, Furong Huang, Micah Goldblum, and Tom Goldstein. End-to-end algorithm synthesis with recurrent networks: Extrapolation without 590 overthinking. In Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh, editors, Advances in Neural Information Processing Systems 35: Annual Conference on Neural Information Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - De-592 cember 9, 2022, 2022. URL http://papers.nips.cc/paper_files/paper/2022/ hash/7f70331dbe58ad59d83941dfa7d975aa-Abstract-Conference.html.

594 595 596 597	Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural networks? In 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019. URL https://openreview.net/forum? id=ryGs6iA5Km.
599 600 601 602	Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua Bengio. Graph attention networks. In 6th International Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings. OpenReview.net, 2018. URL https://openreview.net/forum?id=rJXMpikCZ.
603 604 605	Shaked Brody, Uri Alon, and Eran Yahav. How attentive are graph attention networks? In <i>The Tenth In-</i> <i>ternational Conference on Learning Representations, ICLR 2022, Virtual Event, April 25-29, 2022.</i> OpenReview.net, 2022. URL https://openreview.net/forum?id=F72ximsx7C1.
607 608	Hanjun Dai, Xinshi Chen, Yu Li, Xin Gao, and Le Song. A framework for differentiable discovery of graph algorithms. In <i>Learning Meets Combinatorial Algorithms at NeurIPS2020</i> , 2020.
609 610 611	Ke Xu and Wei Li. Exact phase transitions in random constraint satisfaction problems. <i>Journal of Artificial Intelligence Research</i> , 12:93–103, 2000.
612 613	Ian P Gent, Ewan MacIntyre, Patrick Prosser, Barbara M Smith, and Toby Walsh. Random constraint satisfaction: Flaws and structure. <i>Constraints</i> , 6:345–372, 2001.
614 615 616	Barbara M Smith and Martin E Dyer. Locating the phase transition in binary constraint satisfaction problems. <i>Artificial Intelligence</i> , 81(1-2):155–181, 1996.
617 618	P Erdös and A Rényi. On random graphs i. Publ. math. debrecen, 6(290-297):18, 1959.
619 620	Albert-László Barabási and Réka Albert. Emergence of scaling in random networks. <i>science</i> , 286 (5439):509–512, 1999.
621 622	Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2024. URL https://www.gurobi.com.
624 625 626	Sebastian Lamm, Peter Sanders, Christian Schulz, Darren Strash, and Renato F Werneck. Finding near-optimal independent sets at scale. In 2016 Proceedings of the eighteenth workshop on algorithm engineering and experiments (ALENEX), pages 138–150. SIAM, 2016.
627 628 629	Sungsoo Ahn, Younggyo Seo, and Jinwoo Shin. Learning what to defer for maximum independent sets. In <i>International conference on machine learning</i> , pages 134–144. PMLR, 2020.
630 631	Haoran Sun, Etash K Guha, and Hanjun Dai. Annealed training for combinatorial optimization on graphs. <i>arXiv preprint arXiv:2207.11542</i> , 2022.
632 633 634 635	Michel X Goemans and David P Williamson. Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. <i>Journal of the ACM (JACM)</i> , 42(6): 1115–1145, 1995.
636 637 638	Ankur Nath and Alan Kuhnle. A benchmark for maximum cut: Towards standardization of the evaluation of learned heuristics for combinatorial optimization. <i>arXiv preprint arXiv:2406.11897</i> , 2024.
639 640 641 642	Jan Tönshoff, Martin Ritzert, Hinrikus Wolf, and Martin Grohe. Graph neural networks for maximum constraint satisfaction. <i>Frontiers Artif. Intell.</i> , 3:580607, 2020. doi: 10.3389/FRAI.2020.580607. URL https://doi.org/10.3389/frai.2020.580607.
643 644 645 646 647	Jan Tönshoff, Berke Kisin, Jakob Lindner, and Martin Grohe. One model, any csp: Graph neural networks as fast global search heuristics for constraint satisfaction. In Edith Elkind, editor, <i>Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI-23</i> , pages 4280–4288. International Joint Conferences on Artificial Intelligence Organization, 8 2023. doi: 10.24963/ijcai.2023/476. URL https://doi.org/10.24963/ijcai.2023/476. Main Track.

DIMACS. The second dimacs implementation challenge: 1992-1993. https://iridia.ulb. ac.be/~fmascia/maximum_clique/DIMACS-benchmark. Accessed: 2024-11-20.

Martin JA Schuetz, J Kyle Brubaker, and Helmut G Katzgraber. Combinatorial optimization with physics-inspired graph neural networks. *Nature Machine Intelligence*, 4(4):367–377, 2022.

- Martin JA Schuetz, J Kyle Brubaker, and Helmut G Katzgraber. Reply to: Modern graph neural networks do worse than classical greedy algorithms in solving combinatorial optimization problems like maximum independent set. *Nature Machine Intelligence*, 5(1):32–34, 2023.
- William Duckworth and Michele Zito. Large independent sets in random regular graphs. *Theoretical Computer Science*, 410(50):5236–5243, 2009.
 - Renee Mirka and David P Williamson. An experimental evaluation of semidefinite programming and spectral algorithms for max cut. *ACM Journal of Experimental Algorithmics*, 28:1–18, 2023.
 - A EXPERIMENTAL DETAILS
- 664 665 666

667

648

649

650

651

652 653

654

655

656

659

660

661 662 663

A.1 NETWORK ARCHITECTURE

We use GNN architecture where Graph Isomorphism Network (GIN) (Xu et al. (2019)) and Graph Attention Network (GAT) (Velickovic et al. (2018); Brody et al. (2022)) layers are used in an interleaved manner. We use n_L GIN and GAT layers. The initial node features (node probabilities) are transformed to a higher dimension by a linear layer before they are passed to the first GIN layer.

671 The GIN layers work on the original edges and GAT layers work on the crossedges. GIN layers 672 are composed of two-layer MLPs with RELU activations after the MLP layers. We apply Batch 673 Normalization after each MLP layer in GINs and after each GAT layer. We add skip connections to 674 both GIN and GAT layers. Finally, the output of each GAT layer is concatenated and fed into a final 675 two-layer MLP. This architecture is executed recurrently starting from the last hidden representation 676 from MLP n_R times. The final output is transformed into logits and the probability that each node 677 belongs to S is computed via Softmax. For all problems, the architecture hidden representation size is 678 64.

679 680

A.2 HYPERPARAMETERS

All the hyperparameters on each dataset is given in Table 6. n_L and n_R represents the number of layers and number of recurrent steps. K and C means C K-Coupled solutions are generated during training. On all settings, we select K = 2 and C = 4 during training. K and C values used during inference are shown right next to the model. λ_1 and λ_2 are the weights of the constraint and diversity loss, respectively.

Dataset	ep	lr	bs	n_L	n_R	h	Κ	С	ϕ	λ_1	λ_2
RB-250 MIS	50	0.001	64	4	2	64	2	8	0.5	1	0.75
RB-1000 MIS	50	0.001	64	4	4	64	2	8	0.5	1	0.75
ER-750 MIS	50	0.001	64	4	4	64	2	8	0.5	1	0.75
RB-250 MC	50	0.001	64	4	2	64	2	8	0.8	1	0.75
BA-250 MCut	50	0.001	64	4	2	64	2	8	0.8	-	0.75
BA-1000 MCut	50	0.001	64	4	4	64	2	8	0.8	-	0.75

Table 6: Hyperparameters used in training.

696 697

699

A.3 COMPUTATIONAL RESOURCES AND TIME MEASUREMENTS

All experiments are conducted on a machine with 2 Intel Xeon 6348 processors with 28 cores, 1TB
 of memory, and 4 A100 80GB GPUs. All traditional heuristics are run using a single core and Gurobi is run with 4 cores, allowing 40GB of memory for each instance.

We only use 1 A100 during training or inference for all datasets. The training time for MIS is roughly 1 hour and 9 hours for RB250 and RB1000 datasets, respectively. The training time for MCut is roughly 1 hour and 3 hours for BA250 and BA1000 datasets, respectively. The training time for MC is roughly 2 hours for the RB250 dataset.

For baselines, we run each method in our machine and report the time we obtain on our machine to have a fair comparison. However, we use the original size when available on the same dataset split.

708 709 710

707

B ADDITIONAL EXPERIMENTS

711 712

713

718

719

720

721

B.1 Additional Experiments for Maximum Clique

For MC, we consider a challenging dataset from DIMACS implementation challenges related Maximum Clique (DIMACS). This dataset contains 37 challenging graphs. We use the X^2 GNN model trained on the RB-1000 dataset as well as its fine-tuned version. We report the performance of X^2 GNN 256x32 with and without fine-tuning as well as the best traditional heuristic KaMIS.

Table 7: Table shows the clique size and the running time for each instance for X^2 GNN and KaMIS, considering that X^2 GNN FT fine-tunes X^2 GNN on these instances, and X^2 GNN is trained on only RB1000 instances. The clique sizes matching the best-known solutions are shown in bold.

722	•			D . 1		Size	w ² cupt		Runnig Time	$v^2 conv$
723	Instance	n	m	Best known	KaMIS	X ² GNN FT	X ⁻ GNN	KaMIS	X ² GNN FT	X ² GNN
724	brock200_2	200	9,876	12	12	11	11	7.14	4.95	4.95
705	brock200_4	200	13,089	17	16	16	16	5.45	3.7	3.67
/25	brock400_2	400	59,786	29	24	24	24	9.17	4.32	4.35
726	brock400_4	400	59,765	33	25	25	25	8.77	4.28	4.29
707	brock800_2	800	208,166	24	20	20	20	33.91	10.84	10.79
121	brock800_4	800	207,643	26	20	21	21	36.02	10.87	10.8
728	C1000.9	1,000	450,079	68	66	66	64	19.06	6.68	6.59
700	C125.9	125	6,963	34	34	34	34	5.26	3.72	3.6
729	C2000.5	2,000	999,836	16	15	14	0	188.80	72.63	72.4
730	C2000.9	2,000	1,799,532	80	75	75	73	45.28	17.67	17.59
704	C250.9	250	27,984	44	44	44	44	5.15	3.72	3.65
/31	C4000.5	4,000	4,000,268	18	16	13	0	596.32	367.1	369.75
732	C500.9	500	112,332	57	56	56	55	6.88	3.8	3.74
700	DSJC1000_5	1,000	499,652	15	15	12	12	70.18	20.1	19.96
/33	DSJC500_5	500	125,248	13	13	13	13	26.61	7.29	7.24
734	gen200_p0.9_44	200	17,910	44	44	44	44	5.20	3.71	3.59
705	gen200_p0.9_55	200	17,910	55	55	55	55	5.20	3.74	3.6
/35	gen400_p0.9_55	400	71,820	55	53	55	55	5.35	3.71	3.58
736	gen400_p0.9_65	400	71,820	65	65	65	65	5.22	3.71	3.58
707	gen400_p0.9_75	400	71,820	75	75	75	75	5.65	3.75	3.58
/3/	hamming10-4	1,024	434,176	40	38	40	38	12.24	9.53	9.4
738	hamming8-4	256	20,864	16	16	16	16	5.76	3.66	3.55
700	keller4	171	9,435	11	11	11	11	5.40	3.71	3.58
739	keller5	776	225,990	27	26	23	27	10.97	8.32	8.26
740	keller6	3,361	4,619,898	59	55	39	43	61.87	75.01	75.2
7.4.4	MANN_a27	378	70,551	126	126	126	92	5.05	3.69	3.57
741	MANN_a45	1,035	533,115	345	344	343	244	5.09	3.7	3.59
742	MANN_a81	3,321	5,506,380	1100	1100	1097	664	5.06	4.25	4.14
740	p_hat1500-1	1,500	284,923	12	11	10	0	88.97	61.61	60.96
743	p_hat1500-2	1,500	568,960	65	65	65	62	85.44	39.96	40.47
744	p_hat1500-3	1,500	847,244	94	94	94	94	44.08	22.49	22.45
745	p_hat300-1	300	10,933	8	8	8	8	18.69	5.27	5.19
740	p_hat300-2	300	21,928	25	25	25	25	12.02	4.48	4.38
746	p_hat300-3	300	33,390	36	36	36	36	7.06	3.75	3.57
747	p_hat700-1	700	60,999	11	11	9	2	42.16	15.36	15.27
/4/	p_hat700-2	700	121,728	44	44	44	44	25.06	11.49	11.42
748	p_hat700-3	700	183,010	62	62	62	62	13.62	7.38	7.31
749					3.87%	6.68%	17.41%	15.60	8.46	8.33

750

Table 7 shows that X²GNN is able to generalize and generate optimal or near-optimal solutions
on many instances even though it is trained on RB1000 instances, a set of much sparser instances.
However, it does fail to generate good solutions on a few instances. With fine-tuning, solution quality
improves quite a lot both for these failing cases and also in general, leading to an average gap of
6.68% from 17.41%. Even the most successful traditional heuristic KaMIS achieves an average
gap of 3.87%. Considering this dataset is designed to be a challenging dataset, learning a general

760

790

rule based on RB1000 instances that can solve many problems, and achieving a gap of 6.68% after
 fine-tuning is noteworthy.

B.2 Additional Experiments for Maximum Independent Set

For MIS, we evaluate X^2 GNN's performance on two additional datasets. The first dataset consists of regular graphs where each node has either 3 (d=3) or 5 (d=5) neighbors. Following Schuetz et al. (2022), we generate 20 regular graphs for each degree $d \in 3, 5$ and each size n $\in [10^2, 10^3, 10^4, 10^5, 10^6]$ for testing. For training X^2 GNN, we generate 4,000 additional graphs with $n = 10^3$, enabling evaluation of both generalization and scalability.

The second dataset comprises instances from Coding Theory applications, specifically error correction codes, with graph sizes ranging from 64 to 4,096 nodes. For this dataset, we utilize the X^2 GNN model trained on the RB1000 dataset. We compare against KaMIS, the state-of-the-art MIS solver, on both datasets. For the regular dataset, we additionally compare against an enhanced version of PI-GNN that uses GraphSage architecture with a penalty value of 10 (Schuetz et al., 2023).

Figure 4: The plot on the left shows the relative solution quality compared to the theoretical upper bound for X^2 GNN, PI-GNN and KaMIS. For this plot, higher is better. The plot on the right shows the average running time for each algorithm. For this plot lower is better. On both plots, the lines with squares and triangles show the results for regular graphs where each node has 3 and 5 neighbors, respectively. X^2 GNN outperforms PI-GNN on all graph sizes and families both in terms of solution quality and runtime and outperforms KaMIS in larger graphs with a better run time.

Given the large graph sizes, obtaining optimal solutions is computationally intractable. Following Schuetz et al. (2022), we use analytical upper bounds for random d-regular graphs. The best-known bounds on the ratio α_d/n are $\alpha_3/n = 0.45537$ and $\alpha_5/n = 0.38443$ for d=3 and d=5, respectively (Duckworth and Zito, 2009). Notably, these bounds may not be tight; for n=100 and d=3 instances, both X^2 GNN and KaMIS find optimal solutions (verified by Gurobi) that exhibit a 2.6% gap from the theoretical upper bound, suggesting actual performance may be better than indicated.

Figure 4 demonstrates that X^2 GNN substantially outperforms PI-GNN across all problem types in both solution quality and computational efficiency. PI-GNN fails to scale to $n = 10^6$ instances due to its n^2 penalty matrix requirement, while X^2 GNN handles these cases efficiently, producing high-quality solutions in approximately 500 seconds. While KaMIS slightly edges out X^2 GNN on smaller instances, X^2 GNN achieves superior results on larger graphs with lower computational time, demonstrating effective scaling to instances three orders of magnitude larger than those seen during training.

On the Coding Theory dataset (Table 8), X^2 GNN finds the best-known solution in 20 of 32 instances, compared to KaMIS's 28 instances. X^2 GNN achieves an average gap of 3.37% from best-known solutions (versus 0.34% for KaMIS). Excluding one outlier instance where X^2 GNN finds a solution less than half the best-known value, X^2 GNN's average gap improves to 1.74%. This performance is notable given no domain-specific tuning was performed.

To demonstrate X^2 GNN's adaptability to weighted problems, we extend it to weighted maximum independent set problems with minimal modifications: adding a weight embedding layer combined

810	Table 8: The table shows the size of the independent sets found by X^2 GNN and KaMIS and the
811	running time in seconds for each instance. The last row shows the average gap in percentages from
812	the best-known solution. The instances where a method found the best-known solutions are shown in
813	bold.

B15	Graph Best Known		X ² GNN 256x32	KaMIS	X^2 GNN 256x32 Time	KaMIS Time
816	1dc 64	10	10	10	5.06	5 14
817	1dc.128	16	16	16	3.87	4.04
818	1dc.256	30	30	30	4.37	4.50
819	1dc.512	52	52	52	6.33	6.49
200	1dc.1024	94	94	93	11.29	11.40
020	1dc.2048	172	172	172	24.25	24.40
821	1et.64	18	18	18	3.81	1.31
822	1et.128	28	28	28	3.81	3.85
823	1et.256	50	50	50	3.82	3.90
824	1et.512	100	98	100	4.68	4.74
825	1et.1024	171	165	171	7.12	7.23
020	1et.2048	316	300	316	13.95	14.02
020	1tc.8	4	4	4	3.71	0.48
827	1tc.16	8	8	8	3.76	0.81
828	1tc.32	12	12	12	3.76	0.30
829	1tc.64	20	20	20	3.79	1.10
830	1tc.128	38	38	38	3.75	1.15
831	Itc.256	64	63	63	3.78	3.88
000	Itc.512	110	109	110	4.39	4.48
002	1tc.1024	196	189	190	0.04	0./3
833	1tc.2048	352	332 19	352 19	12.91	13.00
834	120.128 170.256	18	18	18	3.//	5.87
835	120.250	50	50	50 62	5.99	4.10
836	120.312	112	100	02 112	0.13	0.33
837	120.1024	108	181	105	18 78	18.80
838	120.2040 17c 4096	379	326	353	40.19	40.41
000	2dc.128	5	5	5	4.52	1.46
009	2dc.256	7	7	7	8.22	10.06
840	2dc.512	11	11	11	19.07	22.31
841	2dc.1024	16	15	16	52.72	57.81
842	2dc.2048	24	11	24	152.61	162.73
843	Average Gap		3.37%	0.34%		
844			1		1	

with node representations via summation, and incorporating weights into the loss function calculation. Using the RB250 dataset with uniform random integer weights in between 1 and 5, we compare against optimal solutions from Gurobi. Table 9 shows X^2 GNN maintains high solution quality with a 0.8% optimality gap.

Table 9: Results for Weighted Maximum Independent Set on small RB graphs, presenting the mean independent set size, drop in quality compared to the optimal, and run time in seconds.

Method	Туре	RB250				
		Size ↑	Drop \downarrow	Time ↓		
Gurobi	OR	82.94	0%	0.21		
X^2 GNN(16x8)	UL	78.52	5.33%	0.03		
X^2 GNN(64x8)	UL	80.26	1.97%	0.09		
X^2 GNN(256x8)	UL	81.31	0.63%	0.35		
X^{2} GNN(256x32)	UL	81.83	1.34%	1.25		
X^{2} GNN(1024x32)	UL	82.28	0.8%	4.92		

In an ablation study, we replaced the GAT layer with a simple MLP for processing cross-edges. Table
 10 shows this variant still outperforms other learning-based approaches but underperforms compared
 to the GAT version, indicating GAT's superior capability in aggregating information across different
 solutions.

Method	Туре		RB250	
		Size ↑	Drop \downarrow	Time \downarrow
KaMIS (30min)	OR	20.106	0%	3.92
Gurobi (30min)	OR	20.106	0%	0.31
KaMIS (Quality)	OR	20.106	0%	3.92
Gurobi (Quality)	OR	20.106	0%	0.42
KaMIS (Fast)	OR	20.032	0.37%	1.16
Gurobi (Fast)	OR	19.16	4.71%	0.1
PPO	UL	19.01	5.45%	0.15
GFlow	UL	19.18	4.61%	0.05
DIFUSCO	SL	17.68	12.07%	0.87
T2T	SL	18.35	8.73%	2.32
DiffUCO	UL	19.24	4.31%	0.42
X^2 GNN-GAT(16x8)	UL	19.51	2.96%	0.034
X^2 GNN-GAT(64x8)	UL	19.82	1.42%	0.128
X^2 GNN-GAT(256x8)	UL	19.98	0.63%	0.5
X^2 GNN-GAT(256x32)	UL	20.072	0.17%	1.94
X^{2} GNN-GAT(1024x32)	UL	20.098	0.04%	7.11
X^2 GNN-MLP(16x8)	UL	18.95	5.75%	0.027
X^2 GNN-MLP(64x8)	UL	19.41	3.46%	0.096
X^2 GNN-MLP(256x8)	UL	19.698	2.03%	0.38
X^{2} GNN-MLP(256x32)	UL	19.886	1.09%	1.35
(_ e one _)			2.0970	2.00

Table 10: The results for replacing GAT layer with a MLP.

893 894 895

896

868

882 883

885

B.3 Additional Experiments for MCut

For the Maximum Cut (MCut) problem, we evaluate X^2 GNN's out-of-distribution performance on two additional benchmark sets. The first dataset, introduced in Mirka and Williamson (2023), comprises diverse graphs from the SNAP Networks repository (referred to as SNAP dataset). This dataset is particularly suitable for assessing generalization capabilities due to its heterogeneous graph distributions. The second dataset, known as Gset (?), is a well-established benchmark collection traditionally used to evaluate MCut algorithms.

To train X^2 GNN, we generate 4,000 Erdős-Rényi (ER) graphs with sizes uniformly sampled from between 200 and 500 and edge probabilities from [0.1, 0.75]. We then evaluate the trained model on both SNAP and Gset datasets.

Table 11 presents results for the SNAP dataset, comparing X^2 GNN against ANYCSP (trained on the same dataset), Tabu Search (TS), Semidefinite Programming (SDP) relaxation, and BMZ heuristic from Mirka and Williamson (2023). X^2 GNN discovers the best solutions among all compared methods for all but two instances, demonstrating superior performance over both ANYCSP and traditional heuristics.

For the Gset evaluation (Table 12), we use the subset specified by Schuetz et al. (2022). Comparing against results reported in their work, X²GNN outperforms other learning-based approaches (PI-GNN and RUN-CSP) and most traditional heuristics, with only BLS achieving marginally better results when using additional stochastic refinement steps. Notably, X²GNN 2560x36 achieves an average gap of merely 0.09% from best-known solutions, demonstrating consistent near-optimal performance across all instances.

917

921								
922	Graph	n	m	X^{2} GNN (256x32)	ANYCSP	TS	BMZ	SDP
923	ENZYMES8	88	133	126	126	126	126	126
924	johnson16-2-4	120	5460	3036	2941	3036	3036	3036
925	hamming6-2	64	1824	992	946	992	992	992
026	ia-infect-hyper	113	2196	1279	1208	1279	1278	1275
920	soc-dolphins	62	159	122	122	122	122	122
927	email-enron-only	143	623	427	427	427	426	422
928	dwt_209	209	976	557	557	557	557	551
929	ca-netscience	379	914	620	580	627	634	634
930	ia-infect-dublin	410	2765	1771	1709	1758	1767	1750
001	road-chesapeake	39	170	126	126	126	126	125
931	Erdos991	492	1417	1036	1036	1012	1031	1019
932	dwt 503	503	3265	1938	1938	1937	1931	1934
933	p-hat700-1	700	60999	33413	31856	33426	33440	33450
934	email-univ	1133	5451	3775	3764	3657	3765	3736

Table 11: Table shows the cut sizes for instance and method. The cut sizes matching the best are shown in bold.

Table 12: Results for Max Cut on Gset dataset, presenting the cut size for each instance. The last row shows the average gap in percentages from the best solution. The best results among the learning-based methods are shown in bold.

Graph	n	m	BLS	DSDP	KHLWG	RUN-CSP	PI-GGN	X^2 GNN 256x32	X^2 GNN 2560x32
G14	800	4,694	3,064	2,922	3,061	2,943	3,026	3,059	3,059
G15	800	4661	3,050	2,938	3,050	2,928	2,990	3,043	3,046
G22	2,000	19,900	13,359	12,960	13,359	13,028	13,181	13,342	13,345
G49	3,000	6,000	6,000	6,000	6,000	6,000	5,918	6,000	6,000
G50	3,000	6,000	5,880	5,880	5,880	5,880	5,820	5,872	5,880
G55	5,000	12,468	10,294	9,960	10,236	10,116	10,138	10,249	10,273
G70	10,000	9,999	9,541	9,456	9,458	-	9,421	9,491	9,536
	Mean Gap		0	2.21%	0.22%	-	1.39%	0.23%	0.09%

Table 13: Results for Max Cut on BA250 graphs with Dynamic Thresholding, presenting the mean cut size, drop in quality to the virtual best, and runtime in seconds. Dynamic Thresholding slightly improves the performance at the cost of running time.

Method	Туре	BA250		
		Size ↑	Drop \downarrow	Time ↓
Gurobi (30min)	OR	735.32	0%	759
Gurobi (Quality)	OR	731.99	0.45%	2.5
Gurobi (Fast)	OR	731.83	0.47%	0.16
SDP	OR	700.04	4.8%	4.2
Tabu Search	Н	733.79	0.21%	3
Greedy	Н	688.31	6.39%	0.02
MFA	Н	704.03	4.26%	0.15
Erdos	UL	693.45	5.69%	0.07
Anneal	UL	696.73	5.25%	0.07
GFlow	UL	704.3	4.22%	0.27
RUN-CSP	UL	726.96	1.14%	0.78
ANYCSP	UL	735.12	0.03%	2.5
DiffUCO	UL	733.5	0.25%	2.77
X^2 GNN(16x8)	UL	734.21	0.15%	0.08
X^2 GNN(64x8)	UL	734.92	0.05%	0.15
X^2 GNN(256x8)	UL	735.17	0.02%	1.2
X^{2} GNN(256x32)	UL	735.26	0.01%	4.1
X^{2} GNN (BA250)(256x32)	UL	735.26	0.01%	4.1
X^2 GNN + DT(16x8)	UL	734.29	0.14%	0.11
X^2 GNN + DT(64x8)	UL	735.02	0.04%	0.38
Y^{2} GNN + DT(256x8)	ш	735 22	0.01%	1.4