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ABSTRACT

Prompting a Large Language Model (LLM) to output Chain-of-Thought (CoT)
reasoning improves performance on complex problem-solving tasks. Moreover,
several popular approaches exist to “self-improve” the CoT reasoning abilities of
LLMs on tasks where supervised (question, answer) datasets are already avail-
able. An emerging line of work explores whether self-improvement is possible
without these supervised datasets, instead utilizing the same large, unstructured
text corpora as used during pre-training. This would overcome the data availabil-
ity bottleneck present in current self-improvement methods, and open the door to-
wards compute-only scaling of language model reasoning ability. We investigate
a fundamental question in this line of work: What constitutes a suitable reward
function for learning to reason during general language model pretraining? We
outline the desirable qualities of such a reward function and empirically demon-
strate how different functions affect what reasoning is learnt and where reasoning
is rewarded. Using these insights, we introduce a novel reward function called
Reasoning Advantage (RA) that facilitates self-improving CoT reasoning on free-
form question-answering (QA) data, where answers are unstructured and difficult
to verify. We also perform an exploratory experiment optimizing RA on general
unstructured text using offline RL, and our analysis indicates that future work
should investigate methods for generating a more diverse set of CoTs.

1 INTRODUCTION

Large Language Models (LLMs) have become increasingly effective at solving complex reasoning
tasks (Huang & Chang, 2022; [Kojima et al., 2023} Wei1 et al., [2023; Havrilla et al.l [2024b). A
key driver of this success has been the discovery of Chain-of-Thought (CoT) reasoning (Wei et al.|
2023)), whereby a model outputs a step-by-step “thought process” before arriving at a final answer.

While some CoT reasoning ability emerges naturally from pretraining on unstructured web-text data
(Fu et al.l 2023), it is through further supervised finetuning (SFT) on curated question-answering
(QA) datasets (Saparov & He| [2023)), as well as Reinforcement Learning from Human Feedback
(RLHF) (Ouyang et al., {2022}, that CoT becomes such a powerful tool. Considerable effort is being
placed in curating large-scale (question, CoT, answer) datasets (Cobbe et al., 2021; Saparov & He,
2023} [Liu et al} 2023), with models increasingly being used “in the loop” to help generate initial
reasoning traces or refine existing ones (Zelikman et al., 2022} Zhang et al., 2024). In certain do-
mains like mathematics, it is also possible to further automate dataset generation by sampling many
CoTs and selecting those which lead to ground-truth answers (Zelikman et al.l 2022)). However,
despite these recent advancements, there are significant limitations to relying on curated datasets for
improving CoT abilities. It is becoming increasingly difficult and prohibitively expensive to curate
sufficiently challenging, large-scale (question, CoT, answer) datasets across the diverse set domains
that today’s general models can tackle. For instance, a popular benchmark of just 500 graduate-level
biology, physics, and chemistry questions with CoT reasoning and answers cost over $120,000 to
produce and required thousands of human expert hours (Rein et al.|[2023).

To address these limitations, an emerging line of work explores self-improving CoT reasoning ability
in a self-supervised setting—Ileveraging the large, unstructured datasets used for pretraining (Zelik-
man et al.,|2024) instead of relying on curated QA or RLHF datasets. In this new setting, the LLM
learns to produce CoT reasoning for the task of next-token prediction: given n tokens from the pre-
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training corpus, the model generates a CoT and receives a reward based on how well the CoT
helps predict the following m tokens. This is an exciting prospect, as we have trillions of tokens
of unstructured text encompassing much of human knowledge. Therefore, learning to self-improve
CoT reasoning on pretraining scale data might overcome the data availability bottleneck in current
self-improvement methods, opening the door towards compute-only scaling of reasoning ability.

While there have been some initial efforts towards self-improving CoT during pretraining, we inves-
tigate a fundamental problem in this emerging line of work: What constitutes a suitable reward
function for reasoning during general language model pretraining? In Section [d we outline
the desirable qualities of such a reward function, and in Section[5.1} we empirically investigate how
different functions affect:

1. What reasoning is rewarded—the ability to distinguish effective CoT reasoning
2. Where reasoning is rewarded—the ability to pick useful locations to produce CoT reasoning

To our knowledge, our work is the first to provide this type of analysis on reward functions towards
self-improving CoT reasoning on unstructured text. Our investigations reveal critical shortcomings
in commonly used reward functions, including an inability to differentiate between meaningful CoT
reasoning and random word sequences (poor what: failing to reward effective reasoning), as well
as a tendency to incentivize reasoning at locations where predicting following tokens is trivial (poor
where: inability to pick out useful locations for reasoning). Drawing on these insights, we introduce
a novel reward function called Reasoning Advantage (RA), an augmentation of standard language
modeling loss, and show that it addresses many of these limitations.

To facilitate more efficient study of self-improving CoT reasoning, we also introduce an open-
ended, free-form QA dataset called MMLU-FREE-FORM by adapting the popular MMLU dataset
(Hendrycks et al.| 2020) to be closer to the unstructured text setting. Specifically, by removing its
multiple-choice format and requiring models to generate full, unstructured answers—which are hard
to verify using exact-match accuracy heuristics (see Figure [). Our purpose in creating MMLU-
FREE-FORM is to make the smallest possible change to MMLU that reveals the limitations of exist-
ing reward functions. It acts as an intermediate benchmark between improving CoT reasoning using
curated (question, CoT, answer) datasets and the challenging, unsolved task of self-improving CoT
reasoning on unstructured text.

MMULU-FREE-FORM does not allow for using exact-match accuracy as a reward metric (similar
to unstructured pretraining text), and yet offers a higher density of clear opportunities for CoT rea-
soning compared to typical pre-training corpora. This makes it an ideal stepping-stone towards the
ultimate goal of self-improving CoT reasoning on unstructured text. In Section[5.2} we demonstrate
that RA is the only reward function which enables self-improvement of CoT reasoning on MMLU-
FREE-FORM, improving zero-shot transfer accuracy on GSM8K (Cobbe et al.,[2021) by nearly 7%,
compared to barely when trained with other reward functions.

Using our Reasoning Advantage (RA) reward function, we conduct an initial experiment on self-
improving CoT reasoning on general unstructured text using OpenWebMath (Paster et al.| [2023),
a collection of 14.7 billion tokens of maths-heavy text. Our results in Section [0 indicate that the
offline RL algorithm employed is not sufficiently powerful to escape the local optimum of extremely
conservative CoT reasoning that just summarizes previous information instead of trying to solve the
problem. Future work should investigate methods for generative a more diverse set of CoTS. To
facilitate future work, we will open-source all of our code, which runs on academic compute.

In summary, our main contributions are as follows:

* We establish desirable criteria of reward functions for self-improving CoT reasoning on
unstructured text at pretraining scale.

* We provide empirical evidence demonstrating how different reward functions impact both
the quality of CoT reasoning (what reasoning is rewarded) and the ability to pick out useful
locations to produce CoT reasoning (where reasoning is rewarded).

* We introduce MMLU-FREE-FORM, an open-ended QA dataset that facilitates more effi-
cient study of self-improving CoT reasoning and reveals the limitations of commonly used
reward functions. It serves as an intermediate benchmark between curated QA datasets and
general language modeling on unstructured text.
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* We propose Reasoning Advantage (RA), a novel reward function based on clipped nor-
malized loss, and demonstrate that RA is the only reward function which facilitates
self-improvement of CoT reasoning on MMLU-FREE-FORM, a key step towards self-
improving reasoning on unstructured, pretraining-scale text.

* While our work does not solve the challenging problem of self-improving CoT reasoning
on unstructured text at the pretraining scale, we conduct an initial experiment and provide
key insights into how future work might make further headway in this direction. Specif-
ically, while we are unable to generalize when optimizing RA using a simple offline RL
algorithm on OpenWebMath (Paster et al., 2023), our analysis suggests that future works
should investigate ways to better explore the space of possible CoTs. This includes moving
towards more online RL algorithms, in order to escape the local optimum of learning con-
servative CoT reasoning strategies that just summarize prior information from the context.

* We will open source all of our code, which runs on academic compute, to facilitate future
work in this direction.

2 BACKGROUND

CoT Reasoning Given n prefix tokens p, performing CoT reasoning refers to an LLM M gener-
ating a sequence of reasoning tokens r before the m answer suffix tokens s. The goal of generating
CoT reasoning tokens before the final answer is to maximize Pa4(s|p,r), the probability of the
answer suffix tokens s conditioned on both the prefix p and the CoT reasoning tokens r. The prefix-
suffix pair can be any token sequence, ranging from question-answer pairs in mathematical datasets
to arbitrarily split sentences from an unstructured text corpus.

Traditionally, CoT reasoning has been elicited by pretending few-shot examples of (question, CoT,
answer) to the prefix. This approach relies the pattern-completion tendencies of LLMs to continue
this structure for subsequent outputs. Alternatively, it has also become popular to elicit CoT rea-
soning by appending prompts like “Let’s think step by step.” to the prefix (e.g., to the end of input
questions), especially for instruction-tuned models.

Self-Improving CoT Reasoning as Reinforcement Learning Self-improvement refers to any
process where an LLLM is finetuned on self-generated data, leading to performance gains without
human intervention or assistance from larger models. This process can be framed as a Reinforcement
Learning (RL) problem. In RL, an agent interacts with an environment by taking actions @ € A in
states s € S to maximize cumulative rewards. The agent receives a reward R; = R(st, a;) after
each action a; and aims to learn a policy 7(a|s) that maximizes the expected cumulative discounted
reward Gy = Yoo o V¥ Rtk where v € [0, 1] is the discount factor.

In the context of CoT generation, each token can be viewed as an action a;, with the current string of
generated tokens representing the state s; so far. We focus on a sparse reward setting where rewards
are 0 until CoT generation is complete, and with a discount factor v = 1. The reward function maps
the prefix p, CoT reasoning tokens r, and answer suffix s to a real number R(p,r,s) € R, with
higher rewards for CoTs that better predict the suffix. Aslong as this reward function doesn’t require
external intervention from humans or more powerful models, optimizing it through RL methods
constitutes self-improving CoT reasoning.

Self-Improving CoT Reasoning Using Supervised Datasets When a supervised dataset of (ques-
tion, answer) pairs is available, accuracy can serve as a reward function:

1 ifargmaxy Pm(s'|p,r) =s
0 otherwise

Racc(pary S) = { (1)

In this case, we can sample multiple CoTs and finetune on those that lead to correct answers (Dong
et al.| 2023} Zelikman et al.| 2022)). Iterating this process yields increasingly high-quality CoT gen-
eration, and this iterative self-improvement is equivalent to online reinforcement learning (Zelikman
et al.,2022)). There are also more complex methods, such as Process Reward Models (PRMs), which
provide dense rewards for each step in a CoT and address credit assignment challenges (Ma et al.,
2023 'Wang et al.,|2023}; |Havrilla et al., [2024b; [Lightman et al.| 2023)).
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Self-Improving CoT Reasoning on General-Purpose, Unstructured Data This setting explores
the possibility of self-improving CoT reasoning given only an unstructured corpus of text, without
access to a curated dataset of (question, CoT, answer) or (question, answer) pairs. In this setting, the
model generates and inserts intermediate CoT reasoning at various points in a sequence of tokens
(for example, at various points in a web-document that shows how to apply the quadratic formula).

A key challenge in this setting is evaluating the performance of CoT reasoning tokens inserted
into general-purpose text. The accuracy-based reward R, is ineffective here, as it would almost
always be 0, providing minimal learning signal. Instead, language modelling performance—the log-
likelihood of the suffix conditioned on the prefix and CoT—serves as a more natural starting point
for a reward function:

Rloss(pa r, S) = log Py (S‘p, I‘) 2

We aim to help advance the field towards this setting, enabling self-improving CoT reasoning on un-
structured text at the pretraining. In this paper, we specifically focus on identifying key shortcomings
of commonly used reward functions and introducing a new function to address these limitations.

3 RELATED WORK

LLM Reasoning Various works have looked at improving the reasoning capabilities of LLMs.
Rajani et al.|(2019) improve the commonsense reasoning ability of language models by training on
human explanations for commonsense problems. Nye et al.|(2021) generate tokens in a “scratchpad”
for intermediate computations when solving multi-step reasoning problems. On difficult algorith-
mic tasks, Pfau et al.| (2024) show that LLMs can even be trained to leverage meaningless filler
tokens under dense supervision, in place of legible CoTs. Further, theoretical analyses by Merrill &
Sabharwal| (2023)) and [Feng et al.| (2024) show that CoT improves the expressivity of Transformers
(Vaswan et al., 2017).

LLM Self-Improvement Using Supervised Datasets Iterated learning approaches involve LLMs
generating new outputs and using “successful” ones to improve generation quality (Anthony et al.,
2017 |Vani et al., 2021} [Polu et al., [2022). Such methods have been applied to LLMs (Zelikman
et al 2022; [Huang et al.| 2022} [Chen et al) 2024). However, much of the research on LLM
self-improvement has been limited to question-answer domains where accuracy is an appropri-
ate success measure, such as multiple-choice questions or simple numeric answers. This limi-
tation is evident in the policy gradient objective approximated by STaR (Zelikman et al., |2022):
VI(M, X,Y) =3 Ei gimpns (o) (@ = yi) - V1og par (9, 7i|2i)], which makes use of an in-
dicator function with respect to ground truth labels. Clearly, this breaks down in settings where
ground truth labels are not available, such as open-ended or “free-form” QA setting as well as
general-purpose language modelling. Havrilla et al.| (2024a) show that Expert Iteration (Anthony
et al 2017), a self-improvement method based on iterative Supervised Fine-Tuning (SFT), outper-
forms RL in their evaluations. Building on this, our work extends RAFT (Dong et al., 2023)), which
also uses iterative SFT, by introducing a new reward function called Reasoning Advantage (RA) for
filtering synthetically generated CoTs.

Process Reward Models (PRMs) (Ma et al.,|2023;/Wang et al.,|2023;Havrilla et al.,|2024b; |Lightman
et al., 2023) have been used to enhance reasoning via Reinforcement Learning (RL) by rewarding
individual problem-solving steps in a CoT. However, PRM training is computationally expensive,
usually involving backtracking and resampling from specific points in the CoT, and these points
from which to resample are usually determined by hard-coded heuristics such as new line breaks.

Self-Supervised LLM Self-Improvement Quiet-STaR (Zelikman et al., [2024) looks to self-
improve reasoning during general language modeling. Zelikman et al. generate a CoT at every
token in an unstructured text document, using the negative cross-entropy loss on the suffix tokens
as a reward. They employ REINFORCE (Williams, |1992) to optimize the loss of the suffix s given
a prefix p and a reasoning trace r, with a baseline for variance reduction. Importantly, perform-
ing CoT reasoning at every token is highly computationally expensive, making it difficult to use
for pretraining-scale datasets and also limiting the length of CoT sequences that can be learnt (the
reasoning learnt in Quiet-STaR is quite short and simple). Regardless, Quiet-STaR provides key in-
sights into how to optimize for reward on general, unstructured text—a very difficult problem. Our
work aims to take a step back and investigate the reward functions we optimize to self-improving
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reasonin ability, with particular focus on what reasoning we should be rewarding and whether we
can take steps towards determining where is the best place to produce CoT reasoning.

RHO-1 (Lin et al.,[2024) investigates whether the sample efficiency of general language pretraining
can be improved by selectively training on more useful tokens in a dataset, instead of training on all
tokens. [Lin et al.|(2024) show that pretraining a model in this way enhances downstream reasoning
ability, and we are excited for future work to investigate a combination of RHO-1 with our proposed
RA reward function (i.e., to perform RL for CoT on datapoints that are suitable for reasoning, not
noisy, and not yet learned).

4 REWARD FUNCTIONS FOR SELF-IMPROVING COT REASONING

In Section 2] we framed self-improving Chain-of-Thought (CoT) reasoning as a Reinforcement
Learning (RL) problem. Given n tokens from a pre-training corpus (the prefix p), the model gener-
ates a CoT r and receives a reward based on how well the CoT helps predict the following m tokens
(the suffix s). Previous works have primarily explored two reward functions for self-improving CoT
reasoning: loss and accuracy. Here, we explore other potential reward functions and their character-
istics from the perspective of facilitating self-improving CoT reasoning on unstructured web-text at
pretraining scale.

There are several key criteria to consider when designing such a reward function. Primarily, it should
reward high-quality reasoning over CoTs containing logical errors or simply random characters. As
shown in Section[5.1] this is not always the case. Moreover, for the purposes of self-improving CoT
reasoning, the reward function must not depend on an stronger source of intelligence (i.e., using a
more powerful LLM to verify the correctness of its CoT). Further, for reasonable use on pretraining
scale datasets, evaluating the function should be fast and ideally parallelizable—requiring a minimal
number of model forward passes.

In this work, we do not consider using an LLM-as-judge to evaluate or verify CoTs since: (1) it
may rely on a stronger model, which is not self-improvement, and (2) while one could use the same
model for both generation and verification, this approach incurs too much computational overhead
to apply to pretraining scale data as it requires the decoding of an answer to be verified against the
ground truth, and the verifier itself needs to generate CoT tokens. We also do not consider accuracy-
based metrics, since free-form answers are often impossible to verify using exact-match, and using
an LL.M-as-judge to compute accuracy faces the issues mentioned above. Thus, we choose to focus
on the family of “loss-based” reward functions. These functions compute the token-by-token log-
likelihood of the suffix tokens s, ... -1, given the CoT r and prefix p:

log P(s|p,r) = log P(so|p,r)
+ log P(Sl|p,r,So)
+ log P(sz2|p,r,s0,1)
+ ...

The most basic reward function in this family is R(p,r,s) = log P(s|p, ). This family of reward
functions offers several key advantages. They are computationally efficient, since they can be eval-
uated by an autoregressive model in a single forward pass and can be parallelized across a batch
of CoTs. Also, they do not require access to any external form of intelligence, a requirement for
self-improvement. Most importantly, this family of functions does not rely on an using exact-match
accuracy to compare with the answer suffix, enabling multiple valid answers and accommodating
ambiguity in formatting (a key property of unstructured text).

3)

While there are many possible ways to augment the basic loss-based reward function R(p,r,s) =
log P(s|p,r), we focus our analysis on two key modifications: clipping the log probabilities and
incorporating a baseline value.

Clipping: We clip (aka clamp) the minimum value of the token-level log probabilities to some
—e such that Rejpped(P, T,8) = >, max [log P(s;|p,r, soﬁ—e]. This constrains the loss con-
tribution of each suffix token to the range [—e¢, 0). In Section 5.1} we demonstrate that this clipping
mechanism helps reward functions distinguish between well-formed CoTs containing a few logical
errors and degenerate CoTs that resemble random tokens.

Baseline Incorporation: We explore incorporating a baseline value both with normalization (R —
B)/B and without normalization R — B, where R is the reward and B is the baseline value. A full
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Criteria Accuracy Loss Loss with baseline RA  LLM-as-judge
Uses no external intelligence Yes Yes Yes Yes

Rewards good reasoning over random  Yes No No Yes Yes

Robust to multiple choices in answer ~ No Yes  Yes Yes

Robust to answer perplexity Yes No No Yes Yes

Fast and parrallelisable No! Yes  Yes Yes No

Table 1: To what extent different reward functions meet our criteria. By RA, we mean loss aug-
mented with clipping and the no CoT baseline, as defined in prendix Al 'whilst we do derive
a generation free variant ‘expected accuracy’ in [Appendix A|that is as fast as loss based methods,
the variant of accuracy used widely through the literature requires answers to be sampled, and so
is slow. *Whilst acting as a verifier may be possible for larger models under heavy prompting, we
found it difficult to consistently verify solutions with the 7B models we used for generation and
finetuning. 3Again, whilst this may be possible with more work, we found it very difficult to have
models consistently grade CoTs that yielded answers close to, but not exactly, the right answer.

list and derivation of the reward functions we investigate can be found in Specifically,
we investigate the three baseline values:

1. Average reward: % >i, R(p,ri,s), where r; are multiple generated CoTs.
2. Empty CoT reward: R(p, “”,s), where the CoT is an empty string.
3. Random CoT reward: R(pP, rrandom,S), Where rrandom is @ sequence of random tokens.

In the main text of this paper, we focus on two main combinations of these augmentations (Ap-
pendix [B.T] contains results for additional reward functions):

* Delta Loss: Rp;. = R(p,r,s)—R(p, “”,s), where we subtract the “Empty CoT” baseline.

Reiipped (P, T,8) — Retippea (P, “ 7 ,8)
Retippea (P, “ 7 ,8)

* Reasoning Advantage (RA): Rra =
loss normalized by the “Empty CoT” baseline.

, which is clipped delta

We find that Reasoning Advantage (RA) is particularly effective. It satisfies each of the identified
criteria in[Table T|and, in Section[5.1] we empirically demonstrate that RA can best distinguish effec-
tive CoT and pick out useful locations for CoT reasoning. Moreover, in Section we demonstrate
that RA is the only reward function which enables self-improveming CoT reasoning on free-form
QA data, a key step towards self-improving CoT at on unstructured, pretraining-scale text.

5 EXPERIMENTS

5.1 REWARD FUNCTIONS FOR SELECTING WHAT & WHERE TO REASON

In this section, we empirically investigate a fundamental problem when self-improving CoT reason-
ing on unstructured, pretraining text: What constitutes a suitable reward function for reasoning
during general language model pretraining? Building on the reward function criteria Section [4]
we empirically investigate how different reward functions affect what and where reasoning is re-
warded. Our two experiments reveal critical shortcomings in commonly used reward functions and
demonstrate the advantages of our novel Reasoning Advantage (RA) function in addressing these
limitations.

What reasoning is rewarded This first experiment evaluates the ability of different reward func-
tions to distinguish between three categories of CoTs: correct, incorrect, and randomly generated.
We select 1,000 prefix-suffix pairs from random locations in the FineWeb text corpus of unstructured
web-text data (Penedo et al., 2024)). Then, for each pair, we generate the three types of CoT: corrent,
incorrect, and random. “Correct” CoTs are generated using GPT-40 with post-rationalization—by
showing GPT-40 both the prefix and suffix, but instructing the model to generate a CoT without
explicitly repeating the suffix (similar to|Zelikman et al.|(2022)). “Incorrect” CoTs are generated by
GPT-40 without post-rationalization—while these CoTs often exhibit sophisticated reasoning, they
typically do not predict the exact suffix as well as the “correct” CoTs, which is enough for the pur-
poses of this experiment. Finally, “random” CoTs consist of strings of random words and serve as
our baseline. The goal is to evaluate how well different reward functions can rank these CoT types,
with the ideal ordering: correct > incorrect > random.
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To evaluate how well a reward function distinguishes be-

tween these CoT types, we compute the reward score for Reward What ~ Where
all CoTs—using Mistral-7B-Instruct (Jiang et al., 2023]) Function (Acc) (AUC)
to compute the log probabilities—and partition them into RA 66.3 77.0
thirds: classifying the top third as “correct,” the middle Delta Loss  58.3 64.4
third as “incorrect,” and the bottom third as “random.” Loss 44.6 394

An effective reward function should rank the CoTs in
the ideal order: correct > incorrect > random. The re-
sults in[Table 2|demonstrate that RA performs best among
loss, delta loss, and RA. Moreover, shows results
for the complete list of evaluated reward functions. No-
tice that while RA without normalization performs just
slightly better, the normalized version significantly out-
performs all other functions in the where experiments be-
low. Hence, we pick the normalized version as our proposed reward function. also shows
the “Average reward” baseline, which is used Quiet-STaR (Zelikman et al.| [2024), performs poorly
in this setting—due to a lack of variation in reward over different CoTs.

Table 2: Reward function performance
for distinguishing CoT types (What)
and identifying optimal CoT placement
(Where). See Appendix for full re-
sults and confidence bounds.

The histogram in reveals that standard loss struggles primarily in distinguishing between
“incorrect” and “random” CoTs. Interestingly, when we simplify to binary classification between
only “correct” and “incorrect” CoTs, non-clipping methods perform similar to clipping methods,
which suggests that the main advantage of clipping lies in distinguishing truly random reasoning.

Where reasoning is rewarded Next, we investigate how different function reward reasoning at
different locations in a document. Using 1,000 problems each from GSM8K (Cobbe et al., [2021),
CSQA (Talmor et al., [2018), and MMLU (Hendrycks et al.l [2020), we first format each problem’s
question, multiple choice options, and answer as a single text string. We then create four (prefix,
suffix) pairs per problem by splitting at different points: 1) mid-question, 2) after the question but
before the multiple choice options, 3) after the multiple choice options (the ideal location for CoT
reasoning), and 4) mid-answer. This setup aims to mimic a key fact about unstructured pretrain-
ing text: not all locations are suitable for CoT reasoning. That is, reasoning may be unhelpful if
produced too early (insufficient context) or too late in a document.

To evaluate each reward function, we frame this as a binary classification task: identifying the ideal
location (after the multiple choice answers but before the solution) versus the three suboptimal lo-
cations. Using reward as a classifier and computing the AUC for this classification task. We find
that RA performs best, followed by delta loss and standard loss (see[Table 2)). Notice that functions
which use a baseline consistently outperform those without, with clipping providing additional im-
provement. Particularly, subtracting the “Empty CoT” baseline helps distinguish between locations
that have low loss due to effective CoT reasoning versus locations that have low loss because the
suffix is trivial to predict without any reasoning (i.e., with an empty CoT). This partially explains
why standard loss performs so poorly: it favors locations halfway through the answer where suffix
prediction becomes trivial. shows results for the complete list of evaluated reward functions.

Summary Across both experiments, the Reasoning Advantage (RA) reward function outper-
formed standard loss and delta loss. As for the two main augmentations, clipping and baseline, we
can summarize their effects. Clipping is often beneficial, almost never harmful, and requires min-
imal extra computation. We explore the impact of different clipping values in Appendix [B-]]
[ure 3). And incorporating a baseline value provides a substantial boost in performance—especially
the “Empty CoT” baseline. Moreover, a key advantage of the “Empty CoT” baseline is that it doesn’t
require generating any additional CoTs per (prefix, suffix) pair. In contrast, the “Average CoT” base-
line requires taking the average loss over multiple CoTs for a single location. Appendix[B.I]contains
tables which show results for all combinations of augmentations. Notice that two combinations and
the non-normalized version of RA performed slightly better on the what experiments, but they per-
formed much worse on the where experiments. RA is the only function with strong performance on
both tasks.

5.2 LEARNING TO REASON ON FREE-FORM QA DATA

To investigate the ability of different reward functions to facilitate self-improving CoT during pre-
training, we create a new “free-form” QA dataset called MMLU-FREE-FORM by adapting the pop-
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Figure 1: (What to reward) Distribution of reward scores across different CoT types using standard
loss (left) and RA (right). Each histogram shows reward distribution: “correct” post-rationalized
CoTs (blue), “incorrect” non-post-rationalized CoTs (orange), and “random” token CoTs (green).
Notice, RA can better differentiate between incorrect and random CoTs. See details in Section@

ular MMLU training dataset (Hendrycks et al} [2020) to be closer to the unstructured text setting.
Specifically, by removing its multiple-choice format and requiring models to generate full, unstruc-
tured answers—which are hard to verify. We use the entire labeled free-form solution as the suffix
when computing rewards. This induces many of the challenges found in reasoning on unstructured
text. For one, problems often become significantly more difficult to answer without multiple choice
options, mirroring the complexity of next-token prediction in pretraining text. In some cases, the
problems become almost impossible to answer (e.g., “Which of the following is the correct method
to multiply 32 x 187?”). Moreover, the free-form nature of answers introduces substantial variance in
response length and structure, making it challenging to predict an answer exactly. Finally, the same
correct answer can be expressed in numerous valid ways (e.g., “Henry VIII had 6 wives” versus
“In total there were 6 different women who were married to Henry the Eighth”). Without a list of
multiple-choice options, it is unclear which answer should preferred. These challenges make the
MMULU-FREE-FORM more representative of real-world pretraining text corpora.

Our purpose in creating MMLU-FREE-FORM is to make the smallest possible change to MMLU
that reveals the limitations of existing reward functions. It acts as an intermediate benchmark be-
tween improving CoT reasoning using curated (question, CoT, answer) datasets and the challenging,
unsolved task of self-improving CoT reasoning on unstructured text. Moreover, this dataset provides
a higher density of clear opportunities for CoT reasoning compared to typical pretraining corpora,
since we know that reasoning is particularly beneficial when predicting answers to questions, and
prior works have shown that LLM reasoning ability on MMLU can be improved with only few thou-
sand labeled CoT examples. Thus, for the purposes of our investigations, MMLU-FREE-FORM
enables a more compute and time efficient study of reward functions, acting as a stepping stone
towards self-improving CoT reasoning on the type of truly unstructured text seen during pretraining

(i.e., OpenWebMath (Paster et al.} 2023))).

We will release MMLU-FREE-FORM to the research community, and we hope it will serve as a
helpful intermediate benchmark for future work to progress toward the unsolved problem of self-
improving CoT reasoning on unstructured, pretraining-scale text. Further discussion about MMLU-
FREE-FORM can be found in Appendix [B.2}

Now, to self-improve CoT reasoning using MMLU-FREE-FORM as our dataset, we utilize a simple
offline RL method. First, we generate 16 CoTs for each question (using Mistral-7B-Instruct with a
temperature value of 0.5) and compute the reward for each CoT using the entire labeled free-form
solution as the suffix. Then, we filter the CoTs with the highest reward 2023), finetune
on MMLU-FREE-FORM containing these self-inserted CoTs, and evaluate the trained model on a
held-out test set. Notice that since all self-inserted CoTs are the same for each reward function, we
can directly and efficiently compare each of them.

We test this pipeline using Mistral-7B and find that only RA facilitates general-
ization—both on the in-domain MMLU test set (see[Figure 2a)) and on zero-shot transfer to GSM8k
(Cobbe et all, 2021)) (see [Figure 2b). These figures show the probability of the answer given the
question and the generated CoT. This metric is also known as “expected accuracy”, since it esti-
mates how often the model would generate the exact ground truth answer if we repeatedly sampled
completions given the question and CoT reasoning. We produce 95% confidence intervals through

bootstrapping (LaFlair et al., 2015

In more detail, only RA is able to substantially increase the answer probability on the MMLU test
set, while filtering CoTs by standard loss, delta loss, or just randomly, improves test performance
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Figure 2: Reward function performance for self-improving reasoning on MMLU-FREE-FORM.
Only RA (purple) facilitates generalization to MMLU test set and zero-shot transfer to GSM8k.
Functions yield different amounts of filtered data (so different “N training steps”). ‘<’ shows the
filtering threshold, all baselines are “Empty CoT”, and “random” means randomly picking CoTs.

by just a few percent and plateaus quickly with more steps. A full breakdown of in-domain MMLU
performance is shown in[Figure 7)in Appendix[B.2] Moreover, only RA facilitates zero-shot transfer
to GSMS8K math problems—improving accuracy on by nearly 7%, compared to barely 0.5% when
trained with other reward functions. Notice that we were only able to train for 1,000 steps with RA,
since only 1,000 steps worth of generated CoTs were above the threshold of 0.2.

These strong results demonstrate that the resulting model learns generalizable reasoning—beyond
just matching specific token patterns in the data. Thus, by rewarding CoTs that best reduce some
form of loss on a suffix, we can enhance a model’s general reasoning ability. This aligns with
recent work [2024) showing that optimizing for loss during general pretraining improves
downstream reasoning performance. Moreover, this shows that RA’s key modifications to standard
loss (clipping, adding a baseline, and normalizing) are crucial for learning generalizable reasoning.

6 CHALLENGES AND FUTURE DIRECTIONS

As it becomes increasingly challenging and expensive to curate large-scale (question, CoT, answer)
datasets [2023), the reasoning community has begun focusing on the challenging task of
self-improving CoT reasoning on unstructured, pretraining-scale text. Our work frames this chal-
lenging task as an RL problem and demonstrates the effectiveness of RA at identifying useful reason-
ing, determining useful locations for reasoning, and facilitating self-improvement in the simplified
MMLU-FREE-FORM setting. There is still more work to be done in order to solve the full, unstruc-
tured pretraining setting. In this section, we present an exploratory experiment that provides key
insights into the barriers that must be overcome to achieve self-improvement at pretraining scale.

Specifically, we attempt to use our novel Reasoning Advantage (RA) reward function with the of-
fline RL procedure from Section[5.2]to self-improve CoT reasoning on OpenWebMath
[2023), a pretraining corpus of unstructured web-text data. The two main steps of this procedure
are: (1) generate a large batch of CoTs and self-insert them into OpenWebMath, and (2) finetune on
the CoTs with the highest reward scores. Our analysis indicates that this method is not sufficiently
powerful to escape the local optimum of extremely conservative CoT reasoning that just summarizes
previous information instead of attempting to actually solve problems (see for exam-
ples). In Section[6.1] we provide key insights into why this method is not sufficient. In Section [6.2}
we provide a more detailed experimental setup and additional results.

6.1 KEY INSIGHTS (NEW SUBSECTION)

To understand why this procedure fails on OpenWebMath, we isolate the problem into two key
components: generating diverse CoTs and identifying useful CoTs. In our offline RL approach, the
role of the reward function is purely to identify useful CoTs to use for training, and Section [5.]
demonstrates that RA excels at this task. This suggests that the remaining challenge lies in genera-
tion. Indeed, our analysis shows that only 0.01% of the generated CoTs achieve a reward above 0.2,
which is our filtering threshold for RA (a decent threshold for “good reasoning” in our experience).
Moreover, many of the CoTs that passed the filtering threshold exhibited the conservative strategy
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described previously: they simply summarize past information from the context. This explains why
the model learned to be overly conservative. However, these overly conservative CoTs which made
it past the RA threshold were still superior to those that did not pass the threshold (those ones mainly
contained incorrect reasoning that predicted the subsequent tokens incorrectly). This indicates that
RA actually succeeded at its job of identifying the best reasoning from the generated batch of CoTs,
and that the main issue indeed lies with the lack of diversity in the generated CoTs.

Thus, to facilitate self-improvement using RA, we must crucially generate a diverse-enough set of
CoTs so that there are enough useful samples for RA to identify. This remains a critical barrier
for future work to investigate. To increase the diversity of explored CoTs, future work might use
Quality-Diversity (Mouret & Clune, [2015)) or other evolutionary techniques (Fernando et al., 2023}
Samvelyan et al}[2024), which could generate more diverse CoTs. It would also be worth exploring
different prompting strategies (we used a single system prompt to generate these CoTs, and did not
spend much time prompt engineering). Better exploration may also be facilitated by using online
RL, but the only existing method in this direction generates a CoT at every token in a document
likman et al.,[2024)), which is highly inefficient. Thus, we believe that our computationally feasible
offline RL approach of generating CoTs in large, offline batches and performing supervised fine-
tuning is key to enabling the self-improvement of CoT reasoning at the pretraining scale. However,
future work should investigate ways of generating a more diverse batch of CoTs in order for this
method to work. One possible idea is to use a combination of RHO-1 2024) and RA.

To encourage future research in this direction, we will open-source our offline RL code, which runs
on an academic compute budget. We will also open-source MMLU-FREE-FORM, which we believe
acts as a useful intermediate benchmark between curated QA data and general language pretraining.

6.2 EXPERIMENTAL SETUP AND ADDITIONAL RESULTS (NEW SUB SECTION)

We first finetune Mistral-7B-Instruct (Jiang et al, [2023) on a small set of CoTs to learn the
“[THOUGHT]...[/THOUGHT]” syntax. Then, we randomly sample 50,000 (prefix, suffix) pairs
from OpenWebMath and generate CoTs for each location using Mistral-7B-Instruct with a temper-
ature value of 0.5. From this pool of generated CoTs, we create three variants of an augmented
OpenWebMath dataset by selecting 3,200 CoTs using different filtering methods: (1) random selec-
tion, (2) best loss scores, and (3) best RA scores.

Throughout training, we evaluate each model’s CoT reasoning ability on a holdout set of OpenWeb-
Math documents. At each checkpoint, we identify locations where “[THOUGHT]” is the predicted
next token, generate CoTs at these points, and measure three metrics on the holdout documents (ex-
cluding CoT tokens but using them as context): standard loss, delta loss, and RA. show
three plots—each measuring one of these metrics at various checkpoints throughout training. Notice
that each line represents an entirely different model trained on differently filtered CoTs.

7 CoONCLUSION (UPDATED, BETTER CLARITY OF CONTRIBUTIONS)

As it becomes increasingly challenging and prohibitively expensive to curate large-scale (question,
CoT, answer) datasets, the LLM reasoning community has began to focus on the challenging task
of self-improving CoT reasoning on unstructured text at the pretraining scale. We frame this as a
reinforcement learning problem and investigate a fundamental question: What constitutes a suitable
reward function for learning to reason during general language model pretraining? We outline the
desirable qualities of such a reward, point out critical shortcomings in many commonly used reward
functions, and introduce Reasoning Advantage (RA), a novel reward function which addresses these
limitations. Further, we provide a comprehensive analysis on how different functions affect: (1) the
ability to identify effective CoT reasoning (what reasoning is rewarded), and (2) the ability to pick
out useful locations to produce CoT reasoning (where reasoning is rewarded). To our knowledge,
our work is the first to provide this type of analysis on reward functions for self-improving CoT
reasoning on unstructured text.

We introduce MMLU-FREE-FORM, a small step towards the full unstructured pretraining setting,
and demonstrate that only RA is able to facilitate generalization when self-improving CoT reasoning
on MMLU-FREE-FORM. There is still more work to be done in order to solve the full, unstructured
pretraining setting, and we present an exploratory experiment that provides key insights into the
barriers that must be overcome to achieve self-improvement at pretraining scale. Most importantly,
future work should investigate methods for generating a more diverse set of CoTs. We will open
source all of our code, which runs on academic compute, to facilitate future work in this direction.

10
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A FORMAL DEFINITIONS

We look at the following metrics for evaluation of intermediate contemplation for next token pre-
diction, that is, given a prefix set of tokens p = p1, ..., pn, a generated set of intermediate reasoning
tokens r and a suffix of m tokens to predict s = s1, ...., S,,, produce a score R(p, 1, s) € R. We use
P(so|p + ) to denote the probability distribution over all tokens on the first token of the suffix.

1.

Accuracy (using generation): Generate, such as through sampling or via greedy decoding,
k continuations s1, ..., S, of length n, from the input p + 7.

k
Raccuracy using generation — Z ]I[SAz = 3] (4)
i=1

. Accuracy (generation free): Accuracy using generation requires at least ng forward

passes. Instead, one can leverage the autoregressive nature of transformers to obtain the
probability distribution over next tokens for the entire answer simultaneously. That is input
the model p + r + s and obtain P(sp|p + ), P(s1|p + r + o), ... with one forward pass.
Looking at whether the argmax of this distribution is s is equivalent to accuracy above
using greedy decoding, and taking P(s|p + r)

Rexpected greedy accuracy — szl]l[arg maX(P(SAi |p +r+ S:i)) = SL] )

Rexpected accuracy — Hzl:élp(gz‘p +r+ S:i) (6)

. Loss: We use the cross entropy loss over tokens, i.e:

ng

Reross entropy loss — Z 1Og 57, ‘p +r+s )) )
i=1

. Delta Loss: The difference in cross entropy between using and not using the reasoning.

Rdelta cross entropy loss — Z IOg Sz |p +r+s)—— Z IOg |p =+ s )) (8)

=1

. Normalised Delta loss: Different answers have varying levels of inherent predictability.

Thus desirable values for loss or delta loss can vary massively. To account for this, we
divide by the answer likelihood without reasoning.
N

Rnormalised delta cross entropy loss — Rdelta Cross entropy Ioss/ - Z log(P(gz ‘p + Sz)) (9)
i=1

. Clipped variants: We evaluate loss, delta loss and normalised delta loss with clipping

applied to the token log probabilities to prevent large values dominating. Our final results
leverage ¢ = —3. For example

Rclipped loss = — Z max[log(P(SAi‘p +7r+ Sii))7 6} (10)

i=1

. Normalised clipped delta loss (Reasoning Advantage): We combine the benefits of delta

loss, normalisation and clipping into one metric.

. LLM-as-judge: Generate, such as through sampling or via greedy decoding, k& continu-

ations §1, ..., §y, of length n, from the input p + r. Let M(p,r, §;, s;) denote whether a
model considers $; to match be the correct answer of s;.. Average over the & completions,

ie:
k
Z (.7, i 5:) (11)

RModel eval —

N\H
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B ADDITIONAL EXPERIMENT DETAILS, RESULTS, AND VISUALIZATIONS

To compute the log probabilities for all reward functions, we used Mistral-7B-Instruct (Jiang et al.,
2023)) finetuned on a small set of 1,000 GPT-4 generated CoTs that have been filtered for correctness
(by providing the model with the correct answer and asking whether it corresponds). This finetuning
allows us to start from a base model that is used to the format of:

### Question: <question> ### Thought <reasoning> ### Answer: <response>.

B.0.1 ADDITIONAL VISUALIZATIONS FOR WHAT & WHERE TO REASON

Figure 3|and [Figure 4] provide additional visualization for the What and Where experimental results
from Section [.1] respectively.
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Post rationalised "Correct" CoTs Non post rationalised "incorrect" CoTs CoTs of random tokens

Figure 3: (What to reward) Distribution of reward scores across different CoT types using stan-
dard loss (left) and RA (right) reward functions. Each histogram shows the reward distribution for
three categories: “correct” post-rationalized CoTs (blue), “incorrect” non-post-rationalized CoTs
(orange), and “random” token CoTs (green). Notice that RA is better able to differentiate between
incorrect and random CoTs. Moreover, the RA scores are normalized to the range [-1, 1], which
may facilitate better learning. See Section @ for more details.
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Figure 4: (Where to reward) Distribution of reward scores for CoTs inserted at different locations
using standard loss (left) and RA (right) reward functions. Each histogram shows the reward dis-
tribution for four insertion points: halfway through question (blue), after question before multiple-
choice options (orange), after multiple-choice options before answer (green), and halfway through
answer (red). As mentioned in Section we assume that after multiple-choice options before
answer (green) is the optimal location to generate CoT reasoning. RA successfully scores CoTs
generated at this location higher, while standard loss does not. Particularly, standard loss fails to
prevent halfway-through-answer CoTs from receiving high rewards.

B.1 WHAT & WHERE TO REASON RESULTS FOR ADDITIONAL REWARD FUNCTIONS

Table 3|and[Table 4] show full results for additional reward functions. That is, for the entire family of
loss-based reward functions. Moreover, they include results for the “empty CoT” baseline as well as
the “random CoT” and “mean loss” baselines. We explore incorporating these baselines both with
normalization (R — B)/B and without normalization R — B, where R is the reward score and B is
the baseline value.

In Tables [3|and 4} RA outperforms standard loss and delta loss—as in the main text. However, it’s
worth mentioning that there are three combinations of augmentations that perform better than RA in
(What to reward), while performing much worse than RA in (Where to reward). In
the main text of this work, we choose to focus mainly on standard loss, delta loss, and RA since delta
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loss shows how the simple change of adding an empty CoT baseline improves results over standard
loss, and RA shows the added effectiveness of clipping and normalization.

Name Baseline Clipping Normalisation Mean q0.025 q0.975 Rank
Loss none none none 44.6% 44.0% 45.4% 9
- empty CoT reward  clipped  none 672% 65.7% 683% 3
RA empty CoT reward clipped yes 66.3% 64.5% 67.8% 4
Delta Loss empty CoT reward  none none 583% 57.8% 58.9% 8
- empty CoT reward none yes 58.8% 58.1% 59.8% 7
- random CoT reward clipped  none 80.4% 79.7% 81.4% 1
- random CoT reward clipped  yes 784% T77.8%  79.0% 2
- random CoT reward none none 60.9% 60.1% 62.7% 6
- random CoT reward none yes 60.9% 59.2% 63.1% 5
- average reward clipped none 30.8% 30.1% 31.7% 10
- average reward clipped  yes 30.7% 299% 31.3% 11
- average reward none none 292% 28.7% 29.8% 13
- average reward none yes 30.7% 30.0% 31.7% 11

Table 3: Full results for What to reward experiment, showing all combinations of augmentations to

the basic loss-based reward in

Name Baseline Clipping Normalisation Mean  q0.025 q0.975 Rank
Loss none none none 394% 377% 40.8% 6
- empty CoT reward  clipped  none 559% 52.5% 59.9% 4
RA empty CoT reward clipped yes 770% 753% 79.0% 1
Delta Loss  empty CoT reward  none none 64.4% 62.7% 67.0% 3
- empty CoT reward none yes 73.0% 71.9% 74.3% 2
- random CoT reward clipped  none 29.8% 282% 30.6% 9
- random CoT reward clipped  yes 40.8% 389% 43.4% 5
- random CoT reward none none 279%  26.7%  28.8% 11
- random CoT reward none yes 273% 25.8% 28.6% 13
- average reward clipped none 277%  25.8% 29.2% 12
- average reward clipped  yes 334% 325% 35.4% 7
- average reward none none 283% 26.5% 30.0% 10
- average reward none yes 321% 30.8% 33.4% 8

Table 4: Full results for Where to reward experiment, showing all combinations of augmentations to

the basic loss-based reward in

What to Contemplate (Accuracy) Where to Contemplate (AUC)

Method Mean  qo.025 q0.975 Mean  go.025 q0.975
RA 0.546 0.530 0.563 0.875 0.857 0.890
DeltaLoss 0.498 0.484 0.511 0.684 0.668 0.700
Loss 0.439 0426 0.453 0.386 0.367 0.401

Table 5: Reward function performance using Llama-3.1-8B (Dubey et al., 2024) (in contrast to
Mistral-7B as in the main body) for distinguishing CoT types (What) and identifying optimal CoT
placement (Where). This agrees with the results for Mistral-7B in the main body.
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types (What to reason) with Mistral-7B. CoT placement (Where to reason) with Mistral-7B.

Figure 5: Ablating the clipping value used in RA. A value of 1.0 is reasonably optimal for both ex-
periments, and was therefore used for the results in Table 2 and the MMLU-Free-Form experiments.

A plat restriction in a
residential subdivision
stated [..] Will the court
likely grant the request
to prohibit intended use?

A plat restriction [..] Will A: If the plat restriction..
the court likely grant the B: The intention was to..
request to prohibit C: Only if the intended use..
intended use? D: Unless the property owner..

° MMLU Free-Form ® MMLU

The intention was to
enforce a residential use B
of the property so that
the intended change in use
will not be allowed. ':é
é D

Figure 6: Example from MMLU-FREE-FORM, our modified version of MMLU (Hendrycks et al.,
2020) designed to study improving CoT reasoning on unstructured, open-ended text. By removing
multiple-choice options, answers become free-form so that they can can be expressed in multiple
different and equally valid ways—this invalidates the use of accuracy without an external verifier.
The left-hand side is the example from MMLU-FREE-FORM and the right-hand side is the original
example from MMLU.

B.2 PERFORMANCE BREAKDOWN FOR SELF-IMPROVING COT REASONING ON
MMLU-FREE-FORM

shows a more complete breakdown of the results on the MMLU test set after self-improving
CoT reasoning on MMLU-FREE-FORM using the method outlined in Section[5.2] The “reasoning
style questions” require quantitative reasoning and span a wide range of subjects including physics,
biology, accounting, mathematics, and computer science. Moreover, we observe far greater im-
provement on “reasoning style questions” compared to “recall style questions”. This interesting
result makes sense, since additional reasoning doesn’t help as much when trying to recall a fact that
was present in the context.
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Figure 7: Performance breakdown on MMLU test set after self-improving CoT reasoning on
MMLU-FREE-FORM. Results are shown for different question types. Left: Ensembled cross-
entropy loss (higher is better), computed as average log-likelihood across multiple CoTs. Right:
Answer probability (higher is better). See Section @for full experiment and method details.

C EXAMPLES OF CONSERVATIVE CHAIN-OF-THOUGHT

As discussed in Section [ our offline RL procedure applied to the unstructured OpenWebMath
dataset (Paster et al., 2023) converges to a local optimum where the model generates overly conser-
vative CoT reasoning, merely restating or summarizing information rather than attempting problem-
solving. Below are some examples of this behavior. Notice that the model knows about the “prefix”
and “completion” from the prompts it received.

GSMS8K Example:

Q: Richard lives in an apartment building with 15 floors. Each
floor contains 8 units, and 3/4 of the building is occupied.
What’s the total number of unoccupied units In the building? [
THOUGHT] The prefix provides information about an apartment
building with 15 floors, each floor containing 8 units, and
3/4 of the building occupied. The completion likely provides
the total number of unoccupied units in the building , based on
the given information. [/THOUGHT]

A: 30

OpenWebMath Example 1:

In this article , by using norms($T$ and $C$), we present the
concept of intuitionistic fuzzy implicative ideals,
intuitionistic fuzzy closed implicative ideals and
intuitionistic fuzzy commutative ideals of $BCI$-algebras.
Some interesting results of them are given. Characterisations
of implicative ideals, closed implicative ideals and
commutative ideals of $BCI$—algebras by using them are
explored. By using intersections , direct products and
homomorphisms, some interesting results are obtained [THOUGHT]
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Consider the prefix, which introduces the concept of
intuitionistic fuzzy implicative ideals in $BCI$—algebras. The
completion likely provides a definition or description of
these ideals , along with their properties and applications. [/
THOUGHT ]

OpenWebMath Example 2:

# Chapter 8 — Polynomials and Factoring — Chapter Review — 8-3 and
8—4 Multiplying Binomials: 31

$9r"{2}-12r+4 [THOUGHT] The prefix provides a list of equations,
each with a variable and a coefficient. The completion likely
provides the solution to each equation, using the variable and
coefficient to determine the value of the equation. The
completion may also provide a step-by-step explanation [/
THOUGHT] $

#### Work Step by Step

Simplify and write in standard form $(3r-2)"{2}$ Rewrite as: $(3r
-2)(3r-2)$ Foil $9r"{2}-6r-6r+4$ Combine like terms $9r°{2}-12
r+4$

After you claim an answer you’ll have 24 hours to send in a draft.
An editor will review the submission and either publish your
submission or provide feedback.

D SOCIETAL IMPACT

While our work is primarily analytical and does not introduce new models, the broader direction of
self-improving CoT reasoning on large-scale unstructured text datasets could significantly enhance
LLMs’ problem-solving capabilities—if successful. Such advances would amplify both the benefits
and risks associated with current language models, warranting continued attention from the research
community on ensuring responsible development.

E ADDITIONAL VISUALIZATIONS

Open Web Math Open Web Math Open Web Math
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Figure 8: Standard loss, delta loss, and RA on the holdout documents measured at different training
checkpoints (see Section [6.2] for details). Each line represents an entirely different model trained on
differently filtered CoTs. The filtering strategies are: random selection (“All Thoughts™), loss-based
(“Loss Filtered Thoughts”), RA-based (“RA Filtered Thoughts”), and a “No Thoughts Control”
baseline (trained on standard OpenWebMath documents without any self-inserted CoTs).
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